mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-21 16:23:28 +08:00
cb3c37b24c
symbols found)" message here; we haven't checked for a separate debug info file yet, so we don't know yet. (symbol_file_add_with_addrs_or_offsets): Print it here, after we've looked everywhere. Also, there's no need to print a special message when we're loading the separate debug info file: the one symbol_file_add prints is fine.
3667 lines
112 KiB
C
3667 lines
112 KiB
C
/* Generic symbol file reading for the GNU debugger, GDB.
|
||
|
||
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "gdbcore.h"
|
||
#include "frame.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "source.h"
|
||
#include "gdbcmd.h"
|
||
#include "breakpoint.h"
|
||
#include "language.h"
|
||
#include "complaints.h"
|
||
#include "demangle.h"
|
||
#include "inferior.h" /* for write_pc */
|
||
#include "filenames.h" /* for DOSish file names */
|
||
#include "gdb-stabs.h"
|
||
#include "gdb_obstack.h"
|
||
#include "completer.h"
|
||
#include "bcache.h"
|
||
#include <readline/readline.h>
|
||
#include "gdb_assert.h"
|
||
|
||
#include <sys/types.h>
|
||
#include <fcntl.h>
|
||
#include "gdb_string.h"
|
||
#include "gdb_stat.h"
|
||
#include <ctype.h>
|
||
#include <time.h>
|
||
|
||
#ifndef O_BINARY
|
||
#define O_BINARY 0
|
||
#endif
|
||
|
||
#ifdef HPUXHPPA
|
||
|
||
/* Some HP-UX related globals to clear when a new "main"
|
||
symbol file is loaded. HP-specific. */
|
||
|
||
extern int hp_som_som_object_present;
|
||
extern int hp_cxx_exception_support_initialized;
|
||
#define RESET_HP_UX_GLOBALS() do {\
|
||
hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
|
||
hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
|
||
} while (0)
|
||
#endif
|
||
|
||
int (*ui_load_progress_hook) (const char *section, unsigned long num);
|
||
void (*show_load_progress) (const char *section,
|
||
unsigned long section_sent,
|
||
unsigned long section_size,
|
||
unsigned long total_sent,
|
||
unsigned long total_size);
|
||
void (*pre_add_symbol_hook) (char *);
|
||
void (*post_add_symbol_hook) (void);
|
||
void (*target_new_objfile_hook) (struct objfile *);
|
||
|
||
static void clear_symtab_users_cleanup (void *ignore);
|
||
|
||
/* Global variables owned by this file */
|
||
int readnow_symbol_files; /* Read full symbols immediately */
|
||
|
||
/* External variables and functions referenced. */
|
||
|
||
extern void report_transfer_performance (unsigned long, time_t, time_t);
|
||
|
||
/* Functions this file defines */
|
||
|
||
#if 0
|
||
static int simple_read_overlay_region_table (void);
|
||
static void simple_free_overlay_region_table (void);
|
||
#endif
|
||
|
||
static void set_initial_language (void);
|
||
|
||
static void load_command (char *, int);
|
||
|
||
static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
|
||
|
||
static void add_symbol_file_command (char *, int);
|
||
|
||
static void add_shared_symbol_files_command (char *, int);
|
||
|
||
static void reread_separate_symbols (struct objfile *objfile);
|
||
|
||
static void cashier_psymtab (struct partial_symtab *);
|
||
|
||
bfd *symfile_bfd_open (char *);
|
||
|
||
int get_section_index (struct objfile *, char *);
|
||
|
||
static void find_sym_fns (struct objfile *);
|
||
|
||
static void decrement_reading_symtab (void *);
|
||
|
||
static void overlay_invalidate_all (void);
|
||
|
||
static int overlay_is_mapped (struct obj_section *);
|
||
|
||
void list_overlays_command (char *, int);
|
||
|
||
void map_overlay_command (char *, int);
|
||
|
||
void unmap_overlay_command (char *, int);
|
||
|
||
static void overlay_auto_command (char *, int);
|
||
|
||
static void overlay_manual_command (char *, int);
|
||
|
||
static void overlay_off_command (char *, int);
|
||
|
||
static void overlay_load_command (char *, int);
|
||
|
||
static void overlay_command (char *, int);
|
||
|
||
static void simple_free_overlay_table (void);
|
||
|
||
static void read_target_long_array (CORE_ADDR, unsigned int *, int);
|
||
|
||
static int simple_read_overlay_table (void);
|
||
|
||
static int simple_overlay_update_1 (struct obj_section *);
|
||
|
||
static void add_filename_language (char *ext, enum language lang);
|
||
|
||
static void set_ext_lang_command (char *args, int from_tty);
|
||
|
||
static void info_ext_lang_command (char *args, int from_tty);
|
||
|
||
static char *find_separate_debug_file (struct objfile *objfile);
|
||
|
||
static void init_filename_language_table (void);
|
||
|
||
void _initialize_symfile (void);
|
||
|
||
/* List of all available sym_fns. On gdb startup, each object file reader
|
||
calls add_symtab_fns() to register information on each format it is
|
||
prepared to read. */
|
||
|
||
static struct sym_fns *symtab_fns = NULL;
|
||
|
||
/* Flag for whether user will be reloading symbols multiple times.
|
||
Defaults to ON for VxWorks, otherwise OFF. */
|
||
|
||
#ifdef SYMBOL_RELOADING_DEFAULT
|
||
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
|
||
#else
|
||
int symbol_reloading = 0;
|
||
#endif
|
||
|
||
/* If non-zero, shared library symbols will be added automatically
|
||
when the inferior is created, new libraries are loaded, or when
|
||
attaching to the inferior. This is almost always what users will
|
||
want to have happen; but for very large programs, the startup time
|
||
will be excessive, and so if this is a problem, the user can clear
|
||
this flag and then add the shared library symbols as needed. Note
|
||
that there is a potential for confusion, since if the shared
|
||
library symbols are not loaded, commands like "info fun" will *not*
|
||
report all the functions that are actually present. */
|
||
|
||
int auto_solib_add = 1;
|
||
|
||
/* For systems that support it, a threshold size in megabytes. If
|
||
automatically adding a new library's symbol table to those already
|
||
known to the debugger would cause the total shared library symbol
|
||
size to exceed this threshhold, then the shlib's symbols are not
|
||
added. The threshold is ignored if the user explicitly asks for a
|
||
shlib to be added, such as when using the "sharedlibrary"
|
||
command. */
|
||
|
||
int auto_solib_limit;
|
||
|
||
|
||
/* Since this function is called from within qsort, in an ANSI environment
|
||
it must conform to the prototype for qsort, which specifies that the
|
||
comparison function takes two "void *" pointers. */
|
||
|
||
static int
|
||
compare_symbols (const void *s1p, const void *s2p)
|
||
{
|
||
register struct symbol **s1, **s2;
|
||
|
||
s1 = (struct symbol **) s1p;
|
||
s2 = (struct symbol **) s2p;
|
||
return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
compare_psymbols -- compare two partial symbols by name
|
||
|
||
DESCRIPTION
|
||
|
||
Given pointers to pointers to two partial symbol table entries,
|
||
compare them by name and return -N, 0, or +N (ala strcmp).
|
||
Typically used by sorting routines like qsort().
|
||
|
||
NOTES
|
||
|
||
Does direct compare of first two characters before punting
|
||
and passing to strcmp for longer compares. Note that the
|
||
original version had a bug whereby two null strings or two
|
||
identically named one character strings would return the
|
||
comparison of memory following the null byte.
|
||
|
||
*/
|
||
|
||
static int
|
||
compare_psymbols (const void *s1p, const void *s2p)
|
||
{
|
||
register struct partial_symbol **s1, **s2;
|
||
register char *st1, *st2;
|
||
|
||
s1 = (struct partial_symbol **) s1p;
|
||
s2 = (struct partial_symbol **) s2p;
|
||
st1 = SYMBOL_SOURCE_NAME (*s1);
|
||
st2 = SYMBOL_SOURCE_NAME (*s2);
|
||
|
||
|
||
if ((st1[0] - st2[0]) || !st1[0])
|
||
{
|
||
return (st1[0] - st2[0]);
|
||
}
|
||
else if ((st1[1] - st2[1]) || !st1[1])
|
||
{
|
||
return (st1[1] - st2[1]);
|
||
}
|
||
else
|
||
{
|
||
return (strcmp (st1, st2));
|
||
}
|
||
}
|
||
|
||
void
|
||
sort_pst_symbols (struct partial_symtab *pst)
|
||
{
|
||
/* Sort the global list; don't sort the static list */
|
||
|
||
qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
|
||
pst->n_global_syms, sizeof (struct partial_symbol *),
|
||
compare_psymbols);
|
||
}
|
||
|
||
/* Call sort_block_syms to sort alphabetically the symbols of one block. */
|
||
|
||
void
|
||
sort_block_syms (register struct block *b)
|
||
{
|
||
qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
|
||
sizeof (struct symbol *), compare_symbols);
|
||
}
|
||
|
||
/* Call sort_symtab_syms to sort alphabetically
|
||
the symbols of each block of one symtab. */
|
||
|
||
void
|
||
sort_symtab_syms (register struct symtab *s)
|
||
{
|
||
register struct blockvector *bv;
|
||
int nbl;
|
||
int i;
|
||
register struct block *b;
|
||
|
||
if (s == 0)
|
||
return;
|
||
bv = BLOCKVECTOR (s);
|
||
nbl = BLOCKVECTOR_NBLOCKS (bv);
|
||
for (i = 0; i < nbl; i++)
|
||
{
|
||
b = BLOCKVECTOR_BLOCK (bv, i);
|
||
if (BLOCK_SHOULD_SORT (b))
|
||
sort_block_syms (b);
|
||
}
|
||
}
|
||
|
||
/* Make a null terminated copy of the string at PTR with SIZE characters in
|
||
the obstack pointed to by OBSTACKP . Returns the address of the copy.
|
||
Note that the string at PTR does not have to be null terminated, I.E. it
|
||
may be part of a larger string and we are only saving a substring. */
|
||
|
||
char *
|
||
obsavestring (const char *ptr, int size, struct obstack *obstackp)
|
||
{
|
||
register char *p = (char *) obstack_alloc (obstackp, size + 1);
|
||
/* Open-coded memcpy--saves function call time. These strings are usually
|
||
short. FIXME: Is this really still true with a compiler that can
|
||
inline memcpy? */
|
||
{
|
||
register const char *p1 = ptr;
|
||
register char *p2 = p;
|
||
const char *end = ptr + size;
|
||
while (p1 != end)
|
||
*p2++ = *p1++;
|
||
}
|
||
p[size] = 0;
|
||
return p;
|
||
}
|
||
|
||
/* Concatenate strings S1, S2 and S3; return the new string. Space is found
|
||
in the obstack pointed to by OBSTACKP. */
|
||
|
||
char *
|
||
obconcat (struct obstack *obstackp, const char *s1, const char *s2,
|
||
const char *s3)
|
||
{
|
||
register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
|
||
register char *val = (char *) obstack_alloc (obstackp, len);
|
||
strcpy (val, s1);
|
||
strcat (val, s2);
|
||
strcat (val, s3);
|
||
return val;
|
||
}
|
||
|
||
/* True if we are nested inside psymtab_to_symtab. */
|
||
|
||
int currently_reading_symtab = 0;
|
||
|
||
static void
|
||
decrement_reading_symtab (void *dummy)
|
||
{
|
||
currently_reading_symtab--;
|
||
}
|
||
|
||
/* Get the symbol table that corresponds to a partial_symtab.
|
||
This is fast after the first time you do it. In fact, there
|
||
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
|
||
case inline. */
|
||
|
||
struct symtab *
|
||
psymtab_to_symtab (register struct partial_symtab *pst)
|
||
{
|
||
/* If it's been looked up before, return it. */
|
||
if (pst->symtab)
|
||
return pst->symtab;
|
||
|
||
/* If it has not yet been read in, read it. */
|
||
if (!pst->readin)
|
||
{
|
||
struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
|
||
currently_reading_symtab++;
|
||
(*pst->read_symtab) (pst);
|
||
do_cleanups (back_to);
|
||
}
|
||
|
||
return pst->symtab;
|
||
}
|
||
|
||
/* Initialize entry point information for this objfile. */
|
||
|
||
void
|
||
init_entry_point_info (struct objfile *objfile)
|
||
{
|
||
/* Save startup file's range of PC addresses to help blockframe.c
|
||
decide where the bottom of the stack is. */
|
||
|
||
if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
|
||
{
|
||
/* Executable file -- record its entry point so we'll recognize
|
||
the startup file because it contains the entry point. */
|
||
objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
|
||
}
|
||
else
|
||
{
|
||
/* Examination of non-executable.o files. Short-circuit this stuff. */
|
||
objfile->ei.entry_point = INVALID_ENTRY_POINT;
|
||
}
|
||
objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
|
||
objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
|
||
objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
|
||
objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
|
||
objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
|
||
objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
|
||
}
|
||
|
||
/* Get current entry point address. */
|
||
|
||
CORE_ADDR
|
||
entry_point_address (void)
|
||
{
|
||
return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
|
||
}
|
||
|
||
/* Remember the lowest-addressed loadable section we've seen.
|
||
This function is called via bfd_map_over_sections.
|
||
|
||
In case of equal vmas, the section with the largest size becomes the
|
||
lowest-addressed loadable section.
|
||
|
||
If the vmas and sizes are equal, the last section is considered the
|
||
lowest-addressed loadable section. */
|
||
|
||
void
|
||
find_lowest_section (bfd *abfd, asection *sect, void *obj)
|
||
{
|
||
asection **lowest = (asection **) obj;
|
||
|
||
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
|
||
return;
|
||
if (!*lowest)
|
||
*lowest = sect; /* First loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
|
||
*lowest = sect; /* A lower loadable section */
|
||
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
|
||
&& (bfd_section_size (abfd, (*lowest))
|
||
<= bfd_section_size (abfd, sect)))
|
||
*lowest = sect;
|
||
}
|
||
|
||
|
||
/* Build (allocate and populate) a section_addr_info struct from
|
||
an existing section table. */
|
||
|
||
extern struct section_addr_info *
|
||
build_section_addr_info_from_section_table (const struct section_table *start,
|
||
const struct section_table *end)
|
||
{
|
||
struct section_addr_info *sap;
|
||
const struct section_table *stp;
|
||
int oidx;
|
||
|
||
sap = xmalloc (sizeof (struct section_addr_info));
|
||
memset (sap, 0, sizeof (struct section_addr_info));
|
||
|
||
for (stp = start, oidx = 0; stp != end; stp++)
|
||
{
|
||
if (bfd_get_section_flags (stp->bfd,
|
||
stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
|
||
&& oidx < MAX_SECTIONS)
|
||
{
|
||
sap->other[oidx].addr = stp->addr;
|
||
sap->other[oidx].name
|
||
= xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
|
||
sap->other[oidx].sectindex = stp->the_bfd_section->index;
|
||
oidx++;
|
||
}
|
||
}
|
||
|
||
return sap;
|
||
}
|
||
|
||
|
||
/* Free all memory allocated by build_section_addr_info_from_section_table. */
|
||
|
||
extern void
|
||
free_section_addr_info (struct section_addr_info *sap)
|
||
{
|
||
int idx;
|
||
|
||
for (idx = 0; idx < MAX_SECTIONS; idx++)
|
||
if (sap->other[idx].name)
|
||
xfree (sap->other[idx].name);
|
||
xfree (sap);
|
||
}
|
||
|
||
|
||
/* Initialize OBJFILE's sect_index_* members. */
|
||
static void
|
||
init_objfile_sect_indices (struct objfile *objfile)
|
||
{
|
||
asection *sect;
|
||
int i;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
if (sect)
|
||
objfile->sect_index_text = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".data");
|
||
if (sect)
|
||
objfile->sect_index_data = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".bss");
|
||
if (sect)
|
||
objfile->sect_index_bss = sect->index;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
|
||
if (sect)
|
||
objfile->sect_index_rodata = sect->index;
|
||
|
||
/* This is where things get really weird... We MUST have valid
|
||
indices for the various sect_index_* members or gdb will abort.
|
||
So if for example, there is no ".text" section, we have to
|
||
accomodate that. Except when explicitly adding symbol files at
|
||
some address, section_offsets contains nothing but zeros, so it
|
||
doesn't matter which slot in section_offsets the individual
|
||
sect_index_* members index into. So if they are all zero, it is
|
||
safe to just point all the currently uninitialized indices to the
|
||
first slot. */
|
||
|
||
for (i = 0; i < objfile->num_sections; i++)
|
||
{
|
||
if (ANOFFSET (objfile->section_offsets, i) != 0)
|
||
{
|
||
break;
|
||
}
|
||
}
|
||
if (i == objfile->num_sections)
|
||
{
|
||
if (objfile->sect_index_text == -1)
|
||
objfile->sect_index_text = 0;
|
||
if (objfile->sect_index_data == -1)
|
||
objfile->sect_index_data = 0;
|
||
if (objfile->sect_index_bss == -1)
|
||
objfile->sect_index_bss = 0;
|
||
if (objfile->sect_index_rodata == -1)
|
||
objfile->sect_index_rodata = 0;
|
||
}
|
||
}
|
||
|
||
|
||
/* Parse the user's idea of an offset for dynamic linking, into our idea
|
||
of how to represent it for fast symbol reading. This is the default
|
||
version of the sym_fns.sym_offsets function for symbol readers that
|
||
don't need to do anything special. It allocates a section_offsets table
|
||
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
|
||
|
||
void
|
||
default_symfile_offsets (struct objfile *objfile,
|
||
struct section_addr_info *addrs)
|
||
{
|
||
int i;
|
||
|
||
objfile->num_sections = SECT_OFF_MAX;
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
|
||
memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
|
||
|
||
/* Now calculate offsets for section that were specified by the
|
||
caller. */
|
||
for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
|
||
{
|
||
struct other_sections *osp ;
|
||
|
||
osp = &addrs->other[i] ;
|
||
if (osp->addr == 0)
|
||
continue;
|
||
|
||
/* Record all sections in offsets */
|
||
/* The section_offsets in the objfile are here filled in using
|
||
the BFD index. */
|
||
(objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
|
||
}
|
||
|
||
/* Remember the bfd indexes for the .text, .data, .bss and
|
||
.rodata sections. */
|
||
init_objfile_sect_indices (objfile);
|
||
}
|
||
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
OBJFILE is where the symbols are to be read from.
|
||
|
||
ADDRS is the list of section load addresses. If the user has given
|
||
an 'add-symbol-file' command, then this is the list of offsets and
|
||
addresses he or she provided as arguments to the command; or, if
|
||
we're handling a shared library, these are the actual addresses the
|
||
sections are loaded at, according to the inferior's dynamic linker
|
||
(as gleaned by GDB's shared library code). We convert each address
|
||
into an offset from the section VMA's as it appears in the object
|
||
file, and then call the file's sym_offsets function to convert this
|
||
into a format-specific offset table --- a `struct section_offsets'.
|
||
If ADDRS is non-zero, OFFSETS must be zero.
|
||
|
||
OFFSETS is a table of section offsets already in the right
|
||
format-specific representation. NUM_OFFSETS is the number of
|
||
elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
|
||
assume this is the proper table the call to sym_offsets described
|
||
above would produce. Instead of calling sym_offsets, we just dump
|
||
it right into objfile->section_offsets. (When we're re-reading
|
||
symbols from an objfile, we don't have the original load address
|
||
list any more; all we have is the section offset table.) If
|
||
OFFSETS is non-zero, ADDRS must be zero.
|
||
|
||
MAINLINE is nonzero if this is the main symbol file, or zero if
|
||
it's an extra symbol file such as dynamically loaded code.
|
||
|
||
VERBO is nonzero if the caller has printed a verbose message about
|
||
the symbol reading (and complaints can be more terse about it). */
|
||
|
||
void
|
||
syms_from_objfile (struct objfile *objfile,
|
||
struct section_addr_info *addrs,
|
||
struct section_offsets *offsets,
|
||
int num_offsets,
|
||
int mainline,
|
||
int verbo)
|
||
{
|
||
asection *lower_sect;
|
||
asection *sect;
|
||
CORE_ADDR lower_offset;
|
||
struct section_addr_info local_addr;
|
||
struct cleanup *old_chain;
|
||
int i;
|
||
|
||
gdb_assert (! (addrs && offsets));
|
||
|
||
/* If ADDRS and OFFSETS are both NULL, put together a dummy address
|
||
list. We now establish the convention that an addr of zero means
|
||
no load address was specified. */
|
||
if (! addrs && ! offsets)
|
||
{
|
||
memset (&local_addr, 0, sizeof (local_addr));
|
||
addrs = &local_addr;
|
||
}
|
||
|
||
/* Now either addrs or offsets is non-zero. */
|
||
|
||
init_entry_point_info (objfile);
|
||
find_sym_fns (objfile);
|
||
|
||
if (objfile->sf == NULL)
|
||
return; /* No symbols. */
|
||
|
||
/* Make sure that partially constructed symbol tables will be cleaned up
|
||
if an error occurs during symbol reading. */
|
||
old_chain = make_cleanup_free_objfile (objfile);
|
||
|
||
if (mainline)
|
||
{
|
||
/* We will modify the main symbol table, make sure that all its users
|
||
will be cleaned up if an error occurs during symbol reading. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
/* Since no error yet, throw away the old symbol table. */
|
||
|
||
if (symfile_objfile != NULL)
|
||
{
|
||
free_objfile (symfile_objfile);
|
||
symfile_objfile = NULL;
|
||
}
|
||
|
||
/* Currently we keep symbols from the add-symbol-file command.
|
||
If the user wants to get rid of them, they should do "symbol-file"
|
||
without arguments first. Not sure this is the best behavior
|
||
(PR 2207). */
|
||
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
}
|
||
|
||
/* Convert addr into an offset rather than an absolute address.
|
||
We find the lowest address of a loaded segment in the objfile,
|
||
and assume that <addr> is where that got loaded.
|
||
|
||
We no longer warn if the lowest section is not a text segment (as
|
||
happens for the PA64 port. */
|
||
if (!mainline)
|
||
{
|
||
/* Find lowest loadable section to be used as starting point for
|
||
continguous sections. FIXME!! won't work without call to find
|
||
.text first, but this assumes text is lowest section. */
|
||
lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
|
||
if (lower_sect == NULL)
|
||
bfd_map_over_sections (objfile->obfd, find_lowest_section,
|
||
&lower_sect);
|
||
if (lower_sect == NULL)
|
||
warning ("no loadable sections found in added symbol-file %s",
|
||
objfile->name);
|
||
else
|
||
if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
|
||
warning ("Lowest section in %s is %s at %s",
|
||
objfile->name,
|
||
bfd_section_name (objfile->obfd, lower_sect),
|
||
paddr (bfd_section_vma (objfile->obfd, lower_sect)));
|
||
if (lower_sect != NULL)
|
||
lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
|
||
else
|
||
lower_offset = 0;
|
||
|
||
/* Calculate offsets for the loadable sections.
|
||
FIXME! Sections must be in order of increasing loadable section
|
||
so that contiguous sections can use the lower-offset!!!
|
||
|
||
Adjust offsets if the segments are not contiguous.
|
||
If the section is contiguous, its offset should be set to
|
||
the offset of the highest loadable section lower than it
|
||
(the loadable section directly below it in memory).
|
||
this_offset = lower_offset = lower_addr - lower_orig_addr */
|
||
|
||
/* Calculate offsets for sections. */
|
||
if (addrs)
|
||
for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
|
||
{
|
||
if (addrs->other[i].addr != 0)
|
||
{
|
||
sect = bfd_get_section_by_name (objfile->obfd,
|
||
addrs->other[i].name);
|
||
if (sect)
|
||
{
|
||
addrs->other[i].addr
|
||
-= bfd_section_vma (objfile->obfd, sect);
|
||
lower_offset = addrs->other[i].addr;
|
||
/* This is the index used by BFD. */
|
||
addrs->other[i].sectindex = sect->index ;
|
||
}
|
||
else
|
||
{
|
||
warning ("section %s not found in %s",
|
||
addrs->other[i].name,
|
||
objfile->name);
|
||
addrs->other[i].addr = 0;
|
||
}
|
||
}
|
||
else
|
||
addrs->other[i].addr = lower_offset;
|
||
}
|
||
}
|
||
|
||
/* Initialize symbol reading routines for this objfile, allow complaints to
|
||
appear for this new file, and record how verbose to be, then do the
|
||
initial symbol reading for this file. */
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, verbo);
|
||
|
||
if (addrs)
|
||
(*objfile->sf->sym_offsets) (objfile, addrs);
|
||
else
|
||
{
|
||
size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
|
||
|
||
/* Just copy in the offset table directly as given to us. */
|
||
objfile->num_sections = num_offsets;
|
||
objfile->section_offsets
|
||
= ((struct section_offsets *)
|
||
obstack_alloc (&objfile->psymbol_obstack, size));
|
||
memcpy (objfile->section_offsets, offsets, size);
|
||
|
||
init_objfile_sect_indices (objfile);
|
||
}
|
||
|
||
#ifndef IBM6000_TARGET
|
||
/* This is a SVR4/SunOS specific hack, I think. In any event, it
|
||
screws RS/6000. sym_offsets should be doing this sort of thing,
|
||
because it knows the mapping between bfd sections and
|
||
section_offsets. */
|
||
/* This is a hack. As far as I can tell, section offsets are not
|
||
target dependent. They are all set to addr with a couple of
|
||
exceptions. The exceptions are sysvr4 shared libraries, whose
|
||
offsets are kept in solib structures anyway and rs6000 xcoff
|
||
which handles shared libraries in a completely unique way.
|
||
|
||
Section offsets are built similarly, except that they are built
|
||
by adding addr in all cases because there is no clear mapping
|
||
from section_offsets into actual sections. Note that solib.c
|
||
has a different algorithm for finding section offsets.
|
||
|
||
These should probably all be collapsed into some target
|
||
independent form of shared library support. FIXME. */
|
||
|
||
if (addrs)
|
||
{
|
||
struct obj_section *s;
|
||
|
||
/* Map section offsets in "addr" back to the object's
|
||
sections by comparing the section names with bfd's
|
||
section names. Then adjust the section address by
|
||
the offset. */ /* for gdb/13815 */
|
||
|
||
ALL_OBJFILE_OSECTIONS (objfile, s)
|
||
{
|
||
CORE_ADDR s_addr = 0;
|
||
int i;
|
||
|
||
for (i = 0;
|
||
!s_addr && i < MAX_SECTIONS && addrs->other[i].name;
|
||
i++)
|
||
if (strcmp (bfd_section_name (s->objfile->obfd,
|
||
s->the_bfd_section),
|
||
addrs->other[i].name) == 0)
|
||
s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
|
||
|
||
s->addr -= s->offset;
|
||
s->addr += s_addr;
|
||
s->endaddr -= s->offset;
|
||
s->endaddr += s_addr;
|
||
s->offset += s_addr;
|
||
}
|
||
}
|
||
#endif /* not IBM6000_TARGET */
|
||
|
||
(*objfile->sf->sym_read) (objfile, mainline);
|
||
|
||
/* Don't allow char * to have a typename (else would get caddr_t).
|
||
Ditto void *. FIXME: Check whether this is now done by all the
|
||
symbol readers themselves (many of them now do), and if so remove
|
||
it from here. */
|
||
|
||
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
|
||
TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
|
||
|
||
/* Mark the objfile has having had initial symbol read attempted. Note
|
||
that this does not mean we found any symbols... */
|
||
|
||
objfile->flags |= OBJF_SYMS;
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
|
||
discard_cleanups (old_chain);
|
||
|
||
/* Call this after reading in a new symbol table to give target
|
||
dependent code a crack at the new symbols. For instance, this
|
||
could be used to update the values of target-specific symbols GDB
|
||
needs to keep track of (such as _sigtramp, or whatever). */
|
||
|
||
TARGET_SYMFILE_POSTREAD (objfile);
|
||
}
|
||
|
||
/* Perform required actions after either reading in the initial
|
||
symbols for a new objfile, or mapping in the symbols from a reusable
|
||
objfile. */
|
||
|
||
void
|
||
new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
|
||
{
|
||
|
||
/* If this is the main symbol file we have to clean up all users of the
|
||
old main symbol file. Otherwise it is sufficient to fixup all the
|
||
breakpoints that may have been redefined by this symbol file. */
|
||
if (mainline)
|
||
{
|
||
/* OK, make it the "real" symbol file. */
|
||
symfile_objfile = objfile;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
else
|
||
{
|
||
breakpoint_re_set ();
|
||
}
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, verbo);
|
||
}
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file.
|
||
|
||
NAME is the file name (which will be tilde-expanded and made
|
||
absolute herein) (but we don't free or modify NAME itself).
|
||
|
||
FROM_TTY says how verbose to be.
|
||
|
||
MAINLINE specifies whether this is the main symbol file, or whether
|
||
it's an extra symbol file such as dynamically loaded code.
|
||
|
||
ADDRS, OFFSETS, and NUM_OFFSETS are as described for
|
||
syms_from_objfile, above. ADDRS is ignored when MAINLINE is
|
||
non-zero.
|
||
|
||
Upon success, returns a pointer to the objfile that was added.
|
||
Upon failure, jumps back to command level (never returns). */
|
||
static struct objfile *
|
||
symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
|
||
struct section_addr_info *addrs,
|
||
struct section_offsets *offsets,
|
||
int num_offsets,
|
||
int mainline, int flags)
|
||
{
|
||
struct objfile *objfile;
|
||
struct partial_symtab *psymtab;
|
||
char *debugfile;
|
||
bfd *abfd;
|
||
struct section_addr_info orig_addrs;
|
||
|
||
if (addrs)
|
||
orig_addrs = *addrs;
|
||
|
||
/* Open a bfd for the file, and give user a chance to burp if we'd be
|
||
interactively wiping out any existing symbols. */
|
||
|
||
abfd = symfile_bfd_open (name);
|
||
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& mainline
|
||
&& from_tty
|
||
&& !query ("Load new symbol table from \"%s\"? ", name))
|
||
error ("Not confirmed.");
|
||
|
||
objfile = allocate_objfile (abfd, flags);
|
||
|
||
/* If the objfile uses a mapped symbol file, and we have a psymtab for
|
||
it, then skip reading any symbols at this time. */
|
||
|
||
if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
|
||
{
|
||
/* We mapped in an existing symbol table file that already has had
|
||
initial symbol reading performed, so we can skip that part. Notify
|
||
the user that instead of reading the symbols, they have been mapped.
|
||
*/
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("Mapped symbols for %s...", name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
init_entry_point_info (objfile);
|
||
find_sym_fns (objfile);
|
||
}
|
||
else
|
||
{
|
||
/* We either created a new mapped symbol table, mapped an existing
|
||
symbol table file which has not had initial symbol reading
|
||
performed, or need to read an unmapped symbol table. */
|
||
if (from_tty || info_verbose)
|
||
{
|
||
if (pre_add_symbol_hook)
|
||
pre_add_symbol_hook (name);
|
||
else
|
||
{
|
||
printf_filtered ("Reading symbols from %s...", name);
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
}
|
||
syms_from_objfile (objfile, addrs, offsets, num_offsets,
|
||
mainline, from_tty);
|
||
}
|
||
|
||
/* We now have at least a partial symbol table. Check to see if the
|
||
user requested that all symbols be read on initial access via either
|
||
the gdb startup command line or on a per symbol file basis. Expand
|
||
all partial symbol tables for this objfile if so. */
|
||
|
||
if ((flags & OBJF_READNOW) || readnow_symbol_files)
|
||
{
|
||
if (from_tty || info_verbose)
|
||
{
|
||
printf_filtered ("expanding to full symbols...");
|
||
wrap_here ("");
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
for (psymtab = objfile->psymtabs;
|
||
psymtab != NULL;
|
||
psymtab = psymtab->next)
|
||
{
|
||
psymtab_to_symtab (psymtab);
|
||
}
|
||
}
|
||
|
||
debugfile = find_separate_debug_file (objfile);
|
||
if (debugfile)
|
||
{
|
||
if (addrs != NULL)
|
||
{
|
||
objfile->separate_debug_objfile
|
||
= symbol_file_add (debugfile, from_tty, &orig_addrs, 0, flags);
|
||
}
|
||
else
|
||
{
|
||
objfile->separate_debug_objfile
|
||
= symbol_file_add (debugfile, from_tty, NULL, 0, flags);
|
||
}
|
||
objfile->separate_debug_objfile->separate_debug_objfile_backlink
|
||
= objfile;
|
||
|
||
/* Put the separate debug object before the normal one, this is so that
|
||
usage of the ALL_OBJFILES_SAFE macro will stay safe. */
|
||
put_objfile_before (objfile->separate_debug_objfile, objfile);
|
||
|
||
xfree (debugfile);
|
||
}
|
||
|
||
if (!have_partial_symbols () && !have_full_symbols ())
|
||
{
|
||
wrap_here ("");
|
||
printf_filtered ("(no debugging symbols found)...");
|
||
wrap_here ("");
|
||
}
|
||
|
||
if (from_tty || info_verbose)
|
||
{
|
||
if (post_add_symbol_hook)
|
||
post_add_symbol_hook ();
|
||
else
|
||
{
|
||
printf_filtered ("done.\n");
|
||
}
|
||
}
|
||
|
||
/* We print some messages regardless of whether 'from_tty ||
|
||
info_verbose' is true, so make sure they go out at the right
|
||
time. */
|
||
gdb_flush (gdb_stdout);
|
||
|
||
if (objfile->sf == NULL)
|
||
return objfile; /* No symbols. */
|
||
|
||
new_symfile_objfile (objfile, mainline, from_tty);
|
||
|
||
if (target_new_objfile_hook)
|
||
target_new_objfile_hook (objfile);
|
||
|
||
return (objfile);
|
||
}
|
||
|
||
|
||
/* Process a symbol file, as either the main file or as a dynamically
|
||
loaded file. See symbol_file_add_with_addrs_or_offsets's comments
|
||
for details. */
|
||
struct objfile *
|
||
symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
|
||
int mainline, int flags)
|
||
{
|
||
return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
|
||
mainline, flags);
|
||
}
|
||
|
||
|
||
/* Call symbol_file_add() with default values and update whatever is
|
||
affected by the loading of a new main().
|
||
Used when the file is supplied in the gdb command line
|
||
and by some targets with special loading requirements.
|
||
The auxiliary function, symbol_file_add_main_1(), has the flags
|
||
argument for the switches that can only be specified in the symbol_file
|
||
command itself. */
|
||
|
||
void
|
||
symbol_file_add_main (char *args, int from_tty)
|
||
{
|
||
symbol_file_add_main_1 (args, from_tty, 0);
|
||
}
|
||
|
||
static void
|
||
symbol_file_add_main_1 (char *args, int from_tty, int flags)
|
||
{
|
||
symbol_file_add (args, from_tty, NULL, 1, flags);
|
||
|
||
#ifdef HPUXHPPA
|
||
RESET_HP_UX_GLOBALS ();
|
||
#endif
|
||
|
||
/* Getting new symbols may change our opinion about
|
||
what is frameless. */
|
||
reinit_frame_cache ();
|
||
|
||
set_initial_language ();
|
||
}
|
||
|
||
void
|
||
symbol_file_clear (int from_tty)
|
||
{
|
||
if ((have_full_symbols () || have_partial_symbols ())
|
||
&& from_tty
|
||
&& !query ("Discard symbol table from `%s'? ",
|
||
symfile_objfile->name))
|
||
error ("Not confirmed.");
|
||
free_all_objfiles ();
|
||
|
||
/* solib descriptors may have handles to objfiles. Since their
|
||
storage has just been released, we'd better wipe the solib
|
||
descriptors as well.
|
||
*/
|
||
#if defined(SOLIB_RESTART)
|
||
SOLIB_RESTART ();
|
||
#endif
|
||
|
||
symfile_objfile = NULL;
|
||
if (from_tty)
|
||
printf_unfiltered ("No symbol file now.\n");
|
||
#ifdef HPUXHPPA
|
||
RESET_HP_UX_GLOBALS ();
|
||
#endif
|
||
}
|
||
|
||
static char *
|
||
get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
|
||
{
|
||
asection *sect;
|
||
bfd_size_type debuglink_size;
|
||
unsigned long crc32;
|
||
char *contents;
|
||
int crc_offset;
|
||
unsigned char *p;
|
||
|
||
sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
|
||
|
||
if (sect == NULL)
|
||
return NULL;
|
||
|
||
debuglink_size = bfd_section_size (objfile->obfd, sect);
|
||
|
||
contents = xmalloc (debuglink_size);
|
||
bfd_get_section_contents (objfile->obfd, sect, contents,
|
||
(file_ptr)0, (bfd_size_type)debuglink_size);
|
||
|
||
/* Crc value is stored after the filename, aligned up to 4 bytes. */
|
||
crc_offset = strlen (contents) + 1;
|
||
crc_offset = (crc_offset + 3) & ~3;
|
||
|
||
crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
|
||
|
||
*crc32_out = crc32;
|
||
return contents;
|
||
}
|
||
|
||
static int
|
||
separate_debug_file_exists (const char *name, unsigned long crc)
|
||
{
|
||
unsigned long file_crc = 0;
|
||
int fd;
|
||
char buffer[8*1024];
|
||
int count;
|
||
|
||
fd = open (name, O_RDONLY | O_BINARY);
|
||
if (fd < 0)
|
||
return 0;
|
||
|
||
while ((count = read (fd, buffer, sizeof (buffer))) > 0)
|
||
file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
|
||
|
||
close (fd);
|
||
|
||
return crc == file_crc;
|
||
}
|
||
|
||
static char *debug_file_directory = NULL;
|
||
|
||
#if ! defined (DEBUG_SUBDIRECTORY)
|
||
#define DEBUG_SUBDIRECTORY ".debug"
|
||
#endif
|
||
|
||
static char *
|
||
find_separate_debug_file (struct objfile *objfile)
|
||
{
|
||
asection *sect;
|
||
char *basename;
|
||
char *dir;
|
||
char *debugfile;
|
||
char *name_copy;
|
||
bfd_size_type debuglink_size;
|
||
unsigned long crc32;
|
||
int i;
|
||
|
||
basename = get_debug_link_info (objfile, &crc32);
|
||
|
||
if (basename == NULL)
|
||
return NULL;
|
||
|
||
dir = xstrdup (objfile->name);
|
||
|
||
/* Strip off filename part */
|
||
for (i = strlen(dir) - 1; i >= 0; i--)
|
||
{
|
||
if (IS_DIR_SEPARATOR (dir[i]))
|
||
break;
|
||
}
|
||
dir[i+1] = '\0';
|
||
|
||
debugfile = alloca (strlen (debug_file_directory) + 1
|
||
+ strlen (dir)
|
||
+ strlen (DEBUG_SUBDIRECTORY)
|
||
+ strlen ("/")
|
||
+ strlen (basename)
|
||
+ 1);
|
||
|
||
/* First try in the same directory as the original file. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
/* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
|
||
strcpy (debugfile, dir);
|
||
strcat (debugfile, DEBUG_SUBDIRECTORY);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
/* Then try in the global debugfile directory. */
|
||
strcpy (debugfile, debug_file_directory);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, dir);
|
||
strcat (debugfile, "/");
|
||
strcat (debugfile, basename);
|
||
|
||
if (separate_debug_file_exists (debugfile, crc32))
|
||
{
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return xstrdup (debugfile);
|
||
}
|
||
|
||
xfree (basename);
|
||
xfree (dir);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* This is the symbol-file command. Read the file, analyze its
|
||
symbols, and add a struct symtab to a symtab list. The syntax of
|
||
the command is rather bizarre--(1) buildargv implements various
|
||
quoting conventions which are undocumented and have little or
|
||
nothing in common with the way things are quoted (or not quoted)
|
||
elsewhere in GDB, (2) options are used, which are not generally
|
||
used in GDB (perhaps "set mapped on", "set readnow on" would be
|
||
better), (3) the order of options matters, which is contrary to GNU
|
||
conventions (because it is confusing and inconvenient). */
|
||
/* Note: ezannoni 2000-04-17. This function used to have support for
|
||
rombug (see remote-os9k.c). It consisted of a call to target_link()
|
||
(target.c) to get the address of the text segment from the target,
|
||
and pass that to symbol_file_add(). This is no longer supported. */
|
||
|
||
void
|
||
symbol_file_command (char *args, int from_tty)
|
||
{
|
||
char **argv;
|
||
char *name = NULL;
|
||
struct cleanup *cleanups;
|
||
int flags = OBJF_USERLOADED;
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
{
|
||
symbol_file_clear (from_tty);
|
||
}
|
||
else
|
||
{
|
||
if ((argv = buildargv (args)) == NULL)
|
||
{
|
||
nomem (0);
|
||
}
|
||
cleanups = make_cleanup_freeargv (argv);
|
||
while (*argv != NULL)
|
||
{
|
||
if (STREQ (*argv, "-mapped"))
|
||
flags |= OBJF_MAPPED;
|
||
else
|
||
if (STREQ (*argv, "-readnow"))
|
||
flags |= OBJF_READNOW;
|
||
else
|
||
if (**argv == '-')
|
||
error ("unknown option `%s'", *argv);
|
||
else
|
||
{
|
||
name = *argv;
|
||
|
||
symbol_file_add_main_1 (name, from_tty, flags);
|
||
}
|
||
argv++;
|
||
}
|
||
|
||
if (name == NULL)
|
||
{
|
||
error ("no symbol file name was specified");
|
||
}
|
||
do_cleanups (cleanups);
|
||
}
|
||
}
|
||
|
||
/* Set the initial language.
|
||
|
||
A better solution would be to record the language in the psymtab when reading
|
||
partial symbols, and then use it (if known) to set the language. This would
|
||
be a win for formats that encode the language in an easily discoverable place,
|
||
such as DWARF. For stabs, we can jump through hoops looking for specially
|
||
named symbols or try to intuit the language from the specific type of stabs
|
||
we find, but we can't do that until later when we read in full symbols.
|
||
FIXME. */
|
||
|
||
static void
|
||
set_initial_language (void)
|
||
{
|
||
struct partial_symtab *pst;
|
||
enum language lang = language_unknown;
|
||
|
||
pst = find_main_psymtab ();
|
||
if (pst != NULL)
|
||
{
|
||
if (pst->filename != NULL)
|
||
{
|
||
lang = deduce_language_from_filename (pst->filename);
|
||
}
|
||
if (lang == language_unknown)
|
||
{
|
||
/* Make C the default language */
|
||
lang = language_c;
|
||
}
|
||
set_language (lang);
|
||
expected_language = current_language; /* Don't warn the user */
|
||
}
|
||
}
|
||
|
||
/* Open file specified by NAME and hand it off to BFD for preliminary
|
||
analysis. Result is a newly initialized bfd *, which includes a newly
|
||
malloc'd` copy of NAME (tilde-expanded and made absolute).
|
||
In case of trouble, error() is called. */
|
||
|
||
bfd *
|
||
symfile_bfd_open (char *name)
|
||
{
|
||
bfd *sym_bfd;
|
||
int desc;
|
||
char *absolute_name;
|
||
|
||
|
||
|
||
name = tilde_expand (name); /* Returns 1st new malloc'd copy */
|
||
|
||
/* Look down path for it, allocate 2nd new malloc'd copy. */
|
||
desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
|
||
#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
|
||
if (desc < 0)
|
||
{
|
||
char *exename = alloca (strlen (name) + 5);
|
||
strcat (strcpy (exename, name), ".exe");
|
||
desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
|
||
0, &absolute_name);
|
||
}
|
||
#endif
|
||
if (desc < 0)
|
||
{
|
||
make_cleanup (xfree, name);
|
||
perror_with_name (name);
|
||
}
|
||
xfree (name); /* Free 1st new malloc'd copy */
|
||
name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
|
||
/* It'll be freed in free_objfile(). */
|
||
|
||
sym_bfd = bfd_fdopenr (name, gnutarget, desc);
|
||
if (!sym_bfd)
|
||
{
|
||
close (desc);
|
||
make_cleanup (xfree, name);
|
||
error ("\"%s\": can't open to read symbols: %s.", name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
sym_bfd->cacheable = 1;
|
||
|
||
if (!bfd_check_format (sym_bfd, bfd_object))
|
||
{
|
||
/* FIXME: should be checking for errors from bfd_close (for one thing,
|
||
on error it does not free all the storage associated with the
|
||
bfd). */
|
||
bfd_close (sym_bfd); /* This also closes desc */
|
||
make_cleanup (xfree, name);
|
||
error ("\"%s\": can't read symbols: %s.", name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
return (sym_bfd);
|
||
}
|
||
|
||
/* Return the section index for the given section name. Return -1 if
|
||
the section was not found. */
|
||
int
|
||
get_section_index (struct objfile *objfile, char *section_name)
|
||
{
|
||
asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
|
||
if (sect)
|
||
return sect->index;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
|
||
startup by the _initialize routine in each object file format reader,
|
||
to register information about each format the the reader is prepared
|
||
to handle. */
|
||
|
||
void
|
||
add_symtab_fns (struct sym_fns *sf)
|
||
{
|
||
sf->next = symtab_fns;
|
||
symtab_fns = sf;
|
||
}
|
||
|
||
|
||
/* Initialize to read symbols from the symbol file sym_bfd. It either
|
||
returns or calls error(). The result is an initialized struct sym_fns
|
||
in the objfile structure, that contains cached information about the
|
||
symbol file. */
|
||
|
||
static void
|
||
find_sym_fns (struct objfile *objfile)
|
||
{
|
||
struct sym_fns *sf;
|
||
enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
|
||
char *our_target = bfd_get_target (objfile->obfd);
|
||
|
||
if (our_flavour == bfd_target_srec_flavour
|
||
|| our_flavour == bfd_target_ihex_flavour
|
||
|| our_flavour == bfd_target_tekhex_flavour)
|
||
return; /* No symbols. */
|
||
|
||
/* Special kludge for apollo. See dstread.c. */
|
||
if (STREQN (our_target, "apollo", 6))
|
||
our_flavour = (enum bfd_flavour) -2;
|
||
|
||
for (sf = symtab_fns; sf != NULL; sf = sf->next)
|
||
{
|
||
if (our_flavour == sf->sym_flavour)
|
||
{
|
||
objfile->sf = sf;
|
||
return;
|
||
}
|
||
}
|
||
error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
|
||
bfd_get_target (objfile->obfd));
|
||
}
|
||
|
||
/* This function runs the load command of our current target. */
|
||
|
||
static void
|
||
load_command (char *arg, int from_tty)
|
||
{
|
||
if (arg == NULL)
|
||
arg = get_exec_file (1);
|
||
target_load (arg, from_tty);
|
||
|
||
/* After re-loading the executable, we don't really know which
|
||
overlays are mapped any more. */
|
||
overlay_cache_invalid = 1;
|
||
}
|
||
|
||
/* This version of "load" should be usable for any target. Currently
|
||
it is just used for remote targets, not inftarg.c or core files,
|
||
on the theory that only in that case is it useful.
|
||
|
||
Avoiding xmodem and the like seems like a win (a) because we don't have
|
||
to worry about finding it, and (b) On VMS, fork() is very slow and so
|
||
we don't want to run a subprocess. On the other hand, I'm not sure how
|
||
performance compares. */
|
||
|
||
static int download_write_size = 512;
|
||
static int validate_download = 0;
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
add_section_size_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
bfd_size_type *sum = data;
|
||
|
||
*sum += bfd_get_section_size_before_reloc (asec);
|
||
}
|
||
|
||
/* Opaque data for load_section_callback. */
|
||
struct load_section_data {
|
||
unsigned long load_offset;
|
||
unsigned long write_count;
|
||
unsigned long data_count;
|
||
bfd_size_type total_size;
|
||
};
|
||
|
||
/* Callback service function for generic_load (bfd_map_over_sections). */
|
||
|
||
static void
|
||
load_section_callback (bfd *abfd, asection *asec, void *data)
|
||
{
|
||
struct load_section_data *args = data;
|
||
|
||
if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
|
||
{
|
||
bfd_size_type size = bfd_get_section_size_before_reloc (asec);
|
||
if (size > 0)
|
||
{
|
||
char *buffer;
|
||
struct cleanup *old_chain;
|
||
CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
|
||
bfd_size_type block_size;
|
||
int err;
|
||
const char *sect_name = bfd_get_section_name (abfd, asec);
|
||
bfd_size_type sent;
|
||
|
||
if (download_write_size > 0 && size > download_write_size)
|
||
block_size = download_write_size;
|
||
else
|
||
block_size = size;
|
||
|
||
buffer = xmalloc (size);
|
||
old_chain = make_cleanup (xfree, buffer);
|
||
|
||
/* Is this really necessary? I guess it gives the user something
|
||
to look at during a long download. */
|
||
ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
|
||
sect_name, paddr_nz (size), paddr_nz (lma));
|
||
|
||
bfd_get_section_contents (abfd, asec, buffer, 0, size);
|
||
|
||
sent = 0;
|
||
do
|
||
{
|
||
int len;
|
||
bfd_size_type this_transfer = size - sent;
|
||
|
||
if (this_transfer >= block_size)
|
||
this_transfer = block_size;
|
||
len = target_write_memory_partial (lma, buffer,
|
||
this_transfer, &err);
|
||
if (err)
|
||
break;
|
||
if (validate_download)
|
||
{
|
||
/* Broken memories and broken monitors manifest
|
||
themselves here when bring new computers to
|
||
life. This doubles already slow downloads. */
|
||
/* NOTE: cagney/1999-10-18: A more efficient
|
||
implementation might add a verify_memory()
|
||
method to the target vector and then use
|
||
that. remote.c could implement that method
|
||
using the ``qCRC'' packet. */
|
||
char *check = xmalloc (len);
|
||
struct cleanup *verify_cleanups =
|
||
make_cleanup (xfree, check);
|
||
|
||
if (target_read_memory (lma, check, len) != 0)
|
||
error ("Download verify read failed at 0x%s",
|
||
paddr (lma));
|
||
if (memcmp (buffer, check, len) != 0)
|
||
error ("Download verify compare failed at 0x%s",
|
||
paddr (lma));
|
||
do_cleanups (verify_cleanups);
|
||
}
|
||
args->data_count += len;
|
||
lma += len;
|
||
buffer += len;
|
||
args->write_count += 1;
|
||
sent += len;
|
||
if (quit_flag
|
||
|| (ui_load_progress_hook != NULL
|
||
&& ui_load_progress_hook (sect_name, sent)))
|
||
error ("Canceled the download");
|
||
|
||
if (show_load_progress != NULL)
|
||
show_load_progress (sect_name, sent, size,
|
||
args->data_count, args->total_size);
|
||
}
|
||
while (sent < size);
|
||
|
||
if (err != 0)
|
||
error ("Memory access error while loading section %s.", sect_name);
|
||
|
||
do_cleanups (old_chain);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
generic_load (char *args, int from_tty)
|
||
{
|
||
asection *s;
|
||
bfd *loadfile_bfd;
|
||
time_t start_time, end_time; /* Start and end times of download */
|
||
char *filename;
|
||
struct cleanup *old_cleanups;
|
||
char *offptr;
|
||
struct load_section_data cbdata;
|
||
CORE_ADDR entry;
|
||
|
||
cbdata.load_offset = 0; /* Offset to add to vma for each section. */
|
||
cbdata.write_count = 0; /* Number of writes needed. */
|
||
cbdata.data_count = 0; /* Number of bytes written to target memory. */
|
||
cbdata.total_size = 0; /* Total size of all bfd sectors. */
|
||
|
||
/* Parse the input argument - the user can specify a load offset as
|
||
a second argument. */
|
||
filename = xmalloc (strlen (args) + 1);
|
||
old_cleanups = make_cleanup (xfree, filename);
|
||
strcpy (filename, args);
|
||
offptr = strchr (filename, ' ');
|
||
if (offptr != NULL)
|
||
{
|
||
char *endptr;
|
||
|
||
cbdata.load_offset = strtoul (offptr, &endptr, 0);
|
||
if (offptr == endptr)
|
||
error ("Invalid download offset:%s\n", offptr);
|
||
*offptr = '\0';
|
||
}
|
||
else
|
||
cbdata.load_offset = 0;
|
||
|
||
/* Open the file for loading. */
|
||
loadfile_bfd = bfd_openr (filename, gnutarget);
|
||
if (loadfile_bfd == NULL)
|
||
{
|
||
perror_with_name (filename);
|
||
return;
|
||
}
|
||
|
||
/* FIXME: should be checking for errors from bfd_close (for one thing,
|
||
on error it does not free all the storage associated with the
|
||
bfd). */
|
||
make_cleanup_bfd_close (loadfile_bfd);
|
||
|
||
if (!bfd_check_format (loadfile_bfd, bfd_object))
|
||
{
|
||
error ("\"%s\" is not an object file: %s", filename,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
|
||
(void *) &cbdata.total_size);
|
||
|
||
start_time = time (NULL);
|
||
|
||
bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
|
||
|
||
end_time = time (NULL);
|
||
|
||
entry = bfd_get_start_address (loadfile_bfd);
|
||
ui_out_text (uiout, "Start address ");
|
||
ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
|
||
ui_out_text (uiout, ", load size ");
|
||
ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
|
||
ui_out_text (uiout, "\n");
|
||
/* We were doing this in remote-mips.c, I suspect it is right
|
||
for other targets too. */
|
||
write_pc (entry);
|
||
|
||
/* FIXME: are we supposed to call symbol_file_add or not? According to
|
||
a comment from remote-mips.c (where a call to symbol_file_add was
|
||
commented out), making the call confuses GDB if more than one file is
|
||
loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
|
||
does. */
|
||
|
||
print_transfer_performance (gdb_stdout, cbdata.data_count,
|
||
cbdata.write_count, end_time - start_time);
|
||
|
||
do_cleanups (old_cleanups);
|
||
}
|
||
|
||
/* Report how fast the transfer went. */
|
||
|
||
/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
|
||
replaced by print_transfer_performance (with a very different
|
||
function signature). */
|
||
|
||
void
|
||
report_transfer_performance (unsigned long data_count, time_t start_time,
|
||
time_t end_time)
|
||
{
|
||
print_transfer_performance (gdb_stdout, data_count,
|
||
end_time - start_time, 0);
|
||
}
|
||
|
||
void
|
||
print_transfer_performance (struct ui_file *stream,
|
||
unsigned long data_count,
|
||
unsigned long write_count,
|
||
unsigned long time_count)
|
||
{
|
||
ui_out_text (uiout, "Transfer rate: ");
|
||
if (time_count > 0)
|
||
{
|
||
ui_out_field_fmt (uiout, "transfer-rate", "%lu",
|
||
(data_count * 8) / time_count);
|
||
ui_out_text (uiout, " bits/sec");
|
||
}
|
||
else
|
||
{
|
||
ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
|
||
ui_out_text (uiout, " bits in <1 sec");
|
||
}
|
||
if (write_count > 0)
|
||
{
|
||
ui_out_text (uiout, ", ");
|
||
ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
|
||
ui_out_text (uiout, " bytes/write");
|
||
}
|
||
ui_out_text (uiout, ".\n");
|
||
}
|
||
|
||
/* This function allows the addition of incrementally linked object files.
|
||
It does not modify any state in the target, only in the debugger. */
|
||
/* Note: ezannoni 2000-04-13 This function/command used to have a
|
||
special case syntax for the rombug target (Rombug is the boot
|
||
monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
|
||
rombug case, the user doesn't need to supply a text address,
|
||
instead a call to target_link() (in target.c) would supply the
|
||
value to use. We are now discontinuing this type of ad hoc syntax. */
|
||
|
||
/* ARGSUSED */
|
||
static void
|
||
add_symbol_file_command (char *args, int from_tty)
|
||
{
|
||
char *filename = NULL;
|
||
int flags = OBJF_USERLOADED;
|
||
char *arg;
|
||
int expecting_option = 0;
|
||
int section_index = 0;
|
||
int argcnt = 0;
|
||
int sec_num = 0;
|
||
int i;
|
||
int expecting_sec_name = 0;
|
||
int expecting_sec_addr = 0;
|
||
|
||
struct
|
||
{
|
||
char *name;
|
||
char *value;
|
||
} sect_opts[SECT_OFF_MAX];
|
||
|
||
struct section_addr_info section_addrs;
|
||
struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
|
||
|
||
dont_repeat ();
|
||
|
||
if (args == NULL)
|
||
error ("add-symbol-file takes a file name and an address");
|
||
|
||
/* Make a copy of the string that we can safely write into. */
|
||
args = xstrdup (args);
|
||
|
||
/* Ensure section_addrs is initialized */
|
||
memset (§ion_addrs, 0, sizeof (section_addrs));
|
||
|
||
while (*args != '\000')
|
||
{
|
||
/* Any leading spaces? */
|
||
while (isspace (*args))
|
||
args++;
|
||
|
||
/* Point arg to the beginning of the argument. */
|
||
arg = args;
|
||
|
||
/* Move args pointer over the argument. */
|
||
while ((*args != '\000') && !isspace (*args))
|
||
args++;
|
||
|
||
/* If there are more arguments, terminate arg and
|
||
proceed past it. */
|
||
if (*args != '\000')
|
||
*args++ = '\000';
|
||
|
||
/* Now process the argument. */
|
||
if (argcnt == 0)
|
||
{
|
||
/* The first argument is the file name. */
|
||
filename = tilde_expand (arg);
|
||
make_cleanup (xfree, filename);
|
||
}
|
||
else
|
||
if (argcnt == 1)
|
||
{
|
||
/* The second argument is always the text address at which
|
||
to load the program. */
|
||
sect_opts[section_index].name = ".text";
|
||
sect_opts[section_index].value = arg;
|
||
section_index++;
|
||
}
|
||
else
|
||
{
|
||
/* It's an option (starting with '-') or it's an argument
|
||
to an option */
|
||
|
||
if (*arg == '-')
|
||
{
|
||
if (strcmp (arg, "-mapped") == 0)
|
||
flags |= OBJF_MAPPED;
|
||
else
|
||
if (strcmp (arg, "-readnow") == 0)
|
||
flags |= OBJF_READNOW;
|
||
else
|
||
if (strcmp (arg, "-s") == 0)
|
||
{
|
||
if (section_index >= SECT_OFF_MAX)
|
||
error ("Too many sections specified.");
|
||
expecting_sec_name = 1;
|
||
expecting_sec_addr = 1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (expecting_sec_name)
|
||
{
|
||
sect_opts[section_index].name = arg;
|
||
expecting_sec_name = 0;
|
||
}
|
||
else
|
||
if (expecting_sec_addr)
|
||
{
|
||
sect_opts[section_index].value = arg;
|
||
expecting_sec_addr = 0;
|
||
section_index++;
|
||
}
|
||
else
|
||
error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
|
||
}
|
||
}
|
||
argcnt++;
|
||
}
|
||
|
||
/* Print the prompt for the query below. And save the arguments into
|
||
a sect_addr_info structure to be passed around to other
|
||
functions. We have to split this up into separate print
|
||
statements because local_hex_string returns a local static
|
||
string. */
|
||
|
||
printf_filtered ("add symbol table from file \"%s\" at\n", filename);
|
||
for (i = 0; i < section_index; i++)
|
||
{
|
||
CORE_ADDR addr;
|
||
char *val = sect_opts[i].value;
|
||
char *sec = sect_opts[i].name;
|
||
|
||
val = sect_opts[i].value;
|
||
if (val[0] == '0' && val[1] == 'x')
|
||
addr = strtoul (val+2, NULL, 16);
|
||
else
|
||
addr = strtoul (val, NULL, 10);
|
||
|
||
/* Here we store the section offsets in the order they were
|
||
entered on the command line. */
|
||
section_addrs.other[sec_num].name = sec;
|
||
section_addrs.other[sec_num].addr = addr;
|
||
printf_filtered ("\t%s_addr = %s\n",
|
||
sec,
|
||
local_hex_string ((unsigned long)addr));
|
||
sec_num++;
|
||
|
||
/* The object's sections are initialized when a
|
||
call is made to build_objfile_section_table (objfile).
|
||
This happens in reread_symbols.
|
||
At this point, we don't know what file type this is,
|
||
so we can't determine what section names are valid. */
|
||
}
|
||
|
||
if (from_tty && (!query ("%s", "")))
|
||
error ("Not confirmed.");
|
||
|
||
symbol_file_add (filename, from_tty, §ion_addrs, 0, flags);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
reinit_frame_cache ();
|
||
do_cleanups (my_cleanups);
|
||
}
|
||
|
||
static void
|
||
add_shared_symbol_files_command (char *args, int from_tty)
|
||
{
|
||
#ifdef ADD_SHARED_SYMBOL_FILES
|
||
ADD_SHARED_SYMBOL_FILES (args, from_tty);
|
||
#else
|
||
error ("This command is not available in this configuration of GDB.");
|
||
#endif
|
||
}
|
||
|
||
/* Re-read symbols if a symbol-file has changed. */
|
||
void
|
||
reread_symbols (void)
|
||
{
|
||
struct objfile *objfile;
|
||
long new_modtime;
|
||
int reread_one = 0;
|
||
struct stat new_statbuf;
|
||
int res;
|
||
|
||
/* With the addition of shared libraries, this should be modified,
|
||
the load time should be saved in the partial symbol tables, since
|
||
different tables may come from different source files. FIXME.
|
||
This routine should then walk down each partial symbol table
|
||
and see if the symbol table that it originates from has been changed */
|
||
|
||
for (objfile = object_files; objfile; objfile = objfile->next)
|
||
{
|
||
if (objfile->obfd)
|
||
{
|
||
#ifdef IBM6000_TARGET
|
||
/* If this object is from a shared library, then you should
|
||
stat on the library name, not member name. */
|
||
|
||
if (objfile->obfd->my_archive)
|
||
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
|
||
else
|
||
#endif
|
||
res = stat (objfile->name, &new_statbuf);
|
||
if (res != 0)
|
||
{
|
||
/* FIXME, should use print_sys_errmsg but it's not filtered. */
|
||
printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
|
||
objfile->name);
|
||
continue;
|
||
}
|
||
new_modtime = new_statbuf.st_mtime;
|
||
if (new_modtime != objfile->mtime)
|
||
{
|
||
struct cleanup *old_cleanups;
|
||
struct section_offsets *offsets;
|
||
int num_offsets;
|
||
char *obfd_filename;
|
||
|
||
printf_filtered ("`%s' has changed; re-reading symbols.\n",
|
||
objfile->name);
|
||
|
||
/* There are various functions like symbol_file_add,
|
||
symfile_bfd_open, syms_from_objfile, etc., which might
|
||
appear to do what we want. But they have various other
|
||
effects which we *don't* want. So we just do stuff
|
||
ourselves. We don't worry about mapped files (for one thing,
|
||
any mapped file will be out of date). */
|
||
|
||
/* If we get an error, blow away this objfile (not sure if
|
||
that is the correct response for things like shared
|
||
libraries). */
|
||
old_cleanups = make_cleanup_free_objfile (objfile);
|
||
/* We need to do this whenever any symbols go away. */
|
||
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
|
||
|
||
/* Clean up any state BFD has sitting around. We don't need
|
||
to close the descriptor but BFD lacks a way of closing the
|
||
BFD without closing the descriptor. */
|
||
obfd_filename = bfd_get_filename (objfile->obfd);
|
||
if (!bfd_close (objfile->obfd))
|
||
error ("Can't close BFD for %s: %s", objfile->name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
objfile->obfd = bfd_openr (obfd_filename, gnutarget);
|
||
if (objfile->obfd == NULL)
|
||
error ("Can't open %s to read symbols.", objfile->name);
|
||
/* bfd_openr sets cacheable to true, which is what we want. */
|
||
if (!bfd_check_format (objfile->obfd, bfd_object))
|
||
error ("Can't read symbols from %s: %s.", objfile->name,
|
||
bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* Save the offsets, we will nuke them with the rest of the
|
||
psymbol_obstack. */
|
||
num_offsets = objfile->num_sections;
|
||
offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
|
||
memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
|
||
|
||
/* Nuke all the state that we will re-read. Much of the following
|
||
code which sets things to NULL really is necessary to tell
|
||
other parts of GDB that there is nothing currently there. */
|
||
|
||
/* FIXME: Do we have to free a whole linked list, or is this
|
||
enough? */
|
||
if (objfile->global_psymbols.list)
|
||
xmfree (objfile->md, objfile->global_psymbols.list);
|
||
memset (&objfile->global_psymbols, 0,
|
||
sizeof (objfile->global_psymbols));
|
||
if (objfile->static_psymbols.list)
|
||
xmfree (objfile->md, objfile->static_psymbols.list);
|
||
memset (&objfile->static_psymbols, 0,
|
||
sizeof (objfile->static_psymbols));
|
||
|
||
/* Free the obstacks for non-reusable objfiles */
|
||
bcache_xfree (objfile->psymbol_cache);
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
bcache_xfree (objfile->macro_cache);
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
obstack_free (&objfile->psymbol_obstack, 0);
|
||
obstack_free (&objfile->symbol_obstack, 0);
|
||
obstack_free (&objfile->type_obstack, 0);
|
||
objfile->sections = NULL;
|
||
objfile->symtabs = NULL;
|
||
objfile->psymtabs = NULL;
|
||
objfile->free_psymtabs = NULL;
|
||
objfile->msymbols = NULL;
|
||
objfile->minimal_symbol_count = 0;
|
||
memset (&objfile->msymbol_hash, 0,
|
||
sizeof (objfile->msymbol_hash));
|
||
memset (&objfile->msymbol_demangled_hash, 0,
|
||
sizeof (objfile->msymbol_demangled_hash));
|
||
objfile->fundamental_types = NULL;
|
||
if (objfile->sf != NULL)
|
||
{
|
||
(*objfile->sf->sym_finish) (objfile);
|
||
}
|
||
|
||
/* We never make this a mapped file. */
|
||
objfile->md = NULL;
|
||
/* obstack_specify_allocation also initializes the obstack so
|
||
it is empty. */
|
||
objfile->psymbol_cache = bcache_xmalloc ();
|
||
objfile->macro_cache = bcache_xmalloc ();
|
||
obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
|
||
xmalloc, xfree);
|
||
obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
|
||
xmalloc, xfree);
|
||
obstack_specify_allocation (&objfile->type_obstack, 0, 0,
|
||
xmalloc, xfree);
|
||
if (build_objfile_section_table (objfile))
|
||
{
|
||
error ("Can't find the file sections in `%s': %s",
|
||
objfile->name, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
/* We use the same section offsets as from last time. I'm not
|
||
sure whether that is always correct for shared libraries. */
|
||
objfile->section_offsets = (struct section_offsets *)
|
||
obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
|
||
memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
|
||
objfile->num_sections = num_offsets;
|
||
|
||
/* What the hell is sym_new_init for, anyway? The concept of
|
||
distinguishing between the main file and additional files
|
||
in this way seems rather dubious. */
|
||
if (objfile == symfile_objfile)
|
||
{
|
||
(*objfile->sf->sym_new_init) (objfile);
|
||
#ifdef HPUXHPPA
|
||
RESET_HP_UX_GLOBALS ();
|
||
#endif
|
||
}
|
||
|
||
(*objfile->sf->sym_init) (objfile);
|
||
clear_complaints (&symfile_complaints, 1, 1);
|
||
/* The "mainline" parameter is a hideous hack; I think leaving it
|
||
zero is OK since dbxread.c also does what it needs to do if
|
||
objfile->global_psymbols.size is 0. */
|
||
(*objfile->sf->sym_read) (objfile, 0);
|
||
if (!have_partial_symbols () && !have_full_symbols ())
|
||
{
|
||
wrap_here ("");
|
||
printf_filtered ("(no debugging symbols found)\n");
|
||
wrap_here ("");
|
||
}
|
||
objfile->flags |= OBJF_SYMS;
|
||
|
||
/* We're done reading the symbol file; finish off complaints. */
|
||
clear_complaints (&symfile_complaints, 0, 1);
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
|
||
reinit_frame_cache ();
|
||
|
||
/* Discard cleanups as symbol reading was successful. */
|
||
discard_cleanups (old_cleanups);
|
||
|
||
/* If the mtime has changed between the time we set new_modtime
|
||
and now, we *want* this to be out of date, so don't call stat
|
||
again now. */
|
||
objfile->mtime = new_modtime;
|
||
reread_one = 1;
|
||
|
||
/* Call this after reading in a new symbol table to give target
|
||
dependent code a crack at the new symbols. For instance, this
|
||
could be used to update the values of target-specific symbols GDB
|
||
needs to keep track of (such as _sigtramp, or whatever). */
|
||
|
||
TARGET_SYMFILE_POSTREAD (objfile);
|
||
|
||
reread_separate_symbols (objfile);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (reread_one)
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
|
||
/* Handle separate debug info for OBJFILE, which has just been
|
||
re-read:
|
||
- If we had separate debug info before, but now we don't, get rid
|
||
of the separated objfile.
|
||
- If we didn't have separated debug info before, but now we do,
|
||
read in the new separated debug info file.
|
||
- If the debug link points to a different file, toss the old one
|
||
and read the new one.
|
||
This function does *not* handle the case where objfile is still
|
||
using the same separate debug info file, but that file's timestamp
|
||
has changed. That case should be handled by the loop in
|
||
reread_symbols already. */
|
||
static void
|
||
reread_separate_symbols (struct objfile *objfile)
|
||
{
|
||
char *debug_file;
|
||
unsigned long crc32;
|
||
|
||
/* Does the updated objfile's debug info live in a
|
||
separate file? */
|
||
debug_file = find_separate_debug_file (objfile);
|
||
|
||
if (objfile->separate_debug_objfile)
|
||
{
|
||
/* There are two cases where we need to get rid of
|
||
the old separated debug info objfile:
|
||
- if the new primary objfile doesn't have
|
||
separated debug info, or
|
||
- if the new primary objfile has separate debug
|
||
info, but it's under a different filename.
|
||
|
||
If the old and new objfiles both have separate
|
||
debug info, under the same filename, then we're
|
||
okay --- if the separated file's contents have
|
||
changed, we will have caught that when we
|
||
visited it in this function's outermost
|
||
loop. */
|
||
if (! debug_file
|
||
|| strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
|
||
free_objfile (objfile->separate_debug_objfile);
|
||
}
|
||
|
||
/* If the new objfile has separate debug info, and we
|
||
haven't loaded it already, do so now. */
|
||
if (debug_file
|
||
&& ! objfile->separate_debug_objfile)
|
||
{
|
||
/* Use the same section offset table as objfile itself.
|
||
Preserve the flags from objfile that make sense. */
|
||
objfile->separate_debug_objfile
|
||
= (symbol_file_add_with_addrs_or_offsets
|
||
(debug_file,
|
||
info_verbose, /* from_tty: Don't override the default. */
|
||
0, /* No addr table. */
|
||
objfile->section_offsets, objfile->num_sections,
|
||
0, /* Not mainline. See comments about this above. */
|
||
objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
|
||
| OBJF_SHARED | OBJF_READNOW
|
||
| OBJF_USERLOADED)));
|
||
objfile->separate_debug_objfile->separate_debug_objfile_backlink
|
||
= objfile;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
typedef struct
|
||
{
|
||
char *ext;
|
||
enum language lang;
|
||
}
|
||
filename_language;
|
||
|
||
static filename_language *filename_language_table;
|
||
static int fl_table_size, fl_table_next;
|
||
|
||
static void
|
||
add_filename_language (char *ext, enum language lang)
|
||
{
|
||
if (fl_table_next >= fl_table_size)
|
||
{
|
||
fl_table_size += 10;
|
||
filename_language_table =
|
||
xrealloc (filename_language_table,
|
||
fl_table_size * sizeof (*filename_language_table));
|
||
}
|
||
|
||
filename_language_table[fl_table_next].ext = xstrdup (ext);
|
||
filename_language_table[fl_table_next].lang = lang;
|
||
fl_table_next++;
|
||
}
|
||
|
||
static char *ext_args;
|
||
|
||
static void
|
||
set_ext_lang_command (char *args, int from_tty)
|
||
{
|
||
int i;
|
||
char *cp = ext_args;
|
||
enum language lang;
|
||
|
||
/* First arg is filename extension, starting with '.' */
|
||
if (*cp != '.')
|
||
error ("'%s': Filename extension must begin with '.'", ext_args);
|
||
|
||
/* Find end of first arg. */
|
||
while (*cp && !isspace (*cp))
|
||
cp++;
|
||
|
||
if (*cp == '\0')
|
||
error ("'%s': two arguments required -- filename extension and language",
|
||
ext_args);
|
||
|
||
/* Null-terminate first arg */
|
||
*cp++ = '\0';
|
||
|
||
/* Find beginning of second arg, which should be a source language. */
|
||
while (*cp && isspace (*cp))
|
||
cp++;
|
||
|
||
if (*cp == '\0')
|
||
error ("'%s': two arguments required -- filename extension and language",
|
||
ext_args);
|
||
|
||
/* Lookup the language from among those we know. */
|
||
lang = language_enum (cp);
|
||
|
||
/* Now lookup the filename extension: do we already know it? */
|
||
for (i = 0; i < fl_table_next; i++)
|
||
if (0 == strcmp (ext_args, filename_language_table[i].ext))
|
||
break;
|
||
|
||
if (i >= fl_table_next)
|
||
{
|
||
/* new file extension */
|
||
add_filename_language (ext_args, lang);
|
||
}
|
||
else
|
||
{
|
||
/* redefining a previously known filename extension */
|
||
|
||
/* if (from_tty) */
|
||
/* query ("Really make files of type %s '%s'?", */
|
||
/* ext_args, language_str (lang)); */
|
||
|
||
xfree (filename_language_table[i].ext);
|
||
filename_language_table[i].ext = xstrdup (ext_args);
|
||
filename_language_table[i].lang = lang;
|
||
}
|
||
}
|
||
|
||
static void
|
||
info_ext_lang_command (char *args, int from_tty)
|
||
{
|
||
int i;
|
||
|
||
printf_filtered ("Filename extensions and the languages they represent:");
|
||
printf_filtered ("\n\n");
|
||
for (i = 0; i < fl_table_next; i++)
|
||
printf_filtered ("\t%s\t- %s\n",
|
||
filename_language_table[i].ext,
|
||
language_str (filename_language_table[i].lang));
|
||
}
|
||
|
||
static void
|
||
init_filename_language_table (void)
|
||
{
|
||
if (fl_table_size == 0) /* protect against repetition */
|
||
{
|
||
fl_table_size = 20;
|
||
fl_table_next = 0;
|
||
filename_language_table =
|
||
xmalloc (fl_table_size * sizeof (*filename_language_table));
|
||
add_filename_language (".c", language_c);
|
||
add_filename_language (".C", language_cplus);
|
||
add_filename_language (".cc", language_cplus);
|
||
add_filename_language (".cp", language_cplus);
|
||
add_filename_language (".cpp", language_cplus);
|
||
add_filename_language (".cxx", language_cplus);
|
||
add_filename_language (".c++", language_cplus);
|
||
add_filename_language (".java", language_java);
|
||
add_filename_language (".class", language_java);
|
||
add_filename_language (".m", language_objc);
|
||
add_filename_language (".f", language_fortran);
|
||
add_filename_language (".F", language_fortran);
|
||
add_filename_language (".s", language_asm);
|
||
add_filename_language (".S", language_asm);
|
||
add_filename_language (".pas", language_pascal);
|
||
add_filename_language (".p", language_pascal);
|
||
add_filename_language (".pp", language_pascal);
|
||
}
|
||
}
|
||
|
||
enum language
|
||
deduce_language_from_filename (char *filename)
|
||
{
|
||
int i;
|
||
char *cp;
|
||
|
||
if (filename != NULL)
|
||
if ((cp = strrchr (filename, '.')) != NULL)
|
||
for (i = 0; i < fl_table_next; i++)
|
||
if (strcmp (cp, filename_language_table[i].ext) == 0)
|
||
return filename_language_table[i].lang;
|
||
|
||
return language_unknown;
|
||
}
|
||
|
||
/* allocate_symtab:
|
||
|
||
Allocate and partly initialize a new symbol table. Return a pointer
|
||
to it. error() if no space.
|
||
|
||
Caller must set these fields:
|
||
LINETABLE(symtab)
|
||
symtab->blockvector
|
||
symtab->dirname
|
||
symtab->free_code
|
||
symtab->free_ptr
|
||
possibly free_named_symtabs (symtab->filename);
|
||
*/
|
||
|
||
struct symtab *
|
||
allocate_symtab (char *filename, struct objfile *objfile)
|
||
{
|
||
register struct symtab *symtab;
|
||
|
||
symtab = (struct symtab *)
|
||
obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
|
||
memset (symtab, 0, sizeof (*symtab));
|
||
symtab->filename = obsavestring (filename, strlen (filename),
|
||
&objfile->symbol_obstack);
|
||
symtab->fullname = NULL;
|
||
symtab->language = deduce_language_from_filename (filename);
|
||
symtab->debugformat = obsavestring ("unknown", 7,
|
||
&objfile->symbol_obstack);
|
||
|
||
/* Hook it to the objfile it comes from */
|
||
|
||
symtab->objfile = objfile;
|
||
symtab->next = objfile->symtabs;
|
||
objfile->symtabs = symtab;
|
||
|
||
/* FIXME: This should go away. It is only defined for the Z8000,
|
||
and the Z8000 definition of this macro doesn't have anything to
|
||
do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
|
||
here for convenience. */
|
||
#ifdef INIT_EXTRA_SYMTAB_INFO
|
||
INIT_EXTRA_SYMTAB_INFO (symtab);
|
||
#endif
|
||
|
||
return (symtab);
|
||
}
|
||
|
||
struct partial_symtab *
|
||
allocate_psymtab (char *filename, struct objfile *objfile)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
if (objfile->free_psymtabs)
|
||
{
|
||
psymtab = objfile->free_psymtabs;
|
||
objfile->free_psymtabs = psymtab->next;
|
||
}
|
||
else
|
||
psymtab = (struct partial_symtab *)
|
||
obstack_alloc (&objfile->psymbol_obstack,
|
||
sizeof (struct partial_symtab));
|
||
|
||
memset (psymtab, 0, sizeof (struct partial_symtab));
|
||
psymtab->filename = obsavestring (filename, strlen (filename),
|
||
&objfile->psymbol_obstack);
|
||
psymtab->symtab = NULL;
|
||
|
||
/* Prepend it to the psymtab list for the objfile it belongs to.
|
||
Psymtabs are searched in most recent inserted -> least recent
|
||
inserted order. */
|
||
|
||
psymtab->objfile = objfile;
|
||
psymtab->next = objfile->psymtabs;
|
||
objfile->psymtabs = psymtab;
|
||
#if 0
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
psymtab->objfile = objfile;
|
||
psymtab->next = NULL;
|
||
prev_pst = &(objfile->psymtabs);
|
||
while ((*prev_pst) != NULL)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = psymtab;
|
||
}
|
||
#endif
|
||
|
||
return (psymtab);
|
||
}
|
||
|
||
void
|
||
discard_psymtab (struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab **prev_pst;
|
||
|
||
/* From dbxread.c:
|
||
Empty psymtabs happen as a result of header files which don't
|
||
have any symbols in them. There can be a lot of them. But this
|
||
check is wrong, in that a psymtab with N_SLINE entries but
|
||
nothing else is not empty, but we don't realize that. Fixing
|
||
that without slowing things down might be tricky. */
|
||
|
||
/* First, snip it out of the psymtab chain */
|
||
|
||
prev_pst = &(pst->objfile->psymtabs);
|
||
while ((*prev_pst) != pst)
|
||
prev_pst = &((*prev_pst)->next);
|
||
(*prev_pst) = pst->next;
|
||
|
||
/* Next, put it on a free list for recycling */
|
||
|
||
pst->next = pst->objfile->free_psymtabs;
|
||
pst->objfile->free_psymtabs = pst;
|
||
}
|
||
|
||
|
||
/* Reset all data structures in gdb which may contain references to symbol
|
||
table data. */
|
||
|
||
void
|
||
clear_symtab_users (void)
|
||
{
|
||
/* Someday, we should do better than this, by only blowing away
|
||
the things that really need to be blown. */
|
||
clear_value_history ();
|
||
clear_displays ();
|
||
clear_internalvars ();
|
||
breakpoint_re_set ();
|
||
set_default_breakpoint (0, 0, 0, 0);
|
||
clear_current_source_symtab_and_line ();
|
||
clear_pc_function_cache ();
|
||
if (target_new_objfile_hook)
|
||
target_new_objfile_hook (NULL);
|
||
}
|
||
|
||
static void
|
||
clear_symtab_users_cleanup (void *ignore)
|
||
{
|
||
clear_symtab_users ();
|
||
}
|
||
|
||
/* clear_symtab_users_once:
|
||
|
||
This function is run after symbol reading, or from a cleanup.
|
||
If an old symbol table was obsoleted, the old symbol table
|
||
has been blown away, but the other GDB data structures that may
|
||
reference it have not yet been cleared or re-directed. (The old
|
||
symtab was zapped, and the cleanup queued, in free_named_symtab()
|
||
below.)
|
||
|
||
This function can be queued N times as a cleanup, or called
|
||
directly; it will do all the work the first time, and then will be a
|
||
no-op until the next time it is queued. This works by bumping a
|
||
counter at queueing time. Much later when the cleanup is run, or at
|
||
the end of symbol processing (in case the cleanup is discarded), if
|
||
the queued count is greater than the "done-count", we do the work
|
||
and set the done-count to the queued count. If the queued count is
|
||
less than or equal to the done-count, we just ignore the call. This
|
||
is needed because reading a single .o file will often replace many
|
||
symtabs (one per .h file, for example), and we don't want to reset
|
||
the breakpoints N times in the user's face.
|
||
|
||
The reason we both queue a cleanup, and call it directly after symbol
|
||
reading, is because the cleanup protects us in case of errors, but is
|
||
discarded if symbol reading is successful. */
|
||
|
||
#if 0
|
||
/* FIXME: As free_named_symtabs is currently a big noop this function
|
||
is no longer needed. */
|
||
static void clear_symtab_users_once (void);
|
||
|
||
static int clear_symtab_users_queued;
|
||
static int clear_symtab_users_done;
|
||
|
||
static void
|
||
clear_symtab_users_once (void)
|
||
{
|
||
/* Enforce once-per-`do_cleanups'-semantics */
|
||
if (clear_symtab_users_queued <= clear_symtab_users_done)
|
||
return;
|
||
clear_symtab_users_done = clear_symtab_users_queued;
|
||
|
||
clear_symtab_users ();
|
||
}
|
||
#endif
|
||
|
||
/* Delete the specified psymtab, and any others that reference it. */
|
||
|
||
static void
|
||
cashier_psymtab (struct partial_symtab *pst)
|
||
{
|
||
struct partial_symtab *ps, *pprev = NULL;
|
||
int i;
|
||
|
||
/* Find its previous psymtab in the chain */
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
|
||
{
|
||
if (ps == pst)
|
||
break;
|
||
pprev = ps;
|
||
}
|
||
|
||
if (ps)
|
||
{
|
||
/* Unhook it from the chain. */
|
||
if (ps == pst->objfile->psymtabs)
|
||
pst->objfile->psymtabs = ps->next;
|
||
else
|
||
pprev->next = ps->next;
|
||
|
||
/* FIXME, we can't conveniently deallocate the entries in the
|
||
partial_symbol lists (global_psymbols/static_psymbols) that
|
||
this psymtab points to. These just take up space until all
|
||
the psymtabs are reclaimed. Ditto the dependencies list and
|
||
filename, which are all in the psymbol_obstack. */
|
||
|
||
/* We need to cashier any psymtab that has this one as a dependency... */
|
||
again:
|
||
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
|
||
{
|
||
for (i = 0; i < ps->number_of_dependencies; i++)
|
||
{
|
||
if (ps->dependencies[i] == pst)
|
||
{
|
||
cashier_psymtab (ps);
|
||
goto again; /* Must restart, chain has been munged. */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If a symtab or psymtab for filename NAME is found, free it along
|
||
with any dependent breakpoints, displays, etc.
|
||
Used when loading new versions of object modules with the "add-file"
|
||
command. This is only called on the top-level symtab or psymtab's name;
|
||
it is not called for subsidiary files such as .h files.
|
||
|
||
Return value is 1 if we blew away the environment, 0 if not.
|
||
FIXME. The return value appears to never be used.
|
||
|
||
FIXME. I think this is not the best way to do this. We should
|
||
work on being gentler to the environment while still cleaning up
|
||
all stray pointers into the freed symtab. */
|
||
|
||
int
|
||
free_named_symtabs (char *name)
|
||
{
|
||
#if 0
|
||
/* FIXME: With the new method of each objfile having it's own
|
||
psymtab list, this function needs serious rethinking. In particular,
|
||
why was it ever necessary to toss psymtabs with specific compilation
|
||
unit filenames, as opposed to all psymtabs from a particular symbol
|
||
file? -- fnf
|
||
Well, the answer is that some systems permit reloading of particular
|
||
compilation units. We want to blow away any old info about these
|
||
compilation units, regardless of which objfiles they arrived in. --gnu. */
|
||
|
||
register struct symtab *s;
|
||
register struct symtab *prev;
|
||
register struct partial_symtab *ps;
|
||
struct blockvector *bv;
|
||
int blewit = 0;
|
||
|
||
/* We only wack things if the symbol-reload switch is set. */
|
||
if (!symbol_reloading)
|
||
return 0;
|
||
|
||
/* Some symbol formats have trouble providing file names... */
|
||
if (name == 0 || *name == '\0')
|
||
return 0;
|
||
|
||
/* Look for a psymtab with the specified name. */
|
||
|
||
again2:
|
||
for (ps = partial_symtab_list; ps; ps = ps->next)
|
||
{
|
||
if (STREQ (name, ps->filename))
|
||
{
|
||
cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
|
||
goto again2; /* Must restart, chain has been munged */
|
||
}
|
||
}
|
||
|
||
/* Look for a symtab with the specified name. */
|
||
|
||
for (s = symtab_list; s; s = s->next)
|
||
{
|
||
if (STREQ (name, s->filename))
|
||
break;
|
||
prev = s;
|
||
}
|
||
|
||
if (s)
|
||
{
|
||
if (s == symtab_list)
|
||
symtab_list = s->next;
|
||
else
|
||
prev->next = s->next;
|
||
|
||
/* For now, queue a delete for all breakpoints, displays, etc., whether
|
||
or not they depend on the symtab being freed. This should be
|
||
changed so that only those data structures affected are deleted. */
|
||
|
||
/* But don't delete anything if the symtab is empty.
|
||
This test is necessary due to a bug in "dbxread.c" that
|
||
causes empty symtabs to be created for N_SO symbols that
|
||
contain the pathname of the object file. (This problem
|
||
has been fixed in GDB 3.9x). */
|
||
|
||
bv = BLOCKVECTOR (s);
|
||
if (BLOCKVECTOR_NBLOCKS (bv) > 2
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
|
||
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
|
||
{
|
||
complaint (&symfile_complaints, "Replacing old symbols for `%s'",
|
||
name);
|
||
clear_symtab_users_queued++;
|
||
make_cleanup (clear_symtab_users_once, 0);
|
||
blewit = 1;
|
||
}
|
||
else
|
||
{
|
||
complaint (&symfile_complaints, "Empty symbol table found for `%s'",
|
||
name);
|
||
}
|
||
|
||
free_symtab (s);
|
||
}
|
||
else
|
||
{
|
||
/* It is still possible that some breakpoints will be affected
|
||
even though no symtab was found, since the file might have
|
||
been compiled without debugging, and hence not be associated
|
||
with a symtab. In order to handle this correctly, we would need
|
||
to keep a list of text address ranges for undebuggable files.
|
||
For now, we do nothing, since this is a fairly obscure case. */
|
||
;
|
||
}
|
||
|
||
/* FIXME, what about the minimal symbol table? */
|
||
return blewit;
|
||
#else
|
||
return (0);
|
||
#endif
|
||
}
|
||
|
||
/* Allocate and partially fill a partial symtab. It will be
|
||
completely filled at the end of the symbol list.
|
||
|
||
FILENAME is the name of the symbol-file we are reading from. */
|
||
|
||
struct partial_symtab *
|
||
start_psymtab_common (struct objfile *objfile,
|
||
struct section_offsets *section_offsets, char *filename,
|
||
CORE_ADDR textlow, struct partial_symbol **global_syms,
|
||
struct partial_symbol **static_syms)
|
||
{
|
||
struct partial_symtab *psymtab;
|
||
|
||
psymtab = allocate_psymtab (filename, objfile);
|
||
psymtab->section_offsets = section_offsets;
|
||
psymtab->textlow = textlow;
|
||
psymtab->texthigh = psymtab->textlow; /* default */
|
||
psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
|
||
psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
|
||
return (psymtab);
|
||
}
|
||
|
||
/* Add a symbol with a long value to a psymtab.
|
||
Since one arg is a struct, we pass in a ptr and deref it (sigh). */
|
||
|
||
void
|
||
add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
|
||
enum address_class class,
|
||
struct psymbol_allocation_list *list, long val, /* Value as a long */
|
||
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
||
enum language language, struct objfile *objfile)
|
||
{
|
||
register struct partial_symbol *psym;
|
||
char *buf = alloca (namelength + 1);
|
||
/* psymbol is static so that there will be no uninitialized gaps in the
|
||
structure which might contain random data, causing cache misses in
|
||
bcache. */
|
||
static struct partial_symbol psymbol;
|
||
|
||
/* Create local copy of the partial symbol */
|
||
memcpy (buf, name, namelength);
|
||
buf[namelength] = '\0';
|
||
SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
|
||
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
|
||
if (val != 0)
|
||
{
|
||
SYMBOL_VALUE (&psymbol) = val;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
|
||
}
|
||
SYMBOL_SECTION (&psymbol) = 0;
|
||
SYMBOL_LANGUAGE (&psymbol) = language;
|
||
PSYMBOL_NAMESPACE (&psymbol) = namespace;
|
||
PSYMBOL_CLASS (&psymbol) = class;
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
|
||
|
||
/* Stash the partial symbol away in the cache */
|
||
psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
|
||
|
||
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
||
if (list->next >= list->list + list->size)
|
||
{
|
||
extend_psymbol_list (list, objfile);
|
||
}
|
||
*list->next++ = psym;
|
||
OBJSTAT (objfile, n_psyms++);
|
||
}
|
||
|
||
/* Add a symbol with a long value to a psymtab. This differs from
|
||
* add_psymbol_to_list above in taking both a mangled and a demangled
|
||
* name. */
|
||
|
||
void
|
||
add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
|
||
int dem_namelength, namespace_enum namespace,
|
||
enum address_class class,
|
||
struct psymbol_allocation_list *list, long val, /* Value as a long */
|
||
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
|
||
enum language language,
|
||
struct objfile *objfile)
|
||
{
|
||
register struct partial_symbol *psym;
|
||
char *buf = alloca (namelength + 1);
|
||
/* psymbol is static so that there will be no uninitialized gaps in the
|
||
structure which might contain random data, causing cache misses in
|
||
bcache. */
|
||
static struct partial_symbol psymbol;
|
||
|
||
/* Create local copy of the partial symbol */
|
||
|
||
memcpy (buf, name, namelength);
|
||
buf[namelength] = '\0';
|
||
SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
|
||
|
||
buf = alloca (dem_namelength + 1);
|
||
memcpy (buf, dem_name, dem_namelength);
|
||
buf[dem_namelength] = '\0';
|
||
|
||
switch (language)
|
||
{
|
||
case language_c:
|
||
case language_cplus:
|
||
SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
|
||
bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
|
||
break;
|
||
/* FIXME What should be done for the default case? Ignoring for now. */
|
||
}
|
||
|
||
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
|
||
if (val != 0)
|
||
{
|
||
SYMBOL_VALUE (&psymbol) = val;
|
||
}
|
||
else
|
||
{
|
||
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
|
||
}
|
||
SYMBOL_SECTION (&psymbol) = 0;
|
||
SYMBOL_LANGUAGE (&psymbol) = language;
|
||
PSYMBOL_NAMESPACE (&psymbol) = namespace;
|
||
PSYMBOL_CLASS (&psymbol) = class;
|
||
SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
|
||
|
||
/* Stash the partial symbol away in the cache */
|
||
psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
|
||
|
||
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
|
||
if (list->next >= list->list + list->size)
|
||
{
|
||
extend_psymbol_list (list, objfile);
|
||
}
|
||
*list->next++ = psym;
|
||
OBJSTAT (objfile, n_psyms++);
|
||
}
|
||
|
||
/* Initialize storage for partial symbols. */
|
||
|
||
void
|
||
init_psymbol_list (struct objfile *objfile, int total_symbols)
|
||
{
|
||
/* Free any previously allocated psymbol lists. */
|
||
|
||
if (objfile->global_psymbols.list)
|
||
{
|
||
xmfree (objfile->md, objfile->global_psymbols.list);
|
||
}
|
||
if (objfile->static_psymbols.list)
|
||
{
|
||
xmfree (objfile->md, objfile->static_psymbols.list);
|
||
}
|
||
|
||
/* Current best guess is that approximately a twentieth
|
||
of the total symbols (in a debugging file) are global or static
|
||
oriented symbols */
|
||
|
||
objfile->global_psymbols.size = total_symbols / 10;
|
||
objfile->static_psymbols.size = total_symbols / 10;
|
||
|
||
if (objfile->global_psymbols.size > 0)
|
||
{
|
||
objfile->global_psymbols.next =
|
||
objfile->global_psymbols.list = (struct partial_symbol **)
|
||
xmmalloc (objfile->md, (objfile->global_psymbols.size
|
||
* sizeof (struct partial_symbol *)));
|
||
}
|
||
if (objfile->static_psymbols.size > 0)
|
||
{
|
||
objfile->static_psymbols.next =
|
||
objfile->static_psymbols.list = (struct partial_symbol **)
|
||
xmmalloc (objfile->md, (objfile->static_psymbols.size
|
||
* sizeof (struct partial_symbol *)));
|
||
}
|
||
}
|
||
|
||
/* OVERLAYS:
|
||
The following code implements an abstraction for debugging overlay sections.
|
||
|
||
The target model is as follows:
|
||
1) The gnu linker will permit multiple sections to be mapped into the
|
||
same VMA, each with its own unique LMA (or load address).
|
||
2) It is assumed that some runtime mechanism exists for mapping the
|
||
sections, one by one, from the load address into the VMA address.
|
||
3) This code provides a mechanism for gdb to keep track of which
|
||
sections should be considered to be mapped from the VMA to the LMA.
|
||
This information is used for symbol lookup, and memory read/write.
|
||
For instance, if a section has been mapped then its contents
|
||
should be read from the VMA, otherwise from the LMA.
|
||
|
||
Two levels of debugger support for overlays are available. One is
|
||
"manual", in which the debugger relies on the user to tell it which
|
||
overlays are currently mapped. This level of support is
|
||
implemented entirely in the core debugger, and the information about
|
||
whether a section is mapped is kept in the objfile->obj_section table.
|
||
|
||
The second level of support is "automatic", and is only available if
|
||
the target-specific code provides functionality to read the target's
|
||
overlay mapping table, and translate its contents for the debugger
|
||
(by updating the mapped state information in the obj_section tables).
|
||
|
||
The interface is as follows:
|
||
User commands:
|
||
overlay map <name> -- tell gdb to consider this section mapped
|
||
overlay unmap <name> -- tell gdb to consider this section unmapped
|
||
overlay list -- list the sections that GDB thinks are mapped
|
||
overlay read-target -- get the target's state of what's mapped
|
||
overlay off/manual/auto -- set overlay debugging state
|
||
Functional interface:
|
||
find_pc_mapped_section(pc): if the pc is in the range of a mapped
|
||
section, return that section.
|
||
find_pc_overlay(pc): find any overlay section that contains
|
||
the pc, either in its VMA or its LMA
|
||
overlay_is_mapped(sect): true if overlay is marked as mapped
|
||
section_is_overlay(sect): true if section's VMA != LMA
|
||
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
|
||
pc_in_unmapped_range(...): true if pc belongs to section's LMA
|
||
sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
|
||
overlay_mapped_address(...): map an address from section's LMA to VMA
|
||
overlay_unmapped_address(...): map an address from section's VMA to LMA
|
||
symbol_overlayed_address(...): Return a "current" address for symbol:
|
||
either in VMA or LMA depending on whether
|
||
the symbol's section is currently mapped
|
||
*/
|
||
|
||
/* Overlay debugging state: */
|
||
|
||
enum overlay_debugging_state overlay_debugging = ovly_off;
|
||
int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
|
||
|
||
/* Target vector for refreshing overlay mapped state */
|
||
static void simple_overlay_update (struct obj_section *);
|
||
void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
|
||
|
||
/* Function: section_is_overlay (SECTION)
|
||
Returns true if SECTION has VMA not equal to LMA, ie.
|
||
SECTION is loaded at an address different from where it will "run". */
|
||
|
||
int
|
||
section_is_overlay (asection *section)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_lma methods. */
|
||
|
||
if (overlay_debugging)
|
||
if (section && section->lma != 0 &&
|
||
section->vma != section->lma)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: overlay_invalidate_all (void)
|
||
Invalidate the mapped state of all overlay sections (mark it as stale). */
|
||
|
||
static void
|
||
overlay_invalidate_all (void)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sect;
|
||
|
||
ALL_OBJSECTIONS (objfile, sect)
|
||
if (section_is_overlay (sect->the_bfd_section))
|
||
sect->ovly_mapped = -1;
|
||
}
|
||
|
||
/* Function: overlay_is_mapped (SECTION)
|
||
Returns true if section is an overlay, and is currently mapped.
|
||
Private: public access is thru function section_is_mapped.
|
||
|
||
Access to the ovly_mapped flag is restricted to this function, so
|
||
that we can do automatic update. If the global flag
|
||
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
|
||
overlay_invalidate_all. If the mapped state of the particular
|
||
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
|
||
|
||
static int
|
||
overlay_is_mapped (struct obj_section *osect)
|
||
{
|
||
if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
|
||
return 0;
|
||
|
||
switch (overlay_debugging)
|
||
{
|
||
default:
|
||
case ovly_off:
|
||
return 0; /* overlay debugging off */
|
||
case ovly_auto: /* overlay debugging automatic */
|
||
/* Unles there is a target_overlay_update function,
|
||
there's really nothing useful to do here (can't really go auto) */
|
||
if (target_overlay_update)
|
||
{
|
||
if (overlay_cache_invalid)
|
||
{
|
||
overlay_invalidate_all ();
|
||
overlay_cache_invalid = 0;
|
||
}
|
||
if (osect->ovly_mapped == -1)
|
||
(*target_overlay_update) (osect);
|
||
}
|
||
/* fall thru to manual case */
|
||
case ovly_on: /* overlay debugging manual */
|
||
return osect->ovly_mapped == 1;
|
||
}
|
||
}
|
||
|
||
/* Function: section_is_mapped
|
||
Returns true if section is an overlay, and is currently mapped. */
|
||
|
||
int
|
||
section_is_mapped (asection *section)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
if (section && section_is_overlay (section))
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (osect->the_bfd_section == section)
|
||
return overlay_is_mapped (osect);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Function: pc_in_unmapped_range
|
||
If PC falls into the lma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_unmapped_range (CORE_ADDR pc, asection *section)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_lma methods. */
|
||
|
||
int size;
|
||
|
||
if (overlay_debugging)
|
||
if (section && section_is_overlay (section))
|
||
{
|
||
size = bfd_get_section_size_before_reloc (section);
|
||
if (section->lma <= pc && pc < section->lma + size)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Function: pc_in_mapped_range
|
||
If PC falls into the vma range of SECTION, return true, else false. */
|
||
|
||
CORE_ADDR
|
||
pc_in_mapped_range (CORE_ADDR pc, asection *section)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_vma methods. */
|
||
|
||
int size;
|
||
|
||
if (overlay_debugging)
|
||
if (section && section_is_overlay (section))
|
||
{
|
||
size = bfd_get_section_size_before_reloc (section);
|
||
if (section->vma <= pc && pc < section->vma + size)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return true if the mapped ranges of sections A and B overlap, false
|
||
otherwise. */
|
||
int
|
||
sections_overlap (asection *a, asection *b)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_vma methods. */
|
||
|
||
CORE_ADDR a_start = a->vma;
|
||
CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
|
||
CORE_ADDR b_start = b->vma;
|
||
CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
|
||
|
||
return (a_start < b_end && b_start < a_end);
|
||
}
|
||
|
||
/* Function: overlay_unmapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the unmapped (load) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_unmapped_address (CORE_ADDR pc, asection *section)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_lma methods. */
|
||
|
||
if (overlay_debugging)
|
||
if (section && section_is_overlay (section) &&
|
||
pc_in_mapped_range (pc, section))
|
||
return pc + section->lma - section->vma;
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Function: overlay_mapped_address (PC, SECTION)
|
||
Returns the address corresponding to PC in the mapped (runtime) range.
|
||
May be the same as PC. */
|
||
|
||
CORE_ADDR
|
||
overlay_mapped_address (CORE_ADDR pc, asection *section)
|
||
{
|
||
/* FIXME: need bfd *, so we can use bfd_section_vma methods. */
|
||
|
||
if (overlay_debugging)
|
||
if (section && section_is_overlay (section) &&
|
||
pc_in_unmapped_range (pc, section))
|
||
return pc + section->vma - section->lma;
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Function: symbol_overlayed_address
|
||
Return one of two addresses (relative to the VMA or to the LMA),
|
||
depending on whether the section is mapped or not. */
|
||
|
||
CORE_ADDR
|
||
symbol_overlayed_address (CORE_ADDR address, asection *section)
|
||
{
|
||
if (overlay_debugging)
|
||
{
|
||
/* If the symbol has no section, just return its regular address. */
|
||
if (section == 0)
|
||
return address;
|
||
/* If the symbol's section is not an overlay, just return its address */
|
||
if (!section_is_overlay (section))
|
||
return address;
|
||
/* If the symbol's section is mapped, just return its address */
|
||
if (section_is_mapped (section))
|
||
return address;
|
||
/*
|
||
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
|
||
* then return its LOADED address rather than its vma address!!
|
||
*/
|
||
return overlay_unmapped_address (address, section);
|
||
}
|
||
return address;
|
||
}
|
||
|
||
/* Function: find_pc_overlay (PC)
|
||
Return the best-match overlay section for PC:
|
||
If PC matches a mapped overlay section's VMA, return that section.
|
||
Else if PC matches an unmapped section's VMA, return that section.
|
||
Else if PC matches an unmapped section's LMA, return that section. */
|
||
|
||
asection *
|
||
find_pc_overlay (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect, *best_match = NULL;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect->the_bfd_section))
|
||
{
|
||
if (pc_in_mapped_range (pc, osect->the_bfd_section))
|
||
{
|
||
if (overlay_is_mapped (osect))
|
||
return osect->the_bfd_section;
|
||
else
|
||
best_match = osect;
|
||
}
|
||
else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
|
||
best_match = osect;
|
||
}
|
||
return best_match ? best_match->the_bfd_section : NULL;
|
||
}
|
||
|
||
/* Function: find_pc_mapped_section (PC)
|
||
If PC falls into the VMA address range of an overlay section that is
|
||
currently marked as MAPPED, return that section. Else return NULL. */
|
||
|
||
asection *
|
||
find_pc_mapped_section (CORE_ADDR pc)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
|
||
overlay_is_mapped (osect))
|
||
return osect->the_bfd_section;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Function: list_overlays_command
|
||
Print a list of mapped sections and their PC ranges */
|
||
|
||
void
|
||
list_overlays_command (char *args, int from_tty)
|
||
{
|
||
int nmapped = 0;
|
||
struct objfile *objfile;
|
||
struct obj_section *osect;
|
||
|
||
if (overlay_debugging)
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (overlay_is_mapped (osect))
|
||
{
|
||
const char *name;
|
||
bfd_vma lma, vma;
|
||
int size;
|
||
|
||
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
|
||
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
|
||
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
|
||
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
|
||
|
||
printf_filtered ("Section %s, loaded at ", name);
|
||
print_address_numeric (lma, 1, gdb_stdout);
|
||
puts_filtered (" - ");
|
||
print_address_numeric (lma + size, 1, gdb_stdout);
|
||
printf_filtered (", mapped at ");
|
||
print_address_numeric (vma, 1, gdb_stdout);
|
||
puts_filtered (" - ");
|
||
print_address_numeric (vma + size, 1, gdb_stdout);
|
||
puts_filtered ("\n");
|
||
|
||
nmapped++;
|
||
}
|
||
if (nmapped == 0)
|
||
printf_filtered ("No sections are mapped.\n");
|
||
}
|
||
|
||
/* Function: map_overlay_command
|
||
Mark the named section as mapped (ie. residing at its VMA address). */
|
||
|
||
void
|
||
map_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile, *objfile2;
|
||
struct obj_section *sec, *sec2;
|
||
asection *bfdsec;
|
||
|
||
if (!overlay_debugging)
|
||
error ("\
|
||
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
||
the 'overlay manual' command.");
|
||
|
||
if (args == 0 || *args == 0)
|
||
error ("Argument required: name of an overlay section");
|
||
|
||
/* First, find a section matching the user supplied argument */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
/* Now, check to see if the section is an overlay. */
|
||
bfdsec = sec->the_bfd_section;
|
||
if (!section_is_overlay (bfdsec))
|
||
continue; /* not an overlay section */
|
||
|
||
/* Mark the overlay as "mapped" */
|
||
sec->ovly_mapped = 1;
|
||
|
||
/* Next, make a pass and unmap any sections that are
|
||
overlapped by this new section: */
|
||
ALL_OBJSECTIONS (objfile2, sec2)
|
||
if (sec2->ovly_mapped
|
||
&& sec != sec2
|
||
&& sec->the_bfd_section != sec2->the_bfd_section
|
||
&& sections_overlap (sec->the_bfd_section,
|
||
sec2->the_bfd_section))
|
||
{
|
||
if (info_verbose)
|
||
printf_filtered ("Note: section %s unmapped by overlap\n",
|
||
bfd_section_name (objfile->obfd,
|
||
sec2->the_bfd_section));
|
||
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
|
||
}
|
||
return;
|
||
}
|
||
error ("No overlay section called %s", args);
|
||
}
|
||
|
||
/* Function: unmap_overlay_command
|
||
Mark the overlay section as unmapped
|
||
(ie. resident in its LMA address range, rather than the VMA range). */
|
||
|
||
void
|
||
unmap_overlay_command (char *args, int from_tty)
|
||
{
|
||
struct objfile *objfile;
|
||
struct obj_section *sec;
|
||
|
||
if (!overlay_debugging)
|
||
error ("\
|
||
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
|
||
the 'overlay manual' command.");
|
||
|
||
if (args == 0 || *args == 0)
|
||
error ("Argument required: name of an overlay section");
|
||
|
||
/* First, find a section matching the user supplied argument */
|
||
ALL_OBJSECTIONS (objfile, sec)
|
||
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
|
||
{
|
||
if (!sec->ovly_mapped)
|
||
error ("Section %s is not mapped", args);
|
||
sec->ovly_mapped = 0;
|
||
return;
|
||
}
|
||
error ("No overlay section called %s", args);
|
||
}
|
||
|
||
/* Function: overlay_auto_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_auto_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_auto;
|
||
enable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_filtered ("Automatic overlay debugging enabled.");
|
||
}
|
||
|
||
/* Function: overlay_manual_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_manual_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_on;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_filtered ("Overlay debugging enabled.");
|
||
}
|
||
|
||
/* Function: overlay_off_command
|
||
A utility command to turn on overlay debugging.
|
||
Possibly this should be done via a set/show command. */
|
||
|
||
static void
|
||
overlay_off_command (char *args, int from_tty)
|
||
{
|
||
overlay_debugging = ovly_off;
|
||
disable_overlay_breakpoints ();
|
||
if (info_verbose)
|
||
printf_filtered ("Overlay debugging disabled.");
|
||
}
|
||
|
||
static void
|
||
overlay_load_command (char *args, int from_tty)
|
||
{
|
||
if (target_overlay_update)
|
||
(*target_overlay_update) (NULL);
|
||
else
|
||
error ("This target does not know how to read its overlay state.");
|
||
}
|
||
|
||
/* Function: overlay_command
|
||
A place-holder for a mis-typed command */
|
||
|
||
/* Command list chain containing all defined "overlay" subcommands. */
|
||
struct cmd_list_element *overlaylist;
|
||
|
||
static void
|
||
overlay_command (char *args, int from_tty)
|
||
{
|
||
printf_unfiltered
|
||
("\"overlay\" must be followed by the name of an overlay command.\n");
|
||
help_list (overlaylist, "overlay ", -1, gdb_stdout);
|
||
}
|
||
|
||
|
||
/* Target Overlays for the "Simplest" overlay manager:
|
||
|
||
This is GDB's default target overlay layer. It works with the
|
||
minimal overlay manager supplied as an example by Cygnus. The
|
||
entry point is via a function pointer "target_overlay_update",
|
||
so targets that use a different runtime overlay manager can
|
||
substitute their own overlay_update function and take over the
|
||
function pointer.
|
||
|
||
The overlay_update function pokes around in the target's data structures
|
||
to see what overlays are mapped, and updates GDB's overlay mapping with
|
||
this information.
|
||
|
||
In this simple implementation, the target data structures are as follows:
|
||
unsigned _novlys; /# number of overlay sections #/
|
||
unsigned _ovly_table[_novlys][4] = {
|
||
{VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
|
||
{..., ..., ..., ...},
|
||
}
|
||
unsigned _novly_regions; /# number of overlay regions #/
|
||
unsigned _ovly_region_table[_novly_regions][3] = {
|
||
{VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
|
||
{..., ..., ...},
|
||
}
|
||
These functions will attempt to update GDB's mappedness state in the
|
||
symbol section table, based on the target's mappedness state.
|
||
|
||
To do this, we keep a cached copy of the target's _ovly_table, and
|
||
attempt to detect when the cached copy is invalidated. The main
|
||
entry point is "simple_overlay_update(SECT), which looks up SECT in
|
||
the cached table and re-reads only the entry for that section from
|
||
the target (whenever possible).
|
||
*/
|
||
|
||
/* Cached, dynamically allocated copies of the target data structures: */
|
||
static unsigned (*cache_ovly_table)[4] = 0;
|
||
#if 0
|
||
static unsigned (*cache_ovly_region_table)[3] = 0;
|
||
#endif
|
||
static unsigned cache_novlys = 0;
|
||
#if 0
|
||
static unsigned cache_novly_regions = 0;
|
||
#endif
|
||
static CORE_ADDR cache_ovly_table_base = 0;
|
||
#if 0
|
||
static CORE_ADDR cache_ovly_region_table_base = 0;
|
||
#endif
|
||
enum ovly_index
|
||
{
|
||
VMA, SIZE, LMA, MAPPED
|
||
};
|
||
#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
|
||
|
||
/* Throw away the cached copy of _ovly_table */
|
||
static void
|
||
simple_free_overlay_table (void)
|
||
{
|
||
if (cache_ovly_table)
|
||
xfree (cache_ovly_table);
|
||
cache_novlys = 0;
|
||
cache_ovly_table = NULL;
|
||
cache_ovly_table_base = 0;
|
||
}
|
||
|
||
#if 0
|
||
/* Throw away the cached copy of _ovly_region_table */
|
||
static void
|
||
simple_free_overlay_region_table (void)
|
||
{
|
||
if (cache_ovly_region_table)
|
||
xfree (cache_ovly_region_table);
|
||
cache_novly_regions = 0;
|
||
cache_ovly_region_table = NULL;
|
||
cache_ovly_region_table_base = 0;
|
||
}
|
||
#endif
|
||
|
||
/* Read an array of ints from the target into a local buffer.
|
||
Convert to host order. int LEN is number of ints */
|
||
static void
|
||
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
|
||
{
|
||
/* FIXME (alloca): Not safe if array is very large. */
|
||
char *buf = alloca (len * TARGET_LONG_BYTES);
|
||
int i;
|
||
|
||
read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
|
||
for (i = 0; i < len; i++)
|
||
myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
|
||
TARGET_LONG_BYTES);
|
||
}
|
||
|
||
/* Find and grab a copy of the target _ovly_table
|
||
(and _novlys, which is needed for the table's size) */
|
||
static int
|
||
simple_read_overlay_table (void)
|
||
{
|
||
struct minimal_symbol *novlys_msym, *ovly_table_msym;
|
||
|
||
simple_free_overlay_table ();
|
||
novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
|
||
if (! novlys_msym)
|
||
{
|
||
error ("Error reading inferior's overlay table: "
|
||
"couldn't find `_novlys' variable\n"
|
||
"in inferior. Use `overlay manual' mode.");
|
||
return 0;
|
||
}
|
||
|
||
ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
|
||
if (! ovly_table_msym)
|
||
{
|
||
error ("Error reading inferior's overlay table: couldn't find "
|
||
"`_ovly_table' array\n"
|
||
"in inferior. Use `overlay manual' mode.");
|
||
return 0;
|
||
}
|
||
|
||
cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
|
||
cache_ovly_table
|
||
= (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
|
||
cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
|
||
read_target_long_array (cache_ovly_table_base,
|
||
(int *) cache_ovly_table,
|
||
cache_novlys * 4);
|
||
|
||
return 1; /* SUCCESS */
|
||
}
|
||
|
||
#if 0
|
||
/* Find and grab a copy of the target _ovly_region_table
|
||
(and _novly_regions, which is needed for the table's size) */
|
||
static int
|
||
simple_read_overlay_region_table (void)
|
||
{
|
||
struct minimal_symbol *msym;
|
||
|
||
simple_free_overlay_region_table ();
|
||
msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
|
||
if (msym != NULL)
|
||
cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
|
||
else
|
||
return 0; /* failure */
|
||
cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
|
||
if (cache_ovly_region_table != NULL)
|
||
{
|
||
msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
|
||
if (msym != NULL)
|
||
{
|
||
cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
|
||
read_target_long_array (cache_ovly_region_table_base,
|
||
(int *) cache_ovly_region_table,
|
||
cache_novly_regions * 3);
|
||
}
|
||
else
|
||
return 0; /* failure */
|
||
}
|
||
else
|
||
return 0; /* failure */
|
||
return 1; /* SUCCESS */
|
||
}
|
||
#endif
|
||
|
||
/* Function: simple_overlay_update_1
|
||
A helper function for simple_overlay_update. Assuming a cached copy
|
||
of _ovly_table exists, look through it to find an entry whose vma,
|
||
lma and size match those of OSECT. Re-read the entry and make sure
|
||
it still matches OSECT (else the table may no longer be valid).
|
||
Set OSECT's mapped state to match the entry. Return: 1 for
|
||
success, 0 for failure. */
|
||
|
||
static int
|
||
simple_overlay_update_1 (struct obj_section *osect)
|
||
{
|
||
int i, size;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
|
||
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{
|
||
read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
|
||
(int *) cache_ovly_table[i], 4);
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
return 1;
|
||
}
|
||
else /* Warning! Warning! Target's ovly table has changed! */
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Function: simple_overlay_update
|
||
If OSECT is NULL, then update all sections' mapped state
|
||
(after re-reading the entire target _ovly_table).
|
||
If OSECT is non-NULL, then try to find a matching entry in the
|
||
cached ovly_table and update only OSECT's mapped state.
|
||
If a cached entry can't be found or the cache isn't valid, then
|
||
re-read the entire cache, and go ahead and update all sections. */
|
||
|
||
static void
|
||
simple_overlay_update (struct obj_section *osect)
|
||
{
|
||
struct objfile *objfile;
|
||
|
||
/* Were we given an osect to look up? NULL means do all of them. */
|
||
if (osect)
|
||
/* Have we got a cached copy of the target's overlay table? */
|
||
if (cache_ovly_table != NULL)
|
||
/* Does its cached location match what's currently in the symtab? */
|
||
if (cache_ovly_table_base ==
|
||
SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
|
||
/* Then go ahead and try to look up this single section in the cache */
|
||
if (simple_overlay_update_1 (osect))
|
||
/* Found it! We're done. */
|
||
return;
|
||
|
||
/* Cached table no good: need to read the entire table anew.
|
||
Or else we want all the sections, in which case it's actually
|
||
more efficient to read the whole table in one block anyway. */
|
||
|
||
if (! simple_read_overlay_table ())
|
||
return;
|
||
|
||
/* Now may as well update all sections, even if only one was requested. */
|
||
ALL_OBJSECTIONS (objfile, osect)
|
||
if (section_is_overlay (osect->the_bfd_section))
|
||
{
|
||
int i, size;
|
||
bfd *obfd = osect->objfile->obfd;
|
||
asection *bsect = osect->the_bfd_section;
|
||
|
||
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
|
||
for (i = 0; i < cache_novlys; i++)
|
||
if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
|
||
&& cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
|
||
/* && cache_ovly_table[i][SIZE] == size */ )
|
||
{ /* obj_section matches i'th entry in ovly_table */
|
||
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
|
||
break; /* finished with inner for loop: break out */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void
|
||
_initialize_symfile (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
c = add_cmd ("symbol-file", class_files, symbol_file_command,
|
||
"Load symbol table from executable file FILE.\n\
|
||
The `file' command can also load symbol tables, as well as setting the file\n\
|
||
to execute.", &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
|
||
"Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
|
||
Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
|
||
ADDR is the starting address of the file's text.\n\
|
||
The optional arguments are section-name section-address pairs and\n\
|
||
should be specified if the data and bss segments are not contiguous\n\
|
||
with the text. SECT is a section name to be loaded at SECT_ADDR.",
|
||
&cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
c = add_cmd ("add-shared-symbol-files", class_files,
|
||
add_shared_symbol_files_command,
|
||
"Load the symbols from shared objects in the dynamic linker's link map.",
|
||
&cmdlist);
|
||
c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
|
||
&cmdlist);
|
||
|
||
c = add_cmd ("load", class_files, load_command,
|
||
"Dynamically load FILE into the running program, and record its symbols\n\
|
||
for access from GDB.", &cmdlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("symbol-reloading", class_support, var_boolean,
|
||
(char *) &symbol_reloading,
|
||
"Set dynamic symbol table reloading multiple times in one run.",
|
||
&setlist),
|
||
&showlist);
|
||
|
||
add_prefix_cmd ("overlay", class_support, overlay_command,
|
||
"Commands for debugging overlays.", &overlaylist,
|
||
"overlay ", 0, &cmdlist);
|
||
|
||
add_com_alias ("ovly", "overlay", class_alias, 1);
|
||
add_com_alias ("ov", "overlay", class_alias, 1);
|
||
|
||
add_cmd ("map-overlay", class_support, map_overlay_command,
|
||
"Assert that an overlay section is mapped.", &overlaylist);
|
||
|
||
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
|
||
"Assert that an overlay section is unmapped.", &overlaylist);
|
||
|
||
add_cmd ("list-overlays", class_support, list_overlays_command,
|
||
"List mappings of overlay sections.", &overlaylist);
|
||
|
||
add_cmd ("manual", class_support, overlay_manual_command,
|
||
"Enable overlay debugging.", &overlaylist);
|
||
add_cmd ("off", class_support, overlay_off_command,
|
||
"Disable overlay debugging.", &overlaylist);
|
||
add_cmd ("auto", class_support, overlay_auto_command,
|
||
"Enable automatic overlay debugging.", &overlaylist);
|
||
add_cmd ("load-target", class_support, overlay_load_command,
|
||
"Read the overlay mapping state from the target.", &overlaylist);
|
||
|
||
/* Filename extension to source language lookup table: */
|
||
init_filename_language_table ();
|
||
c = add_set_cmd ("extension-language", class_files, var_string_noescape,
|
||
(char *) &ext_args,
|
||
"Set mapping between filename extension and source language.\n\
|
||
Usage: set extension-language .foo bar",
|
||
&setlist);
|
||
set_cmd_cfunc (c, set_ext_lang_command);
|
||
|
||
add_info ("extensions", info_ext_lang_command,
|
||
"All filename extensions associated with a source language.");
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("download-write-size", class_obscure,
|
||
var_integer, (char *) &download_write_size,
|
||
"Set the write size used when downloading a program.\n"
|
||
"Only used when downloading a program onto a remote\n"
|
||
"target. Specify zero, or a negative value, to disable\n"
|
||
"blocked writes. The actual size of each transfer is also\n"
|
||
"limited by the size of the target packet and the memory\n"
|
||
"cache.\n",
|
||
&setlist),
|
||
&showlist);
|
||
|
||
debug_file_directory = xstrdup (DEBUGDIR);
|
||
c = (add_set_cmd
|
||
("debug-file-directory", class_support, var_string,
|
||
(char *) &debug_file_directory,
|
||
"Set the directory where separate debug symbols are searched for.\n"
|
||
"Separate debug symbols are first searched for in the same\n"
|
||
"directory as the binary, then in the `" DEBUG_SUBDIRECTORY
|
||
"' subdirectory,\n"
|
||
"and lastly at the path of the directory of the binary with\n"
|
||
"the global debug-file directory prepended\n",
|
||
&setlist));
|
||
add_show_from_set (c, &showlist);
|
||
set_cmd_completer (c, filename_completer);
|
||
|
||
}
|