binutils-gdb/opcodes/sh-dis.c
Joern Rennecke 6a5709a5a1 2004-02-23 Andrew Stubbs <andrew.stubbs@superh.com>
gas:
	* tc-sh.c (build_Mytes): Add REG_N_D and REG_N_B01
	nibble types to assembler.
opcodes:
	* sh-dis.c (print_insn_sh): Add REG_N_D nibble type to
	ensure that double registers have even numbers.
	Add REG_N_B01 for nn01 (binary 01) nibble to ensure
	that reserved instruction 0xfffd does not decode the same
	as 0xfdfd (ftrv).
	* sh-opc.h: Add REG_N_D nibble type and use it whereever
	REG_N refers to a double register.
	Add REG_N_B01 nibble type and use it instead of REG_NM
	in ftrv.
	Adjust the bit patterns in a few comments.
2004-02-26 16:14:42 +00:00

865 lines
20 KiB
C

/* Disassemble SH instructions.
Copyright 1993, 1994, 1995, 1997, 1998, 2000, 2001, 2002, 2003
Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <stdio.h>
#include "sysdep.h"
#define STATIC_TABLE
#define DEFINE_TABLE
#include "sh-opc.h"
#include "dis-asm.h"
#ifdef ARCH_all
#define INCLUDE_SHMEDIA
#endif
static void print_movxy
PARAMS ((const sh_opcode_info *, int, int, fprintf_ftype, void *));
static void print_insn_ddt PARAMS ((int, struct disassemble_info *));
static void print_dsp_reg PARAMS ((int, fprintf_ftype, void *));
static void print_insn_ppi PARAMS ((int, struct disassemble_info *));
static void
print_movxy (op, rn, rm, fprintf_fn, stream)
const sh_opcode_info *op;
int rn, rm;
fprintf_ftype fprintf_fn;
void *stream;
{
int n;
fprintf_fn (stream, "%s\t", op->name);
for (n = 0; n < 2; n++)
{
switch (op->arg[n])
{
case A_IND_N:
case AX_IND_N:
case AXY_IND_N:
case AY_IND_N:
case AYX_IND_N:
fprintf_fn (stream, "@r%d", rn);
break;
case A_INC_N:
case AX_INC_N:
case AXY_INC_N:
case AY_INC_N:
case AYX_INC_N:
fprintf_fn (stream, "@r%d+", rn);
break;
case AX_PMOD_N:
case AXY_PMOD_N:
fprintf_fn (stream, "@r%d+r8", rn);
break;
case AY_PMOD_N:
case AYX_PMOD_N:
fprintf_fn (stream, "@r%d+r9", rn);
break;
case DSP_REG_A_M:
fprintf_fn (stream, "a%c", '0' + rm);
break;
case DSP_REG_X:
fprintf_fn (stream, "x%c", '0' + rm);
break;
case DSP_REG_Y:
fprintf_fn (stream, "y%c", '0' + rm);
break;
case DSP_REG_AX:
fprintf_fn (stream, "%c%c",
(rm & 1) ? 'x' : 'a',
(rm & 2) ? '1' : '0');
break;
case DSP_REG_XY:
fprintf_fn (stream, "%c%c",
(rm & 1) ? 'y' : 'x',
(rm & 2) ? '1' : '0');
break;
case DSP_REG_AY:
fprintf_fn (stream, "%c%c",
(rm & 2) ? 'y' : 'a',
(rm & 1) ? '1' : '0');
break;
case DSP_REG_YX:
fprintf_fn (stream, "%c%c",
(rm & 2) ? 'x' : 'y',
(rm & 1) ? '1' : '0');
break;
default:
abort ();
}
if (n == 0)
fprintf_fn (stream, ",");
}
}
/* Print a double data transfer insn. INSN is just the lower three
nibbles of the insn, i.e. field a and the bit that indicates if
a parallel processing insn follows.
Return nonzero if a field b of a parallel processing insns follows. */
static void
print_insn_ddt (insn, info)
int insn;
struct disassemble_info *info;
{
fprintf_ftype fprintf_fn = info->fprintf_func;
void *stream = info->stream;
/* If this is just a nop, make sure to emit something. */
if (insn == 0x000)
fprintf_fn (stream, "nopx\tnopy");
/* If a parallel processing insn was printed before,
and we got a non-nop, emit a tab. */
if ((insn & 0x800) && (insn & 0x3ff))
fprintf_fn (stream, "\t");
/* Check if either the x or y part is invalid. */
if (((insn & 0xc) == 0 && (insn & 0x2a0))
|| ((insn & 3) == 0 && (insn & 0x150)))
if (info->mach != bfd_mach_sh_dsp
&& info->mach != bfd_mach_sh3_dsp)
{
static const sh_opcode_info *first_movx, *first_movy;
const sh_opcode_info *op;
int is_movy;
if (! first_movx)
{
for (first_movx = sh_table; first_movx->nibbles[1] != MOVX_NOPY;)
first_movx++;
for (first_movy = first_movx; first_movy->nibbles[1] != MOVY_NOPX;)
first_movy++;
}
is_movy = ((insn & 3) != 0);
if (is_movy)
op = first_movy;
else
op = first_movx;
while (op->nibbles[2] != (unsigned) ((insn >> 4) & 3)
|| op->nibbles[3] != (unsigned) (insn & 0xf))
op++;
print_movxy (op,
(4 * ((insn & (is_movy ? 0x200 : 0x100)) == 0)
+ 2 * is_movy
+ 1 * ((insn & (is_movy ? 0x100 : 0x200)) != 0)),
(insn >> 6) & 3,
fprintf_fn, stream);
}
else
fprintf_fn (stream, ".word 0x%x", insn);
else
{
static const sh_opcode_info *first_movx, *first_movy;
const sh_opcode_info *opx, *opy;
unsigned int insn_x, insn_y;
if (! first_movx)
{
for (first_movx = sh_table; first_movx->nibbles[1] != MOVX;)
first_movx++;
for (first_movy = first_movx; first_movy->nibbles[1] != MOVY;)
first_movy++;
}
insn_x = (insn >> 2) & 0xb;
if (insn_x)
{
for (opx = first_movx; opx->nibbles[2] != insn_x;)
opx++;
print_movxy (opx, ((insn >> 9) & 1) + 4, (insn >> 7) & 1,
fprintf_fn, stream);
}
insn_y = (insn & 3) | ((insn >> 1) & 8);
if (insn_y)
{
if (insn_x)
fprintf_fn (stream, "\t");
for (opy = first_movy; opy->nibbles[2] != insn_y;)
opy++;
print_movxy (opy, ((insn >> 8) & 1) + 6, (insn >> 6) & 1,
fprintf_fn, stream);
}
}
}
static void
print_dsp_reg (rm, fprintf_fn, stream)
int rm;
fprintf_ftype fprintf_fn;
void *stream;
{
switch (rm)
{
case A_A1_NUM:
fprintf_fn (stream, "a1");
break;
case A_A0_NUM:
fprintf_fn (stream, "a0");
break;
case A_X0_NUM:
fprintf_fn (stream, "x0");
break;
case A_X1_NUM:
fprintf_fn (stream, "x1");
break;
case A_Y0_NUM:
fprintf_fn (stream, "y0");
break;
case A_Y1_NUM:
fprintf_fn (stream, "y1");
break;
case A_M0_NUM:
fprintf_fn (stream, "m0");
break;
case A_A1G_NUM:
fprintf_fn (stream, "a1g");
break;
case A_M1_NUM:
fprintf_fn (stream, "m1");
break;
case A_A0G_NUM:
fprintf_fn (stream, "a0g");
break;
default:
fprintf_fn (stream, "0x%x", rm);
break;
}
}
static void
print_insn_ppi (field_b, info)
int field_b;
struct disassemble_info *info;
{
static char *sx_tab[] = { "x0", "x1", "a0", "a1" };
static char *sy_tab[] = { "y0", "y1", "m0", "m1" };
fprintf_ftype fprintf_fn = info->fprintf_func;
void *stream = info->stream;
unsigned int nib1, nib2, nib3;
unsigned int altnib1, nib4;
char *dc = NULL;
const sh_opcode_info *op;
if ((field_b & 0xe800) == 0)
{
fprintf_fn (stream, "psh%c\t#%d,",
field_b & 0x1000 ? 'a' : 'l',
(field_b >> 4) & 127);
print_dsp_reg (field_b & 0xf, fprintf_fn, stream);
return;
}
if ((field_b & 0xc000) == 0x4000 && (field_b & 0x3000) != 0x1000)
{
static char *du_tab[] = { "x0", "y0", "a0", "a1" };
static char *se_tab[] = { "x0", "x1", "y0", "a1" };
static char *sf_tab[] = { "y0", "y1", "x0", "a1" };
static char *sg_tab[] = { "m0", "m1", "a0", "a1" };
if (field_b & 0x2000)
{
fprintf_fn (stream, "p%s %s,%s,%s\t",
(field_b & 0x1000) ? "add" : "sub",
sx_tab[(field_b >> 6) & 3],
sy_tab[(field_b >> 4) & 3],
du_tab[(field_b >> 0) & 3]);
}
else if ((field_b & 0xf0) == 0x10
&& info->mach != bfd_mach_sh_dsp
&& info->mach != bfd_mach_sh3_dsp)
{
fprintf_fn (stream, "pclr %s \t", du_tab[(field_b >> 0) & 3]);
}
else if ((field_b & 0xf3) != 0)
{
fprintf_fn (stream, ".word 0x%x\t", field_b);
}
fprintf_fn (stream, "pmuls%c%s,%s,%s",
field_b & 0x2000 ? ' ' : '\t',
se_tab[(field_b >> 10) & 3],
sf_tab[(field_b >> 8) & 3],
sg_tab[(field_b >> 2) & 3]);
return;
}
nib1 = PPIC;
nib2 = field_b >> 12 & 0xf;
nib3 = field_b >> 8 & 0xf;
nib4 = field_b >> 4 & 0xf;
switch (nib3 & 0x3)
{
case 0:
dc = "";
nib1 = PPI3;
break;
case 1:
dc = "";
break;
case 2:
dc = "dct ";
nib3 -= 1;
break;
case 3:
dc = "dcf ";
nib3 -= 2;
break;
}
if (nib1 == PPI3)
altnib1 = PPI3NC;
else
altnib1 = nib1;
for (op = sh_table; op->name; op++)
{
if ((op->nibbles[1] == nib1 || op->nibbles[1] == altnib1)
&& op->nibbles[2] == nib2
&& op->nibbles[3] == nib3)
{
int n;
switch (op->nibbles[4])
{
case HEX_0:
break;
case HEX_XX00:
if ((nib4 & 3) != 0)
continue;
break;
case HEX_1:
if ((nib4 & 3) != 1)
continue;
break;
case HEX_00YY:
if ((nib4 & 0xc) != 0)
continue;
break;
case HEX_4:
if ((nib4 & 0xc) != 4)
continue;
break;
default:
abort ();
}
fprintf_fn (stream, "%s%s\t", dc, op->name);
for (n = 0; n < 3 && op->arg[n] != A_END; n++)
{
if (n && op->arg[1] != A_END)
fprintf_fn (stream, ",");
switch (op->arg[n])
{
case DSP_REG_N:
print_dsp_reg (field_b & 0xf, fprintf_fn, stream);
break;
case DSP_REG_X:
fprintf_fn (stream, sx_tab[(field_b >> 6) & 3]);
break;
case DSP_REG_Y:
fprintf_fn (stream, sy_tab[(field_b >> 4) & 3]);
break;
case A_MACH:
fprintf_fn (stream, "mach");
break;
case A_MACL:
fprintf_fn (stream, "macl");
break;
default:
abort ();
}
}
return;
}
}
/* Not found. */
fprintf_fn (stream, ".word 0x%x", field_b);
}
int
print_insn_sh (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
fprintf_ftype fprintf_fn = info->fprintf_func;
void *stream = info->stream;
unsigned char insn[4];
unsigned char nibs[4];
int status;
bfd_vma relmask = ~(bfd_vma) 0;
const sh_opcode_info *op;
int target_arch;
switch (info->mach)
{
case bfd_mach_sh:
target_arch = arch_sh1;
/* SH coff object files lack information about the machine type, so
we end up with bfd_mach_sh unless it was set explicitly (which
could have happended if this is a call from gdb or the simulator.) */
if (info->symbols
&& bfd_asymbol_flavour(*info->symbols) == bfd_target_coff_flavour)
target_arch = arch_sh4;
break;
case bfd_mach_sh2:
target_arch = arch_sh2;
break;
case bfd_mach_sh2e:
target_arch = arch_sh2e;
break;
case bfd_mach_sh_dsp:
target_arch = arch_sh_dsp;
break;
case bfd_mach_sh3:
target_arch = arch_sh3;
break;
case bfd_mach_sh3_dsp:
target_arch = arch_sh3_dsp;
break;
case bfd_mach_sh3e:
target_arch = arch_sh3e;
break;
case bfd_mach_sh4:
case bfd_mach_sh4_nofpu:
target_arch = arch_sh4;
break;
case bfd_mach_sh4a:
case bfd_mach_sh4a_nofpu:
target_arch = arch_sh4a;
break;
case bfd_mach_sh4al_dsp:
target_arch = arch_sh4al_dsp;
break;
case bfd_mach_sh5:
#ifdef INCLUDE_SHMEDIA
status = print_insn_sh64 (memaddr, info);
if (status != -2)
return status;
#endif
/* When we get here for sh64, it's because we want to disassemble
SHcompact, i.e. arch_sh4. */
target_arch = arch_sh4;
break;
default:
abort ();
}
status = info->read_memory_func (memaddr, insn, 2, info);
if (status != 0)
{
info->memory_error_func (status, memaddr, info);
return -1;
}
if (info->endian == BFD_ENDIAN_LITTLE)
{
nibs[0] = (insn[1] >> 4) & 0xf;
nibs[1] = insn[1] & 0xf;
nibs[2] = (insn[0] >> 4) & 0xf;
nibs[3] = insn[0] & 0xf;
}
else
{
nibs[0] = (insn[0] >> 4) & 0xf;
nibs[1] = insn[0] & 0xf;
nibs[2] = (insn[1] >> 4) & 0xf;
nibs[3] = insn[1] & 0xf;
}
if (nibs[0] == 0xf && (nibs[1] & 4) == 0 && target_arch & arch_sh_dsp_up)
{
if (nibs[1] & 8)
{
int field_b;
status = info->read_memory_func (memaddr + 2, insn, 2, info);
if (status != 0)
{
info->memory_error_func (status, memaddr + 2, info);
return -1;
}
if (info->endian == BFD_ENDIAN_LITTLE)
field_b = insn[1] << 8 | insn[0];
else
field_b = insn[0] << 8 | insn[1];
print_insn_ppi (field_b, info);
print_insn_ddt ((nibs[1] << 8) | (nibs[2] << 4) | nibs[3], info);
return 4;
}
print_insn_ddt ((nibs[1] << 8) | (nibs[2] << 4) | nibs[3], info);
return 2;
}
for (op = sh_table; op->name; op++)
{
int n;
int imm = 0;
int rn = 0;
int rm = 0;
int rb = 0;
int disp_pc;
bfd_vma disp_pc_addr = 0;
if ((op->arch & target_arch) == 0)
goto fail;
for (n = 0; n < 4; n++)
{
int i = op->nibbles[n];
if (i < 16)
{
if (nibs[n] == i)
continue;
goto fail;
}
switch (i)
{
case BRANCH_8:
imm = (nibs[2] << 4) | (nibs[3]);
if (imm & 0x80)
imm |= ~0xff;
imm = ((char) imm) * 2 + 4;
goto ok;
case BRANCH_12:
imm = ((nibs[1]) << 8) | (nibs[2] << 4) | (nibs[3]);
if (imm & 0x800)
imm |= ~0xfff;
imm = imm * 2 + 4;
goto ok;
case IMM0_4:
case IMM1_4:
imm = nibs[3];
goto ok;
case IMM0_4BY2:
case IMM1_4BY2:
imm = nibs[3] << 1;
goto ok;
case IMM0_4BY4:
case IMM1_4BY4:
imm = nibs[3] << 2;
goto ok;
case IMM0_8:
case IMM1_8:
imm = (nibs[2] << 4) | nibs[3];
goto ok;
case PCRELIMM_8BY2:
imm = ((nibs[2] << 4) | nibs[3]) << 1;
relmask = ~(bfd_vma) 1;
goto ok;
case PCRELIMM_8BY4:
imm = ((nibs[2] << 4) | nibs[3]) << 2;
relmask = ~(bfd_vma) 3;
goto ok;
case IMM0_8BY2:
case IMM1_8BY2:
imm = ((nibs[2] << 4) | nibs[3]) << 1;
goto ok;
case IMM0_8BY4:
case IMM1_8BY4:
imm = ((nibs[2] << 4) | nibs[3]) << 2;
goto ok;
case REG_N_D:
if ((nibs[n] & 1) != 0)
goto fail;
/* fall through */
case REG_N:
rn = nibs[n];
break;
case REG_M:
rm = nibs[n];
break;
case REG_N_B01:
if ((nibs[n] & 0x3) != 1 /* binary 01 */)
goto fail;
rn = (nibs[n] & 0xc) >> 2;
break;
case REG_NM:
rn = (nibs[n] & 0xc) >> 2;
rm = (nibs[n] & 0x3);
break;
case REG_B:
rb = nibs[n] & 0x07;
break;
case SDT_REG_N:
/* sh-dsp: single data transfer. */
rn = nibs[n];
if ((rn & 0xc) != 4)
goto fail;
rn = rn & 0x3;
rn |= (!(rn & 2)) << 2;
break;
case PPI:
case REPEAT:
goto fail;
default:
abort ();
}
}
ok:
fprintf_fn (stream, "%s\t", op->name);
disp_pc = 0;
for (n = 0; n < 3 && op->arg[n] != A_END; n++)
{
if (n && op->arg[1] != A_END)
fprintf_fn (stream, ",");
switch (op->arg[n])
{
case A_IMM:
fprintf_fn (stream, "#%d", (char) (imm));
break;
case A_R0:
fprintf_fn (stream, "r0");
break;
case A_REG_N:
fprintf_fn (stream, "r%d", rn);
break;
case A_INC_N:
case AS_INC_N:
fprintf_fn (stream, "@r%d+", rn);
break;
case A_DEC_N:
case AS_DEC_N:
fprintf_fn (stream, "@-r%d", rn);
break;
case A_IND_N:
case AS_IND_N:
fprintf_fn (stream, "@r%d", rn);
break;
case A_DISP_REG_N:
fprintf_fn (stream, "@(%d,r%d)", imm, rn);
break;
case AS_PMOD_N:
fprintf_fn (stream, "@r%d+r8", rn);
break;
case A_REG_M:
fprintf_fn (stream, "r%d", rm);
break;
case A_INC_M:
fprintf_fn (stream, "@r%d+", rm);
break;
case A_DEC_M:
fprintf_fn (stream, "@-r%d", rm);
break;
case A_IND_M:
fprintf_fn (stream, "@r%d", rm);
break;
case A_DISP_REG_M:
fprintf_fn (stream, "@(%d,r%d)", imm, rm);
break;
case A_REG_B:
fprintf_fn (stream, "r%d_bank", rb);
break;
case A_DISP_PC:
disp_pc = 1;
disp_pc_addr = imm + 4 + (memaddr & relmask);
(*info->print_address_func) (disp_pc_addr, info);
break;
case A_IND_R0_REG_N:
fprintf_fn (stream, "@(r0,r%d)", rn);
break;
case A_IND_R0_REG_M:
fprintf_fn (stream, "@(r0,r%d)", rm);
break;
case A_DISP_GBR:
fprintf_fn (stream, "@(%d,gbr)", imm);
break;
case A_R0_GBR:
fprintf_fn (stream, "@(r0,gbr)");
break;
case A_BDISP12:
case A_BDISP8:
(*info->print_address_func) (imm + memaddr, info);
break;
case A_SR:
fprintf_fn (stream, "sr");
break;
case A_GBR:
fprintf_fn (stream, "gbr");
break;
case A_VBR:
fprintf_fn (stream, "vbr");
break;
case A_DSR:
fprintf_fn (stream, "dsr");
break;
case A_MOD:
fprintf_fn (stream, "mod");
break;
case A_RE:
fprintf_fn (stream, "re");
break;
case A_RS:
fprintf_fn (stream, "rs");
break;
case A_A0:
fprintf_fn (stream, "a0");
break;
case A_X0:
fprintf_fn (stream, "x0");
break;
case A_X1:
fprintf_fn (stream, "x1");
break;
case A_Y0:
fprintf_fn (stream, "y0");
break;
case A_Y1:
fprintf_fn (stream, "y1");
break;
case DSP_REG_M:
print_dsp_reg (rm, fprintf_fn, stream);
break;
case A_SSR:
fprintf_fn (stream, "ssr");
break;
case A_SPC:
fprintf_fn (stream, "spc");
break;
case A_MACH:
fprintf_fn (stream, "mach");
break;
case A_MACL:
fprintf_fn (stream, "macl");
break;
case A_PR:
fprintf_fn (stream, "pr");
break;
case A_SGR:
fprintf_fn (stream, "sgr");
break;
case A_DBR:
fprintf_fn (stream, "dbr");
break;
case F_REG_N:
fprintf_fn (stream, "fr%d", rn);
break;
case F_REG_M:
fprintf_fn (stream, "fr%d", rm);
break;
case DX_REG_N:
if (rn & 1)
{
fprintf_fn (stream, "xd%d", rn & ~1);
break;
}
case D_REG_N:
fprintf_fn (stream, "dr%d", rn);
break;
case DX_REG_M:
if (rm & 1)
{
fprintf_fn (stream, "xd%d", rm & ~1);
break;
}
case D_REG_M:
fprintf_fn (stream, "dr%d", rm);
break;
case FPSCR_M:
case FPSCR_N:
fprintf_fn (stream, "fpscr");
break;
case FPUL_M:
case FPUL_N:
fprintf_fn (stream, "fpul");
break;
case F_FR0:
fprintf_fn (stream, "fr0");
break;
case V_REG_N:
fprintf_fn (stream, "fv%d", rn * 4);
break;
case V_REG_M:
fprintf_fn (stream, "fv%d", rm * 4);
break;
case XMTRX_M4:
fprintf_fn (stream, "xmtrx");
break;
default:
abort ();
}
}
#if 0
/* This code prints instructions in delay slots on the same line
as the instruction which needs the delay slots. This can be
confusing, since other disassembler don't work this way, and
it means that the instructions are not all in a line. So I
disabled it. Ian. */
if (!(info->flags & 1)
&& (op->name[0] == 'j'
|| (op->name[0] == 'b'
&& (op->name[1] == 'r'
|| op->name[1] == 's'))
|| (op->name[0] == 'r' && op->name[1] == 't')
|| (op->name[0] == 'b' && op->name[2] == '.')))
{
info->flags |= 1;
fprintf_fn (stream, "\t(slot ");
print_insn_sh (memaddr + 2, info);
info->flags &= ~1;
fprintf_fn (stream, ")");
return 4;
}
#endif
if (disp_pc && strcmp (op->name, "mova") != 0)
{
int size;
bfd_byte bytes[4];
if (relmask == ~(bfd_vma) 1)
size = 2;
else
size = 4;
status = info->read_memory_func (disp_pc_addr, bytes, size, info);
if (status == 0)
{
unsigned int val;
if (size == 2)
{
if (info->endian == BFD_ENDIAN_LITTLE)
val = bfd_getl16 (bytes);
else
val = bfd_getb16 (bytes);
}
else
{
if (info->endian == BFD_ENDIAN_LITTLE)
val = bfd_getl32 (bytes);
else
val = bfd_getb32 (bytes);
}
fprintf_fn (stream, "\t! 0x%x", val);
}
}
return 2;
fail:
;
}
fprintf_fn (stream, ".word 0x%x%x%x%x", nibs[0], nibs[1], nibs[2], nibs[3]);
return 2;
}