binutils-gdb/sim/m32r/dv-m32r_uart.c
Mike Frysinger 6df01ab8ab sim: switch config.h usage to defs.h
The defs.h header will take care of including the various config.h
headers.  For now, it's just config.h, but we'll add more when we
integrate gnulib in.

This header should be used instead of config.h, and should be the
first include in every .c file.  We won't rely on the old behavior
where we expected files to include the port's sim-main.h which then
includes the common sim-basics.h which then includes config.h.  We
have a ton of code that includes things before sim-main.h, and it
sometimes needs to be that way.  Creating a dedicated header avoids
the ordering mess and implicit inclusion that shows up otherwise.
2021-05-16 22:38:41 -04:00

145 lines
3.5 KiB
C

/* UART model.
Copyright (C) 1996-2021 Free Software Foundation, Inc.
Contributed by Cygnus Solutions and Mike Frysinger.
This file is part of simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include "sim-main.h"
#include "hw-main.h"
#include "dv-sockser.h"
#include "dv-m32r_uart.h"
struct m32r_uart
{
};
static unsigned
m32r_uart_io_write_buffer (struct hw *me, const void *source,
int space, address_word addr, unsigned nr_bytes)
{
SIM_DESC sd = hw_system (me);
struct m32r_uart *uart = hw_data (me);
int status = dv_sockser_status (sd);
switch (addr)
{
case UART_OUTCHAR_ADDR:
if (status & DV_SOCKSER_DISCONNECTED)
{
sim_io_write_stdout (sd, source, nr_bytes);
sim_io_flush_stdout (sd);
}
else
{
/* Normalize errors to a value of 0. */
int ret = dv_sockser_write_buffer (sd, source, nr_bytes);
if (ret < 0)
nr_bytes = 0;
}
break;
}
return nr_bytes;
}
static unsigned
m32r_uart_io_read_buffer (struct hw *me, void *dest,
int space, address_word addr, unsigned nr_bytes)
{
SIM_DESC sd = hw_system (me);
struct m32r_uart *uart = hw_data (me);
int status = dv_sockser_status (sd);
switch (addr)
{
case UART_INCHAR_ADDR:
if (status & DV_SOCKSER_DISCONNECTED)
{
int ret = sim_io_poll_read (sd, 0/*STDIN*/, dest, 1);
return (ret < 0) ? 0 : 1;
}
else
{
char *buffer = dest;
buffer[0] = dv_sockser_read (sd);
return 1;
}
case UART_STATUS_ADDR:
{
unsigned char *p = dest;
p[0] = 0;
p[1] = (((status & DV_SOCKSER_INPUT_EMPTY)
#ifdef UART_INPUT_READY0
? UART_INPUT_READY : 0)
#else
? 0 : UART_INPUT_READY)
#endif
+ ((status & DV_SOCKSER_OUTPUT_EMPTY) ? UART_OUTPUT_READY : 0));
return 2;
}
}
return nr_bytes;
}
static void
attach_m32r_uart_regs (struct hw *me, struct m32r_uart *uart)
{
address_word attach_address;
int attach_space;
unsigned attach_size;
reg_property_spec reg;
if (hw_find_property (me, "reg") == NULL)
hw_abort (me, "Missing \"reg\" property");
if (!hw_find_reg_array_property (me, "reg", 0, &reg))
hw_abort (me, "\"reg\" property must contain three addr/size entries");
hw_unit_address_to_attach_address (hw_parent (me),
&reg.address,
&attach_space, &attach_address, me);
hw_unit_size_to_attach_size (hw_parent (me), &reg.size, &attach_size, me);
hw_attach_address (hw_parent (me),
0, attach_space, attach_address, attach_size, me);
}
static void
m32r_uart_finish (struct hw *me)
{
struct m32r_uart *uart;
uart = HW_ZALLOC (me, struct m32r_uart);
set_hw_data (me, uart);
set_hw_io_read_buffer (me, m32r_uart_io_read_buffer);
set_hw_io_write_buffer (me, m32r_uart_io_write_buffer);
attach_m32r_uart_regs (me, uart);
}
const struct hw_descriptor dv_m32r_uart_descriptor[] =
{
{"m32r_uart", m32r_uart_finish,},
{NULL, NULL},
};