mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-26 11:33:45 +08:00
7f8acedeeb
The recent commit 421490af33
("gdbserver/linux: Access memory even
if threads are running") caused a regression in
gdb.threads/access-mem-running-thread-exit.exp with gdbserver, which I
somehow missed. Like so:
(gdb) print global_var
Cannot access memory at address 0x555555558010
(gdb) FAIL: gdb.threads/access-mem-running-thread-exit.exp: non-stop: access mem (print global_var after writing, inf=2, iter=1)
The problem starts with GDB telling GDBserver to select a thread, via
the Hg packet, which GDBserver complies with, then that thread exits,
and GDB, without knowing the thread is gone, tries to write to memory,
through the context of the previously selected Hg thread.
GDBserver's GDB-facing memory access routines, gdb_read_memory and
gdb_write_memory, call set_desired_thread to make GDBserver re-select
the thread that GDB has selected with the Hg packet. Since the thread
is gone, set_desired_thread returns false, and the memory access
fails.
Now, to access memory, it doesn't really matter which thread is
selected. All we should need is the target process. Even if the
thread that GDB previously selected is gone, and GDB does not yet know
about that exit, it shouldn't matter, GDBserver should still know
which process that thread belonged to.
Fix this by making GDBserver track the current process separately,
like GDB also does. Add a new set_desired_process routine that is
similar to set_desired_thread, but just sets the current process,
leaving the current thread as NULL. Use it in the GDB-facing memory
read and write routines, to avoid failing if the selected thread is
gone, but the process is still around.
Change-Id: I4ff97cb6f42558efbed224b30d5c71f6112d44cd
260 lines
6.4 KiB
C++
260 lines
6.4 KiB
C++
/* Multi-thread control defs for remote server for GDB.
|
|
Copyright (C) 1993-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GDBSERVER_GDBTHREAD_H
|
|
#define GDBSERVER_GDBTHREAD_H
|
|
|
|
#include "gdbsupport/common-gdbthread.h"
|
|
#include "inferiors.h"
|
|
|
|
#include <list>
|
|
|
|
struct btrace_target_info;
|
|
struct regcache;
|
|
|
|
struct thread_info
|
|
{
|
|
thread_info (ptid_t id, void *target_data)
|
|
: id (id), target_data (target_data)
|
|
{}
|
|
|
|
~thread_info ()
|
|
{
|
|
free_register_cache (this->regcache_data);
|
|
}
|
|
|
|
/* The id of this thread. */
|
|
ptid_t id;
|
|
|
|
void *target_data;
|
|
struct regcache *regcache_data = nullptr;
|
|
|
|
/* The last resume GDB requested on this thread. */
|
|
enum resume_kind last_resume_kind = resume_continue;
|
|
|
|
/* The last wait status reported for this thread. */
|
|
struct target_waitstatus last_status;
|
|
|
|
/* True if LAST_STATUS hasn't been reported to GDB yet. */
|
|
int status_pending_p = 0;
|
|
|
|
/* Given `while-stepping', a thread may be collecting data for more
|
|
than one tracepoint simultaneously. E.g.:
|
|
|
|
ff0001 INSN1 <-- TP1, while-stepping 10 collect $regs
|
|
ff0002 INSN2
|
|
ff0003 INSN3 <-- TP2, collect $regs
|
|
ff0004 INSN4 <-- TP3, while-stepping 10 collect $regs
|
|
ff0005 INSN5
|
|
|
|
Notice that when instruction INSN5 is reached, the while-stepping
|
|
actions of both TP1 and TP3 are still being collected, and that TP2
|
|
had been collected meanwhile. The whole range of ff0001-ff0005
|
|
should be single-stepped, due to at least TP1's while-stepping
|
|
action covering the whole range.
|
|
|
|
On the other hand, the same tracepoint with a while-stepping action
|
|
may be hit by more than one thread simultaneously, hence we can't
|
|
keep the current step count in the tracepoint itself.
|
|
|
|
This is the head of the list of the states of `while-stepping'
|
|
tracepoint actions this thread is now collecting; NULL if empty.
|
|
Each item in the list holds the current step of the while-stepping
|
|
action. */
|
|
struct wstep_state *while_stepping = nullptr;
|
|
|
|
/* Branch trace target information for this thread. */
|
|
struct btrace_target_info *btrace = nullptr;
|
|
};
|
|
|
|
extern std::list<thread_info *> all_threads;
|
|
|
|
void remove_thread (struct thread_info *thread);
|
|
struct thread_info *add_thread (ptid_t ptid, void *target_data);
|
|
|
|
/* Return a pointer to the first thread, or NULL if there isn't one. */
|
|
|
|
struct thread_info *get_first_thread (void);
|
|
|
|
struct thread_info *find_thread_ptid (ptid_t ptid);
|
|
|
|
/* Find any thread of the PID process. Returns NULL if none is
|
|
found. */
|
|
struct thread_info *find_any_thread_of_pid (int pid);
|
|
|
|
/* Find the first thread for which FUNC returns true. Return NULL if no thread
|
|
satisfying FUNC is found. */
|
|
|
|
template <typename Func>
|
|
static thread_info *
|
|
find_thread (Func func)
|
|
{
|
|
std::list<thread_info *>::iterator next, cur = all_threads.begin ();
|
|
|
|
while (cur != all_threads.end ())
|
|
{
|
|
next = cur;
|
|
next++;
|
|
|
|
if (func (*cur))
|
|
return *cur;
|
|
|
|
cur = next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Like the above, but only consider threads with pid PID. */
|
|
|
|
template <typename Func>
|
|
static thread_info *
|
|
find_thread (int pid, Func func)
|
|
{
|
|
return find_thread ([&] (thread_info *thread)
|
|
{
|
|
return thread->id.pid () == pid && func (thread);
|
|
});
|
|
}
|
|
|
|
/* Find the first thread that matches FILTER for which FUNC returns true.
|
|
Return NULL if no thread satisfying these conditions is found. */
|
|
|
|
template <typename Func>
|
|
static thread_info *
|
|
find_thread (ptid_t filter, Func func)
|
|
{
|
|
return find_thread ([&] (thread_info *thread) {
|
|
return thread->id.matches (filter) && func (thread);
|
|
});
|
|
}
|
|
|
|
/* Invoke FUNC for each thread. */
|
|
|
|
template <typename Func>
|
|
static void
|
|
for_each_thread (Func func)
|
|
{
|
|
std::list<thread_info *>::iterator next, cur = all_threads.begin ();
|
|
|
|
while (cur != all_threads.end ())
|
|
{
|
|
next = cur;
|
|
next++;
|
|
func (*cur);
|
|
cur = next;
|
|
}
|
|
}
|
|
|
|
/* Like the above, but only consider threads with pid PID. */
|
|
|
|
template <typename Func>
|
|
static void
|
|
for_each_thread (int pid, Func func)
|
|
{
|
|
for_each_thread ([&] (thread_info *thread)
|
|
{
|
|
if (pid == thread->id.pid ())
|
|
func (thread);
|
|
});
|
|
}
|
|
|
|
/* Find the a random thread for which FUNC (THREAD) returns true. If
|
|
no entry is found then return NULL. */
|
|
|
|
template <typename Func>
|
|
static thread_info *
|
|
find_thread_in_random (Func func)
|
|
{
|
|
int count = 0;
|
|
int random_selector;
|
|
|
|
/* First count how many interesting entries we have. */
|
|
for_each_thread ([&] (thread_info *thread) {
|
|
if (func (thread))
|
|
count++;
|
|
});
|
|
|
|
if (count == 0)
|
|
return NULL;
|
|
|
|
/* Now randomly pick an entry out of those. */
|
|
random_selector = (int)
|
|
((count * (double) rand ()) / (RAND_MAX + 1.0));
|
|
|
|
thread_info *thread = find_thread ([&] (thread_info *thr_arg) {
|
|
return func (thr_arg) && (random_selector-- == 0);
|
|
});
|
|
|
|
gdb_assert (thread != NULL);
|
|
|
|
return thread;
|
|
}
|
|
|
|
/* Get current thread ID (Linux task ID). */
|
|
#define current_ptid (current_thread->id)
|
|
|
|
/* Get the ptid of THREAD. */
|
|
|
|
static inline ptid_t
|
|
ptid_of (const thread_info *thread)
|
|
{
|
|
return thread->id;
|
|
}
|
|
|
|
/* Get the pid of THREAD. */
|
|
|
|
static inline int
|
|
pid_of (const thread_info *thread)
|
|
{
|
|
return thread->id.pid ();
|
|
}
|
|
|
|
/* Get the lwp of THREAD. */
|
|
|
|
static inline long
|
|
lwpid_of (const thread_info *thread)
|
|
{
|
|
return thread->id.lwp ();
|
|
}
|
|
|
|
/* Switch the current thread. */
|
|
|
|
void switch_to_thread (thread_info *thread);
|
|
|
|
/* Save/restore current thread. */
|
|
|
|
class scoped_restore_current_thread
|
|
{
|
|
public:
|
|
scoped_restore_current_thread ();
|
|
~scoped_restore_current_thread ();
|
|
|
|
DISABLE_COPY_AND_ASSIGN (scoped_restore_current_thread);
|
|
|
|
/* Cancel restoring on scope exit. */
|
|
void dont_restore () { m_dont_restore = true; }
|
|
|
|
private:
|
|
bool m_dont_restore = false;
|
|
process_info *m_process;
|
|
thread_info *m_thread;
|
|
};
|
|
|
|
#endif /* GDBSERVER_GDBTHREAD_H */
|