mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 18:44:20 +08:00
3cf03773b7
(DEF_VEC_ALLOC_FUNC_I): Update. (DEF_VEC_ALLOC_FUNC_P): Likewise. (DEF_VEC_ALLOC_FUNC_O): Likewise. * dwarf2loc.c (struct axs_var_loc): Remove. (unimplemented): New function. (translate_register): Likewise. (access_memory): Likewise. (compile_dwarf_to_ax): Likewise. (dwarf2_tracepoint_var_loc): Remove. (dwarf2_tracepoint_var_access): Likewise. (dwarf2_tracepoint_var_ref): Likewise. (locexpr_tracepoint_var_ref): Use compile_dwarf_to_ax. (loclist_tracepoint_var_ref): Likewise. * dwarf2expr.h (dwarf_expr_require_composition): Declare. * dwarf2expr.c (dwarf_expr_require_composition): Rename from require_composition. No longer static. (execute_stack_op): Update. * ax-gdb.h (trace_kludge): Declare.
939 lines
24 KiB
C
939 lines
24 KiB
C
/* DWARF 2 Expression Evaluator.
|
||
|
||
Copyright (C) 2001, 2002, 2003, 2005, 2007, 2008, 2009, 2010
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by Daniel Berlin (dan@dberlin.org)
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "dwarf2.h"
|
||
#include "dwarf2expr.h"
|
||
#include "gdb_assert.h"
|
||
|
||
/* Local prototypes. */
|
||
|
||
static void execute_stack_op (struct dwarf_expr_context *,
|
||
const gdb_byte *, const gdb_byte *);
|
||
static struct type *unsigned_address_type (struct gdbarch *, int);
|
||
|
||
/* Create a new context for the expression evaluator. */
|
||
|
||
struct dwarf_expr_context *
|
||
new_dwarf_expr_context (void)
|
||
{
|
||
struct dwarf_expr_context *retval;
|
||
|
||
retval = xcalloc (1, sizeof (struct dwarf_expr_context));
|
||
retval->stack_len = 0;
|
||
retval->stack_allocated = 10;
|
||
retval->stack = xmalloc (retval->stack_allocated
|
||
* sizeof (struct dwarf_stack_value));
|
||
retval->num_pieces = 0;
|
||
retval->pieces = 0;
|
||
retval->max_recursion_depth = 0x100;
|
||
return retval;
|
||
}
|
||
|
||
/* Release the memory allocated to CTX. */
|
||
|
||
void
|
||
free_dwarf_expr_context (struct dwarf_expr_context *ctx)
|
||
{
|
||
xfree (ctx->stack);
|
||
xfree (ctx->pieces);
|
||
xfree (ctx);
|
||
}
|
||
|
||
/* Helper for make_cleanup_free_dwarf_expr_context. */
|
||
|
||
static void
|
||
free_dwarf_expr_context_cleanup (void *arg)
|
||
{
|
||
free_dwarf_expr_context (arg);
|
||
}
|
||
|
||
/* Return a cleanup that calls free_dwarf_expr_context. */
|
||
|
||
struct cleanup *
|
||
make_cleanup_free_dwarf_expr_context (struct dwarf_expr_context *ctx)
|
||
{
|
||
return make_cleanup (free_dwarf_expr_context_cleanup, ctx);
|
||
}
|
||
|
||
/* Expand the memory allocated to CTX's stack to contain at least
|
||
NEED more elements than are currently used. */
|
||
|
||
static void
|
||
dwarf_expr_grow_stack (struct dwarf_expr_context *ctx, size_t need)
|
||
{
|
||
if (ctx->stack_len + need > ctx->stack_allocated)
|
||
{
|
||
size_t newlen = ctx->stack_len + need + 10;
|
||
|
||
ctx->stack = xrealloc (ctx->stack,
|
||
newlen * sizeof (struct dwarf_stack_value));
|
||
ctx->stack_allocated = newlen;
|
||
}
|
||
}
|
||
|
||
/* Push VALUE onto CTX's stack. */
|
||
|
||
void
|
||
dwarf_expr_push (struct dwarf_expr_context *ctx, CORE_ADDR value,
|
||
int in_stack_memory)
|
||
{
|
||
struct dwarf_stack_value *v;
|
||
|
||
dwarf_expr_grow_stack (ctx, 1);
|
||
v = &ctx->stack[ctx->stack_len++];
|
||
v->value = value;
|
||
v->in_stack_memory = in_stack_memory;
|
||
}
|
||
|
||
/* Pop the top item off of CTX's stack. */
|
||
|
||
void
|
||
dwarf_expr_pop (struct dwarf_expr_context *ctx)
|
||
{
|
||
if (ctx->stack_len <= 0)
|
||
error (_("dwarf expression stack underflow"));
|
||
ctx->stack_len--;
|
||
}
|
||
|
||
/* Retrieve the N'th item on CTX's stack. */
|
||
|
||
CORE_ADDR
|
||
dwarf_expr_fetch (struct dwarf_expr_context *ctx, int n)
|
||
{
|
||
if (ctx->stack_len <= n)
|
||
error (_("Asked for position %d of stack, stack only has %d elements on it."),
|
||
n, ctx->stack_len);
|
||
return ctx->stack[ctx->stack_len - (1 + n)].value;
|
||
|
||
}
|
||
|
||
/* Retrieve the in_stack_memory flag of the N'th item on CTX's stack. */
|
||
|
||
int
|
||
dwarf_expr_fetch_in_stack_memory (struct dwarf_expr_context *ctx, int n)
|
||
{
|
||
if (ctx->stack_len <= n)
|
||
error (_("Asked for position %d of stack, stack only has %d elements on it."),
|
||
n, ctx->stack_len);
|
||
return ctx->stack[ctx->stack_len - (1 + n)].in_stack_memory;
|
||
|
||
}
|
||
|
||
/* Return true if the expression stack is empty. */
|
||
|
||
static int
|
||
dwarf_expr_stack_empty_p (struct dwarf_expr_context *ctx)
|
||
{
|
||
return ctx->stack_len == 0;
|
||
}
|
||
|
||
/* Add a new piece to CTX's piece list. */
|
||
static void
|
||
add_piece (struct dwarf_expr_context *ctx, ULONGEST size, ULONGEST offset)
|
||
{
|
||
struct dwarf_expr_piece *p;
|
||
|
||
ctx->num_pieces++;
|
||
|
||
ctx->pieces = xrealloc (ctx->pieces,
|
||
(ctx->num_pieces
|
||
* sizeof (struct dwarf_expr_piece)));
|
||
|
||
p = &ctx->pieces[ctx->num_pieces - 1];
|
||
p->location = ctx->location;
|
||
p->size = size;
|
||
p->offset = offset;
|
||
|
||
if (p->location == DWARF_VALUE_LITERAL)
|
||
{
|
||
p->v.literal.data = ctx->data;
|
||
p->v.literal.length = ctx->len;
|
||
}
|
||
else if (dwarf_expr_stack_empty_p (ctx))
|
||
{
|
||
p->location = DWARF_VALUE_OPTIMIZED_OUT;
|
||
/* Also reset the context's location, for our callers. This is
|
||
a somewhat strange approach, but this lets us avoid setting
|
||
the location to DWARF_VALUE_MEMORY in all the individual
|
||
cases in the evaluator. */
|
||
ctx->location = DWARF_VALUE_OPTIMIZED_OUT;
|
||
}
|
||
else
|
||
{
|
||
p->v.expr.value = dwarf_expr_fetch (ctx, 0);
|
||
p->v.expr.in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
|
||
}
|
||
}
|
||
|
||
/* Evaluate the expression at ADDR (LEN bytes long) using the context
|
||
CTX. */
|
||
|
||
void
|
||
dwarf_expr_eval (struct dwarf_expr_context *ctx, const gdb_byte *addr,
|
||
size_t len)
|
||
{
|
||
int old_recursion_depth = ctx->recursion_depth;
|
||
|
||
execute_stack_op (ctx, addr, addr + len);
|
||
|
||
/* CTX RECURSION_DEPTH becomes invalid if an exception was thrown here. */
|
||
|
||
gdb_assert (ctx->recursion_depth == old_recursion_depth);
|
||
}
|
||
|
||
/* Decode the unsigned LEB128 constant at BUF into the variable pointed to
|
||
by R, and return the new value of BUF. Verify that it doesn't extend
|
||
past BUF_END. */
|
||
|
||
const gdb_byte *
|
||
read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end, ULONGEST * r)
|
||
{
|
||
unsigned shift = 0;
|
||
ULONGEST result = 0;
|
||
gdb_byte byte;
|
||
|
||
while (1)
|
||
{
|
||
if (buf >= buf_end)
|
||
error (_("read_uleb128: Corrupted DWARF expression."));
|
||
|
||
byte = *buf++;
|
||
result |= (byte & 0x7f) << shift;
|
||
if ((byte & 0x80) == 0)
|
||
break;
|
||
shift += 7;
|
||
}
|
||
*r = result;
|
||
return buf;
|
||
}
|
||
|
||
/* Decode the signed LEB128 constant at BUF into the variable pointed to
|
||
by R, and return the new value of BUF. Verify that it doesn't extend
|
||
past BUF_END. */
|
||
|
||
const gdb_byte *
|
||
read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end, LONGEST * r)
|
||
{
|
||
unsigned shift = 0;
|
||
LONGEST result = 0;
|
||
gdb_byte byte;
|
||
|
||
while (1)
|
||
{
|
||
if (buf >= buf_end)
|
||
error (_("read_sleb128: Corrupted DWARF expression."));
|
||
|
||
byte = *buf++;
|
||
result |= (byte & 0x7f) << shift;
|
||
shift += 7;
|
||
if ((byte & 0x80) == 0)
|
||
break;
|
||
}
|
||
if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
|
||
result |= -(1 << shift);
|
||
|
||
*r = result;
|
||
return buf;
|
||
}
|
||
|
||
/* Read an address of size ADDR_SIZE from BUF, and verify that it
|
||
doesn't extend past BUF_END. */
|
||
|
||
CORE_ADDR
|
||
dwarf2_read_address (struct gdbarch *gdbarch, const gdb_byte *buf,
|
||
const gdb_byte *buf_end, int addr_size)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
if (buf_end - buf < addr_size)
|
||
error (_("dwarf2_read_address: Corrupted DWARF expression."));
|
||
|
||
/* For most architectures, calling extract_unsigned_integer() alone
|
||
is sufficient for extracting an address. However, some
|
||
architectures (e.g. MIPS) use signed addresses and using
|
||
extract_unsigned_integer() will not produce a correct
|
||
result. Make sure we invoke gdbarch_integer_to_address()
|
||
for those architectures which require it.
|
||
|
||
The use of `unsigned_address_type' in the code below refers to
|
||
the type of buf and has no bearing on the signedness of the
|
||
address being returned. */
|
||
|
||
if (gdbarch_integer_to_address_p (gdbarch))
|
||
return gdbarch_integer_to_address
|
||
(gdbarch, unsigned_address_type (gdbarch, addr_size), buf);
|
||
|
||
return extract_unsigned_integer (buf, addr_size, byte_order);
|
||
}
|
||
|
||
/* Return the type of an address of size ADDR_SIZE,
|
||
for unsigned arithmetic. */
|
||
|
||
static struct type *
|
||
unsigned_address_type (struct gdbarch *gdbarch, int addr_size)
|
||
{
|
||
switch (addr_size)
|
||
{
|
||
case 2:
|
||
return builtin_type (gdbarch)->builtin_uint16;
|
||
case 4:
|
||
return builtin_type (gdbarch)->builtin_uint32;
|
||
case 8:
|
||
return builtin_type (gdbarch)->builtin_uint64;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Unsupported address size.\n"));
|
||
}
|
||
}
|
||
|
||
/* Return the type of an address of size ADDR_SIZE,
|
||
for signed arithmetic. */
|
||
|
||
static struct type *
|
||
signed_address_type (struct gdbarch *gdbarch, int addr_size)
|
||
{
|
||
switch (addr_size)
|
||
{
|
||
case 2:
|
||
return builtin_type (gdbarch)->builtin_int16;
|
||
case 4:
|
||
return builtin_type (gdbarch)->builtin_int32;
|
||
case 8:
|
||
return builtin_type (gdbarch)->builtin_int64;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Unsupported address size.\n"));
|
||
}
|
||
}
|
||
|
||
|
||
/* Check that the current operator is either at the end of an
|
||
expression, or that it is followed by a composition operator. */
|
||
|
||
void
|
||
dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
|
||
const char *op_name)
|
||
{
|
||
/* It seems like DW_OP_GNU_uninit should be handled here. However,
|
||
it doesn't seem to make sense for DW_OP_*_value, and it was not
|
||
checked at the other place that this function is called. */
|
||
if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece)
|
||
error (_("DWARF-2 expression error: `%s' operations must be "
|
||
"used either alone or in conjuction with DW_OP_piece "
|
||
"or DW_OP_bit_piece."),
|
||
op_name);
|
||
}
|
||
|
||
/* The engine for the expression evaluator. Using the context in CTX,
|
||
evaluate the expression between OP_PTR and OP_END. */
|
||
|
||
static void
|
||
execute_stack_op (struct dwarf_expr_context *ctx,
|
||
const gdb_byte *op_ptr, const gdb_byte *op_end)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (ctx->gdbarch);
|
||
|
||
ctx->location = DWARF_VALUE_MEMORY;
|
||
ctx->initialized = 1; /* Default is initialized. */
|
||
|
||
if (ctx->recursion_depth > ctx->max_recursion_depth)
|
||
error (_("DWARF-2 expression error: Loop detected (%d)."),
|
||
ctx->recursion_depth);
|
||
ctx->recursion_depth++;
|
||
|
||
while (op_ptr < op_end)
|
||
{
|
||
enum dwarf_location_atom op = *op_ptr++;
|
||
CORE_ADDR result;
|
||
/* Assume the value is not in stack memory.
|
||
Code that knows otherwise sets this to 1.
|
||
Some arithmetic on stack addresses can probably be assumed to still
|
||
be a stack address, but we skip this complication for now.
|
||
This is just an optimization, so it's always ok to punt
|
||
and leave this as 0. */
|
||
int in_stack_memory = 0;
|
||
ULONGEST uoffset, reg;
|
||
LONGEST offset;
|
||
|
||
switch (op)
|
||
{
|
||
case DW_OP_lit0:
|
||
case DW_OP_lit1:
|
||
case DW_OP_lit2:
|
||
case DW_OP_lit3:
|
||
case DW_OP_lit4:
|
||
case DW_OP_lit5:
|
||
case DW_OP_lit6:
|
||
case DW_OP_lit7:
|
||
case DW_OP_lit8:
|
||
case DW_OP_lit9:
|
||
case DW_OP_lit10:
|
||
case DW_OP_lit11:
|
||
case DW_OP_lit12:
|
||
case DW_OP_lit13:
|
||
case DW_OP_lit14:
|
||
case DW_OP_lit15:
|
||
case DW_OP_lit16:
|
||
case DW_OP_lit17:
|
||
case DW_OP_lit18:
|
||
case DW_OP_lit19:
|
||
case DW_OP_lit20:
|
||
case DW_OP_lit21:
|
||
case DW_OP_lit22:
|
||
case DW_OP_lit23:
|
||
case DW_OP_lit24:
|
||
case DW_OP_lit25:
|
||
case DW_OP_lit26:
|
||
case DW_OP_lit27:
|
||
case DW_OP_lit28:
|
||
case DW_OP_lit29:
|
||
case DW_OP_lit30:
|
||
case DW_OP_lit31:
|
||
result = op - DW_OP_lit0;
|
||
break;
|
||
|
||
case DW_OP_addr:
|
||
result = dwarf2_read_address (ctx->gdbarch,
|
||
op_ptr, op_end, ctx->addr_size);
|
||
op_ptr += ctx->addr_size;
|
||
break;
|
||
|
||
case DW_OP_const1u:
|
||
result = extract_unsigned_integer (op_ptr, 1, byte_order);
|
||
op_ptr += 1;
|
||
break;
|
||
case DW_OP_const1s:
|
||
result = extract_signed_integer (op_ptr, 1, byte_order);
|
||
op_ptr += 1;
|
||
break;
|
||
case DW_OP_const2u:
|
||
result = extract_unsigned_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
break;
|
||
case DW_OP_const2s:
|
||
result = extract_signed_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
break;
|
||
case DW_OP_const4u:
|
||
result = extract_unsigned_integer (op_ptr, 4, byte_order);
|
||
op_ptr += 4;
|
||
break;
|
||
case DW_OP_const4s:
|
||
result = extract_signed_integer (op_ptr, 4, byte_order);
|
||
op_ptr += 4;
|
||
break;
|
||
case DW_OP_const8u:
|
||
result = extract_unsigned_integer (op_ptr, 8, byte_order);
|
||
op_ptr += 8;
|
||
break;
|
||
case DW_OP_const8s:
|
||
result = extract_signed_integer (op_ptr, 8, byte_order);
|
||
op_ptr += 8;
|
||
break;
|
||
case DW_OP_constu:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
|
||
result = uoffset;
|
||
break;
|
||
case DW_OP_consts:
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
result = offset;
|
||
break;
|
||
|
||
/* The DW_OP_reg operations are required to occur alone in
|
||
location expressions. */
|
||
case DW_OP_reg0:
|
||
case DW_OP_reg1:
|
||
case DW_OP_reg2:
|
||
case DW_OP_reg3:
|
||
case DW_OP_reg4:
|
||
case DW_OP_reg5:
|
||
case DW_OP_reg6:
|
||
case DW_OP_reg7:
|
||
case DW_OP_reg8:
|
||
case DW_OP_reg9:
|
||
case DW_OP_reg10:
|
||
case DW_OP_reg11:
|
||
case DW_OP_reg12:
|
||
case DW_OP_reg13:
|
||
case DW_OP_reg14:
|
||
case DW_OP_reg15:
|
||
case DW_OP_reg16:
|
||
case DW_OP_reg17:
|
||
case DW_OP_reg18:
|
||
case DW_OP_reg19:
|
||
case DW_OP_reg20:
|
||
case DW_OP_reg21:
|
||
case DW_OP_reg22:
|
||
case DW_OP_reg23:
|
||
case DW_OP_reg24:
|
||
case DW_OP_reg25:
|
||
case DW_OP_reg26:
|
||
case DW_OP_reg27:
|
||
case DW_OP_reg28:
|
||
case DW_OP_reg29:
|
||
case DW_OP_reg30:
|
||
case DW_OP_reg31:
|
||
if (op_ptr != op_end
|
||
&& *op_ptr != DW_OP_piece
|
||
&& *op_ptr != DW_OP_bit_piece
|
||
&& *op_ptr != DW_OP_GNU_uninit)
|
||
error (_("DWARF-2 expression error: DW_OP_reg operations must be "
|
||
"used either alone or in conjuction with DW_OP_piece "
|
||
"or DW_OP_bit_piece."));
|
||
|
||
result = op - DW_OP_reg0;
|
||
ctx->location = DWARF_VALUE_REGISTER;
|
||
break;
|
||
|
||
case DW_OP_regx:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
|
||
|
||
result = reg;
|
||
ctx->location = DWARF_VALUE_REGISTER;
|
||
break;
|
||
|
||
case DW_OP_implicit_value:
|
||
{
|
||
ULONGEST len;
|
||
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &len);
|
||
if (op_ptr + len > op_end)
|
||
error (_("DW_OP_implicit_value: too few bytes available."));
|
||
ctx->len = len;
|
||
ctx->data = op_ptr;
|
||
ctx->location = DWARF_VALUE_LITERAL;
|
||
op_ptr += len;
|
||
dwarf_expr_require_composition (op_ptr, op_end,
|
||
"DW_OP_implicit_value");
|
||
}
|
||
goto no_push;
|
||
|
||
case DW_OP_stack_value:
|
||
ctx->location = DWARF_VALUE_STACK;
|
||
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
|
||
goto no_push;
|
||
|
||
case DW_OP_breg0:
|
||
case DW_OP_breg1:
|
||
case DW_OP_breg2:
|
||
case DW_OP_breg3:
|
||
case DW_OP_breg4:
|
||
case DW_OP_breg5:
|
||
case DW_OP_breg6:
|
||
case DW_OP_breg7:
|
||
case DW_OP_breg8:
|
||
case DW_OP_breg9:
|
||
case DW_OP_breg10:
|
||
case DW_OP_breg11:
|
||
case DW_OP_breg12:
|
||
case DW_OP_breg13:
|
||
case DW_OP_breg14:
|
||
case DW_OP_breg15:
|
||
case DW_OP_breg16:
|
||
case DW_OP_breg17:
|
||
case DW_OP_breg18:
|
||
case DW_OP_breg19:
|
||
case DW_OP_breg20:
|
||
case DW_OP_breg21:
|
||
case DW_OP_breg22:
|
||
case DW_OP_breg23:
|
||
case DW_OP_breg24:
|
||
case DW_OP_breg25:
|
||
case DW_OP_breg26:
|
||
case DW_OP_breg27:
|
||
case DW_OP_breg28:
|
||
case DW_OP_breg29:
|
||
case DW_OP_breg30:
|
||
case DW_OP_breg31:
|
||
{
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
result = (ctx->read_reg) (ctx->baton, op - DW_OP_breg0);
|
||
result += offset;
|
||
}
|
||
break;
|
||
case DW_OP_bregx:
|
||
{
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
result = (ctx->read_reg) (ctx->baton, reg);
|
||
result += offset;
|
||
}
|
||
break;
|
||
case DW_OP_fbreg:
|
||
{
|
||
const gdb_byte *datastart;
|
||
size_t datalen;
|
||
unsigned int before_stack_len;
|
||
|
||
op_ptr = read_sleb128 (op_ptr, op_end, &offset);
|
||
/* Rather than create a whole new context, we simply
|
||
record the stack length before execution, then reset it
|
||
afterwards, effectively erasing whatever the recursive
|
||
call put there. */
|
||
before_stack_len = ctx->stack_len;
|
||
/* FIXME: cagney/2003-03-26: This code should be using
|
||
get_frame_base_address(), and then implement a dwarf2
|
||
specific this_base method. */
|
||
(ctx->get_frame_base) (ctx->baton, &datastart, &datalen);
|
||
dwarf_expr_eval (ctx, datastart, datalen);
|
||
if (ctx->location == DWARF_VALUE_LITERAL
|
||
|| ctx->location == DWARF_VALUE_STACK)
|
||
error (_("Not implemented: computing frame base using explicit value operator"));
|
||
result = dwarf_expr_fetch (ctx, 0);
|
||
if (ctx->location == DWARF_VALUE_REGISTER)
|
||
result = (ctx->read_reg) (ctx->baton, result);
|
||
result = result + offset;
|
||
in_stack_memory = 1;
|
||
ctx->stack_len = before_stack_len;
|
||
ctx->location = DWARF_VALUE_MEMORY;
|
||
}
|
||
break;
|
||
|
||
case DW_OP_dup:
|
||
result = dwarf_expr_fetch (ctx, 0);
|
||
in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
|
||
break;
|
||
|
||
case DW_OP_drop:
|
||
dwarf_expr_pop (ctx);
|
||
goto no_push;
|
||
|
||
case DW_OP_pick:
|
||
offset = *op_ptr++;
|
||
result = dwarf_expr_fetch (ctx, offset);
|
||
in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, offset);
|
||
break;
|
||
|
||
case DW_OP_swap:
|
||
{
|
||
struct dwarf_stack_value t1, t2;
|
||
|
||
if (ctx->stack_len < 2)
|
||
error (_("Not enough elements for DW_OP_swap. Need 2, have %d."),
|
||
ctx->stack_len);
|
||
t1 = ctx->stack[ctx->stack_len - 1];
|
||
t2 = ctx->stack[ctx->stack_len - 2];
|
||
ctx->stack[ctx->stack_len - 1] = t2;
|
||
ctx->stack[ctx->stack_len - 2] = t1;
|
||
goto no_push;
|
||
}
|
||
|
||
case DW_OP_over:
|
||
result = dwarf_expr_fetch (ctx, 1);
|
||
in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 1);
|
||
break;
|
||
|
||
case DW_OP_rot:
|
||
{
|
||
struct dwarf_stack_value t1, t2, t3;
|
||
|
||
if (ctx->stack_len < 3)
|
||
error (_("Not enough elements for DW_OP_rot. Need 3, have %d."),
|
||
ctx->stack_len);
|
||
t1 = ctx->stack[ctx->stack_len - 1];
|
||
t2 = ctx->stack[ctx->stack_len - 2];
|
||
t3 = ctx->stack[ctx->stack_len - 3];
|
||
ctx->stack[ctx->stack_len - 1] = t2;
|
||
ctx->stack[ctx->stack_len - 2] = t3;
|
||
ctx->stack[ctx->stack_len - 3] = t1;
|
||
goto no_push;
|
||
}
|
||
|
||
case DW_OP_deref:
|
||
case DW_OP_deref_size:
|
||
case DW_OP_abs:
|
||
case DW_OP_neg:
|
||
case DW_OP_not:
|
||
case DW_OP_plus_uconst:
|
||
/* Unary operations. */
|
||
result = dwarf_expr_fetch (ctx, 0);
|
||
dwarf_expr_pop (ctx);
|
||
|
||
switch (op)
|
||
{
|
||
case DW_OP_deref:
|
||
{
|
||
gdb_byte *buf = alloca (ctx->addr_size);
|
||
|
||
(ctx->read_mem) (ctx->baton, buf, result, ctx->addr_size);
|
||
result = dwarf2_read_address (ctx->gdbarch,
|
||
buf, buf + ctx->addr_size,
|
||
ctx->addr_size);
|
||
}
|
||
break;
|
||
|
||
case DW_OP_deref_size:
|
||
{
|
||
int addr_size = *op_ptr++;
|
||
gdb_byte *buf = alloca (addr_size);
|
||
|
||
(ctx->read_mem) (ctx->baton, buf, result, addr_size);
|
||
result = dwarf2_read_address (ctx->gdbarch,
|
||
buf, buf + addr_size,
|
||
addr_size);
|
||
}
|
||
break;
|
||
|
||
case DW_OP_abs:
|
||
if ((signed int) result < 0)
|
||
result = -result;
|
||
break;
|
||
case DW_OP_neg:
|
||
result = -result;
|
||
break;
|
||
case DW_OP_not:
|
||
result = ~result;
|
||
break;
|
||
case DW_OP_plus_uconst:
|
||
op_ptr = read_uleb128 (op_ptr, op_end, ®);
|
||
result += reg;
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case DW_OP_and:
|
||
case DW_OP_div:
|
||
case DW_OP_minus:
|
||
case DW_OP_mod:
|
||
case DW_OP_mul:
|
||
case DW_OP_or:
|
||
case DW_OP_plus:
|
||
case DW_OP_shl:
|
||
case DW_OP_shr:
|
||
case DW_OP_shra:
|
||
case DW_OP_xor:
|
||
case DW_OP_le:
|
||
case DW_OP_ge:
|
||
case DW_OP_eq:
|
||
case DW_OP_lt:
|
||
case DW_OP_gt:
|
||
case DW_OP_ne:
|
||
{
|
||
/* Binary operations. Use the value engine to do computations in
|
||
the right width. */
|
||
CORE_ADDR first, second;
|
||
enum exp_opcode binop;
|
||
struct value *val1 = NULL, *val2 = NULL;
|
||
struct type *stype, *utype;
|
||
|
||
second = dwarf_expr_fetch (ctx, 0);
|
||
dwarf_expr_pop (ctx);
|
||
|
||
first = dwarf_expr_fetch (ctx, 0);
|
||
dwarf_expr_pop (ctx);
|
||
|
||
utype = unsigned_address_type (ctx->gdbarch, ctx->addr_size);
|
||
stype = signed_address_type (ctx->gdbarch, ctx->addr_size);
|
||
|
||
switch (op)
|
||
{
|
||
case DW_OP_and:
|
||
binop = BINOP_BITWISE_AND;
|
||
break;
|
||
case DW_OP_div:
|
||
binop = BINOP_DIV;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_minus:
|
||
binop = BINOP_SUB;
|
||
break;
|
||
case DW_OP_mod:
|
||
binop = BINOP_MOD;
|
||
break;
|
||
case DW_OP_mul:
|
||
binop = BINOP_MUL;
|
||
break;
|
||
case DW_OP_or:
|
||
binop = BINOP_BITWISE_IOR;
|
||
break;
|
||
case DW_OP_plus:
|
||
binop = BINOP_ADD;
|
||
break;
|
||
case DW_OP_shl:
|
||
binop = BINOP_LSH;
|
||
break;
|
||
case DW_OP_shr:
|
||
binop = BINOP_RSH;
|
||
break;
|
||
case DW_OP_shra:
|
||
binop = BINOP_RSH;
|
||
val1 = value_from_longest (stype, first);
|
||
break;
|
||
case DW_OP_xor:
|
||
binop = BINOP_BITWISE_XOR;
|
||
break;
|
||
case DW_OP_le:
|
||
binop = BINOP_LEQ;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_ge:
|
||
binop = BINOP_GEQ;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_eq:
|
||
binop = BINOP_EQUAL;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_lt:
|
||
binop = BINOP_LESS;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_gt:
|
||
binop = BINOP_GTR;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
case DW_OP_ne:
|
||
binop = BINOP_NOTEQUAL;
|
||
val1 = value_from_longest (stype, first);
|
||
val2 = value_from_longest (stype, second);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Can't be reached."));
|
||
}
|
||
|
||
/* We use unsigned operands by default. */
|
||
if (val1 == NULL)
|
||
val1 = value_from_longest (utype, first);
|
||
if (val2 == NULL)
|
||
val2 = value_from_longest (utype, second);
|
||
|
||
result = value_as_long (value_binop (val1, val2, binop));
|
||
}
|
||
break;
|
||
|
||
case DW_OP_call_frame_cfa:
|
||
result = (ctx->get_frame_cfa) (ctx->baton);
|
||
in_stack_memory = 1;
|
||
break;
|
||
|
||
case DW_OP_GNU_push_tls_address:
|
||
/* Variable is at a constant offset in the thread-local
|
||
storage block into the objfile for the current thread and
|
||
the dynamic linker module containing this expression. Here
|
||
we return returns the offset from that base. The top of the
|
||
stack has the offset from the beginning of the thread
|
||
control block at which the variable is located. Nothing
|
||
should follow this operator, so the top of stack would be
|
||
returned. */
|
||
result = dwarf_expr_fetch (ctx, 0);
|
||
dwarf_expr_pop (ctx);
|
||
result = (ctx->get_tls_address) (ctx->baton, result);
|
||
break;
|
||
|
||
case DW_OP_skip:
|
||
offset = extract_signed_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
op_ptr += offset;
|
||
goto no_push;
|
||
|
||
case DW_OP_bra:
|
||
offset = extract_signed_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
if (dwarf_expr_fetch (ctx, 0) != 0)
|
||
op_ptr += offset;
|
||
dwarf_expr_pop (ctx);
|
||
goto no_push;
|
||
|
||
case DW_OP_nop:
|
||
goto no_push;
|
||
|
||
case DW_OP_piece:
|
||
{
|
||
ULONGEST size;
|
||
|
||
/* Record the piece. */
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &size);
|
||
add_piece (ctx, 8 * size, 0);
|
||
|
||
/* Pop off the address/regnum, and reset the location
|
||
type. */
|
||
if (ctx->location != DWARF_VALUE_LITERAL
|
||
&& ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
|
||
dwarf_expr_pop (ctx);
|
||
ctx->location = DWARF_VALUE_MEMORY;
|
||
}
|
||
goto no_push;
|
||
|
||
case DW_OP_bit_piece:
|
||
{
|
||
ULONGEST size, offset;
|
||
|
||
/* Record the piece. */
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &size);
|
||
op_ptr = read_uleb128 (op_ptr, op_end, &offset);
|
||
add_piece (ctx, size, offset);
|
||
|
||
/* Pop off the address/regnum, and reset the location
|
||
type. */
|
||
if (ctx->location != DWARF_VALUE_LITERAL
|
||
&& ctx->location != DWARF_VALUE_OPTIMIZED_OUT)
|
||
dwarf_expr_pop (ctx);
|
||
ctx->location = DWARF_VALUE_MEMORY;
|
||
}
|
||
goto no_push;
|
||
|
||
case DW_OP_GNU_uninit:
|
||
if (op_ptr != op_end)
|
||
error (_("DWARF-2 expression error: DW_OP_GNU_uninit must always "
|
||
"be the very last op."));
|
||
|
||
ctx->initialized = 0;
|
||
goto no_push;
|
||
|
||
case DW_OP_call2:
|
||
result = extract_unsigned_integer (op_ptr, 2, byte_order);
|
||
op_ptr += 2;
|
||
ctx->dwarf_call (ctx, result);
|
||
goto no_push;
|
||
|
||
case DW_OP_call4:
|
||
result = extract_unsigned_integer (op_ptr, 4, byte_order);
|
||
op_ptr += 4;
|
||
ctx->dwarf_call (ctx, result);
|
||
goto no_push;
|
||
|
||
default:
|
||
error (_("Unhandled dwarf expression opcode 0x%x"), op);
|
||
}
|
||
|
||
/* Most things push a result value. */
|
||
dwarf_expr_push (ctx, result, in_stack_memory);
|
||
no_push:;
|
||
}
|
||
|
||
ctx->recursion_depth--;
|
||
gdb_assert (ctx->recursion_depth >= 0);
|
||
}
|