mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-01 14:03:56 +08:00
940da03e32
Remove the `TYPE_FIELD_TYPE` macro, changing all the call sites to use `type::field` and `field::type` directly. gdb/ChangeLog: * gdbtypes.h (TYPE_FIELD_TYPE): Remove. Change all call sites to use type::field and field::type instead. Change-Id: Ifda6226a25c811cfd334a756a9fbc5c0afdddff3
3377 lines
100 KiB
C
3377 lines
100 KiB
C
/* Evaluate expressions for GDB.
|
||
|
||
Copyright (C) 1986-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "frame.h"
|
||
#include "gdbthread.h"
|
||
#include "language.h" /* For CAST_IS_CONVERSION. */
|
||
#include "f-lang.h" /* For array bound stuff. */
|
||
#include "cp-abi.h"
|
||
#include "infcall.h"
|
||
#include "objc-lang.h"
|
||
#include "block.h"
|
||
#include "parser-defs.h"
|
||
#include "cp-support.h"
|
||
#include "ui-out.h"
|
||
#include "regcache.h"
|
||
#include "user-regs.h"
|
||
#include "valprint.h"
|
||
#include "gdb_obstack.h"
|
||
#include "objfiles.h"
|
||
#include "typeprint.h"
|
||
#include <ctype.h>
|
||
|
||
/* Prototypes for local functions. */
|
||
|
||
static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
|
||
enum noside);
|
||
|
||
static struct value *evaluate_subexp_for_address (struct expression *,
|
||
int *, enum noside);
|
||
|
||
static value *evaluate_subexp_for_cast (expression *exp, int *pos,
|
||
enum noside noside,
|
||
struct type *type);
|
||
|
||
static struct value *evaluate_struct_tuple (struct value *,
|
||
struct expression *, int *,
|
||
enum noside, int);
|
||
|
||
static LONGEST init_array_element (struct value *, struct value *,
|
||
struct expression *, int *, enum noside,
|
||
LONGEST, LONGEST);
|
||
|
||
struct value *
|
||
evaluate_subexp (struct type *expect_type, struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
struct value *retval;
|
||
|
||
gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
|
||
if (*pos == 0 && target_has_execution
|
||
&& exp->language_defn->la_language == language_cplus
|
||
&& !thread_stack_temporaries_enabled_p (inferior_thread ()))
|
||
stack_temporaries.emplace (inferior_thread ());
|
||
|
||
retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
|
||
(expect_type, exp, pos, noside);
|
||
|
||
if (stack_temporaries.has_value ()
|
||
&& value_in_thread_stack_temporaries (retval, inferior_thread ()))
|
||
retval = value_non_lval (retval);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Parse the string EXP as a C expression, evaluate it,
|
||
and return the result as a number. */
|
||
|
||
CORE_ADDR
|
||
parse_and_eval_address (const char *exp)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
return value_as_address (evaluate_expression (expr.get ()));
|
||
}
|
||
|
||
/* Like parse_and_eval_address, but treats the value of the expression
|
||
as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
|
||
LONGEST
|
||
parse_and_eval_long (const char *exp)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
return value_as_long (evaluate_expression (expr.get ()));
|
||
}
|
||
|
||
struct value *
|
||
parse_and_eval (const char *exp)
|
||
{
|
||
expression_up expr = parse_expression (exp);
|
||
|
||
return evaluate_expression (expr.get ());
|
||
}
|
||
|
||
/* Parse up to a comma (or to a closeparen)
|
||
in the string EXPP as an expression, evaluate it, and return the value.
|
||
EXPP is advanced to point to the comma. */
|
||
|
||
struct value *
|
||
parse_to_comma_and_eval (const char **expp)
|
||
{
|
||
expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
|
||
|
||
return evaluate_expression (expr.get ());
|
||
}
|
||
|
||
/* Evaluate an expression in internal prefix form
|
||
such as is constructed by parse.y.
|
||
|
||
See expression.h for info on the format of an expression. */
|
||
|
||
struct value *
|
||
evaluate_expression (struct expression *exp)
|
||
{
|
||
int pc = 0;
|
||
|
||
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
|
||
}
|
||
|
||
/* Evaluate an expression, avoiding all memory references
|
||
and getting a value whose type alone is correct. */
|
||
|
||
struct value *
|
||
evaluate_type (struct expression *exp)
|
||
{
|
||
int pc = 0;
|
||
|
||
return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
|
||
}
|
||
|
||
/* Evaluate a subexpression, avoiding all memory references and
|
||
getting a value whose type alone is correct. */
|
||
|
||
struct value *
|
||
evaluate_subexpression_type (struct expression *exp, int subexp)
|
||
{
|
||
return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
|
||
}
|
||
|
||
/* Find the current value of a watchpoint on EXP. Return the value in
|
||
*VALP and *RESULTP and the chain of intermediate and final values
|
||
in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
|
||
not need them.
|
||
|
||
If PRESERVE_ERRORS is true, then exceptions are passed through.
|
||
Otherwise, if PRESERVE_ERRORS is false, then if a memory error
|
||
occurs while evaluating the expression, *RESULTP will be set to
|
||
NULL. *RESULTP may be a lazy value, if the result could not be
|
||
read from memory. It is used to determine whether a value is
|
||
user-specified (we should watch the whole value) or intermediate
|
||
(we should watch only the bit used to locate the final value).
|
||
|
||
If the final value, or any intermediate value, could not be read
|
||
from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
|
||
set to any referenced values. *VALP will never be a lazy value.
|
||
This is the value which we store in struct breakpoint.
|
||
|
||
If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
|
||
released from the value chain. If VAL_CHAIN is NULL, all generated
|
||
values will be left on the value chain. */
|
||
|
||
void
|
||
fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
|
||
struct value **resultp,
|
||
std::vector<value_ref_ptr> *val_chain,
|
||
int preserve_errors)
|
||
{
|
||
struct value *mark, *new_mark, *result;
|
||
|
||
*valp = NULL;
|
||
if (resultp)
|
||
*resultp = NULL;
|
||
if (val_chain)
|
||
val_chain->clear ();
|
||
|
||
/* Evaluate the expression. */
|
||
mark = value_mark ();
|
||
result = NULL;
|
||
|
||
try
|
||
{
|
||
result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
|
||
}
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
/* Ignore memory errors if we want watchpoints pointing at
|
||
inaccessible memory to still be created; otherwise, throw the
|
||
error to some higher catcher. */
|
||
switch (ex.error)
|
||
{
|
||
case MEMORY_ERROR:
|
||
if (!preserve_errors)
|
||
break;
|
||
/* Fall through. */
|
||
default:
|
||
throw;
|
||
break;
|
||
}
|
||
}
|
||
|
||
new_mark = value_mark ();
|
||
if (mark == new_mark)
|
||
return;
|
||
if (resultp)
|
||
*resultp = result;
|
||
|
||
/* Make sure it's not lazy, so that after the target stops again we
|
||
have a non-lazy previous value to compare with. */
|
||
if (result != NULL)
|
||
{
|
||
if (!value_lazy (result))
|
||
*valp = result;
|
||
else
|
||
{
|
||
|
||
try
|
||
{
|
||
value_fetch_lazy (result);
|
||
*valp = result;
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
}
|
||
}
|
||
}
|
||
|
||
if (val_chain)
|
||
{
|
||
/* Return the chain of intermediate values. We use this to
|
||
decide which addresses to watch. */
|
||
*val_chain = value_release_to_mark (mark);
|
||
}
|
||
}
|
||
|
||
/* Extract a field operation from an expression. If the subexpression
|
||
of EXP starting at *SUBEXP is not a structure dereference
|
||
operation, return NULL. Otherwise, return the name of the
|
||
dereferenced field, and advance *SUBEXP to point to the
|
||
subexpression of the left-hand-side of the dereference. This is
|
||
used when completing field names. */
|
||
|
||
const char *
|
||
extract_field_op (struct expression *exp, int *subexp)
|
||
{
|
||
int tem;
|
||
char *result;
|
||
|
||
if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
|
||
&& exp->elts[*subexp].opcode != STRUCTOP_PTR)
|
||
return NULL;
|
||
tem = longest_to_int (exp->elts[*subexp + 1].longconst);
|
||
result = &exp->elts[*subexp + 2].string;
|
||
(*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
return result;
|
||
}
|
||
|
||
/* This function evaluates brace-initializers (in C/C++) for
|
||
structure types. */
|
||
|
||
static struct value *
|
||
evaluate_struct_tuple (struct value *struct_val,
|
||
struct expression *exp,
|
||
int *pos, enum noside noside, int nargs)
|
||
{
|
||
struct type *struct_type = check_typedef (value_type (struct_val));
|
||
struct type *field_type;
|
||
int fieldno = -1;
|
||
|
||
while (--nargs >= 0)
|
||
{
|
||
struct value *val = NULL;
|
||
int bitpos, bitsize;
|
||
bfd_byte *addr;
|
||
|
||
fieldno++;
|
||
/* Skip static fields. */
|
||
while (fieldno < struct_type->num_fields ()
|
||
&& field_is_static (&struct_type->field (fieldno)))
|
||
fieldno++;
|
||
if (fieldno >= struct_type->num_fields ())
|
||
error (_("too many initializers"));
|
||
field_type = struct_type->field (fieldno).type ();
|
||
if (field_type->code () == TYPE_CODE_UNION
|
||
&& TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
|
||
error (_("don't know which variant you want to set"));
|
||
|
||
/* Here, struct_type is the type of the inner struct,
|
||
while substruct_type is the type of the inner struct.
|
||
These are the same for normal structures, but a variant struct
|
||
contains anonymous union fields that contain substruct fields.
|
||
The value fieldno is the index of the top-level (normal or
|
||
anonymous union) field in struct_field, while the value
|
||
subfieldno is the index of the actual real (named inner) field
|
||
in substruct_type. */
|
||
|
||
field_type = struct_type->field (fieldno).type ();
|
||
if (val == 0)
|
||
val = evaluate_subexp (field_type, exp, pos, noside);
|
||
|
||
/* Now actually set the field in struct_val. */
|
||
|
||
/* Assign val to field fieldno. */
|
||
if (value_type (val) != field_type)
|
||
val = value_cast (field_type, val);
|
||
|
||
bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
|
||
bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
|
||
addr = value_contents_writeable (struct_val) + bitpos / 8;
|
||
if (bitsize)
|
||
modify_field (struct_type, addr,
|
||
value_as_long (val), bitpos % 8, bitsize);
|
||
else
|
||
memcpy (addr, value_contents (val),
|
||
TYPE_LENGTH (value_type (val)));
|
||
|
||
}
|
||
return struct_val;
|
||
}
|
||
|
||
/* Recursive helper function for setting elements of array tuples.
|
||
The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
|
||
element value is ELEMENT; EXP, POS and NOSIDE are as usual.
|
||
Evaluates index expressions and sets the specified element(s) of
|
||
ARRAY to ELEMENT. Returns last index value. */
|
||
|
||
static LONGEST
|
||
init_array_element (struct value *array, struct value *element,
|
||
struct expression *exp, int *pos,
|
||
enum noside noside, LONGEST low_bound, LONGEST high_bound)
|
||
{
|
||
LONGEST index;
|
||
int element_size = TYPE_LENGTH (value_type (element));
|
||
|
||
if (exp->elts[*pos].opcode == BINOP_COMMA)
|
||
{
|
||
(*pos)++;
|
||
init_array_element (array, element, exp, pos, noside,
|
||
low_bound, high_bound);
|
||
return init_array_element (array, element,
|
||
exp, pos, noside, low_bound, high_bound);
|
||
}
|
||
else
|
||
{
|
||
index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
if (index < low_bound || index > high_bound)
|
||
error (_("tuple index out of range"));
|
||
memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
|
||
value_contents (element), element_size);
|
||
}
|
||
return index;
|
||
}
|
||
|
||
static struct value *
|
||
value_f90_subarray (struct value *array,
|
||
struct expression *exp, int *pos, enum noside noside)
|
||
{
|
||
int pc = (*pos) + 1;
|
||
LONGEST low_bound, high_bound;
|
||
struct type *range = check_typedef (value_type (array)->index_type ());
|
||
enum range_type range_type
|
||
= (enum range_type) longest_to_int (exp->elts[pc].longconst);
|
||
|
||
*pos += 3;
|
||
|
||
if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
|
||
low_bound = TYPE_LOW_BOUND (range);
|
||
else
|
||
low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
|
||
if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
|
||
high_bound = TYPE_HIGH_BOUND (range);
|
||
else
|
||
high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
|
||
return value_slice (array, low_bound, high_bound - low_bound + 1);
|
||
}
|
||
|
||
|
||
/* Promote value ARG1 as appropriate before performing a unary operation
|
||
on this argument.
|
||
If the result is not appropriate for any particular language then it
|
||
needs to patch this function. */
|
||
|
||
void
|
||
unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
||
struct value **arg1)
|
||
{
|
||
struct type *type1;
|
||
|
||
*arg1 = coerce_ref (*arg1);
|
||
type1 = check_typedef (value_type (*arg1));
|
||
|
||
if (is_integral_type (type1))
|
||
{
|
||
switch (language->la_language)
|
||
{
|
||
default:
|
||
/* Perform integral promotion for ANSI C/C++.
|
||
If not appropriate for any particular language
|
||
it needs to modify this function. */
|
||
{
|
||
struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
|
||
|
||
if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
|
||
*arg1 = value_cast (builtin_int, *arg1);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Promote values ARG1 and ARG2 as appropriate before performing a binary
|
||
operation on those two operands.
|
||
If the result is not appropriate for any particular language then it
|
||
needs to patch this function. */
|
||
|
||
void
|
||
binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
|
||
struct value **arg1, struct value **arg2)
|
||
{
|
||
struct type *promoted_type = NULL;
|
||
struct type *type1;
|
||
struct type *type2;
|
||
|
||
*arg1 = coerce_ref (*arg1);
|
||
*arg2 = coerce_ref (*arg2);
|
||
|
||
type1 = check_typedef (value_type (*arg1));
|
||
type2 = check_typedef (value_type (*arg2));
|
||
|
||
if ((type1->code () != TYPE_CODE_FLT
|
||
&& type1->code () != TYPE_CODE_DECFLOAT
|
||
&& !is_integral_type (type1))
|
||
|| (type2->code () != TYPE_CODE_FLT
|
||
&& type2->code () != TYPE_CODE_DECFLOAT
|
||
&& !is_integral_type (type2)))
|
||
return;
|
||
|
||
if (type1->code () == TYPE_CODE_DECFLOAT
|
||
|| type2->code () == TYPE_CODE_DECFLOAT)
|
||
{
|
||
/* No promotion required. */
|
||
}
|
||
else if (type1->code () == TYPE_CODE_FLT
|
||
|| type2->code () == TYPE_CODE_FLT)
|
||
{
|
||
switch (language->la_language)
|
||
{
|
||
case language_c:
|
||
case language_cplus:
|
||
case language_asm:
|
||
case language_objc:
|
||
case language_opencl:
|
||
/* No promotion required. */
|
||
break;
|
||
|
||
default:
|
||
/* For other languages the result type is unchanged from gdb
|
||
version 6.7 for backward compatibility.
|
||
If either arg was long double, make sure that value is also long
|
||
double. Otherwise use double. */
|
||
if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
|
||
|| TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
|
||
promoted_type = builtin_type (gdbarch)->builtin_long_double;
|
||
else
|
||
promoted_type = builtin_type (gdbarch)->builtin_double;
|
||
break;
|
||
}
|
||
}
|
||
else if (type1->code () == TYPE_CODE_BOOL
|
||
&& type2->code () == TYPE_CODE_BOOL)
|
||
{
|
||
/* No promotion required. */
|
||
}
|
||
else
|
||
/* Integral operations here. */
|
||
/* FIXME: Also mixed integral/booleans, with result an integer. */
|
||
{
|
||
const struct builtin_type *builtin = builtin_type (gdbarch);
|
||
unsigned int promoted_len1 = TYPE_LENGTH (type1);
|
||
unsigned int promoted_len2 = TYPE_LENGTH (type2);
|
||
int is_unsigned1 = TYPE_UNSIGNED (type1);
|
||
int is_unsigned2 = TYPE_UNSIGNED (type2);
|
||
unsigned int result_len;
|
||
int unsigned_operation;
|
||
|
||
/* Determine type length and signedness after promotion for
|
||
both operands. */
|
||
if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
|
||
{
|
||
is_unsigned1 = 0;
|
||
promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
|
||
}
|
||
if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
|
||
{
|
||
is_unsigned2 = 0;
|
||
promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
|
||
}
|
||
|
||
if (promoted_len1 > promoted_len2)
|
||
{
|
||
unsigned_operation = is_unsigned1;
|
||
result_len = promoted_len1;
|
||
}
|
||
else if (promoted_len2 > promoted_len1)
|
||
{
|
||
unsigned_operation = is_unsigned2;
|
||
result_len = promoted_len2;
|
||
}
|
||
else
|
||
{
|
||
unsigned_operation = is_unsigned1 || is_unsigned2;
|
||
result_len = promoted_len1;
|
||
}
|
||
|
||
switch (language->la_language)
|
||
{
|
||
case language_c:
|
||
case language_cplus:
|
||
case language_asm:
|
||
case language_objc:
|
||
if (result_len <= TYPE_LENGTH (builtin->builtin_int))
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_int
|
||
: builtin->builtin_int);
|
||
}
|
||
else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_long
|
||
: builtin->builtin_long);
|
||
}
|
||
else
|
||
{
|
||
promoted_type = (unsigned_operation
|
||
? builtin->builtin_unsigned_long_long
|
||
: builtin->builtin_long_long);
|
||
}
|
||
break;
|
||
case language_opencl:
|
||
if (result_len <= TYPE_LENGTH (lookup_signed_typename
|
||
(language, "int")))
|
||
{
|
||
promoted_type =
|
||
(unsigned_operation
|
||
? lookup_unsigned_typename (language, "int")
|
||
: lookup_signed_typename (language, "int"));
|
||
}
|
||
else if (result_len <= TYPE_LENGTH (lookup_signed_typename
|
||
(language, "long")))
|
||
{
|
||
promoted_type =
|
||
(unsigned_operation
|
||
? lookup_unsigned_typename (language, "long")
|
||
: lookup_signed_typename (language,"long"));
|
||
}
|
||
break;
|
||
default:
|
||
/* For other languages the result type is unchanged from gdb
|
||
version 6.7 for backward compatibility.
|
||
If either arg was long long, make sure that value is also long
|
||
long. Otherwise use long. */
|
||
if (unsigned_operation)
|
||
{
|
||
if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
|
||
promoted_type = builtin->builtin_unsigned_long_long;
|
||
else
|
||
promoted_type = builtin->builtin_unsigned_long;
|
||
}
|
||
else
|
||
{
|
||
if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
|
||
promoted_type = builtin->builtin_long_long;
|
||
else
|
||
promoted_type = builtin->builtin_long;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (promoted_type)
|
||
{
|
||
/* Promote both operands to common type. */
|
||
*arg1 = value_cast (promoted_type, *arg1);
|
||
*arg2 = value_cast (promoted_type, *arg2);
|
||
}
|
||
}
|
||
|
||
static int
|
||
ptrmath_type_p (const struct language_defn *lang, struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
if (TYPE_IS_REFERENCE (type))
|
||
type = TYPE_TARGET_TYPE (type);
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
return 1;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Represents a fake method with the given parameter types. This is
|
||
used by the parser to construct a temporary "expected" type for
|
||
method overload resolution. FLAGS is used as instance flags of the
|
||
new type, in order to be able to make the new type represent a
|
||
const/volatile overload. */
|
||
|
||
class fake_method
|
||
{
|
||
public:
|
||
fake_method (type_instance_flags flags,
|
||
int num_types, struct type **param_types);
|
||
~fake_method ();
|
||
|
||
/* The constructed type. */
|
||
struct type *type () { return &m_type; }
|
||
|
||
private:
|
||
struct type m_type {};
|
||
main_type m_main_type {};
|
||
};
|
||
|
||
fake_method::fake_method (type_instance_flags flags,
|
||
int num_types, struct type **param_types)
|
||
{
|
||
struct type *type = &m_type;
|
||
|
||
TYPE_MAIN_TYPE (type) = &m_main_type;
|
||
TYPE_LENGTH (type) = 1;
|
||
type->set_code (TYPE_CODE_METHOD);
|
||
TYPE_CHAIN (type) = type;
|
||
TYPE_INSTANCE_FLAGS (type) = flags;
|
||
if (num_types > 0)
|
||
{
|
||
if (param_types[num_types - 1] == NULL)
|
||
{
|
||
--num_types;
|
||
TYPE_VARARGS (type) = 1;
|
||
}
|
||
else if (check_typedef (param_types[num_types - 1])->code ()
|
||
== TYPE_CODE_VOID)
|
||
{
|
||
--num_types;
|
||
/* Caller should have ensured this. */
|
||
gdb_assert (num_types == 0);
|
||
TYPE_PROTOTYPED (type) = 1;
|
||
}
|
||
}
|
||
|
||
/* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
|
||
neither an objfile nor a gdbarch. As a result we must manually
|
||
allocate memory for auxiliary fields, and free the memory ourselves
|
||
when we are done with it. */
|
||
type->set_num_fields (num_types);
|
||
type->set_fields
|
||
((struct field *) xzalloc (sizeof (struct field) * num_types));
|
||
|
||
while (num_types-- > 0)
|
||
type->field (num_types).set_type (param_types[num_types]);
|
||
}
|
||
|
||
fake_method::~fake_method ()
|
||
{
|
||
xfree (m_type.fields ());
|
||
}
|
||
|
||
/* Helper for evaluating an OP_VAR_VALUE. */
|
||
|
||
value *
|
||
evaluate_var_value (enum noside noside, const block *blk, symbol *var)
|
||
{
|
||
/* JYG: We used to just return value_zero of the symbol type if
|
||
we're asked to avoid side effects. Otherwise we return
|
||
value_of_variable (...). However I'm not sure if
|
||
value_of_variable () has any side effect. We need a full value
|
||
object returned here for whatis_exp () to call evaluate_type ()
|
||
and then pass the full value to value_rtti_target_type () if we
|
||
are dealing with a pointer or reference to a base class and print
|
||
object is on. */
|
||
|
||
struct value *ret = NULL;
|
||
|
||
try
|
||
{
|
||
ret = value_of_variable (var, blk);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (noside != EVAL_AVOID_SIDE_EFFECTS)
|
||
throw;
|
||
|
||
ret = value_zero (SYMBOL_TYPE (var), not_lval);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Helper for evaluating an OP_VAR_MSYM_VALUE. */
|
||
|
||
value *
|
||
evaluate_var_msym_value (enum noside noside,
|
||
struct objfile *objfile, minimal_symbol *msymbol)
|
||
{
|
||
CORE_ADDR address;
|
||
type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS && !TYPE_GNU_IFUNC (the_type))
|
||
return value_zero (the_type, not_lval);
|
||
else
|
||
return value_at_lazy (the_type, address);
|
||
}
|
||
|
||
/* Helper for returning a value when handling EVAL_SKIP. */
|
||
|
||
value *
|
||
eval_skip_value (expression *exp)
|
||
{
|
||
return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
|
||
}
|
||
|
||
/* Evaluate a function call. The function to be called is in
|
||
ARGVEC[0] and the arguments passed to the function are in
|
||
ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
|
||
known. DEFAULT_RETURN_TYPE is used as the function's return type
|
||
if the return type is unknown. */
|
||
|
||
static value *
|
||
eval_call (expression *exp, enum noside noside,
|
||
int nargs, value **argvec,
|
||
const char *function_name,
|
||
type *default_return_type)
|
||
{
|
||
if (argvec[0] == NULL)
|
||
error (_("Cannot evaluate function -- may be inlined"));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the return type doesn't look like a function type,
|
||
call an error. This can happen if somebody tries to turn
|
||
a variable into a function call. */
|
||
|
||
type *ftype = value_type (argvec[0]);
|
||
|
||
if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
|
||
{
|
||
/* We don't know anything about what the internal
|
||
function might return, but we have to return
|
||
something. */
|
||
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
not_lval);
|
||
}
|
||
else if (ftype->code () == TYPE_CODE_XMETHOD)
|
||
{
|
||
type *return_type
|
||
= result_type_of_xmethod (argvec[0],
|
||
gdb::make_array_view (argvec + 1,
|
||
nargs));
|
||
|
||
if (return_type == NULL)
|
||
error (_("Xmethod is missing return type."));
|
||
return value_zero (return_type, not_lval);
|
||
}
|
||
else if (ftype->code () == TYPE_CODE_FUNC
|
||
|| ftype->code () == TYPE_CODE_METHOD)
|
||
{
|
||
if (TYPE_GNU_IFUNC (ftype))
|
||
{
|
||
CORE_ADDR address = value_address (argvec[0]);
|
||
type *resolved_type = find_gnu_ifunc_target_type (address);
|
||
|
||
if (resolved_type != NULL)
|
||
ftype = resolved_type;
|
||
}
|
||
|
||
type *return_type = TYPE_TARGET_TYPE (ftype);
|
||
|
||
if (return_type == NULL)
|
||
return_type = default_return_type;
|
||
|
||
if (return_type == NULL)
|
||
error_call_unknown_return_type (function_name);
|
||
|
||
return allocate_value (return_type);
|
||
}
|
||
else
|
||
error (_("Expression of type other than "
|
||
"\"Function returning ...\" used as function"));
|
||
}
|
||
switch (value_type (argvec[0])->code ())
|
||
{
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
return call_internal_function (exp->gdbarch, exp->language_defn,
|
||
argvec[0], nargs, argvec + 1);
|
||
case TYPE_CODE_XMETHOD:
|
||
return call_xmethod (argvec[0], gdb::make_array_view (argvec + 1, nargs));
|
||
default:
|
||
return call_function_by_hand (argvec[0], default_return_type,
|
||
gdb::make_array_view (argvec + 1, nargs));
|
||
}
|
||
}
|
||
|
||
/* Helper for evaluating an OP_FUNCALL. */
|
||
|
||
static value *
|
||
evaluate_funcall (type *expect_type, expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
int tem;
|
||
int pc2 = 0;
|
||
value *arg1 = NULL;
|
||
value *arg2 = NULL;
|
||
int save_pos1;
|
||
symbol *function = NULL;
|
||
char *function_name = NULL;
|
||
const char *var_func_name = NULL;
|
||
|
||
int pc = (*pos);
|
||
(*pos) += 2;
|
||
|
||
exp_opcode op = exp->elts[*pos].opcode;
|
||
int nargs = longest_to_int (exp->elts[pc].longconst);
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0], a potential `this', and a terminating
|
||
NULL. */
|
||
value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
|
||
if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
||
{
|
||
/* First, evaluate the structure into arg2. */
|
||
pc2 = (*pos)++;
|
||
|
||
if (op == STRUCTOP_MEMBER)
|
||
{
|
||
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
|
||
/* If the function is a virtual function, then the aggregate
|
||
value (providing the structure) plays its part by providing
|
||
the vtable. Otherwise, it is just along for the ride: call
|
||
the function directly. */
|
||
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
type *a1_type = check_typedef (value_type (arg1));
|
||
if (noside == EVAL_SKIP)
|
||
tem = 1; /* Set it to the right arg index so that all
|
||
arguments can also be skipped. */
|
||
else if (a1_type->code () == TYPE_CODE_METHODPTR)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
|
||
else
|
||
arg1 = cplus_method_ptr_to_value (&arg2, arg1);
|
||
|
||
/* Now, say which argument to start evaluating from. */
|
||
nargs++;
|
||
tem = 2;
|
||
argvec[1] = arg2;
|
||
}
|
||
else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
|
||
{
|
||
struct type *type_ptr
|
||
= lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
|
||
struct type *target_type_ptr
|
||
= lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
|
||
|
||
/* Now, convert these values to an address. */
|
||
arg2 = value_cast (type_ptr, arg2);
|
||
|
||
long mem_offset = value_as_long (arg1);
|
||
|
||
arg1 = value_from_pointer (target_type_ptr,
|
||
value_as_long (arg2) + mem_offset);
|
||
arg1 = value_ind (arg1);
|
||
tem = 1;
|
||
}
|
||
else
|
||
error (_("Non-pointer-to-member value used in pointer-to-member "
|
||
"construct"));
|
||
}
|
||
else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
|
||
{
|
||
/* Hair for method invocations. */
|
||
int tem2;
|
||
|
||
nargs++;
|
||
/* First, evaluate the structure into arg2. */
|
||
pc2 = (*pos)++;
|
||
tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
|
||
*pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
|
||
|
||
if (op == STRUCTOP_STRUCT)
|
||
{
|
||
/* If v is a variable in a register, and the user types
|
||
v.method (), this will produce an error, because v has no
|
||
address.
|
||
|
||
A possible way around this would be to allocate a copy of
|
||
the variable on the stack, copy in the contents, call the
|
||
function, and copy out the contents. I.e. convert this
|
||
from call by reference to call by copy-return (or
|
||
whatever it's called). However, this does not work
|
||
because it is not the same: the method being called could
|
||
stash a copy of the address, and then future uses through
|
||
that address (after the method returns) would be expected
|
||
to use the variable itself, not some copy of it. */
|
||
arg2 = evaluate_subexp_for_address (exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
/* Check to see if the operator '->' has been overloaded.
|
||
If the operator has been overloaded replace arg2 with the
|
||
value returned by the custom operator and continue
|
||
evaluation. */
|
||
while (unop_user_defined_p (op, arg2))
|
||
{
|
||
struct value *value = NULL;
|
||
try
|
||
{
|
||
value = value_x_unop (arg2, op, noside);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (except.error == NOT_FOUND_ERROR)
|
||
break;
|
||
else
|
||
throw;
|
||
}
|
||
|
||
arg2 = value;
|
||
}
|
||
}
|
||
/* Now, say which argument to start evaluating from. */
|
||
tem = 2;
|
||
}
|
||
else if (op == OP_SCOPE
|
||
&& overload_resolution
|
||
&& (exp->language_defn->la_language == language_cplus))
|
||
{
|
||
/* Unpack it locally so we can properly handle overload
|
||
resolution. */
|
||
char *name;
|
||
int local_tem;
|
||
|
||
pc2 = (*pos)++;
|
||
local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
|
||
(*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
|
||
struct type *type = exp->elts[pc2 + 1].type;
|
||
name = &exp->elts[pc2 + 3].string;
|
||
|
||
function = NULL;
|
||
function_name = NULL;
|
||
if (type->code () == TYPE_CODE_NAMESPACE)
|
||
{
|
||
function = cp_lookup_symbol_namespace (type->name (),
|
||
name,
|
||
get_selected_block (0),
|
||
VAR_DOMAIN).symbol;
|
||
if (function == NULL)
|
||
error (_("No symbol \"%s\" in namespace \"%s\"."),
|
||
name, type->name ());
|
||
|
||
tem = 1;
|
||
/* arg2 is left as NULL on purpose. */
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
function_name = name;
|
||
|
||
/* We need a properly typed value for method lookup. For
|
||
static methods arg2 is otherwise unused. */
|
||
arg2 = value_zero (type, lval_memory);
|
||
++nargs;
|
||
tem = 2;
|
||
}
|
||
}
|
||
else if (op == OP_ADL_FUNC)
|
||
{
|
||
/* Save the function position and move pos so that the arguments
|
||
can be evaluated. */
|
||
int func_name_len;
|
||
|
||
save_pos1 = *pos;
|
||
tem = 1;
|
||
|
||
func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
|
||
(*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
|
||
}
|
||
else
|
||
{
|
||
/* Non-method function call. */
|
||
save_pos1 = *pos;
|
||
tem = 1;
|
||
|
||
/* If this is a C++ function wait until overload resolution. */
|
||
if (op == OP_VAR_VALUE
|
||
&& overload_resolution
|
||
&& (exp->language_defn->la_language == language_cplus))
|
||
{
|
||
(*pos) += 4; /* Skip the evaluation of the symbol. */
|
||
argvec[0] = NULL;
|
||
}
|
||
else
|
||
{
|
||
if (op == OP_VAR_MSYM_VALUE)
|
||
{
|
||
minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
|
||
var_func_name = msym->print_name ();
|
||
}
|
||
else if (op == OP_VAR_VALUE)
|
||
{
|
||
symbol *sym = exp->elts[*pos + 2].symbol;
|
||
var_func_name = sym->print_name ();
|
||
}
|
||
|
||
argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
type *type = value_type (argvec[0]);
|
||
if (type && type->code () == TYPE_CODE_PTR)
|
||
type = TYPE_TARGET_TYPE (type);
|
||
if (type && type->code () == TYPE_CODE_FUNC)
|
||
{
|
||
for (; tem <= nargs && tem <= type->num_fields (); tem++)
|
||
{
|
||
argvec[tem] = evaluate_subexp (type->field (tem - 1).type (),
|
||
exp, pos, noside);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Evaluate arguments (if not already done, e.g., namespace::func()
|
||
and overload-resolution is off). */
|
||
for (; tem <= nargs; tem++)
|
||
{
|
||
/* Ensure that array expressions are coerced into pointer
|
||
objects. */
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
}
|
||
|
||
/* Signal end of arglist. */
|
||
argvec[tem] = 0;
|
||
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
if (op == OP_ADL_FUNC)
|
||
{
|
||
struct symbol *symp;
|
||
char *func_name;
|
||
int name_len;
|
||
int string_pc = save_pos1 + 3;
|
||
|
||
/* Extract the function name. */
|
||
name_len = longest_to_int (exp->elts[string_pc].longconst);
|
||
func_name = (char *) alloca (name_len + 1);
|
||
strcpy (func_name, &exp->elts[string_pc + 1].string);
|
||
|
||
find_overload_match (gdb::make_array_view (&argvec[1], nargs),
|
||
func_name,
|
||
NON_METHOD, /* not method */
|
||
NULL, NULL, /* pass NULL symbol since
|
||
symbol is unknown */
|
||
NULL, &symp, NULL, 0, noside);
|
||
|
||
/* Now fix the expression being evaluated. */
|
||
exp->elts[save_pos1 + 2].symbol = symp;
|
||
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
|
||
}
|
||
|
||
if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
|
||
|| (op == OP_SCOPE && function_name != NULL))
|
||
{
|
||
int static_memfuncp;
|
||
char *tstr;
|
||
|
||
/* Method invocation: stuff "this" as first parameter. If the
|
||
method turns out to be static we undo this below. */
|
||
argvec[1] = arg2;
|
||
|
||
if (op != OP_SCOPE)
|
||
{
|
||
/* Name of method from expression. */
|
||
tstr = &exp->elts[pc2 + 2].string;
|
||
}
|
||
else
|
||
tstr = function_name;
|
||
|
||
if (overload_resolution && (exp->language_defn->la_language
|
||
== language_cplus))
|
||
{
|
||
/* Language is C++, do some overload resolution before
|
||
evaluation. */
|
||
struct value *valp = NULL;
|
||
|
||
(void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
|
||
tstr,
|
||
METHOD, /* method */
|
||
&arg2, /* the object */
|
||
NULL, &valp, NULL,
|
||
&static_memfuncp, 0, noside);
|
||
|
||
if (op == OP_SCOPE && !static_memfuncp)
|
||
{
|
||
/* For the time being, we don't handle this. */
|
||
error (_("Call to overloaded function %s requires "
|
||
"`this' pointer"),
|
||
function_name);
|
||
}
|
||
argvec[1] = arg2; /* the ``this'' pointer */
|
||
argvec[0] = valp; /* Use the method found after overload
|
||
resolution. */
|
||
}
|
||
else
|
||
/* Non-C++ case -- or no overload resolution. */
|
||
{
|
||
struct value *temp = arg2;
|
||
|
||
argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
|
||
&static_memfuncp,
|
||
op == STRUCTOP_STRUCT
|
||
? "structure" : "structure pointer");
|
||
/* value_struct_elt updates temp with the correct value of
|
||
the ``this'' pointer if necessary, so modify argvec[1] to
|
||
reflect any ``this'' changes. */
|
||
arg2
|
||
= value_from_longest (lookup_pointer_type(value_type (temp)),
|
||
value_address (temp)
|
||
+ value_embedded_offset (temp));
|
||
argvec[1] = arg2; /* the ``this'' pointer */
|
||
}
|
||
|
||
/* Take out `this' if needed. */
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
nargs--;
|
||
argvec++;
|
||
}
|
||
}
|
||
else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
|
||
{
|
||
/* Pointer to member. argvec[1] is already set up. */
|
||
argvec[0] = arg1;
|
||
}
|
||
else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
|
||
{
|
||
/* Non-member function being called. */
|
||
/* fn: This can only be done for C++ functions. A C-style
|
||
function in a C++ program, for instance, does not have the
|
||
fields that are expected here. */
|
||
|
||
if (overload_resolution && (exp->language_defn->la_language
|
||
== language_cplus))
|
||
{
|
||
/* Language is C++, do some overload resolution before
|
||
evaluation. */
|
||
struct symbol *symp;
|
||
int no_adl = 0;
|
||
|
||
/* If a scope has been specified disable ADL. */
|
||
if (op == OP_SCOPE)
|
||
no_adl = 1;
|
||
|
||
if (op == OP_VAR_VALUE)
|
||
function = exp->elts[save_pos1+2].symbol;
|
||
|
||
(void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
|
||
NULL, /* no need for name */
|
||
NON_METHOD, /* not method */
|
||
NULL, function, /* the function */
|
||
NULL, &symp, NULL, no_adl, noside);
|
||
|
||
if (op == OP_VAR_VALUE)
|
||
{
|
||
/* Now fix the expression being evaluated. */
|
||
exp->elts[save_pos1+2].symbol = symp;
|
||
argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
|
||
noside);
|
||
}
|
||
else
|
||
argvec[0] = value_of_variable (symp, get_selected_block (0));
|
||
}
|
||
else
|
||
{
|
||
/* Not C++, or no overload resolution allowed. */
|
||
/* Nothing to be done; argvec already correctly set up. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* It is probably a C-style function. */
|
||
/* Nothing to be done; argvec already correctly set up. */
|
||
}
|
||
|
||
return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
|
||
}
|
||
|
||
/* Helper for skipping all the arguments in an undetermined argument list.
|
||
This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
|
||
case of evaluate_subexp_standard as multiple, but not all, code paths
|
||
require a generic skip. */
|
||
|
||
static void
|
||
skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
for (int i = 0; i < nargs; ++i)
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
|
||
/* Return true if type is integral or reference to integral */
|
||
|
||
static bool
|
||
is_integral_or_integral_reference (struct type *type)
|
||
{
|
||
if (is_integral_type (type))
|
||
return true;
|
||
|
||
type = check_typedef (type);
|
||
return (type != nullptr
|
||
&& TYPE_IS_REFERENCE (type)
|
||
&& is_integral_type (TYPE_TARGET_TYPE (type)));
|
||
}
|
||
|
||
struct value *
|
||
evaluate_subexp_standard (struct type *expect_type,
|
||
struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
enum exp_opcode op;
|
||
int tem, tem2, tem3;
|
||
int pc, oldpos;
|
||
struct value *arg1 = NULL;
|
||
struct value *arg2 = NULL;
|
||
struct value *arg3;
|
||
struct type *type;
|
||
int nargs;
|
||
struct value **argvec;
|
||
int code;
|
||
int ix;
|
||
long mem_offset;
|
||
struct type **arg_types;
|
||
|
||
pc = (*pos)++;
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case OP_SCOPE:
|
||
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
||
(*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
|
||
&exp->elts[pc + 3].string,
|
||
expect_type, 0, noside);
|
||
if (arg1 == NULL)
|
||
error (_("There is no field named %s"), &exp->elts[pc + 3].string);
|
||
return arg1;
|
||
|
||
case OP_LONG:
|
||
(*pos) += 3;
|
||
return value_from_longest (exp->elts[pc + 1].type,
|
||
exp->elts[pc + 2].longconst);
|
||
|
||
case OP_FLOAT:
|
||
(*pos) += 3;
|
||
return value_from_contents (exp->elts[pc + 1].type,
|
||
exp->elts[pc + 2].floatconst);
|
||
|
||
case OP_ADL_FUNC:
|
||
case OP_VAR_VALUE:
|
||
{
|
||
(*pos) += 3;
|
||
symbol *var = exp->elts[pc + 2].symbol;
|
||
if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (var->print_name ());
|
||
if (noside != EVAL_SKIP)
|
||
return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
|
||
else
|
||
{
|
||
/* Return a dummy value of the correct type when skipping, so
|
||
that parent functions know what is to be skipped. */
|
||
return allocate_value (SYMBOL_TYPE (var));
|
||
}
|
||
}
|
||
|
||
case OP_VAR_MSYM_VALUE:
|
||
{
|
||
(*pos) += 3;
|
||
|
||
minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
|
||
value *val = evaluate_var_msym_value (noside,
|
||
exp->elts[pc + 1].objfile,
|
||
msymbol);
|
||
|
||
type = value_type (val);
|
||
if (type->code () == TYPE_CODE_ERROR
|
||
&& (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
|
||
error_unknown_type (msymbol->print_name ());
|
||
return val;
|
||
}
|
||
|
||
case OP_VAR_ENTRY_VALUE:
|
||
(*pos) += 2;
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
{
|
||
struct symbol *sym = exp->elts[pc + 1].symbol;
|
||
struct frame_info *frame;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (SYMBOL_TYPE (sym), not_lval);
|
||
|
||
if (SYMBOL_COMPUTED_OPS (sym) == NULL
|
||
|| SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
|
||
error (_("Symbol \"%s\" does not have any specific entry value"),
|
||
sym->print_name ());
|
||
|
||
frame = get_selected_frame (NULL);
|
||
return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
|
||
}
|
||
|
||
case OP_FUNC_STATIC_VAR:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
{
|
||
value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
|
||
CORE_ADDR addr = value_address (func);
|
||
|
||
const block *blk = block_for_pc (addr);
|
||
const char *var = &exp->elts[pc + 2].string;
|
||
|
||
struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
|
||
|
||
if (sym.symbol == NULL)
|
||
error (_("No symbol \"%s\" in specified context."), var);
|
||
|
||
return evaluate_var_value (noside, sym.block, sym.symbol);
|
||
}
|
||
|
||
case OP_LAST:
|
||
(*pos) += 2;
|
||
return
|
||
access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
|
||
|
||
case OP_REGISTER:
|
||
{
|
||
const char *name = &exp->elts[pc + 2].string;
|
||
int regno;
|
||
struct value *val;
|
||
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
|
||
regno = user_reg_map_name_to_regnum (exp->gdbarch,
|
||
name, strlen (name));
|
||
if (regno == -1)
|
||
error (_("Register $%s not available."), name);
|
||
|
||
/* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
|
||
a value with the appropriate register type. Unfortunately,
|
||
we don't have easy access to the type of user registers.
|
||
So for these registers, we fetch the register value regardless
|
||
of the evaluation mode. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
&& regno < gdbarch_num_cooked_regs (exp->gdbarch))
|
||
val = value_zero (register_type (exp->gdbarch, regno), not_lval);
|
||
else
|
||
val = value_of_register (regno, get_selected_frame (NULL));
|
||
if (val == NULL)
|
||
error (_("Value of register %s not available."), name);
|
||
else
|
||
return val;
|
||
}
|
||
case OP_BOOL:
|
||
(*pos) += 2;
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, exp->elts[pc + 1].longconst);
|
||
|
||
case OP_INTERNALVAR:
|
||
(*pos) += 2;
|
||
return value_of_internalvar (exp->gdbarch,
|
||
exp->elts[pc + 1].internalvar);
|
||
|
||
case OP_STRING:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = language_string_char_type (exp->language_defn, exp->gdbarch);
|
||
return value_string (&exp->elts[pc + 2].string, tem, type);
|
||
|
||
case OP_OBJC_NSSTRING: /* Objective C Foundation Class
|
||
NSString constant. */
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
|
||
|
||
case OP_ARRAY:
|
||
(*pos) += 3;
|
||
tem2 = longest_to_int (exp->elts[pc + 1].longconst);
|
||
tem3 = longest_to_int (exp->elts[pc + 2].longconst);
|
||
nargs = tem3 - tem2 + 1;
|
||
type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& type->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
struct value *rec = allocate_value (expect_type);
|
||
|
||
memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
|
||
return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
|
||
}
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *range_type = type->index_type ();
|
||
struct type *element_type = TYPE_TARGET_TYPE (type);
|
||
struct value *array = allocate_value (expect_type);
|
||
int element_size = TYPE_LENGTH (check_typedef (element_type));
|
||
LONGEST low_bound, high_bound, index;
|
||
|
||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||
{
|
||
low_bound = 0;
|
||
high_bound = (TYPE_LENGTH (type) / element_size) - 1;
|
||
}
|
||
index = low_bound;
|
||
memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
|
||
for (tem = nargs; --nargs >= 0;)
|
||
{
|
||
struct value *element;
|
||
int index_pc = 0;
|
||
|
||
element = evaluate_subexp (element_type, exp, pos, noside);
|
||
if (value_type (element) != element_type)
|
||
element = value_cast (element_type, element);
|
||
if (index_pc)
|
||
{
|
||
int continue_pc = *pos;
|
||
|
||
*pos = index_pc;
|
||
index = init_array_element (array, element, exp, pos, noside,
|
||
low_bound, high_bound);
|
||
*pos = continue_pc;
|
||
}
|
||
else
|
||
{
|
||
if (index > high_bound)
|
||
/* To avoid memory corruption. */
|
||
error (_("Too many array elements"));
|
||
memcpy (value_contents_raw (array)
|
||
+ (index - low_bound) * element_size,
|
||
value_contents (element),
|
||
element_size);
|
||
}
|
||
index++;
|
||
}
|
||
return array;
|
||
}
|
||
|
||
if (expect_type != NULL_TYPE && noside != EVAL_SKIP
|
||
&& type->code () == TYPE_CODE_SET)
|
||
{
|
||
struct value *set = allocate_value (expect_type);
|
||
gdb_byte *valaddr = value_contents_raw (set);
|
||
struct type *element_type = type->index_type ();
|
||
struct type *check_type = element_type;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
/* Get targettype of elementtype. */
|
||
while (check_type->code () == TYPE_CODE_RANGE
|
||
|| check_type->code () == TYPE_CODE_TYPEDEF)
|
||
check_type = TYPE_TARGET_TYPE (check_type);
|
||
|
||
if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
|
||
error (_("(power)set type with unknown size"));
|
||
memset (valaddr, '\0', TYPE_LENGTH (type));
|
||
for (tem = 0; tem < nargs; tem++)
|
||
{
|
||
LONGEST range_low, range_high;
|
||
struct type *range_low_type, *range_high_type;
|
||
struct value *elem_val;
|
||
|
||
elem_val = evaluate_subexp (element_type, exp, pos, noside);
|
||
range_low_type = range_high_type = value_type (elem_val);
|
||
range_low = range_high = value_as_long (elem_val);
|
||
|
||
/* Check types of elements to avoid mixture of elements from
|
||
different types. Also check if type of element is "compatible"
|
||
with element type of powerset. */
|
||
if (range_low_type->code () == TYPE_CODE_RANGE)
|
||
range_low_type = TYPE_TARGET_TYPE (range_low_type);
|
||
if (range_high_type->code () == TYPE_CODE_RANGE)
|
||
range_high_type = TYPE_TARGET_TYPE (range_high_type);
|
||
if ((range_low_type->code () != range_high_type->code ())
|
||
|| (range_low_type->code () == TYPE_CODE_ENUM
|
||
&& (range_low_type != range_high_type)))
|
||
/* different element modes. */
|
||
error (_("POWERSET tuple elements of different mode"));
|
||
if ((check_type->code () != range_low_type->code ())
|
||
|| (check_type->code () == TYPE_CODE_ENUM
|
||
&& range_low_type != check_type))
|
||
error (_("incompatible POWERSET tuple elements"));
|
||
if (range_low > range_high)
|
||
{
|
||
warning (_("empty POWERSET tuple range"));
|
||
continue;
|
||
}
|
||
if (range_low < low_bound || range_high > high_bound)
|
||
error (_("POWERSET tuple element out of range"));
|
||
range_low -= low_bound;
|
||
range_high -= low_bound;
|
||
for (; range_low <= range_high; range_low++)
|
||
{
|
||
int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
|
||
|
||
if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
|
||
bit_index = TARGET_CHAR_BIT - 1 - bit_index;
|
||
valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
|
||
|= 1 << bit_index;
|
||
}
|
||
}
|
||
return set;
|
||
}
|
||
|
||
argvec = XALLOCAVEC (struct value *, nargs);
|
||
for (tem = 0; tem < nargs; tem++)
|
||
{
|
||
/* Ensure that array expressions are coerced into pointer
|
||
objects. */
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
}
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_array (tem2, tem3, argvec);
|
||
|
||
case TERNOP_SLICE:
|
||
{
|
||
struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
int lowbound
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
int upper
|
||
= value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_slice (array, lowbound, upper - lowbound + 1);
|
||
}
|
||
|
||
case TERNOP_COND:
|
||
/* Skip third and second args to evaluate the first one. */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (value_logical_not (arg1))
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
else
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return arg2;
|
||
}
|
||
|
||
case OP_OBJC_SELECTOR:
|
||
{ /* Objective C @selector operator. */
|
||
char *sel = &exp->elts[pc + 2].string;
|
||
int len = longest_to_int (exp->elts[pc + 1].longconst);
|
||
struct type *selector_type;
|
||
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
if (sel[len] != 0)
|
||
sel[len] = 0; /* Make sure it's terminated. */
|
||
|
||
selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
||
return value_from_longest (selector_type,
|
||
lookup_child_selector (exp->gdbarch, sel));
|
||
}
|
||
|
||
case OP_OBJC_MSGCALL:
|
||
{ /* Objective C message (method) call. */
|
||
|
||
CORE_ADDR responds_selector = 0;
|
||
CORE_ADDR method_selector = 0;
|
||
|
||
CORE_ADDR selector = 0;
|
||
|
||
int struct_return = 0;
|
||
enum noside sub_no_side = EVAL_NORMAL;
|
||
|
||
struct value *msg_send = NULL;
|
||
struct value *msg_send_stret = NULL;
|
||
int gnu_runtime = 0;
|
||
|
||
struct value *target = NULL;
|
||
struct value *method = NULL;
|
||
struct value *called_method = NULL;
|
||
|
||
struct type *selector_type = NULL;
|
||
struct type *long_type;
|
||
|
||
struct value *ret = NULL;
|
||
CORE_ADDR addr = 0;
|
||
|
||
selector = exp->elts[pc + 1].longconst;
|
||
nargs = exp->elts[pc + 2].longconst;
|
||
argvec = XALLOCAVEC (struct value *, nargs + 5);
|
||
|
||
(*pos) += 3;
|
||
|
||
long_type = builtin_type (exp->gdbarch)->builtin_long;
|
||
selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
sub_no_side = EVAL_NORMAL;
|
||
else
|
||
sub_no_side = noside;
|
||
|
||
target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
|
||
|
||
if (value_as_long (target) == 0)
|
||
return value_from_longest (long_type, 0);
|
||
|
||
if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
|
||
gnu_runtime = 1;
|
||
|
||
/* Find the method dispatch (Apple runtime) or method lookup
|
||
(GNU runtime) function for Objective-C. These will be used
|
||
to lookup the symbol information for the method. If we
|
||
can't find any symbol information, then we'll use these to
|
||
call the method, otherwise we can call the method
|
||
directly. The msg_send_stret function is used in the special
|
||
case of a method that returns a structure (Apple runtime
|
||
only). */
|
||
if (gnu_runtime)
|
||
{
|
||
type = selector_type;
|
||
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
|
||
msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
|
||
msg_send_stret
|
||
= find_function_in_inferior ("objc_msg_lookup", NULL);
|
||
|
||
msg_send = value_from_pointer (type, value_as_address (msg_send));
|
||
msg_send_stret = value_from_pointer (type,
|
||
value_as_address (msg_send_stret));
|
||
}
|
||
else
|
||
{
|
||
msg_send = find_function_in_inferior ("objc_msgSend", NULL);
|
||
/* Special dispatcher for methods returning structs. */
|
||
msg_send_stret
|
||
= find_function_in_inferior ("objc_msgSend_stret", NULL);
|
||
}
|
||
|
||
/* Verify the target object responds to this method. The
|
||
standard top-level 'Object' class uses a different name for
|
||
the verification method than the non-standard, but more
|
||
often used, 'NSObject' class. Make sure we check for both. */
|
||
|
||
responds_selector
|
||
= lookup_child_selector (exp->gdbarch, "respondsToSelector:");
|
||
if (responds_selector == 0)
|
||
responds_selector
|
||
= lookup_child_selector (exp->gdbarch, "respondsTo:");
|
||
|
||
if (responds_selector == 0)
|
||
error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
|
||
|
||
method_selector
|
||
= lookup_child_selector (exp->gdbarch, "methodForSelector:");
|
||
if (method_selector == 0)
|
||
method_selector
|
||
= lookup_child_selector (exp->gdbarch, "methodFor:");
|
||
|
||
if (method_selector == 0)
|
||
error (_("no 'methodFor:' or 'methodForSelector:' method"));
|
||
|
||
/* Call the verification method, to make sure that the target
|
||
class implements the desired method. */
|
||
|
||
argvec[0] = msg_send;
|
||
argvec[1] = target;
|
||
argvec[2] = value_from_longest (long_type, responds_selector);
|
||
argvec[3] = value_from_longest (long_type, selector);
|
||
argvec[4] = 0;
|
||
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
if (gnu_runtime)
|
||
{
|
||
/* Function objc_msg_lookup returns a pointer. */
|
||
argvec[0] = ret;
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
}
|
||
if (value_as_long (ret) == 0)
|
||
error (_("Target does not respond to this message selector."));
|
||
|
||
/* Call "methodForSelector:" method, to get the address of a
|
||
function method that implements this selector for this
|
||
class. If we can find a symbol at that address, then we
|
||
know the return type, parameter types etc. (that's a good
|
||
thing). */
|
||
|
||
argvec[0] = msg_send;
|
||
argvec[1] = target;
|
||
argvec[2] = value_from_longest (long_type, method_selector);
|
||
argvec[3] = value_from_longest (long_type, selector);
|
||
argvec[4] = 0;
|
||
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
if (gnu_runtime)
|
||
{
|
||
argvec[0] = ret;
|
||
ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
|
||
}
|
||
|
||
/* ret should now be the selector. */
|
||
|
||
addr = value_as_long (ret);
|
||
if (addr)
|
||
{
|
||
struct symbol *sym = NULL;
|
||
|
||
/* The address might point to a function descriptor;
|
||
resolve it to the actual code address instead. */
|
||
addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
|
||
current_top_target ());
|
||
|
||
/* Is it a high_level symbol? */
|
||
sym = find_pc_function (addr);
|
||
if (sym != NULL)
|
||
method = value_of_variable (sym, 0);
|
||
}
|
||
|
||
/* If we found a method with symbol information, check to see
|
||
if it returns a struct. Otherwise assume it doesn't. */
|
||
|
||
if (method)
|
||
{
|
||
CORE_ADDR funaddr;
|
||
struct type *val_type;
|
||
|
||
funaddr = find_function_addr (method, &val_type);
|
||
|
||
block_for_pc (funaddr);
|
||
|
||
val_type = check_typedef (val_type);
|
||
|
||
if ((val_type == NULL)
|
||
|| (val_type->code () == TYPE_CODE_ERROR))
|
||
{
|
||
if (expect_type != NULL)
|
||
val_type = expect_type;
|
||
}
|
||
|
||
struct_return = using_struct_return (exp->gdbarch, method,
|
||
val_type);
|
||
}
|
||
else if (expect_type != NULL)
|
||
{
|
||
struct_return = using_struct_return (exp->gdbarch, NULL,
|
||
check_typedef (expect_type));
|
||
}
|
||
|
||
/* Found a function symbol. Now we will substitute its
|
||
value in place of the message dispatcher (obj_msgSend),
|
||
so that we call the method directly instead of thru
|
||
the dispatcher. The main reason for doing this is that
|
||
we can now evaluate the return value and parameter values
|
||
according to their known data types, in case we need to
|
||
do things like promotion, dereferencing, special handling
|
||
of structs and doubles, etc.
|
||
|
||
We want to use the type signature of 'method', but still
|
||
jump to objc_msgSend() or objc_msgSend_stret() to better
|
||
mimic the behavior of the runtime. */
|
||
|
||
if (method)
|
||
{
|
||
if (value_type (method)->code () != TYPE_CODE_FUNC)
|
||
error (_("method address has symbol information "
|
||
"with non-function type; skipping"));
|
||
|
||
/* Create a function pointer of the appropriate type, and
|
||
replace its value with the value of msg_send or
|
||
msg_send_stret. We must use a pointer here, as
|
||
msg_send and msg_send_stret are of pointer type, and
|
||
the representation may be different on systems that use
|
||
function descriptors. */
|
||
if (struct_return)
|
||
called_method
|
||
= value_from_pointer (lookup_pointer_type (value_type (method)),
|
||
value_as_address (msg_send_stret));
|
||
else
|
||
called_method
|
||
= value_from_pointer (lookup_pointer_type (value_type (method)),
|
||
value_as_address (msg_send));
|
||
}
|
||
else
|
||
{
|
||
if (struct_return)
|
||
called_method = msg_send_stret;
|
||
else
|
||
called_method = msg_send;
|
||
}
|
||
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the return type doesn't look like a function type,
|
||
call an error. This can happen if somebody tries to
|
||
turn a variable into a function call. This is here
|
||
because people often want to call, eg, strcmp, which
|
||
gdb doesn't know is a function. If gdb isn't asked for
|
||
it's opinion (ie. through "whatis"), it won't offer
|
||
it. */
|
||
|
||
struct type *callee_type = value_type (called_method);
|
||
|
||
if (callee_type && callee_type->code () == TYPE_CODE_PTR)
|
||
callee_type = TYPE_TARGET_TYPE (callee_type);
|
||
callee_type = TYPE_TARGET_TYPE (callee_type);
|
||
|
||
if (callee_type)
|
||
{
|
||
if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
|
||
return allocate_value (expect_type);
|
||
else
|
||
return allocate_value (callee_type);
|
||
}
|
||
else
|
||
error (_("Expression of type other than "
|
||
"\"method returning ...\" used as a method"));
|
||
}
|
||
|
||
/* Now depending on whether we found a symbol for the method,
|
||
we will either call the runtime dispatcher or the method
|
||
directly. */
|
||
|
||
argvec[0] = called_method;
|
||
argvec[1] = target;
|
||
argvec[2] = value_from_longest (long_type, selector);
|
||
/* User-supplied arguments. */
|
||
for (tem = 0; tem < nargs; tem++)
|
||
argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
argvec[tem + 3] = 0;
|
||
|
||
auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
|
||
|
||
if (gnu_runtime && (method != NULL))
|
||
{
|
||
/* Function objc_msg_lookup returns a pointer. */
|
||
deprecated_set_value_type (argvec[0],
|
||
lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
|
||
argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
|
||
}
|
||
|
||
return call_function_by_hand (argvec[0], NULL, call_args);
|
||
}
|
||
break;
|
||
|
||
case OP_FUNCALL:
|
||
return evaluate_funcall (expect_type, exp, pos, noside);
|
||
|
||
case OP_F77_UNDETERMINED_ARGLIST:
|
||
|
||
/* Remember that in F77, functions, substring ops and
|
||
array subscript operations cannot be disambiguated
|
||
at parse time. We have made all array subscript operations,
|
||
substring operations as well as function calls come here
|
||
and we now have to discover what the heck this thing actually was.
|
||
If it is a function, we process just as if we got an OP_FUNCALL. */
|
||
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 2;
|
||
|
||
/* First determine the type code we are dealing with. */
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
type = check_typedef (value_type (arg1));
|
||
code = type->code ();
|
||
|
||
if (code == TYPE_CODE_PTR)
|
||
{
|
||
/* Fortran always passes variable to subroutines as pointer.
|
||
So we need to look into its target type to see if it is
|
||
array, string or function. If it is, we need to switch
|
||
to the target value the original one points to. */
|
||
struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
if (target_type->code () == TYPE_CODE_ARRAY
|
||
|| target_type->code () == TYPE_CODE_STRING
|
||
|| target_type->code () == TYPE_CODE_FUNC)
|
||
{
|
||
arg1 = value_ind (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
code = type->code ();
|
||
}
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
if (exp->elts[*pos].opcode == OP_RANGE)
|
||
return value_f90_subarray (arg1, exp, pos, noside);
|
||
else
|
||
{
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
skip_undetermined_arglist (nargs, exp, pos, noside);
|
||
/* Return the dummy value with the correct type. */
|
||
return arg1;
|
||
}
|
||
goto multi_f77_subscript;
|
||
}
|
||
|
||
case TYPE_CODE_STRING:
|
||
if (exp->elts[*pos].opcode == OP_RANGE)
|
||
return value_f90_subarray (arg1, exp, pos, noside);
|
||
else
|
||
{
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
skip_undetermined_arglist (nargs, exp, pos, noside);
|
||
/* Return the dummy value with the correct type. */
|
||
return arg1;
|
||
}
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
return value_subscript (arg1, value_as_long (arg2));
|
||
}
|
||
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_INTERNAL_FUNCTION:
|
||
/* It's a function call. */
|
||
/* Allocate arg vector, including space for the function to be
|
||
called in argvec[0] and a terminating NULL. */
|
||
argvec = (struct value **)
|
||
alloca (sizeof (struct value *) * (nargs + 2));
|
||
argvec[0] = arg1;
|
||
tem = 1;
|
||
for (; tem <= nargs; tem++)
|
||
{
|
||
argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
/* Arguments in Fortran are passed by address. Coerce the
|
||
arguments here rather than in value_arg_coerce as otherwise
|
||
the call to malloc to place the non-lvalue parameters in
|
||
target memory is hit by this Fortran specific logic. This
|
||
results in malloc being called with a pointer to an integer
|
||
followed by an attempt to malloc the arguments to malloc in
|
||
target memory. Infinite recursion ensues. */
|
||
if (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC)
|
||
{
|
||
bool is_artificial
|
||
= TYPE_FIELD_ARTIFICIAL (value_type (arg1), tem - 1);
|
||
argvec[tem] = fortran_argument_convert (argvec[tem],
|
||
is_artificial);
|
||
}
|
||
}
|
||
argvec[tem] = 0; /* signal end of arglist */
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
|
||
|
||
default:
|
||
error (_("Cannot perform substring on this type"));
|
||
}
|
||
|
||
case OP_COMPLEX:
|
||
/* We have a complex number, There should be 2 floating
|
||
point numbers that compose it. */
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
|
||
|
||
case STRUCTOP_STRUCT:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
|
||
NULL, "structure");
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
|
||
return arg3;
|
||
|
||
case STRUCTOP_PTR:
|
||
tem = longest_to_int (exp->elts[pc + 1].longconst);
|
||
(*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
/* Check to see if operator '->' has been overloaded. If so replace
|
||
arg1 with the value returned by evaluating operator->(). */
|
||
while (unop_user_defined_p (op, arg1))
|
||
{
|
||
struct value *value = NULL;
|
||
try
|
||
{
|
||
value = value_x_unop (arg1, op, noside);
|
||
}
|
||
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
if (except.error == NOT_FOUND_ERROR)
|
||
break;
|
||
else
|
||
throw;
|
||
}
|
||
|
||
arg1 = value;
|
||
}
|
||
|
||
/* JYG: if print object is on we need to replace the base type
|
||
with rtti type in order to continue on with successful
|
||
lookup of member / method only available in the rtti type. */
|
||
{
|
||
struct type *arg_type = value_type (arg1);
|
||
struct type *real_type;
|
||
int full, using_enc;
|
||
LONGEST top;
|
||
struct value_print_options opts;
|
||
|
||
get_user_print_options (&opts);
|
||
if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
|
||
&& (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
|
||
{
|
||
real_type = value_rtti_indirect_type (arg1, &full, &top,
|
||
&using_enc);
|
||
if (real_type)
|
||
arg1 = value_cast (real_type, arg1);
|
||
}
|
||
}
|
||
|
||
arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
|
||
NULL, "structure pointer");
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
|
||
return arg3;
|
||
|
||
case STRUCTOP_MEMBER:
|
||
case STRUCTOP_MPTR:
|
||
if (op == STRUCTOP_MEMBER)
|
||
arg1 = evaluate_subexp_for_address (exp, pos, noside);
|
||
else
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
type = check_typedef (value_type (arg2));
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_METHODPTR:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (TYPE_TARGET_TYPE (type), not_lval);
|
||
else
|
||
{
|
||
arg2 = cplus_method_ptr_to_value (&arg1, arg2);
|
||
gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
|
||
return value_ind (arg2);
|
||
}
|
||
|
||
case TYPE_CODE_MEMBERPTR:
|
||
/* Now, convert these values to an address. */
|
||
arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
|
||
arg1, 1);
|
||
|
||
mem_offset = value_as_long (arg2);
|
||
|
||
arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
value_as_long (arg1) + mem_offset);
|
||
return value_ind (arg3);
|
||
|
||
default:
|
||
error (_("non-pointer-to-member value used "
|
||
"in pointer-to-member construct"));
|
||
}
|
||
|
||
case TYPE_INSTANCE:
|
||
{
|
||
type_instance_flags flags
|
||
= (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
|
||
nargs = longest_to_int (exp->elts[pc + 2].longconst);
|
||
arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
|
||
for (ix = 0; ix < nargs; ++ix)
|
||
arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
|
||
|
||
fake_method fake_expect_type (flags, nargs, arg_types);
|
||
*(pos) += 4 + nargs;
|
||
return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
|
||
noside);
|
||
}
|
||
|
||
case BINOP_CONCAT:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
return value_concat (arg1, arg2);
|
||
|
||
case BINOP_ASSIGN:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
/* Special-case assignments where the left-hand-side is a
|
||
convenience variable -- in these, don't bother setting an
|
||
expected type. This avoids a weird case where re-assigning a
|
||
string or array to an internal variable could error with "Too
|
||
many array elements". */
|
||
arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
|
||
? NULL_TYPE : value_type (arg1),
|
||
exp, pos, noside);
|
||
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
return value_assign (arg1, arg2);
|
||
|
||
case BINOP_ASSIGN_MODIFY:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
op = exp->elts[pc + 1].opcode;
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
|
||
else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
|
||
value_type (arg1))
|
||
&& is_integral_type (value_type (arg2)))
|
||
arg2 = value_ptradd (arg1, value_as_long (arg2));
|
||
else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
|
||
value_type (arg1))
|
||
&& is_integral_type (value_type (arg2)))
|
||
arg2 = value_ptradd (arg1, - value_as_long (arg2));
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
/* For shift and integer exponentiation operations,
|
||
only promote the first argument. */
|
||
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
||
&& is_integral_type (value_type (arg2)))
|
||
unop_promote (exp->language_defn, exp->gdbarch, &tmp);
|
||
else
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
|
||
arg2 = value_binop (tmp, arg2, op);
|
||
}
|
||
return value_assign (arg1, arg2);
|
||
|
||
case BINOP_ADD:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
||
&& is_integral_or_integral_reference (value_type (arg2)))
|
||
return value_ptradd (arg1, value_as_long (arg2));
|
||
else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
|
||
&& is_integral_or_integral_reference (value_type (arg1)))
|
||
return value_ptradd (arg2, value_as_long (arg1));
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_binop (arg1, arg2, BINOP_ADD);
|
||
}
|
||
|
||
case BINOP_SUB:
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
||
&& ptrmath_type_p (exp->language_defn, value_type (arg2)))
|
||
{
|
||
/* FIXME -- should be ptrdiff_t */
|
||
type = builtin_type (exp->gdbarch)->builtin_long;
|
||
return value_from_longest (type, value_ptrdiff (arg1, arg2));
|
||
}
|
||
else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
|
||
&& is_integral_or_integral_reference (value_type (arg2)))
|
||
return value_ptradd (arg1, - value_as_long (arg2));
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
return value_binop (arg1, arg2, BINOP_SUB);
|
||
}
|
||
|
||
case BINOP_EXP:
|
||
case BINOP_MUL:
|
||
case BINOP_DIV:
|
||
case BINOP_INTDIV:
|
||
case BINOP_REM:
|
||
case BINOP_MOD:
|
||
case BINOP_LSH:
|
||
case BINOP_RSH:
|
||
case BINOP_BITWISE_AND:
|
||
case BINOP_BITWISE_IOR:
|
||
case BINOP_BITWISE_XOR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
{
|
||
/* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
|
||
fudge arg2 to avoid division-by-zero, the caller is
|
||
(theoretically) only looking for the type of the result. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS
|
||
/* ??? Do we really want to test for BINOP_MOD here?
|
||
The implementation of value_binop gives it a well-defined
|
||
value. */
|
||
&& (op == BINOP_DIV
|
||
|| op == BINOP_INTDIV
|
||
|| op == BINOP_REM
|
||
|| op == BINOP_MOD)
|
||
&& value_logical_not (arg2))
|
||
{
|
||
struct value *v_one, *retval;
|
||
|
||
v_one = value_one (value_type (arg2));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
|
||
retval = value_binop (arg1, v_one, op);
|
||
return retval;
|
||
}
|
||
else
|
||
{
|
||
/* For shift and integer exponentiation operations,
|
||
only promote the first argument. */
|
||
if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
|
||
&& is_integral_type (value_type (arg2)))
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
else
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
|
||
return value_binop (arg1, arg2, op);
|
||
}
|
||
}
|
||
|
||
case BINOP_SUBSCRIPT:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
else
|
||
{
|
||
/* If the user attempts to subscript something that is not an
|
||
array or pointer type (like a plain int variable for example),
|
||
then report this as an error. */
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
if (type->code () != TYPE_CODE_ARRAY
|
||
&& type->code () != TYPE_CODE_PTR)
|
||
{
|
||
if (type->name ())
|
||
error (_("cannot subscript something of type `%s'"),
|
||
type->name ());
|
||
else
|
||
error (_("cannot subscript requested type"));
|
||
}
|
||
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
|
||
else
|
||
return value_subscript (arg1, value_as_long (arg2));
|
||
}
|
||
case MULTI_SUBSCRIPT:
|
||
(*pos) += 2;
|
||
nargs = longest_to_int (exp->elts[pc + 1].longconst);
|
||
arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
while (nargs-- > 0)
|
||
{
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
/* FIXME: EVAL_SKIP handling may not be correct. */
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
if (nargs > 0)
|
||
continue;
|
||
return eval_skip_value (exp);
|
||
}
|
||
/* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
/* If the user attempts to subscript something that has no target
|
||
type (like a plain int variable for example), then report this
|
||
as an error. */
|
||
|
||
type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
|
||
if (type != NULL)
|
||
{
|
||
arg1 = value_zero (type, VALUE_LVAL (arg1));
|
||
noside = EVAL_SKIP;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
error (_("cannot subscript something of type `%s'"),
|
||
value_type (arg1)->name ());
|
||
}
|
||
}
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
arg1 = coerce_ref (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRING:
|
||
arg1 = value_subscript (arg1, value_as_long (arg2));
|
||
break;
|
||
|
||
default:
|
||
if (type->name ())
|
||
error (_("cannot subscript something of type `%s'"),
|
||
type->name ());
|
||
else
|
||
error (_("cannot subscript requested type"));
|
||
}
|
||
}
|
||
}
|
||
return (arg1);
|
||
|
||
multi_f77_subscript:
|
||
{
|
||
LONGEST subscript_array[MAX_FORTRAN_DIMS];
|
||
int ndimensions = 1, i;
|
||
struct value *array = arg1;
|
||
|
||
if (nargs > MAX_FORTRAN_DIMS)
|
||
error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
|
||
|
||
ndimensions = calc_f77_array_dims (type);
|
||
|
||
if (nargs != ndimensions)
|
||
error (_("Wrong number of subscripts"));
|
||
|
||
gdb_assert (nargs > 0);
|
||
|
||
/* Now that we know we have a legal array subscript expression
|
||
let us actually find out where this element exists in the array. */
|
||
|
||
/* Take array indices left to right. */
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
/* Evaluate each subscript; it must be a legal integer in F77. */
|
||
arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
|
||
|
||
/* Fill in the subscript array. */
|
||
|
||
subscript_array[i] = value_as_long (arg2);
|
||
}
|
||
|
||
/* Internal type of array is arranged right to left. */
|
||
for (i = nargs; i > 0; i--)
|
||
{
|
||
struct type *array_type = check_typedef (value_type (array));
|
||
LONGEST index = subscript_array[i - 1];
|
||
|
||
array = value_subscripted_rvalue (array, index,
|
||
f77_get_lowerbound (array_type));
|
||
}
|
||
|
||
return array;
|
||
}
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return eval_skip_value (exp);
|
||
}
|
||
|
||
oldpos = *pos;
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
*pos = oldpos;
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
tem = value_logical_not (arg1);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
(tem ? EVAL_SKIP : noside));
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type,
|
||
(LONGEST) (!tem && !value_logical_not (arg2)));
|
||
}
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return eval_skip_value (exp);
|
||
}
|
||
|
||
oldpos = *pos;
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
*pos = oldpos;
|
||
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
tem = value_logical_not (arg1);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
(!tem ? EVAL_SKIP : noside));
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type,
|
||
(LONGEST) (!tem || !value_logical_not (arg2)));
|
||
}
|
||
|
||
case BINOP_EQUAL:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_equal (arg1, arg2);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_NOTEQUAL:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_equal (arg1, arg2);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) ! tem);
|
||
}
|
||
|
||
case BINOP_LESS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_less (arg1, arg2);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_GTR:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_less (arg2, arg1);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_GEQ:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_LEQ:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (binop_user_defined_p (op, arg1, arg2))
|
||
{
|
||
return value_x_binop (arg1, arg2, op, OP_NULL, noside);
|
||
}
|
||
else
|
||
{
|
||
binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
|
||
tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) tem);
|
||
}
|
||
|
||
case BINOP_REPEAT:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
type = check_typedef (value_type (arg2));
|
||
if (type->code () != TYPE_CODE_INT
|
||
&& type->code () != TYPE_CODE_ENUM)
|
||
error (_("Non-integral right operand for \"@\" operator."));
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
return allocate_repeat_value (value_type (arg1),
|
||
longest_to_int (value_as_long (arg2)));
|
||
}
|
||
else
|
||
return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
|
||
|
||
case BINOP_COMMA:
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
case UNOP_PLUS:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_pos (arg1);
|
||
}
|
||
|
||
case UNOP_NEG:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_neg (arg1);
|
||
}
|
||
|
||
case UNOP_COMPLEMENT:
|
||
/* C++: check for and handle destructor names. */
|
||
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
|
||
return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
|
||
else
|
||
{
|
||
unop_promote (exp->language_defn, exp->gdbarch, &arg1);
|
||
return value_complement (arg1);
|
||
}
|
||
|
||
case UNOP_LOGICAL_NOT:
|
||
arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else
|
||
{
|
||
type = language_bool_type (exp->language_defn, exp->gdbarch);
|
||
return value_from_longest (type, (LONGEST) value_logical_not (arg1));
|
||
}
|
||
|
||
case UNOP_IND:
|
||
if (expect_type && expect_type->code () == TYPE_CODE_PTR)
|
||
expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
type = check_typedef (value_type (arg1));
|
||
if (type->code () == TYPE_CODE_METHODPTR
|
||
|| type->code () == TYPE_CODE_MEMBERPTR)
|
||
error (_("Attempt to dereference pointer "
|
||
"to member without an object"));
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (unop_user_defined_p (op, arg1))
|
||
return value_x_unop (arg1, op, noside);
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
type = check_typedef (value_type (arg1));
|
||
if (type->code () == TYPE_CODE_PTR
|
||
|| TYPE_IS_REFERENCE (type)
|
||
/* In C you can dereference an array to get the 1st elt. */
|
||
|| type->code () == TYPE_CODE_ARRAY
|
||
)
|
||
return value_zero (TYPE_TARGET_TYPE (type),
|
||
lval_memory);
|
||
else if (type->code () == TYPE_CODE_INT)
|
||
/* GDB allows dereferencing an int. */
|
||
return value_zero (builtin_type (exp->gdbarch)->builtin_int,
|
||
lval_memory);
|
||
else
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
}
|
||
|
||
/* Allow * on an integer so we can cast it to whatever we want.
|
||
This returns an int, which seems like the most C-like thing to
|
||
do. "long long" variables are rare enough that
|
||
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
||
if (type->code () == TYPE_CODE_INT)
|
||
return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
|
||
(CORE_ADDR) value_as_address (arg1));
|
||
return value_ind (arg1);
|
||
|
||
case UNOP_ADDR:
|
||
/* C++: check for and handle pointer to members. */
|
||
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return eval_skip_value (exp);
|
||
}
|
||
else
|
||
{
|
||
struct value *retvalp = evaluate_subexp_for_address (exp, pos,
|
||
noside);
|
||
|
||
return retvalp;
|
||
}
|
||
|
||
case UNOP_SIZEOF:
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return eval_skip_value (exp);
|
||
}
|
||
return evaluate_subexp_for_sizeof (exp, pos, noside);
|
||
|
||
case UNOP_ALIGNOF:
|
||
{
|
||
type = value_type (evaluate_subexp (NULL_TYPE, exp, pos,
|
||
EVAL_AVOID_SIDE_EFFECTS));
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
ULONGEST align = type_align (type);
|
||
if (align == 0)
|
||
error (_("could not determine alignment of type"));
|
||
return value_from_longest (size_type, align);
|
||
}
|
||
|
||
case UNOP_CAST:
|
||
(*pos) += 2;
|
||
type = exp->elts[pc + 1].type;
|
||
return evaluate_subexp_for_cast (exp, pos, noside, type);
|
||
|
||
case UNOP_CAST_TYPE:
|
||
arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (arg1);
|
||
return evaluate_subexp_for_cast (exp, pos, noside, type);
|
||
|
||
case UNOP_DYNAMIC_CAST:
|
||
arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (arg1);
|
||
arg1 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_dynamic_cast (type, arg1);
|
||
|
||
case UNOP_REINTERPRET_CAST:
|
||
arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (arg1);
|
||
arg1 = evaluate_subexp (type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_reinterpret_cast (type, arg1);
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 2;
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (exp->elts[pc + 1].type, lval_memory);
|
||
else
|
||
return value_at_lazy (exp->elts[pc + 1].type,
|
||
value_as_address (arg1));
|
||
|
||
case UNOP_MEMVAL_TYPE:
|
||
arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (arg1);
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (type, lval_memory);
|
||
else
|
||
return value_at_lazy (type, value_as_address (arg1));
|
||
|
||
case UNOP_PREINCREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
||
arg2 = value_ptradd (arg1, 1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (value_type (arg1));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
||
}
|
||
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
|
||
case UNOP_PREDECREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
||
arg2 = value_ptradd (arg1, -1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (value_type (arg1));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
||
}
|
||
|
||
return value_assign (arg1, arg2);
|
||
}
|
||
|
||
case UNOP_POSTINCREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
arg3 = value_non_lval (arg1);
|
||
|
||
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
||
arg2 = value_ptradd (arg1, 1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (value_type (arg1));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_ADD);
|
||
}
|
||
|
||
value_assign (arg1, arg2);
|
||
return arg3;
|
||
}
|
||
|
||
case UNOP_POSTDECREMENT:
|
||
arg1 = evaluate_subexp (expect_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return arg1;
|
||
else if (unop_user_defined_p (op, arg1))
|
||
{
|
||
return value_x_unop (arg1, op, noside);
|
||
}
|
||
else
|
||
{
|
||
arg3 = value_non_lval (arg1);
|
||
|
||
if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
|
||
arg2 = value_ptradd (arg1, -1);
|
||
else
|
||
{
|
||
struct value *tmp = arg1;
|
||
|
||
arg2 = value_one (value_type (arg1));
|
||
binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
|
||
arg2 = value_binop (tmp, arg2, BINOP_SUB);
|
||
}
|
||
|
||
value_assign (arg1, arg2);
|
||
return arg3;
|
||
}
|
||
|
||
case OP_THIS:
|
||
(*pos) += 1;
|
||
return value_of_this (exp->language_defn);
|
||
|
||
case OP_TYPE:
|
||
/* The value is not supposed to be used. This is here to make it
|
||
easier to accommodate expressions that contain types. */
|
||
(*pos) += 2;
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return allocate_value (exp->elts[pc + 1].type);
|
||
else
|
||
error (_("Attempt to use a type name as an expression"));
|
||
|
||
case OP_TYPEOF:
|
||
case OP_DECLTYPE:
|
||
if (noside == EVAL_SKIP)
|
||
{
|
||
evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
|
||
return eval_skip_value (exp);
|
||
}
|
||
else if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
enum exp_opcode sub_op = exp->elts[*pos].opcode;
|
||
struct value *result;
|
||
|
||
result = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
|
||
/* 'decltype' has special semantics for lvalues. */
|
||
if (op == OP_DECLTYPE
|
||
&& (sub_op == BINOP_SUBSCRIPT
|
||
|| sub_op == STRUCTOP_MEMBER
|
||
|| sub_op == STRUCTOP_MPTR
|
||
|| sub_op == UNOP_IND
|
||
|| sub_op == STRUCTOP_STRUCT
|
||
|| sub_op == STRUCTOP_PTR
|
||
|| sub_op == OP_SCOPE))
|
||
{
|
||
type = value_type (result);
|
||
|
||
if (!TYPE_IS_REFERENCE (type))
|
||
{
|
||
type = lookup_lvalue_reference_type (type);
|
||
result = allocate_value (type);
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
else
|
||
error (_("Attempt to use a type as an expression"));
|
||
|
||
case OP_TYPEID:
|
||
{
|
||
struct value *result;
|
||
enum exp_opcode sub_op = exp->elts[*pos].opcode;
|
||
|
||
if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
|
||
result = evaluate_subexp (NULL_TYPE, exp, pos,
|
||
EVAL_AVOID_SIDE_EFFECTS);
|
||
else
|
||
result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
if (noside != EVAL_NORMAL)
|
||
return allocate_value (cplus_typeid_type (exp->gdbarch));
|
||
|
||
return cplus_typeid (result);
|
||
}
|
||
|
||
default:
|
||
/* Removing this case and compiling with gcc -Wall reveals that
|
||
a lot of cases are hitting this case. Some of these should
|
||
probably be removed from expression.h; others are legitimate
|
||
expressions which are (apparently) not fully implemented.
|
||
|
||
If there are any cases landing here which mean a user error,
|
||
then they should be separate cases, with more descriptive
|
||
error messages. */
|
||
|
||
error (_("GDB does not (yet) know how to "
|
||
"evaluate that kind of expression"));
|
||
}
|
||
|
||
gdb_assert_not_reached ("missed return?");
|
||
}
|
||
|
||
/* Evaluate a subexpression of EXP, at index *POS,
|
||
and return the address of that subexpression.
|
||
Advance *POS over the subexpression.
|
||
If the subexpression isn't an lvalue, get an error.
|
||
NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
|
||
then only the type of the result need be correct. */
|
||
|
||
static struct value *
|
||
evaluate_subexp_for_address (struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
enum exp_opcode op;
|
||
int pc;
|
||
struct symbol *var;
|
||
struct value *x;
|
||
int tem;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case UNOP_IND:
|
||
(*pos)++;
|
||
x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
|
||
/* We can't optimize out "&*" if there's a user-defined operator*. */
|
||
if (unop_user_defined_p (op, x))
|
||
{
|
||
x = value_x_unop (x, op, noside);
|
||
goto default_case_after_eval;
|
||
}
|
||
|
||
return coerce_array (x);
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 3;
|
||
return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
|
||
case UNOP_MEMVAL_TYPE:
|
||
{
|
||
struct type *type;
|
||
|
||
(*pos) += 1;
|
||
x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (x);
|
||
return value_cast (lookup_pointer_type (type),
|
||
evaluate_subexp (NULL_TYPE, exp, pos, noside));
|
||
}
|
||
|
||
case OP_VAR_VALUE:
|
||
var = exp->elts[pc + 2].symbol;
|
||
|
||
/* C++: The "address" of a reference should yield the address
|
||
* of the object pointed to. Let value_addr() deal with it. */
|
||
if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
|
||
goto default_case;
|
||
|
||
(*pos) += 4;
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type =
|
||
lookup_pointer_type (SYMBOL_TYPE (var));
|
||
enum address_class sym_class = SYMBOL_CLASS (var);
|
||
|
||
if (sym_class == LOC_CONST
|
||
|| sym_class == LOC_CONST_BYTES
|
||
|| sym_class == LOC_REGISTER)
|
||
error (_("Attempt to take address of register or constant."));
|
||
|
||
return
|
||
value_zero (type, not_lval);
|
||
}
|
||
else
|
||
return address_of_variable (var, exp->elts[pc + 1].block);
|
||
|
||
case OP_VAR_MSYM_VALUE:
|
||
{
|
||
(*pos) += 4;
|
||
|
||
value *val = evaluate_var_msym_value (noside,
|
||
exp->elts[pc + 1].objfile,
|
||
exp->elts[pc + 2].msymbol);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = lookup_pointer_type (value_type (val));
|
||
return value_zero (type, not_lval);
|
||
}
|
||
else
|
||
return value_addr (val);
|
||
}
|
||
|
||
case OP_SCOPE:
|
||
tem = longest_to_int (exp->elts[pc + 2].longconst);
|
||
(*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
|
||
x = value_aggregate_elt (exp->elts[pc + 1].type,
|
||
&exp->elts[pc + 3].string,
|
||
NULL, 1, noside);
|
||
if (x == NULL)
|
||
error (_("There is no field named %s"), &exp->elts[pc + 3].string);
|
||
return x;
|
||
|
||
default:
|
||
default_case:
|
||
x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
default_case_after_eval:
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *type = check_typedef (value_type (x));
|
||
|
||
if (TYPE_IS_REFERENCE (type))
|
||
return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
not_lval);
|
||
else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
|
||
return value_zero (lookup_pointer_type (value_type (x)),
|
||
not_lval);
|
||
else
|
||
error (_("Attempt to take address of "
|
||
"value not located in memory."));
|
||
}
|
||
return value_addr (x);
|
||
}
|
||
}
|
||
|
||
/* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
|
||
When used in contexts where arrays will be coerced anyway, this is
|
||
equivalent to `evaluate_subexp' but much faster because it avoids
|
||
actually fetching array contents (perhaps obsolete now that we have
|
||
value_lazy()).
|
||
|
||
Note that we currently only do the coercion for C expressions, where
|
||
arrays are zero based and the coercion is correct. For other languages,
|
||
with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
|
||
to decide if coercion is appropriate. */
|
||
|
||
struct value *
|
||
evaluate_subexp_with_coercion (struct expression *exp,
|
||
int *pos, enum noside noside)
|
||
{
|
||
enum exp_opcode op;
|
||
int pc;
|
||
struct value *val;
|
||
struct symbol *var;
|
||
struct type *type;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
case OP_VAR_VALUE:
|
||
var = exp->elts[pc + 2].symbol;
|
||
type = check_typedef (SYMBOL_TYPE (var));
|
||
if (type->code () == TYPE_CODE_ARRAY
|
||
&& !TYPE_VECTOR (type)
|
||
&& CAST_IS_CONVERSION (exp->language_defn))
|
||
{
|
||
(*pos) += 4;
|
||
val = address_of_variable (var, exp->elts[pc + 1].block);
|
||
return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
val);
|
||
}
|
||
/* FALLTHROUGH */
|
||
|
||
default:
|
||
return evaluate_subexp (NULL_TYPE, exp, pos, noside);
|
||
}
|
||
}
|
||
|
||
/* Evaluate a subexpression of EXP, at index *POS,
|
||
and return a value for the size of that subexpression.
|
||
Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
|
||
we allow side-effects on the operand if its type is a variable
|
||
length array. */
|
||
|
||
static struct value *
|
||
evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
|
||
enum noside noside)
|
||
{
|
||
/* FIXME: This should be size_t. */
|
||
struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
|
||
enum exp_opcode op;
|
||
int pc;
|
||
struct type *type;
|
||
struct value *val;
|
||
|
||
pc = (*pos);
|
||
op = exp->elts[pc].opcode;
|
||
|
||
switch (op)
|
||
{
|
||
/* This case is handled specially
|
||
so that we avoid creating a value for the result type.
|
||
If the result type is very big, it's desirable not to
|
||
create a value unnecessarily. */
|
||
case UNOP_IND:
|
||
(*pos)++;
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = check_typedef (value_type (val));
|
||
if (type->code () != TYPE_CODE_PTR
|
||
&& !TYPE_IS_REFERENCE (type)
|
||
&& type->code () != TYPE_CODE_ARRAY)
|
||
error (_("Attempt to take contents of a non-pointer value."));
|
||
type = TYPE_TARGET_TYPE (type);
|
||
if (is_dynamic_type (type))
|
||
type = value_type (value_ind (val));
|
||
return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
|
||
|
||
case UNOP_MEMVAL:
|
||
(*pos) += 3;
|
||
type = exp->elts[pc + 1].type;
|
||
break;
|
||
|
||
case UNOP_MEMVAL_TYPE:
|
||
(*pos) += 1;
|
||
val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (val);
|
||
break;
|
||
|
||
case OP_VAR_VALUE:
|
||
type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
|
||
if (is_dynamic_type (type))
|
||
{
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
|
||
type = value_type (val);
|
||
if (type->code () == TYPE_CODE_ARRAY
|
||
&& is_dynamic_type (type->index_type ())
|
||
&& TYPE_HIGH_BOUND_UNDEFINED (type->index_type ()))
|
||
return allocate_optimized_out_value (size_type);
|
||
}
|
||
else
|
||
(*pos) += 4;
|
||
break;
|
||
|
||
case OP_VAR_MSYM_VALUE:
|
||
{
|
||
(*pos) += 4;
|
||
|
||
minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
|
||
value *mval = evaluate_var_msym_value (noside,
|
||
exp->elts[pc + 1].objfile,
|
||
msymbol);
|
||
|
||
type = value_type (mval);
|
||
if (type->code () == TYPE_CODE_ERROR)
|
||
error_unknown_type (msymbol->print_name ());
|
||
|
||
return value_from_longest (size_type, TYPE_LENGTH (type));
|
||
}
|
||
break;
|
||
|
||
/* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
|
||
type of the subscript is a variable length array type. In this case we
|
||
must re-evaluate the right hand side of the subscription to allow
|
||
side-effects. */
|
||
case BINOP_SUBSCRIPT:
|
||
if (noside == EVAL_NORMAL)
|
||
{
|
||
int npc = (*pos) + 1;
|
||
|
||
val = evaluate_subexp (NULL_TYPE, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = check_typedef (value_type (val));
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
if (type->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
type = type->index_type ();
|
||
/* Only re-evaluate the right hand side if the resulting type
|
||
is a variable length type. */
|
||
if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
|
||
{
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
|
||
return value_from_longest
|
||
(size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Fall through. */
|
||
|
||
default:
|
||
val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
|
||
type = value_type (val);
|
||
break;
|
||
}
|
||
|
||
/* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
|
||
"When applied to a reference or a reference type, the result is
|
||
the size of the referenced type." */
|
||
type = check_typedef (type);
|
||
if (exp->language_defn->la_language == language_cplus
|
||
&& (TYPE_IS_REFERENCE (type)))
|
||
type = check_typedef (TYPE_TARGET_TYPE (type));
|
||
return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
|
||
}
|
||
|
||
/* Evaluate a subexpression of EXP, at index *POS, and return a value
|
||
for that subexpression cast to TO_TYPE. Advance *POS over the
|
||
subexpression. */
|
||
|
||
static value *
|
||
evaluate_subexp_for_cast (expression *exp, int *pos,
|
||
enum noside noside,
|
||
struct type *to_type)
|
||
{
|
||
int pc = *pos;
|
||
|
||
/* Don't let symbols be evaluated with evaluate_subexp because that
|
||
throws an "unknown type" error for no-debug data symbols.
|
||
Instead, we want the cast to reinterpret the symbol. */
|
||
if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
|
||
|| exp->elts[pc].opcode == OP_VAR_VALUE)
|
||
{
|
||
(*pos) += 4;
|
||
|
||
value *val;
|
||
if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
|
||
{
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
return value_zero (to_type, not_lval);
|
||
|
||
val = evaluate_var_msym_value (noside,
|
||
exp->elts[pc + 1].objfile,
|
||
exp->elts[pc + 2].msymbol);
|
||
}
|
||
else
|
||
val = evaluate_var_value (noside,
|
||
exp->elts[pc + 1].block,
|
||
exp->elts[pc + 2].symbol);
|
||
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
|
||
val = value_cast (to_type, val);
|
||
|
||
/* Don't allow e.g. '&(int)var_with_no_debug_info'. */
|
||
if (VALUE_LVAL (val) == lval_memory)
|
||
{
|
||
if (value_lazy (val))
|
||
value_fetch_lazy (val);
|
||
VALUE_LVAL (val) = not_lval;
|
||
}
|
||
return val;
|
||
}
|
||
|
||
value *val = evaluate_subexp (to_type, exp, pos, noside);
|
||
if (noside == EVAL_SKIP)
|
||
return eval_skip_value (exp);
|
||
return value_cast (to_type, val);
|
||
}
|
||
|
||
/* Parse a type expression in the string [P..P+LENGTH). */
|
||
|
||
struct type *
|
||
parse_and_eval_type (char *p, int length)
|
||
{
|
||
char *tmp = (char *) alloca (length + 4);
|
||
|
||
tmp[0] = '(';
|
||
memcpy (tmp + 1, p, length);
|
||
tmp[length + 1] = ')';
|
||
tmp[length + 2] = '0';
|
||
tmp[length + 3] = '\0';
|
||
expression_up expr = parse_expression (tmp);
|
||
if (expr->elts[0].opcode != UNOP_CAST)
|
||
error (_("Internal error in eval_type."));
|
||
return expr->elts[1].type;
|
||
}
|
||
|
||
int
|
||
calc_f77_array_dims (struct type *array_type)
|
||
{
|
||
int ndimen = 1;
|
||
struct type *tmp_type;
|
||
|
||
if ((array_type->code () != TYPE_CODE_ARRAY))
|
||
error (_("Can't get dimensions for a non-array type"));
|
||
|
||
tmp_type = array_type;
|
||
|
||
while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
|
||
{
|
||
if (tmp_type->code () == TYPE_CODE_ARRAY)
|
||
++ndimen;
|
||
}
|
||
return ndimen;
|
||
}
|