mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 19:14:52 +08:00
1774 lines
70 KiB
C
1774 lines
70 KiB
C
/* Common code for fixed-size types in the decNumber C Library.
|
|
Copyright (C) 2007 Free Software Foundation, Inc.
|
|
Contributed by IBM Corporation. Author Mike Cowlishaw.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
In addition to the permissions in the GNU General Public License,
|
|
the Free Software Foundation gives you unlimited permission to link
|
|
the compiled version of this file into combinations with other
|
|
programs, and to distribute those combinations without any
|
|
restriction coming from the use of this file. (The General Public
|
|
License restrictions do apply in other respects; for example, they
|
|
cover modification of the file, and distribution when not linked
|
|
into a combine executable.)
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decCommon.c -- common code for all three fixed-size types */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This module comprises code that is shared between all the formats */
|
|
/* (decSingle, decDouble, and decQuad); it includes set and extract */
|
|
/* of format components, widening, narrowing, and string conversions. */
|
|
/* */
|
|
/* Unlike decNumber, parameterization takes place at compile time */
|
|
/* rather than at runtime. The parameters are set in the decDouble.c */
|
|
/* (etc.) files, which then include this one to produce the compiled */
|
|
/* code. The functions here, therefore, are code shared between */
|
|
/* multiple formats. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Names here refer to decFloat rather than to decDouble, etc., and */
|
|
/* the functions are in strict alphabetical order. */
|
|
/* Constants, tables, and debug function(s) are included only for QUAD */
|
|
/* (which will always be compiled if DOUBLE or SINGLE are used). */
|
|
/* */
|
|
/* Whenever a decContext is used, only the status may be set (using */
|
|
/* OR) or the rounding mode read; all other fields are ignored and */
|
|
/* untouched. */
|
|
|
|
#include "decCommonSymbols.h"
|
|
|
|
/* names for simpler testing and default context */
|
|
#if DECPMAX==7
|
|
#define SINGLE 1
|
|
#define DOUBLE 0
|
|
#define QUAD 0
|
|
#define DEFCONTEXT DEC_INIT_DECIMAL32
|
|
#elif DECPMAX==16
|
|
#define SINGLE 0
|
|
#define DOUBLE 1
|
|
#define QUAD 0
|
|
#define DEFCONTEXT DEC_INIT_DECIMAL64
|
|
#elif DECPMAX==34
|
|
#define SINGLE 0
|
|
#define DOUBLE 0
|
|
#define QUAD 1
|
|
#define DEFCONTEXT DEC_INIT_DECIMAL128
|
|
#else
|
|
#error Unexpected DECPMAX value
|
|
#endif
|
|
|
|
/* Assertions */
|
|
|
|
#if DECPMAX!=7 && DECPMAX!=16 && DECPMAX!=34
|
|
#error Unexpected Pmax (DECPMAX) value for this module
|
|
#endif
|
|
|
|
/* Assert facts about digit characters, etc. */
|
|
#if ('9'&0x0f)!=9
|
|
#error This module assumes characters are of the form 0b....nnnn
|
|
/* where .... are don't care 4 bits and nnnn is 0000 through 1001 */
|
|
#endif
|
|
#if ('9'&0xf0)==('.'&0xf0)
|
|
#error This module assumes '.' has a different mask than a digit
|
|
#endif
|
|
|
|
/* Assert ToString lay-out conditions */
|
|
#if DECSTRING<DECPMAX+9
|
|
#error ToString needs at least 8 characters for lead-in and dot
|
|
#endif
|
|
#if DECPMAX+DECEMAXD+5 > DECSTRING
|
|
#error Exponent form can be too long for ToString to lay out safely
|
|
#endif
|
|
#if DECEMAXD > 4
|
|
#error Exponent form is too long for ToString to lay out
|
|
/* Note: code for up to 9 digits exists in archives [decOct] */
|
|
#endif
|
|
|
|
/* Private functions used here and possibly in decBasic.c, etc. */
|
|
static decFloat * decFinalize(decFloat *, bcdnum *, decContext *);
|
|
static Flag decBiStr(const char *, const char *, const char *);
|
|
|
|
/* Macros and private tables; those which are not format-dependent */
|
|
/* are only included if decQuad is being built. */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* Combination field lookup tables (uInts to save measurable work) */
|
|
/* */
|
|
/* DECCOMBEXP - 2 most-significant-bits of exponent (00, 01, or */
|
|
/* 10), shifted left for format, or DECFLOAT_Inf/NaN */
|
|
/* DECCOMBWEXP - The same, for the next-wider format (unless QUAD) */
|
|
/* DECCOMBMSD - 4-bit most-significant-digit */
|
|
/* [0 if the index is a special (Infinity or NaN)] */
|
|
/* DECCOMBFROM - 5-bit combination field from EXP top bits and MSD */
|
|
/* (placed in uInt so no shift is needed) */
|
|
/* */
|
|
/* DECCOMBEXP, DECCOMBWEXP, and DECCOMBMSD are indexed by the sign */
|
|
/* and 5-bit combination field (0-63, the second half of the table */
|
|
/* identical to the first half) */
|
|
/* DECCOMBFROM is indexed by expTopTwoBits*16 + msd */
|
|
/* */
|
|
/* DECCOMBMSD and DECCOMBFROM are not format-dependent and so are */
|
|
/* only included once, when QUAD is being built */
|
|
/* ------------------------------------------------------------------ */
|
|
static const uInt DECCOMBEXP[64]={
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
|
|
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
|
|
0, 0, 1<<DECECONL, 1<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
|
|
1<<DECECONL, 1<<DECECONL, 1<<DECECONL, 1<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, 2<<DECECONL, 2<<DECECONL,
|
|
0, 0, 1<<DECECONL, 1<<DECECONL,
|
|
2<<DECECONL, 2<<DECECONL, DECFLOAT_Inf, DECFLOAT_NaN};
|
|
#if !QUAD
|
|
static const uInt DECCOMBWEXP[64]={
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
|
|
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
|
|
0, 0, 1<<DECWECONL, 1<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
|
|
1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL, 1<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL, 2<<DECWECONL,
|
|
0, 0, 1<<DECWECONL, 1<<DECWECONL,
|
|
2<<DECWECONL, 2<<DECWECONL, DECFLOAT_Inf, DECFLOAT_NaN};
|
|
#endif
|
|
|
|
#if QUAD
|
|
const uInt DECCOMBMSD[64]={
|
|
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 1,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7,
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, 0, 0};
|
|
|
|
const uInt DECCOMBFROM[48]={
|
|
0x00000000, 0x04000000, 0x08000000, 0x0C000000, 0x10000000, 0x14000000,
|
|
0x18000000, 0x1C000000, 0x60000000, 0x64000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x20000000, 0x24000000,
|
|
0x28000000, 0x2C000000, 0x30000000, 0x34000000, 0x38000000, 0x3C000000,
|
|
0x68000000, 0x6C000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x40000000, 0x44000000, 0x48000000, 0x4C000000,
|
|
0x50000000, 0x54000000, 0x58000000, 0x5C000000, 0x70000000, 0x74000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000};
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* Request and include the tables to use for conversions */
|
|
/* ------------------------------------------------------------------ */
|
|
#define DEC_BCD2DPD 1 /* 0-0x999 -> DPD */
|
|
#define DEC_BIN2DPD 1 /* 0-999 -> DPD */
|
|
#define DEC_BIN2BCD8 1 /* 0-999 -> ddd, len */
|
|
#define DEC_DPD2BCD8 1 /* DPD -> ddd, len */
|
|
#define DEC_DPD2BIN 1 /* DPD -> 0-999 */
|
|
#define DEC_DPD2BINK 1 /* DPD -> 0-999000 */
|
|
#define DEC_DPD2BINM 1 /* DPD -> 0-999000000 */
|
|
#include "decDPD.h" /* source of the lookup tables */
|
|
|
|
#endif
|
|
|
|
/* ----------------------------------------------------------------- */
|
|
/* decBiStr -- compare string with pairwise options */
|
|
/* */
|
|
/* targ is the string to compare */
|
|
/* str1 is one of the strings to compare against (length may be 0) */
|
|
/* str2 is the other; it must be the same length as str1 */
|
|
/* */
|
|
/* returns 1 if strings compare equal, (that is, targ is the same */
|
|
/* length as str1 and str2, and each character of targ is in one */
|
|
/* of str1 or str2 in the corresponding position), or 0 otherwise */
|
|
/* */
|
|
/* This is used for generic caseless compare, including the awkward */
|
|
/* case of the Turkish dotted and dotless Is. Use as (for example): */
|
|
/* if (decBiStr(test, "mike", "MIKE")) ... */
|
|
/* ----------------------------------------------------------------- */
|
|
static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
|
|
for (;;targ++, str1++, str2++) {
|
|
if (*targ!=*str1 && *targ!=*str2) return 0;
|
|
/* *targ has a match in one (or both, if terminator) */
|
|
if (*targ=='\0') break;
|
|
} /* forever */
|
|
return 1;
|
|
} /* decBiStr */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFinalize -- adjust and store a final result */
|
|
/* */
|
|
/* df is the decFloat format number which gets the final result */
|
|
/* num is the descriptor of the number to be checked and encoded */
|
|
/* [its values, including the coefficient, may be modified] */
|
|
/* set is the context to use */
|
|
/* returns df */
|
|
/* */
|
|
/* The num descriptor may point to a bcd8 string of any length; this */
|
|
/* string may have leading insignificant zeros. If it has more than */
|
|
/* DECPMAX digits then the final digit can be a round-for-reround */
|
|
/* digit (i.e., it may include a sticky bit residue). */
|
|
/* */
|
|
/* The exponent (q) may be one of the codes for a special value and */
|
|
/* can be up to 999999999 for conversion from string. */
|
|
/* */
|
|
/* No error is possible, but Inexact, Underflow, and/or Overflow may */
|
|
/* be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* Constant whose size varies with format; also the check for surprises */
|
|
static uByte allnines[DECPMAX]=
|
|
#if SINGLE
|
|
{9, 9, 9, 9, 9, 9, 9};
|
|
#elif DOUBLE
|
|
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
|
|
#elif QUAD
|
|
{9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
|
|
#endif
|
|
|
|
static decFloat * decFinalize(decFloat *df, bcdnum *num,
|
|
decContext *set) {
|
|
uByte *ub; /* work */
|
|
uInt dpd; /* .. */
|
|
uByte *umsd=num->msd; /* local copy */
|
|
uByte *ulsd=num->lsd; /* .. */
|
|
uInt encode; /* encoding accumulator */
|
|
Int length; /* coefficient length */
|
|
|
|
#if DECCHECK
|
|
Int clen=ulsd-umsd+1;
|
|
#if QUAD
|
|
#define COEXTRA 2 /* extra-long coefficent */
|
|
#else
|
|
#define COEXTRA 0
|
|
#endif
|
|
if (clen<1 || clen>DECPMAX*3+2+COEXTRA)
|
|
printf("decFinalize: suspect coefficient [length=%ld]\n", (LI)clen);
|
|
if (num->sign!=0 && num->sign!=DECFLOAT_Sign)
|
|
printf("decFinalize: bad sign [%08lx]\n", (LI)num->sign);
|
|
if (!EXPISSPECIAL(num->exponent)
|
|
&& (num->exponent>1999999999 || num->exponent<-1999999999))
|
|
printf("decFinalize: improbable exponent [%ld]\n", (LI)num->exponent);
|
|
/* decShowNum(num, "final"); */
|
|
#endif
|
|
|
|
/* A special will have an 'exponent' which is very positive and a */
|
|
/* coefficient < DECPMAX */
|
|
length=(uInt)(ulsd-umsd+1); /* coefficient length */
|
|
|
|
if (!NUMISSPECIAL(num)) {
|
|
Int drop; /* digits to be dropped */
|
|
/* skip leading insignificant zeros to calculate an exact length */
|
|
/* [this is quite expensive] */
|
|
if (*umsd==0) {
|
|
for (; UINTAT(umsd)==0 && umsd+3<ulsd;) umsd+=4;
|
|
for (; *umsd==0 && umsd<ulsd;) umsd++;
|
|
length=ulsd-umsd+1; /* recalculate */
|
|
}
|
|
drop=MAXI(length-DECPMAX, DECQTINY-num->exponent);
|
|
/* drop can now be > digits for bottom-clamp (subnormal) cases */
|
|
if (drop>0) { /* rounding needed */
|
|
/* (decFloatQuantize has very similar code to this, so any */
|
|
/* changes may need to be made there, too) */
|
|
uByte *roundat; /* -> re-round digit */
|
|
uByte reround; /* reround value */
|
|
/* printf("Rounding; drop=%ld\n", (LI)drop); */
|
|
|
|
num->exponent+=drop; /* always update exponent */
|
|
|
|
/* Three cases here: */
|
|
/* 1. new LSD is in coefficient (almost always) */
|
|
/* 2. new LSD is digit to left of coefficient (so MSD is */
|
|
/* round-for-reround digit) */
|
|
/* 3. new LSD is to left of case 2 (whole coefficient is sticky) */
|
|
/* [duplicate check-stickies code to save a test] */
|
|
/* [by-digit check for stickies as runs of zeros are rare] */
|
|
if (drop<length) { /* NB lengths not addresses */
|
|
roundat=umsd+length-drop;
|
|
reround=*roundat;
|
|
for (ub=roundat+1; ub<=ulsd; ub++) {
|
|
if (*ub!=0) { /* non-zero to be discarded */
|
|
reround=DECSTICKYTAB[reround]; /* apply sticky bit */
|
|
break; /* [remainder don't-care] */
|
|
}
|
|
} /* check stickies */
|
|
ulsd=roundat-1; /* new LSD */
|
|
}
|
|
else { /* edge case */
|
|
if (drop==length) {
|
|
roundat=umsd;
|
|
reround=*roundat;
|
|
}
|
|
else {
|
|
roundat=umsd-1;
|
|
reround=0;
|
|
}
|
|
for (ub=roundat+1; ub<=ulsd; ub++) {
|
|
if (*ub!=0) { /* non-zero to be discarded */
|
|
reround=DECSTICKYTAB[reround]; /* apply sticky bit */
|
|
break; /* [remainder don't-care] */
|
|
}
|
|
} /* check stickies */
|
|
*umsd=0; /* coefficient is a 0 */
|
|
ulsd=umsd; /* .. */
|
|
}
|
|
|
|
if (reround!=0) { /* discarding non-zero */
|
|
uInt bump=0;
|
|
set->status|=DEC_Inexact;
|
|
/* if adjusted exponent [exp+digits-1] is < EMIN then num is */
|
|
/* subnormal -- so raise Underflow */
|
|
if (num->exponent<DECEMIN && (num->exponent+(ulsd-umsd+1)-1)<DECEMIN)
|
|
set->status|=DEC_Underflow;
|
|
|
|
/* next decide whether increment of the coefficient is needed */
|
|
if (set->round==DEC_ROUND_HALF_EVEN) { /* fastpath slowest case */
|
|
if (reround>5) bump=1; /* >0.5 goes up */
|
|
else if (reround==5) /* exactly 0.5000 .. */
|
|
bump=*ulsd & 0x01; /* .. up iff [new] lsd is odd */
|
|
} /* r-h-e */
|
|
else switch (set->round) {
|
|
case DEC_ROUND_DOWN: {
|
|
/* no change */
|
|
break;} /* r-d */
|
|
case DEC_ROUND_HALF_DOWN: {
|
|
if (reround>5) bump=1;
|
|
break;} /* r-h-d */
|
|
case DEC_ROUND_HALF_UP: {
|
|
if (reround>=5) bump=1;
|
|
break;} /* r-h-u */
|
|
case DEC_ROUND_UP: {
|
|
if (reround>0) bump=1;
|
|
break;} /* r-u */
|
|
case DEC_ROUND_CEILING: {
|
|
/* same as _UP for positive numbers, and as _DOWN for negatives */
|
|
if (!num->sign && reround>0) bump=1;
|
|
break;} /* r-c */
|
|
case DEC_ROUND_FLOOR: {
|
|
/* same as _UP for negative numbers, and as _DOWN for positive */
|
|
/* [negative reround cannot occur on 0] */
|
|
if (num->sign && reround>0) bump=1;
|
|
break;} /* r-f */
|
|
case DEC_ROUND_05UP: {
|
|
if (reround>0) { /* anything out there is 'sticky' */
|
|
/* bump iff lsd=0 or 5; this cannot carry so it could be */
|
|
/* effected immediately with no bump -- but the code */
|
|
/* is clearer if this is done the same way as the others */
|
|
if (*ulsd==0 || *ulsd==5) bump=1;
|
|
}
|
|
break;} /* r-r */
|
|
default: { /* e.g., DEC_ROUND_MAX */
|
|
set->status|=DEC_Invalid_context;
|
|
#if DECCHECK
|
|
printf("Unknown rounding mode: %ld\n", (LI)set->round);
|
|
#endif
|
|
break;}
|
|
} /* switch (not r-h-e) */
|
|
/* printf("ReRound: %ld bump: %ld\n", (LI)reround, (LI)bump); */
|
|
|
|
if (bump!=0) { /* need increment */
|
|
/* increment the coefficient; this might end up with 1000... */
|
|
/* (after the all nines case) */
|
|
ub=ulsd;
|
|
for(; ub-3>=umsd && UINTAT(ub-3)==0x09090909; ub-=4) UINTAT(ub-3)=0;
|
|
/* [note ub could now be to left of msd, and it is not safe */
|
|
/* to write to the the left of the msd] */
|
|
/* now at most 3 digits left to non-9 (usually just the one) */
|
|
for (; ub>=umsd; *ub=0, ub--) {
|
|
if (*ub==9) continue; /* carry */
|
|
*ub+=1;
|
|
break;
|
|
}
|
|
if (ub<umsd) { /* had all-nines */
|
|
*umsd=1; /* coefficient to 1000... */
|
|
/* usually the 1000... coefficient can be used as-is */
|
|
if ((ulsd-umsd+1)==DECPMAX) {
|
|
num->exponent++;
|
|
}
|
|
else {
|
|
/* if coefficient is shorter than Pmax then num is */
|
|
/* subnormal, so extend it; this is safe as drop>0 */
|
|
/* (or, if the coefficient was supplied above, it could */
|
|
/* not be 9); this may make the result normal. */
|
|
ulsd++;
|
|
*ulsd=0;
|
|
/* [exponent unchanged] */
|
|
#if DECCHECK
|
|
if (num->exponent!=DECQTINY) /* sanity check */
|
|
printf("decFinalize: bad all-nines extend [^%ld, %ld]\n",
|
|
(LI)num->exponent, (LI)(ulsd-umsd+1));
|
|
#endif
|
|
} /* subnormal extend */
|
|
} /* had all-nines */
|
|
} /* bump needed */
|
|
} /* inexact rounding */
|
|
|
|
length=ulsd-umsd+1; /* recalculate (may be <DECPMAX) */
|
|
} /* need round (drop>0) */
|
|
|
|
/* The coefficient will now fit and has final length unless overflow */
|
|
/* decShowNum(num, "rounded"); */
|
|
|
|
/* if exponent is >=emax may have to clamp, overflow, or fold-down */
|
|
if (num->exponent>DECEMAX-(DECPMAX-1)) { /* is edge case */
|
|
/* printf("overflow checks...\n"); */
|
|
if (*ulsd==0 && ulsd==umsd) { /* have zero */
|
|
num->exponent=DECEMAX-(DECPMAX-1); /* clamp to max */
|
|
}
|
|
else if ((num->exponent+length-1)>DECEMAX) { /* > Nmax */
|
|
/* Overflow -- these could go straight to encoding, here, but */
|
|
/* instead num is adjusted to keep the code cleaner */
|
|
Flag needmax=0; /* 1 for finite result */
|
|
set->status|=(DEC_Overflow | DEC_Inexact);
|
|
switch (set->round) {
|
|
case DEC_ROUND_DOWN: {
|
|
needmax=1; /* never Infinity */
|
|
break;} /* r-d */
|
|
case DEC_ROUND_05UP: {
|
|
needmax=1; /* never Infinity */
|
|
break;} /* r-05 */
|
|
case DEC_ROUND_CEILING: {
|
|
if (num->sign) needmax=1; /* Infinity iff non-negative */
|
|
break;} /* r-c */
|
|
case DEC_ROUND_FLOOR: {
|
|
if (!num->sign) needmax=1; /* Infinity iff negative */
|
|
break;} /* r-f */
|
|
default: break; /* Infinity in all other cases */
|
|
}
|
|
if (!needmax) { /* easy .. set Infinity */
|
|
num->exponent=DECFLOAT_Inf;
|
|
*umsd=0; /* be clean: coefficient to 0 */
|
|
ulsd=umsd; /* .. */
|
|
}
|
|
else { /* return Nmax */
|
|
umsd=allnines; /* use constant array */
|
|
ulsd=allnines+DECPMAX-1;
|
|
num->exponent=DECEMAX-(DECPMAX-1);
|
|
}
|
|
}
|
|
else { /* no overflow but non-zero and may have to fold-down */
|
|
Int shift=num->exponent-(DECEMAX-(DECPMAX-1));
|
|
if (shift>0) { /* fold-down needed */
|
|
/* fold down needed; must copy to buffer in order to pad */
|
|
/* with zeros safely; fortunately this is not the worst case */
|
|
/* path because cannot have had a round */
|
|
uByte buffer[ROUNDUP(DECPMAX+3, 4)]; /* [+3 allows uInt padding] */
|
|
uByte *s=umsd; /* source */
|
|
uByte *t=buffer; /* safe target */
|
|
uByte *tlsd=buffer+(ulsd-umsd)+shift; /* target LSD */
|
|
/* printf("folddown shift=%ld\n", (LI)shift); */
|
|
for (; s<=ulsd; s+=4, t+=4) UINTAT(t)=UINTAT(s);
|
|
for (t=tlsd-shift+1; t<=tlsd; t+=4) UINTAT(t)=0; /* pad */
|
|
num->exponent-=shift;
|
|
umsd=buffer;
|
|
ulsd=tlsd;
|
|
}
|
|
} /* fold-down? */
|
|
length=ulsd-umsd+1; /* recalculate length */
|
|
} /* high-end edge case */
|
|
} /* finite number */
|
|
|
|
/*------------------------------------------------------------------*/
|
|
/* At this point the result will properly fit the decFloat */
|
|
/* encoding, and it can be encoded with no possibility of error */
|
|
/*------------------------------------------------------------------*/
|
|
/* Following code does not alter coefficient (could be allnines array) */
|
|
|
|
if (length==DECPMAX) {
|
|
return decFloatFromBCD(df, num->exponent, umsd, num->sign);
|
|
}
|
|
|
|
/* Here when length is short */
|
|
if (!NUMISSPECIAL(num)) { /* is still finite */
|
|
/* encode the combination field and exponent continuation */
|
|
uInt uexp=(uInt)(num->exponent+DECBIAS); /* biased exponent */
|
|
uInt code=(uexp>>DECECONL)<<4; /* top two bits of exp */
|
|
/* [msd=0] */
|
|
/* look up the combination field and make high word */
|
|
encode=DECCOMBFROM[code]; /* indexed by (0-2)*16+msd */
|
|
encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; /* exponent continuation */
|
|
}
|
|
else encode=num->exponent; /* special [already in word] */
|
|
/* [coefficient length here will be < DECPMAX] */
|
|
|
|
encode|=num->sign; /* add sign */
|
|
|
|
/* private macro to extract a declet, n (where 0<=n<DECLETS and 0 */
|
|
/* refers to the declet from the least significant three digits) */
|
|
/* and put the corresponding DPD code into dpd. Access to umsd and */
|
|
/* ulsd (pointers to the most and least significant digit of the */
|
|
/* variable-length coefficient) is assumed, along with use of a */
|
|
/* working pointer, uInt *ub. */
|
|
/* As not full-length then chances are there are many leading zeros */
|
|
/* [and there may be a partial triad] */
|
|
#define getDPD(dpd, n) ub=ulsd-(3*(n))-2; \
|
|
if (ub<umsd-2) dpd=0; \
|
|
else if (ub>=umsd) dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; \
|
|
else {dpd=*(ub+2); if (ub+1==umsd) dpd+=*(ub+1)*16; dpd=BCD2DPD[dpd];}
|
|
|
|
/* place the declets in the encoding words and copy to result (df), */
|
|
/* according to endianness; in all cases complete the sign word */
|
|
/* first */
|
|
#if DECPMAX==7
|
|
getDPD(dpd, 1);
|
|
encode|=dpd<<10;
|
|
getDPD(dpd, 0);
|
|
encode|=dpd;
|
|
DFWORD(df, 0)=encode; /* just the one word */
|
|
|
|
#elif DECPMAX==16
|
|
getDPD(dpd, 4); encode|=dpd<<8;
|
|
getDPD(dpd, 3); encode|=dpd>>2;
|
|
DFWORD(df, 0)=encode;
|
|
encode=dpd<<30;
|
|
getDPD(dpd, 2); encode|=dpd<<20;
|
|
getDPD(dpd, 1); encode|=dpd<<10;
|
|
getDPD(dpd, 0); encode|=dpd;
|
|
DFWORD(df, 1)=encode;
|
|
|
|
#elif DECPMAX==34
|
|
getDPD(dpd,10); encode|=dpd<<4;
|
|
getDPD(dpd, 9); encode|=dpd>>6;
|
|
DFWORD(df, 0)=encode;
|
|
|
|
encode=dpd<<26;
|
|
getDPD(dpd, 8); encode|=dpd<<16;
|
|
getDPD(dpd, 7); encode|=dpd<<6;
|
|
getDPD(dpd, 6); encode|=dpd>>4;
|
|
DFWORD(df, 1)=encode;
|
|
|
|
encode=dpd<<28;
|
|
getDPD(dpd, 5); encode|=dpd<<18;
|
|
getDPD(dpd, 4); encode|=dpd<<8;
|
|
getDPD(dpd, 3); encode|=dpd>>2;
|
|
DFWORD(df, 2)=encode;
|
|
|
|
encode=dpd<<30;
|
|
getDPD(dpd, 2); encode|=dpd<<20;
|
|
getDPD(dpd, 1); encode|=dpd<<10;
|
|
getDPD(dpd, 0); encode|=dpd;
|
|
DFWORD(df, 3)=encode;
|
|
#endif
|
|
|
|
/* printf("Status: %08lx\n", (LI)set->status); */
|
|
/* decFloatShow(df, "final"); */
|
|
return df;
|
|
} /* decFinalize */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatFromBCD -- set decFloat from exponent, BCD8, and sign */
|
|
/* */
|
|
/* df is the target decFloat */
|
|
/* exp is the in-range unbiased exponent, q, or a special value in */
|
|
/* the form returned by decFloatGetExponent */
|
|
/* bcdar holds DECPMAX digits to set the coefficient from, one */
|
|
/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
|
|
/* if df is a NaN; all are ignored if df is infinite. */
|
|
/* All bytes must be in 0-9; results undefined otherwise. */
|
|
/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
|
|
/* returns df, which will be canonical */
|
|
/* */
|
|
/* No error is possible, and no status will be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatFromBCD(decFloat *df, Int exp, const uByte *bcdar,
|
|
Int sig) {
|
|
uInt encode, dpd; /* work */
|
|
const uByte *ub; /* .. */
|
|
|
|
if (EXPISSPECIAL(exp)) encode=exp|sig;/* specials already encoded */
|
|
else { /* is finite */
|
|
/* encode the combination field and exponent continuation */
|
|
uInt uexp=(uInt)(exp+DECBIAS); /* biased exponent */
|
|
uInt code=(uexp>>DECECONL)<<4; /* top two bits of exp */
|
|
code+=bcdar[0]; /* add msd */
|
|
/* look up the combination field and make high word */
|
|
encode=DECCOMBFROM[code]|sig; /* indexed by (0-2)*16+msd */
|
|
encode|=(uexp<<(32-6-DECECONL)) & 0x03ffffff; /* exponent continuation */
|
|
}
|
|
|
|
/* private macro to extract a declet, n (where 0<=n<DECLETS and 0 */
|
|
/* refers to the declet from the least significant three digits) */
|
|
/* and put the corresponding DPD code into dpd. */
|
|
/* Use of a working pointer, uInt *ub, is assumed. */
|
|
|
|
#define getDPDf(dpd, n) ub=bcdar+DECPMAX-1-(3*(n))-2; \
|
|
dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)];
|
|
|
|
/* place the declets in the encoding words and copy to result (df), */
|
|
/* according to endianness; in all cases complete the sign word */
|
|
/* first */
|
|
#if DECPMAX==7
|
|
getDPDf(dpd, 1);
|
|
encode|=dpd<<10;
|
|
getDPDf(dpd, 0);
|
|
encode|=dpd;
|
|
DFWORD(df, 0)=encode; /* just the one word */
|
|
|
|
#elif DECPMAX==16
|
|
getDPDf(dpd, 4); encode|=dpd<<8;
|
|
getDPDf(dpd, 3); encode|=dpd>>2;
|
|
DFWORD(df, 0)=encode;
|
|
encode=dpd<<30;
|
|
getDPDf(dpd, 2); encode|=dpd<<20;
|
|
getDPDf(dpd, 1); encode|=dpd<<10;
|
|
getDPDf(dpd, 0); encode|=dpd;
|
|
DFWORD(df, 1)=encode;
|
|
|
|
#elif DECPMAX==34
|
|
getDPDf(dpd,10); encode|=dpd<<4;
|
|
getDPDf(dpd, 9); encode|=dpd>>6;
|
|
DFWORD(df, 0)=encode;
|
|
|
|
encode=dpd<<26;
|
|
getDPDf(dpd, 8); encode|=dpd<<16;
|
|
getDPDf(dpd, 7); encode|=dpd<<6;
|
|
getDPDf(dpd, 6); encode|=dpd>>4;
|
|
DFWORD(df, 1)=encode;
|
|
|
|
encode=dpd<<28;
|
|
getDPDf(dpd, 5); encode|=dpd<<18;
|
|
getDPDf(dpd, 4); encode|=dpd<<8;
|
|
getDPDf(dpd, 3); encode|=dpd>>2;
|
|
DFWORD(df, 2)=encode;
|
|
|
|
encode=dpd<<30;
|
|
getDPDf(dpd, 2); encode|=dpd<<20;
|
|
getDPDf(dpd, 1); encode|=dpd<<10;
|
|
getDPDf(dpd, 0); encode|=dpd;
|
|
DFWORD(df, 3)=encode;
|
|
#endif
|
|
/* decFloatShow(df, "final"); */
|
|
return df;
|
|
} /* decFloatFromBCD */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatFromPacked -- set decFloat from exponent and packed BCD */
|
|
/* */
|
|
/* df is the target decFloat */
|
|
/* exp is the in-range unbiased exponent, q, or a special value in */
|
|
/* the form returned by decFloatGetExponent */
|
|
/* packed holds DECPMAX packed decimal digits plus a sign nibble */
|
|
/* (all 6 codes are OK); the first (MSD) is ignored if df is a NaN */
|
|
/* and all except sign are ignored if df is infinite. For DOUBLE */
|
|
/* and QUAD the first (pad) nibble is also ignored in all cases. */
|
|
/* All coefficient nibbles must be in 0-9 and sign in A-F; results */
|
|
/* are undefined otherwise. */
|
|
/* returns df, which will be canonical */
|
|
/* */
|
|
/* No error is possible, and no status will be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatFromPacked(decFloat *df, Int exp, const uByte *packed) {
|
|
uByte bcdar[DECPMAX+2]; /* work [+1 for pad, +1 for sign] */
|
|
const uByte *ip; /* .. */
|
|
uByte *op; /* .. */
|
|
Int sig=0; /* sign */
|
|
|
|
/* expand coefficient and sign to BCDAR */
|
|
#if SINGLE
|
|
op=bcdar+1; /* no pad digit */
|
|
#else
|
|
op=bcdar; /* first (pad) digit ignored */
|
|
#endif
|
|
for (ip=packed; ip<packed+((DECPMAX+2)/2); ip++) {
|
|
*op++=*ip>>4;
|
|
*op++=(uByte)(*ip&0x0f); /* [final nibble is sign] */
|
|
}
|
|
op--; /* -> sign byte */
|
|
if (*op==DECPMINUS || *op==DECPMINUSALT) sig=DECFLOAT_Sign;
|
|
|
|
if (EXPISSPECIAL(exp)) { /* Infinity or NaN */
|
|
if (!EXPISINF(exp)) bcdar[1]=0; /* a NaN: ignore MSD */
|
|
else memset(bcdar+1, 0, DECPMAX); /* Infinite: coefficient to 0 */
|
|
}
|
|
return decFloatFromBCD(df, exp, bcdar+1, sig);
|
|
} /* decFloatFromPacked */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatFromString -- conversion from numeric string */
|
|
/* */
|
|
/* result is the decFloat format number which gets the result of */
|
|
/* the conversion */
|
|
/* *string is the character string which should contain a valid */
|
|
/* number (which may be a special value), \0-terminated */
|
|
/* If there are too many significant digits in the */
|
|
/* coefficient it will be rounded. */
|
|
/* set is the context */
|
|
/* returns result */
|
|
/* */
|
|
/* The length of the coefficient and the size of the exponent are */
|
|
/* checked by this routine, so the correct error (Underflow or */
|
|
/* Overflow) can be reported or rounding applied, as necessary. */
|
|
/* */
|
|
/* There is no limit to the coefficient length for finite inputs; */
|
|
/* NaN payloads must be integers with no more than DECPMAX-1 digits. */
|
|
/* Exponents may have up to nine significant digits. */
|
|
/* */
|
|
/* If bad syntax is detected, the result will be a quiet NaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatFromString(decFloat *result, const char *string,
|
|
decContext *set) {
|
|
Int digits; /* count of digits in coefficient */
|
|
const char *dotchar=NULL; /* where dot was found [NULL if none] */
|
|
const char *cfirst=string; /* -> first character of decimal part */
|
|
const char *c; /* work */
|
|
uByte *ub; /* .. */
|
|
bcdnum num; /* collects data for finishing */
|
|
uInt error=DEC_Conversion_syntax; /* assume the worst */
|
|
uByte buffer[ROUNDUP(DECSTRING+11, 8)]; /* room for most coefficents, */
|
|
/* some common rounding, +3, & pad */
|
|
#if DECTRACE
|
|
/* printf("FromString %s ...\n", string); */
|
|
#endif
|
|
|
|
for(;;) { /* once-only 'loop' */
|
|
num.sign=0; /* assume non-negative */
|
|
num.msd=buffer; /* MSD is here always */
|
|
|
|
/* detect and validate the coefficient, including any leading, */
|
|
/* trailing, or embedded '.' */
|
|
/* [could test four-at-a-time here (saving 10% for decQuads), */
|
|
/* but that risks storage violation because the position of the */
|
|
/* terminator is unknown] */
|
|
for (c=string;; c++) { /* -> input character */
|
|
if (((unsigned)(*c-'0'))<=9) continue; /* '0' through '9' is good */
|
|
if (*c=='\0') break; /* most common non-digit */
|
|
if (*c=='.') {
|
|
if (dotchar!=NULL) break; /* not first '.' */
|
|
dotchar=c; /* record offset into decimal part */
|
|
continue;}
|
|
if (c==string) { /* first in string... */
|
|
if (*c=='-') { /* valid - sign */
|
|
cfirst++;
|
|
num.sign=DECFLOAT_Sign;
|
|
continue;}
|
|
if (*c=='+') { /* valid + sign */
|
|
cfirst++;
|
|
continue;}
|
|
}
|
|
/* *c is not a digit, terminator, or a valid +, -, or '.' */
|
|
break;
|
|
} /* c loop */
|
|
|
|
digits=(uInt)(c-cfirst); /* digits (+1 if a dot) */
|
|
|
|
if (digits>0) { /* had digits and/or dot */
|
|
const char *clast=c-1; /* note last coefficient char position */
|
|
Int exp=0; /* exponent accumulator */
|
|
if (*c!='\0') { /* something follows the coefficient */
|
|
uInt edig; /* unsigned work */
|
|
/* had some digits and more to come; expect E[+|-]nnn now */
|
|
const char *firstexp; /* exponent first non-zero */
|
|
if (*c!='E' && *c!='e') break;
|
|
c++; /* to (optional) sign */
|
|
if (*c=='-' || *c=='+') c++; /* step over sign (c=clast+2) */
|
|
if (*c=='\0') break; /* no digits! (e.g., '1.2E') */
|
|
for (; *c=='0';) c++; /* skip leading zeros [even last] */
|
|
firstexp=c; /* remember start [maybe '\0'] */
|
|
/* gather exponent digits */
|
|
edig=(uInt)*c-(uInt)'0';
|
|
if (edig<=9) { /* [check not bad or terminator] */
|
|
exp+=edig; /* avoid initial X10 */
|
|
c++;
|
|
for (;; c++) {
|
|
edig=(uInt)*c-(uInt)'0';
|
|
if (edig>9) break;
|
|
exp=exp*10+edig;
|
|
}
|
|
}
|
|
/* if not now on the '\0', *c must not be a digit */
|
|
if (*c!='\0') break;
|
|
|
|
/* (this next test must be after the syntax checks) */
|
|
/* if definitely more than the possible digits for format then */
|
|
/* the exponent may have wrapped, so simply set it to a certain */
|
|
/* over/underflow value */
|
|
if (c>firstexp+DECEMAXD) exp=DECEMAX*2;
|
|
if (*(clast+2)=='-') exp=-exp; /* was negative */
|
|
} /* digits>0 */
|
|
|
|
if (dotchar!=NULL) { /* had a '.' */
|
|
digits--; /* remove from digits count */
|
|
if (digits==0) break; /* was dot alone: bad syntax */
|
|
exp-=(Int)(clast-dotchar); /* adjust exponent */
|
|
/* [the '.' can now be ignored] */
|
|
}
|
|
num.exponent=exp; /* exponent is good; store it */
|
|
|
|
/* Here when whole string has been inspected and syntax is good */
|
|
/* cfirst->first digit or dot, clast->last digit or dot */
|
|
error=0; /* no error possible now */
|
|
|
|
/* if the number of digits in the coefficient will fit in buffer */
|
|
/* then it can simply be converted to bcd8 and copied -- decFinalize */
|
|
/* will take care of leading zeros and rounding; the buffer is big */
|
|
/* enough for all canonical coefficients, including 0.00000nn... */
|
|
ub=buffer;
|
|
if (digits<=(Int)(sizeof(buffer)-3)) { /* [-3 allows by-4s copy] */
|
|
c=cfirst;
|
|
if (dotchar!=NULL) { /* a dot to worry about */
|
|
if (*(c+1)=='.') { /* common canonical case */
|
|
*ub++=(uByte)(*c-'0'); /* copy leading digit */
|
|
c+=2; /* prepare to handle rest */
|
|
}
|
|
else for (; c<=clast;) { /* '.' could be anywhere */
|
|
/* as usual, go by fours when safe; NB it has been asserted */
|
|
/* that a '.' does not have the same mask as a digit */
|
|
if (c<=clast-3 /* safe for four */
|
|
&& (UINTAT(c)&0xf0f0f0f0)==CHARMASK) { /* test four */
|
|
UINTAT(ub)=UINTAT(c)&0x0f0f0f0f; /* to BCD8 */
|
|
ub+=4;
|
|
c+=4;
|
|
continue;
|
|
}
|
|
if (*c=='.') { /* found the dot */
|
|
c++; /* step over it .. */
|
|
break; /* .. and handle the rest */
|
|
}
|
|
*ub++=(uByte)(*c++-'0');
|
|
}
|
|
} /* had dot */
|
|
/* Now no dot; do this by fours (where safe) */
|
|
for (; c<=clast-3; c+=4, ub+=4) UINTAT(ub)=UINTAT(c)&0x0f0f0f0f;
|
|
for (; c<=clast; c++, ub++) *ub=(uByte)(*c-'0');
|
|
num.lsd=buffer+digits-1; /* record new LSD */
|
|
} /* fits */
|
|
|
|
else { /* too long for buffer */
|
|
/* [This is a rare and unusual case; arbitrary-length input] */
|
|
/* strip leading zeros [but leave final 0 if all 0's] */
|
|
if (*cfirst=='.') cfirst++; /* step past dot at start */
|
|
if (*cfirst=='0') { /* [cfirst always -> digit] */
|
|
for (; cfirst<clast; cfirst++) {
|
|
if (*cfirst!='0') { /* non-zero found */
|
|
if (*cfirst=='.') continue; /* [ignore] */
|
|
break; /* done */
|
|
}
|
|
digits--; /* 0 stripped */
|
|
} /* cfirst */
|
|
} /* at least one leading 0 */
|
|
|
|
/* the coefficient is now as short as possible, but may still */
|
|
/* be too long; copy up to Pmax+1 digits to the buffer, then */
|
|
/* just record any non-zeros (set round-for-reround digit) */
|
|
for (c=cfirst; c<=clast && ub<=buffer+DECPMAX; c++) {
|
|
/* (see commentary just above) */
|
|
if (c<=clast-3 /* safe for four */
|
|
&& (UINTAT(c)&0xf0f0f0f0)==CHARMASK) { /* four digits */
|
|
UINTAT(ub)=UINTAT(c)&0x0f0f0f0f; /* to BCD8 */
|
|
ub+=4;
|
|
c+=3; /* [will become 4] */
|
|
continue;
|
|
}
|
|
if (*c=='.') continue; /* [ignore] */
|
|
*ub++=(uByte)(*c-'0');
|
|
}
|
|
ub--; /* -> LSD */
|
|
for (; c<=clast; c++) { /* inspect remaining chars */
|
|
if (*c!='0') { /* sticky bit needed */
|
|
if (*c=='.') continue; /* [ignore] */
|
|
*ub=DECSTICKYTAB[*ub]; /* update round-for-reround */
|
|
break; /* no need to look at more */
|
|
}
|
|
}
|
|
num.lsd=ub; /* record LSD */
|
|
/* adjust exponent for dropped digits */
|
|
num.exponent+=digits-(Int)(ub-buffer+1);
|
|
} /* too long for buffer */
|
|
} /* digits or dot */
|
|
|
|
else { /* no digits or dot were found */
|
|
if (*c=='\0') break; /* nothing to come is bad */
|
|
/* only Infinities and NaNs are allowed, here */
|
|
buffer[0]=0; /* default a coefficient of 0 */
|
|
num.lsd=buffer; /* .. */
|
|
if (decBiStr(c, "infinity", "INFINITY")
|
|
|| decBiStr(c, "inf", "INF")) num.exponent=DECFLOAT_Inf;
|
|
else { /* should be a NaN */
|
|
num.exponent=DECFLOAT_qNaN; /* assume quiet NaN */
|
|
if (*c=='s' || *c=='S') { /* probably an sNaN */
|
|
c++;
|
|
num.exponent=DECFLOAT_sNaN; /* assume is in fact sNaN */
|
|
}
|
|
if (*c!='N' && *c!='n') break; /* check caseless "NaN" */
|
|
c++;
|
|
if (*c!='a' && *c!='A') break; /* .. */
|
|
c++;
|
|
if (*c!='N' && *c!='n') break; /* .. */
|
|
c++;
|
|
/* now either nothing, or nnnn payload (no dots), expected */
|
|
/* -> start of integer, and skip leading 0s [including plain 0] */
|
|
for (cfirst=c; *cfirst=='0';) cfirst++;
|
|
if (*cfirst!='\0') { /* not empty or all-0, payload */
|
|
/* payload found; check all valid digits and copy to buffer as bcd8 */
|
|
ub=buffer;
|
|
for (c=cfirst;; c++, ub++) {
|
|
if ((unsigned)(*c-'0')>9) break; /* quit if not 0-9 */
|
|
if (c-cfirst==DECPMAX-1) break; /* too many digits */
|
|
*ub=(uByte)(*c-'0'); /* good bcd8 */
|
|
}
|
|
if (*c!='\0') break; /* not all digits, or too many */
|
|
num.lsd=ub-1; /* record new LSD */
|
|
}
|
|
} /* NaN or sNaN */
|
|
error=0; /* syntax is OK */
|
|
break; /* done with specials */
|
|
} /* digits=0 (special expected) */
|
|
break;
|
|
} /* [for(;;) break] */
|
|
|
|
/* decShowNum(&num, "fromStr"); */
|
|
|
|
if (error!=0) {
|
|
set->status|=error;
|
|
num.exponent=DECFLOAT_qNaN; /* set up quiet NaN */
|
|
num.sign=0; /* .. with 0 sign */
|
|
buffer[0]=0; /* .. and coefficient */
|
|
num.lsd=buffer; /* .. */
|
|
/* decShowNum(&num, "oops"); */
|
|
}
|
|
|
|
/* decShowNum(&num, "dffs"); */
|
|
decFinalize(result, &num, set); /* round, check, and lay out */
|
|
/* decFloatShow(result, "fromString"); */
|
|
return result;
|
|
} /* decFloatFromString */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatFromWider -- conversion from next-wider format */
|
|
/* */
|
|
/* result is the decFloat format number which gets the result of */
|
|
/* the conversion */
|
|
/* wider is the decFloatWider format number which will be narrowed */
|
|
/* set is the context */
|
|
/* returns result */
|
|
/* */
|
|
/* Narrowing can cause rounding, overflow, etc., but not Invalid */
|
|
/* operation (sNaNs are copied and do not signal). */
|
|
/* ------------------------------------------------------------------ */
|
|
/* narrow-to is not possible for decQuad format numbers; simply omit */
|
|
#if !QUAD
|
|
decFloat * decFloatFromWider(decFloat *result, const decFloatWider *wider,
|
|
decContext *set) {
|
|
bcdnum num; /* collects data for finishing */
|
|
uByte bcdar[DECWPMAX]; /* room for wider coefficient */
|
|
uInt widerhi=DFWWORD(wider, 0); /* top word */
|
|
Int exp;
|
|
|
|
GETWCOEFF(wider, bcdar);
|
|
|
|
num.msd=bcdar; /* MSD is here always */
|
|
num.lsd=bcdar+DECWPMAX-1; /* LSD is here always */
|
|
num.sign=widerhi&0x80000000; /* extract sign [DECFLOAT_Sign=Neg] */
|
|
|
|
/* decode the wider combination field to exponent */
|
|
exp=DECCOMBWEXP[widerhi>>26]; /* decode from wider combination field */
|
|
/* if it is a special there's nothing to do unless sNaN; if it's */
|
|
/* finite then add the (wider) exponent continuation and unbias */
|
|
if (EXPISSPECIAL(exp)) exp=widerhi&0x7e000000; /* include sNaN selector */
|
|
else exp+=GETWECON(wider)-DECWBIAS;
|
|
num.exponent=exp;
|
|
|
|
/* decShowNum(&num, "dffw"); */
|
|
return decFinalize(result, &num, set);/* round, check, and lay out */
|
|
} /* decFloatFromWider */
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatGetCoefficient -- get coefficient as BCD8 */
|
|
/* */
|
|
/* df is the decFloat from which to extract the coefficient */
|
|
/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
|
|
/* each byte (BCD8 encoding); if df is a NaN the first byte will */
|
|
/* be zero, and if it is infinite they will all be zero */
|
|
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
|
|
/* 0 otherwise) */
|
|
/* */
|
|
/* No error is possible, and no status will be set. If df is a */
|
|
/* special value the array is set to zeros (for Infinity) or to the */
|
|
/* payload of a qNaN or sNaN. */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decFloatGetCoefficient(const decFloat *df, uByte *bcdar) {
|
|
if (DFISINF(df)) memset(bcdar, 0, DECPMAX);
|
|
else {
|
|
GETCOEFF(df, bcdar); /* use macro */
|
|
if (DFISNAN(df)) bcdar[0]=0; /* MSD needs correcting */
|
|
}
|
|
return DFISSIGNED(df);
|
|
} /* decFloatGetCoefficient */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatGetExponent -- get unbiased exponent */
|
|
/* */
|
|
/* df is the decFloat from which to extract the exponent */
|
|
/* returns the exponent, q. */
|
|
/* */
|
|
/* No error is possible, and no status will be set. If df is a */
|
|
/* special value the first seven bits of the decFloat are returned, */
|
|
/* left adjusted and with the first (sign) bit set to 0 (followed by */
|
|
/* 25 0 bits). e.g., -sNaN would return 0x7e000000 (DECFLOAT_sNaN). */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decFloatGetExponent(const decFloat *df) {
|
|
if (DFISSPECIAL(df)) return DFWORD(df, 0)&0x7e000000;
|
|
return GETEXPUN(df);
|
|
} /* decFloatGetExponent */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatSetCoefficient -- set coefficient from BCD8 */
|
|
/* */
|
|
/* df is the target decFloat (and source of exponent/special value) */
|
|
/* bcdar holds DECPMAX digits to set the coefficient from, one */
|
|
/* digit in each byte (BCD8 encoding); the first (MSD) is ignored */
|
|
/* if df is a NaN; all are ignored if df is infinite. */
|
|
/* sig is DECFLOAT_Sign to set the sign bit, 0 otherwise */
|
|
/* returns df, which will be canonical */
|
|
/* */
|
|
/* No error is possible, and no status will be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatSetCoefficient(decFloat *df, const uByte *bcdar,
|
|
Int sig) {
|
|
uInt exp; /* for exponent */
|
|
uByte bcdzero[DECPMAX]; /* for infinities */
|
|
|
|
/* Exponent/special code is extracted from df */
|
|
if (DFISSPECIAL(df)) {
|
|
exp=DFWORD(df, 0)&0x7e000000;
|
|
if (DFISINF(df)) {
|
|
memset(bcdzero, 0, DECPMAX);
|
|
return decFloatFromBCD(df, exp, bcdzero, sig);
|
|
}
|
|
}
|
|
else exp=GETEXPUN(df);
|
|
return decFloatFromBCD(df, exp, bcdar, sig);
|
|
} /* decFloatSetCoefficient */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatSetExponent -- set exponent or special value */
|
|
/* */
|
|
/* df is the target decFloat (and source of coefficient/payload) */
|
|
/* set is the context for reporting status */
|
|
/* exp is the unbiased exponent, q, or a special value in the form */
|
|
/* returned by decFloatGetExponent */
|
|
/* returns df, which will be canonical */
|
|
/* */
|
|
/* No error is possible, but Overflow or Underflow might occur. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatSetExponent(decFloat *df, decContext *set, Int exp) {
|
|
uByte bcdcopy[DECPMAX]; /* for coefficient */
|
|
bcdnum num; /* work */
|
|
num.exponent=exp;
|
|
num.sign=decFloatGetCoefficient(df, bcdcopy); /* extract coefficient */
|
|
if (DFISSPECIAL(df)) { /* MSD or more needs correcting */
|
|
if (DFISINF(df)) memset(bcdcopy, 0, DECPMAX);
|
|
bcdcopy[0]=0;
|
|
}
|
|
num.msd=bcdcopy;
|
|
num.lsd=bcdcopy+DECPMAX-1;
|
|
return decFinalize(df, &num, set);
|
|
} /* decFloatSetExponent */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatRadix -- returns the base (10) */
|
|
/* */
|
|
/* df is any decFloat of this format */
|
|
/* ------------------------------------------------------------------ */
|
|
uInt decFloatRadix(const decFloat *df) {
|
|
if (df) return 10; /* to placate compiler */
|
|
return 10;
|
|
} /* decFloatRadix */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatShow -- printf a decFloat in hexadecimal and decimal */
|
|
/* df is the decFloat to show */
|
|
/* tag is a tag string displayed with the number */
|
|
/* */
|
|
/* This is a debug aid; the precise format of the string may change. */
|
|
/* ------------------------------------------------------------------ */
|
|
void decFloatShow(const decFloat *df, const char *tag) {
|
|
char hexbuf[DECBYTES*2+DECBYTES/4+1]; /* NB blank after every fourth */
|
|
char buff[DECSTRING]; /* for value in decimal */
|
|
Int i, j=0;
|
|
|
|
for (i=0; i<DECBYTES; i++) {
|
|
#if DECLITEND
|
|
sprintf(&hexbuf[j], "%02x", df->bytes[DECBYTES-1-i]);
|
|
#else
|
|
sprintf(&hexbuf[j], "%02x", df->bytes[i]);
|
|
#endif
|
|
j+=2;
|
|
/* the next line adds blank (and terminator) after final pair, too */
|
|
if ((i+1)%4==0) {strcpy(&hexbuf[j], " "); j++;}
|
|
}
|
|
decFloatToString(df, buff);
|
|
printf(">%s> %s [big-endian] %s\n", tag, hexbuf, buff);
|
|
return;
|
|
} /* decFloatShow */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatToBCD -- get sign, exponent, and BCD8 from a decFloat */
|
|
/* */
|
|
/* df is the source decFloat */
|
|
/* exp will be set to the unbiased exponent, q, or to a special */
|
|
/* value in the form returned by decFloatGetExponent */
|
|
/* bcdar is where DECPMAX bytes will be written, one BCD digit in */
|
|
/* each byte (BCD8 encoding); if df is a NaN the first byte will */
|
|
/* be zero, and if it is infinite they will all be zero */
|
|
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
|
|
/* 0 otherwise) */
|
|
/* */
|
|
/* No error is possible, and no status will be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decFloatToBCD(const decFloat *df, Int *exp, uByte *bcdar) {
|
|
if (DFISINF(df)) {
|
|
memset(bcdar, 0, DECPMAX);
|
|
*exp=DFWORD(df, 0)&0x7e000000;
|
|
}
|
|
else {
|
|
GETCOEFF(df, bcdar); /* use macro */
|
|
if (DFISNAN(df)) {
|
|
bcdar[0]=0; /* MSD needs correcting */
|
|
*exp=DFWORD(df, 0)&0x7e000000;
|
|
}
|
|
else { /* finite */
|
|
*exp=GETEXPUN(df);
|
|
}
|
|
}
|
|
return DFISSIGNED(df);
|
|
} /* decFloatToBCD */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatToEngString -- conversion to numeric string, engineering */
|
|
/* */
|
|
/* df is the decFloat format number to convert */
|
|
/* string is the string where the result will be laid out */
|
|
/* */
|
|
/* string must be at least DECPMAX+9 characters (the worst case is */
|
|
/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
|
|
/* DECEMAXD<=4); this condition is asserted above */
|
|
/* */
|
|
/* No error is possible, and no status will be set */
|
|
/* ------------------------------------------------------------------ */
|
|
char * decFloatToEngString(const decFloat *df, char *string){
|
|
uInt msd; /* coefficient MSD */
|
|
Int exp; /* exponent top two bits or full */
|
|
uInt comb; /* combination field */
|
|
char *cstart; /* coefficient start */
|
|
char *c; /* output pointer in string */
|
|
char *s, *t; /* .. (source, target) */
|
|
Int pre, e; /* work */
|
|
const uByte *u; /* .. */
|
|
|
|
/* Source words; macro handles endianness */
|
|
uInt sourhi=DFWORD(df, 0); /* word with sign */
|
|
#if DECPMAX==16
|
|
uInt sourlo=DFWORD(df, 1);
|
|
#elif DECPMAX==34
|
|
uInt sourmh=DFWORD(df, 1);
|
|
uInt sourml=DFWORD(df, 2);
|
|
uInt sourlo=DFWORD(df, 3);
|
|
#endif
|
|
|
|
c=string; /* where result will go */
|
|
if (((Int)sourhi)<0) *c++='-'; /* handle sign */
|
|
comb=sourhi>>26; /* sign+combination field */
|
|
msd=DECCOMBMSD[comb]; /* decode the combination field */
|
|
exp=DECCOMBEXP[comb]; /* .. */
|
|
|
|
if (EXPISSPECIAL(exp)) { /* special */
|
|
if (exp==DECFLOAT_Inf) { /* infinity */
|
|
strcpy(c, "Inf");
|
|
strcpy(c+3, "inity");
|
|
return string; /* easy */
|
|
}
|
|
if (sourhi&0x02000000) *c++='s'; /* sNaN */
|
|
strcpy(c, "NaN"); /* complete word */
|
|
c+=3; /* step past */
|
|
/* quick exit if the payload is zero */
|
|
#if DECPMAX==7
|
|
if ((sourhi&0x000fffff)==0) return string;
|
|
#elif DECPMAX==16
|
|
if (sourlo==0 && (sourhi&0x0003ffff)==0) return string;
|
|
#elif DECPMAX==34
|
|
if (sourlo==0 && sourml==0 && sourmh==0
|
|
&& (sourhi&0x00003fff)==0) return string;
|
|
#endif
|
|
/* otherwise drop through to add integer; set correct exp etc. */
|
|
exp=0; msd=0; /* setup for following code */
|
|
}
|
|
else { /* complete exponent; top two bits are in place */
|
|
exp+=GETECON(df)-DECBIAS; /* .. + continuation and unbias */
|
|
}
|
|
|
|
/* convert the digits of the significand to characters */
|
|
cstart=c; /* save start of coefficient */
|
|
if (msd) *c++=(char)('0'+(char)msd); /* non-zero most significant digit */
|
|
|
|
/* Decode the declets. After extracting each declet, it is */
|
|
/* decoded to a 4-uByte sequence by table lookup; the four uBytes */
|
|
/* are the three encoded BCD8 digits followed by a 1-byte length */
|
|
/* (significant digits, except that 000 has length 0). This allows */
|
|
/* us to left-align the first declet with non-zero content, then */
|
|
/* the remaining ones are full 3-char length. Fixed-length copies */
|
|
/* are used because variable-length memcpy causes a subroutine call */
|
|
/* in at least two compilers. (The copies are length 4 for speed */
|
|
/* and are safe because the last item in the array is of length */
|
|
/* three and has the length byte following.) */
|
|
#define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
|
|
if (c!=cstart) {UINTAT(c)=UINTAT(u)|CHARMASK; c+=3;} \
|
|
else if (*(u+3)) { \
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; c+=*(u+3);}
|
|
|
|
#if DECPMAX==7
|
|
dpd2char(sourhi>>10); /* declet 1 */
|
|
dpd2char(sourhi); /* declet 2 */
|
|
|
|
#elif DECPMAX==16
|
|
dpd2char(sourhi>>8); /* declet 1 */
|
|
dpd2char((sourhi<<2) | (sourlo>>30)); /* declet 2 */
|
|
dpd2char(sourlo>>20); /* declet 3 */
|
|
dpd2char(sourlo>>10); /* declet 4 */
|
|
dpd2char(sourlo); /* declet 5 */
|
|
|
|
#elif DECPMAX==34
|
|
dpd2char(sourhi>>4); /* declet 1 */
|
|
dpd2char((sourhi<<6) | (sourmh>>26)); /* declet 2 */
|
|
dpd2char(sourmh>>16); /* declet 3 */
|
|
dpd2char(sourmh>>6); /* declet 4 */
|
|
dpd2char((sourmh<<4) | (sourml>>28)); /* declet 5 */
|
|
dpd2char(sourml>>18); /* declet 6 */
|
|
dpd2char(sourml>>8); /* declet 7 */
|
|
dpd2char((sourml<<2) | (sourlo>>30)); /* declet 8 */
|
|
dpd2char(sourlo>>20); /* declet 9 */
|
|
dpd2char(sourlo>>10); /* declet 10 */
|
|
dpd2char(sourlo); /* declet 11 */
|
|
#endif
|
|
|
|
if (c==cstart) *c++='0'; /* all zeros, empty -- make "0" */
|
|
|
|
if (exp==0) { /* integer or NaN case -- easy */
|
|
*c='\0'; /* terminate */
|
|
return string;
|
|
}
|
|
/* non-0 exponent */
|
|
|
|
e=0; /* assume no E */
|
|
pre=(Int)(c-cstart)+exp; /* length+exp [c->LSD+1] */
|
|
/* [here, pre-exp is the digits count (==1 for zero)] */
|
|
|
|
if (exp>0 || pre<-5) { /* need exponential form */
|
|
e=pre-1; /* calculate E value */
|
|
pre=1; /* assume one digit before '.' */
|
|
if (e!=0) { /* engineering: may need to adjust */
|
|
Int adj; /* adjustment */
|
|
/* The C remainder operator is undefined for negative numbers, so */
|
|
/* a positive remainder calculation must be used here */
|
|
if (e<0) {
|
|
adj=(-e)%3;
|
|
if (adj!=0) adj=3-adj;
|
|
}
|
|
else { /* e>0 */
|
|
adj=e%3;
|
|
}
|
|
e=e-adj;
|
|
/* if dealing with zero still produce an exponent which is a */
|
|
/* multiple of three, as expected, but there will only be the */
|
|
/* one zero before the E, still. Otherwise note the padding. */
|
|
if (!DFISZERO(df)) pre+=adj;
|
|
else { /* is zero */
|
|
if (adj!=0) { /* 0.00Esnn needed */
|
|
e=e+3;
|
|
pre=-(2-adj);
|
|
}
|
|
} /* zero */
|
|
} /* engineering adjustment */
|
|
} /* exponential form */
|
|
/* printf("e=%ld pre=%ld exp=%ld\n", (LI)e, (LI)pre, (LI)exp); */
|
|
|
|
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
|
|
if (pre>0) { /* ddd.ddd (plain), perhaps with E */
|
|
/* or dd00 padding for engineering */
|
|
char *dotat=cstart+pre;
|
|
if (dotat<c) { /* if embedded dot needed... */
|
|
/* move by fours; there must be space for junk at the end */
|
|
/* because there is still space for exponent */
|
|
s=dotat+ROUNDDOWN4(c-dotat); /* source */
|
|
t=s+1; /* target */
|
|
/* open the gap */
|
|
for (; s>=dotat; s-=4, t-=4) UINTAT(t)=UINTAT(s);
|
|
*dotat='.';
|
|
c++; /* length increased by one */
|
|
} /* need dot? */
|
|
else for (; c<dotat; c++) *c='0'; /* pad for engineering */
|
|
} /* pre>0 */
|
|
else {
|
|
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (may have
|
|
E, but only for 0.00E+3 kind of case -- with plenty of spare
|
|
space in this case */
|
|
pre=-pre+2; /* gap width, including "0." */
|
|
t=cstart+ROUNDDOWN4(c-cstart)+pre; /* preferred first target point */
|
|
/* backoff if too far to the right */
|
|
if (t>string+DECSTRING-5) t=string+DECSTRING-5; /* adjust to fit */
|
|
/* now shift the entire coefficient to the right, being careful not */
|
|
/* to access to the left of string */
|
|
for (s=t-pre; s>=string; s-=4, t-=4) UINTAT(t)=UINTAT(s);
|
|
/* for Quads and Singles there may be a character or two left... */
|
|
s+=3; /* where next would come from */
|
|
for(; s>=cstart; s--, t--) *(t+3)=*(s);
|
|
/* now have fill 0. through 0.00000; use overlaps to avoid tests */
|
|
if (pre>=4) {
|
|
UINTAT(cstart+pre-4)=UINTAT("0000");
|
|
UINTAT(cstart)=UINTAT("0.00");
|
|
}
|
|
else { /* 2 or 3 */
|
|
*(cstart+pre-1)='0';
|
|
USHORTAT(cstart)=USHORTAT("0.");
|
|
}
|
|
c+=pre; /* to end */
|
|
}
|
|
|
|
/* finally add the E-part, if needed; it will never be 0, and has */
|
|
/* a maximum length of 3 or 4 digits (asserted above) */
|
|
if (e!=0) {
|
|
USHORTAT(c)=USHORTAT("E+"); /* starts with E, assume + */
|
|
c++;
|
|
if (e<0) {
|
|
*c='-'; /* oops, need '-' */
|
|
e=-e; /* uInt, please */
|
|
}
|
|
c++;
|
|
/* Three-character exponents are easy; 4-character a little trickier */
|
|
#if DECEMAXD<=3
|
|
u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
|
|
/* copy fixed 4 characters [is safe], starting at non-zero */
|
|
/* and with character mask to convert BCD to char */
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK;
|
|
c+=*(u+3); /* bump pointer appropriately */
|
|
#elif DECEMAXD==4
|
|
if (e<1000) { /* 3 (or fewer) digits case */
|
|
u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
|
|
c+=*(u+3); /* bump pointer appropriately */
|
|
}
|
|
else { /* 4-digits */
|
|
Int thou=((e>>3)*1049)>>17; /* e/1000 */
|
|
Int rem=e-(1000*thou); /* e%1000 */
|
|
*c++=(char)('0'+(char)thou); /* the thousands digit */
|
|
u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
|
|
c+=3; /* bump pointer, always 3 digits */
|
|
}
|
|
#endif
|
|
}
|
|
*c='\0'; /* terminate */
|
|
/*printf("res %s\n", string); */
|
|
return string;
|
|
} /* decFloatToEngString */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatToPacked -- convert decFloat to Packed decimal + exponent */
|
|
/* */
|
|
/* df is the source decFloat */
|
|
/* exp will be set to the unbiased exponent, q, or to a special */
|
|
/* value in the form returned by decFloatGetExponent */
|
|
/* packed is where DECPMAX nibbles will be written with the sign as */
|
|
/* final nibble (0x0c for +, 0x0d for -); a NaN has a first nibble */
|
|
/* of zero, and an infinity is all zeros. decDouble and decQuad */
|
|
/* have a additional leading zero nibble, leading to result */
|
|
/* lengths of 4, 9, and 18 bytes. */
|
|
/* returns the sign of the coefficient (DECFLOAT_Sign if negative, */
|
|
/* 0 otherwise) */
|
|
/* */
|
|
/* No error is possible, and no status will be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
Int decFloatToPacked(const decFloat *df, Int *exp, uByte *packed) {
|
|
uByte bcdar[DECPMAX+2]; /* work buffer */
|
|
uByte *ip=bcdar, *op=packed; /* work pointers */
|
|
if (DFISINF(df)) {
|
|
memset(bcdar, 0, DECPMAX+2);
|
|
*exp=DECFLOAT_Inf;
|
|
}
|
|
else {
|
|
GETCOEFF(df, bcdar+1); /* use macro */
|
|
if (DFISNAN(df)) {
|
|
bcdar[1]=0; /* MSD needs clearing */
|
|
*exp=DFWORD(df, 0)&0x7e000000;
|
|
}
|
|
else { /* finite */
|
|
*exp=GETEXPUN(df);
|
|
}
|
|
}
|
|
/* now pack; coefficient currently at bcdar+1 */
|
|
#if SINGLE
|
|
ip++; /* ignore first byte */
|
|
#else
|
|
*ip=0; /* need leading zero */
|
|
#endif
|
|
/* set final byte to Packed BCD sign value */
|
|
bcdar[DECPMAX+1]=(DFISSIGNED(df) ? DECPMINUS : DECPPLUS);
|
|
/* pack an even number of bytes... */
|
|
for (; op<packed+((DECPMAX+2)/2); op++, ip+=2) {
|
|
*op=(uByte)((*ip<<4)+*(ip+1));
|
|
}
|
|
return (bcdar[DECPMAX+1]==DECPMINUS ? DECFLOAT_Sign : 0);
|
|
} /* decFloatToPacked */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatToString -- conversion to numeric string */
|
|
/* */
|
|
/* df is the decFloat format number to convert */
|
|
/* string is the string where the result will be laid out */
|
|
/* */
|
|
/* string must be at least DECPMAX+9 characters (the worst case is */
|
|
/* "-0.00000nnn...nnn\0", which is as long as the exponent form when */
|
|
/* DECEMAXD<=4); this condition is asserted above */
|
|
/* */
|
|
/* No error is possible, and no status will be set */
|
|
/* ------------------------------------------------------------------ */
|
|
char * decFloatToString(const decFloat *df, char *string){
|
|
uInt msd; /* coefficient MSD */
|
|
Int exp; /* exponent top two bits or full */
|
|
uInt comb; /* combination field */
|
|
char *cstart; /* coefficient start */
|
|
char *c; /* output pointer in string */
|
|
char *s, *t; /* .. (source, target) */
|
|
Int pre, e; /* work */
|
|
const uByte *u; /* .. */
|
|
|
|
/* Source words; macro handles endianness */
|
|
uInt sourhi=DFWORD(df, 0); /* word with sign */
|
|
#if DECPMAX==16
|
|
uInt sourlo=DFWORD(df, 1);
|
|
#elif DECPMAX==34
|
|
uInt sourmh=DFWORD(df, 1);
|
|
uInt sourml=DFWORD(df, 2);
|
|
uInt sourlo=DFWORD(df, 3);
|
|
#endif
|
|
|
|
c=string; /* where result will go */
|
|
if (((Int)sourhi)<0) *c++='-'; /* handle sign */
|
|
comb=sourhi>>26; /* sign+combination field */
|
|
msd=DECCOMBMSD[comb]; /* decode the combination field */
|
|
exp=DECCOMBEXP[comb]; /* .. */
|
|
|
|
if (EXPISSPECIAL(exp)) { /* special */
|
|
if (exp==DECFLOAT_Inf) { /* infinity */
|
|
strcpy(c, "Infinity");
|
|
return string; /* easy */
|
|
}
|
|
if (sourhi&0x02000000) *c++='s'; /* sNaN */
|
|
strcpy(c, "NaN"); /* complete word */
|
|
c+=3; /* step past */
|
|
/* quick exit if the payload is zero */
|
|
#if DECPMAX==7
|
|
if ((sourhi&0x000fffff)==0) return string;
|
|
#elif DECPMAX==16
|
|
if (sourlo==0 && (sourhi&0x0003ffff)==0) return string;
|
|
#elif DECPMAX==34
|
|
if (sourlo==0 && sourml==0 && sourmh==0
|
|
&& (sourhi&0x00003fff)==0) return string;
|
|
#endif
|
|
/* otherwise drop through to add integer; set correct exp etc. */
|
|
exp=0; msd=0; /* setup for following code */
|
|
}
|
|
else { /* complete exponent; top two bits are in place */
|
|
exp+=GETECON(df)-DECBIAS; /* .. + continuation and unbias */
|
|
}
|
|
|
|
/* convert the digits of the significand to characters */
|
|
cstart=c; /* save start of coefficient */
|
|
if (msd) *c++=(char)('0'+(char)msd); /* non-zero most significant digit */
|
|
|
|
/* Decode the declets. After extracting each declet, it is */
|
|
/* decoded to a 4-uByte sequence by table lookup; the four uBytes */
|
|
/* are the three encoded BCD8 digits followed by a 1-byte length */
|
|
/* (significant digits, except that 000 has length 0). This allows */
|
|
/* us to left-align the first declet with non-zero content, then */
|
|
/* the remaining ones are full 3-char length. Fixed-length copies */
|
|
/* are used because variable-length memcpy causes a subroutine call */
|
|
/* in at least two compilers. (The copies are length 4 for speed */
|
|
/* and are safe because the last item in the array is of length */
|
|
/* three and has the length byte following.) */
|
|
#define dpd2char(dpdin) u=&DPD2BCD8[((dpdin)&0x3ff)*4]; \
|
|
if (c!=cstart) {UINTAT(c)=UINTAT(u)|CHARMASK; c+=3;} \
|
|
else if (*(u+3)) { \
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; c+=*(u+3);}
|
|
|
|
#if DECPMAX==7
|
|
dpd2char(sourhi>>10); /* declet 1 */
|
|
dpd2char(sourhi); /* declet 2 */
|
|
|
|
#elif DECPMAX==16
|
|
dpd2char(sourhi>>8); /* declet 1 */
|
|
dpd2char((sourhi<<2) | (sourlo>>30)); /* declet 2 */
|
|
dpd2char(sourlo>>20); /* declet 3 */
|
|
dpd2char(sourlo>>10); /* declet 4 */
|
|
dpd2char(sourlo); /* declet 5 */
|
|
|
|
#elif DECPMAX==34
|
|
dpd2char(sourhi>>4); /* declet 1 */
|
|
dpd2char((sourhi<<6) | (sourmh>>26)); /* declet 2 */
|
|
dpd2char(sourmh>>16); /* declet 3 */
|
|
dpd2char(sourmh>>6); /* declet 4 */
|
|
dpd2char((sourmh<<4) | (sourml>>28)); /* declet 5 */
|
|
dpd2char(sourml>>18); /* declet 6 */
|
|
dpd2char(sourml>>8); /* declet 7 */
|
|
dpd2char((sourml<<2) | (sourlo>>30)); /* declet 8 */
|
|
dpd2char(sourlo>>20); /* declet 9 */
|
|
dpd2char(sourlo>>10); /* declet 10 */
|
|
dpd2char(sourlo); /* declet 11 */
|
|
#endif
|
|
|
|
if (c==cstart) *c++='0'; /* all zeros, empty -- make "0" */
|
|
|
|
/*[This fast path is valid but adds 3-5 cycles to worst case length] */
|
|
/*if (exp==0) { // integer or NaN case -- easy */
|
|
/* *c='\0'; // terminate */
|
|
/* return string; */
|
|
/* } */
|
|
|
|
e=0; /* assume no E */
|
|
pre=(Int)(c-cstart)+exp; /* length+exp [c->LSD+1] */
|
|
/* [here, pre-exp is the digits count (==1 for zero)] */
|
|
|
|
if (exp>0 || pre<-5) { /* need exponential form */
|
|
e=pre-1; /* calculate E value */
|
|
pre=1; /* assume one digit before '.' */
|
|
} /* exponential form */
|
|
|
|
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
|
|
if (pre>0) { /* ddd.ddd (plain), perhaps with E */
|
|
char *dotat=cstart+pre;
|
|
if (dotat<c) { /* if embedded dot needed... */
|
|
/* move by fours; there must be space for junk at the end */
|
|
/* because there is still space for exponent */
|
|
s=dotat+ROUNDDOWN4(c-dotat); /* source */
|
|
t=s+1; /* target */
|
|
/* open the gap */
|
|
for (; s>=dotat; s-=4, t-=4) UINTAT(t)=UINTAT(s);
|
|
*dotat='.';
|
|
c++; /* length increased by one */
|
|
} /* need dot? */
|
|
|
|
/* finally add the E-part, if needed; it will never be 0, and has */
|
|
/* a maximum length of 3 or 4 digits (asserted above) */
|
|
if (e!=0) {
|
|
USHORTAT(c)=USHORTAT("E+"); /* starts with E, assume + */
|
|
c++;
|
|
if (e<0) {
|
|
*c='-'; /* oops, need '-' */
|
|
e=-e; /* uInt, please */
|
|
}
|
|
c++;
|
|
/* Three-character exponents are easy; 4-character a little trickier */
|
|
#if DECEMAXD<=3
|
|
u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
|
|
/* copy fixed 4 characters [is safe], starting at non-zero */
|
|
/* and with character mask to convert BCD to char */
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK;
|
|
c+=*(u+3); /* bump pointer appropriately */
|
|
#elif DECEMAXD==4
|
|
if (e<1000) { /* 3 (or fewer) digits case */
|
|
u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
|
|
c+=*(u+3); /* bump pointer appropriately */
|
|
}
|
|
else { /* 4-digits */
|
|
Int thou=((e>>3)*1049)>>17; /* e/1000 */
|
|
Int rem=e-(1000*thou); /* e%1000 */
|
|
*c++=(char)('0'+(char)thou); /* the thousands digit */
|
|
u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
|
|
c+=3; /* bump pointer, always 3 digits */
|
|
}
|
|
#endif
|
|
}
|
|
*c='\0'; /* add terminator */
|
|
/*printf("res %s\n", string); */
|
|
return string;
|
|
} /* pre>0 */
|
|
|
|
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
|
|
/* Surprisingly, this is close to being the worst-case path, so the */
|
|
/* shift is done by fours; this is a little tricky because the */
|
|
/* rightmost character to be written must not be beyond where the */
|
|
/* rightmost terminator could be -- so backoff to not touch */
|
|
/* terminator position if need be (this can make exact alignments */
|
|
/* for full Doubles, but in some cases needs care not to access too */
|
|
/* far to the left) */
|
|
|
|
pre=-pre+2; /* gap width, including "0." */
|
|
t=cstart+ROUNDDOWN4(c-cstart)+pre; /* preferred first target point */
|
|
/* backoff if too far to the right */
|
|
if (t>string+DECSTRING-5) t=string+DECSTRING-5; /* adjust to fit */
|
|
/* now shift the entire coefficient to the right, being careful not */
|
|
/* to access to the left of string */
|
|
for (s=t-pre; s>=string; s-=4, t-=4) UINTAT(t)=UINTAT(s);
|
|
/* for Quads and Singles there may be a character or two left... */
|
|
s+=3; /* where next would come from */
|
|
for(; s>=cstart; s--, t--) *(t+3)=*(s);
|
|
/* now have fill 0. through 0.00000; use overlaps to avoid tests */
|
|
if (pre>=4) {
|
|
UINTAT(cstart+pre-4)=UINTAT("0000");
|
|
UINTAT(cstart)=UINTAT("0.00");
|
|
}
|
|
else { /* 2 or 3 */
|
|
*(cstart+pre-1)='0';
|
|
USHORTAT(cstart)=USHORTAT("0.");
|
|
}
|
|
*(c+pre)='\0'; /* terminate */
|
|
return string;
|
|
} /* decFloatToString */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatToWider -- conversion to next-wider format */
|
|
/* */
|
|
/* source is the decFloat format number which gets the result of */
|
|
/* the conversion */
|
|
/* wider is the decFloatWider format number which will be narrowed */
|
|
/* returns wider */
|
|
/* */
|
|
/* Widening is always exact; no status is set (sNaNs are copied and */
|
|
/* do not signal). The result will be canonical if the source is, */
|
|
/* and may or may not be if the source is not. */
|
|
/* ------------------------------------------------------------------ */
|
|
/* widening is not possible for decQuad format numbers; simply omit */
|
|
#if !QUAD
|
|
decFloatWider * decFloatToWider(const decFloat *source, decFloatWider *wider) {
|
|
uInt msd;
|
|
|
|
/* Construct and copy the sign word */
|
|
if (DFISSPECIAL(source)) {
|
|
/* copy sign, combination, and first bit of exponent (sNaN selector) */
|
|
DFWWORD(wider, 0)=DFWORD(source, 0)&0xfe000000;
|
|
msd=0;
|
|
}
|
|
else { /* is finite number */
|
|
uInt exp=GETEXPUN(source)+DECWBIAS; /* get unbiased exponent and rebias */
|
|
uInt code=(exp>>DECWECONL)<<29; /* set two bits of exp [msd=0] */
|
|
code|=(exp<<(32-6-DECWECONL)) & 0x03ffffff; /* add exponent continuation */
|
|
code|=DFWORD(source, 0)&0x80000000; /* add sign */
|
|
DFWWORD(wider, 0)=code; /* .. and place top word in wider */
|
|
msd=GETMSD(source); /* get source coefficient MSD [0-9] */
|
|
}
|
|
/* Copy the coefficient and clear any 'unused' words to left */
|
|
#if SINGLE
|
|
DFWWORD(wider, 1)=(DFWORD(source, 0)&0x000fffff)|(msd<<20);
|
|
#elif DOUBLE
|
|
DFWWORD(wider, 2)=(DFWORD(source, 0)&0x0003ffff)|(msd<<18);
|
|
DFWWORD(wider, 3)=DFWORD(source, 1);
|
|
DFWWORD(wider, 1)=0;
|
|
#endif
|
|
return wider;
|
|
} /* decFloatToWider */
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatVersion -- return package version string */
|
|
/* */
|
|
/* returns a constant string describing this package */
|
|
/* ------------------------------------------------------------------ */
|
|
const char *decFloatVersion(void) {
|
|
return DECVERSION;
|
|
} /* decFloatVersion */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* decFloatZero -- set to canonical (integer) zero */
|
|
/* */
|
|
/* df is the decFloat format number to integer +0 (q=0, c=+0) */
|
|
/* returns df */
|
|
/* */
|
|
/* No error is possible, and no status can be set. */
|
|
/* ------------------------------------------------------------------ */
|
|
decFloat * decFloatZero(decFloat *df){
|
|
DFWORD(df, 0)=ZEROWORD; /* set appropriate top word */
|
|
#if DOUBLE || QUAD
|
|
DFWORD(df, 1)=0;
|
|
#if QUAD
|
|
DFWORD(df, 2)=0;
|
|
DFWORD(df, 3)=0;
|
|
#endif
|
|
#endif
|
|
/* decFloatShow(df, "zero"); */
|
|
return df;
|
|
} /* decFloatZero */
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* Private generic function (not format-specific) for development use */
|
|
/* ------------------------------------------------------------------ */
|
|
/* This is included once only, for all to use */
|
|
#if QUAD && (DECCHECK || DECTRACE)
|
|
/* ---------------------------------------------------------------- */
|
|
/* decShowNum -- display bcd8 number in debug form */
|
|
/* */
|
|
/* num is the bcdnum to display */
|
|
/* tag is a string to label the display */
|
|
/* ---------------------------------------------------------------- */
|
|
void decShowNum(const bcdnum *num, const char *tag) {
|
|
const char *csign="+"; /* sign character */
|
|
uByte *ub; /* work */
|
|
if (num->sign==DECFLOAT_Sign) csign="-";
|
|
|
|
printf(">%s> ", tag);
|
|
if (num->exponent==DECFLOAT_Inf) printf("%sInfinity", csign);
|
|
else if (num->exponent==DECFLOAT_qNaN) printf("%sqNaN", csign);
|
|
else if (num->exponent==DECFLOAT_sNaN) printf("%ssNaN", csign);
|
|
else { /* finite */
|
|
char qbuf[10]; /* for right-aligned q */
|
|
char *c; /* work */
|
|
const uByte *u; /* .. */
|
|
Int e=num->exponent; /* .. exponent */
|
|
strcpy(qbuf, "q=");
|
|
c=&qbuf[2]; /* where exponent will go */
|
|
/* lay out the exponent */
|
|
if (e<0) {
|
|
*c++='-'; /* add '-' */
|
|
e=-e; /* uInt, please */
|
|
}
|
|
#if DECEMAXD>4
|
|
#error Exponent form is too long for ShowNum to lay out
|
|
#endif
|
|
if (e==0) *c++='0'; /* 0-length case */
|
|
else if (e<1000) { /* 3 (or fewer) digits case */
|
|
u=&BIN2BCD8[e*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u+3-*(u+3))|CHARMASK; /* [as above] */
|
|
c+=*(u+3); /* bump pointer appropriately */
|
|
}
|
|
else { /* 4-digits */
|
|
Int thou=((e>>3)*1049)>>17; /* e/1000 */
|
|
Int rem=e-(1000*thou); /* e%1000 */
|
|
*c++=(char)('0'+(char)thou); /* the thousands digit */
|
|
u=&BIN2BCD8[rem*4]; /* -> 3 digits + length byte */
|
|
UINTAT(c)=UINTAT(u)|CHARMASK; /* copy fixed 3+1 characters [is safe] */
|
|
c+=3; /* bump pointer, always 3 digits */
|
|
}
|
|
*c='\0'; /* add terminator */
|
|
printf("%7s c=%s", qbuf, csign);
|
|
}
|
|
|
|
if (!EXPISSPECIAL(num->exponent) || num->msd!=num->lsd || *num->lsd!=0) {
|
|
for (ub=num->msd; ub<=num->lsd; ub++) { /* coefficient... */
|
|
printf("%1x", *ub);
|
|
if ((num->lsd-ub)%3==0 && ub!=num->lsd) printf(" "); /* 4-space */
|
|
}
|
|
}
|
|
printf("\n");
|
|
} /* decShowNum */
|
|
#endif
|