mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-01 05:55:23 +08:00
f499253491
Suns. Rename to m68k_saved_pc_after_call. * tm-68k-noun.h, tm-sun3.h (SAVED_PC_AFTER_CALL): Use m68k_saved... instead of sun3_saved...
394 lines
10 KiB
C
394 lines
10 KiB
C
/* Target dependent code for the Motorola 68000 series.
|
||
Copyright (C) 1990, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "ieee-float.h"
|
||
#include "frame.h"
|
||
#include "symtab.h"
|
||
|
||
const struct ext_format ext_format_68881 = {
|
||
/* tot sbyte smask expbyte manbyte */
|
||
12, 0, 0x80, 0,1, 4,8 /* mc68881 */
|
||
};
|
||
|
||
|
||
/* Things needed for making the inferior call functions.
|
||
It seems like every m68k based machine has almost identical definitions
|
||
in the individual machine's configuration files. Most other cpu types
|
||
(mips, i386, etc) have routines in their *-tdep.c files to handle this
|
||
for most configurations. The m68k family should be able to do this as
|
||
well. These macros can still be overridden when necessary. */
|
||
|
||
/* Push an empty stack frame, to record the current PC, etc. */
|
||
|
||
void
|
||
m68k_push_dummy_frame ()
|
||
{
|
||
register CORE_ADDR sp = read_register (SP_REGNUM);
|
||
register int regnum;
|
||
char raw_buffer[12];
|
||
|
||
sp = push_word (sp, read_register (PC_REGNUM));
|
||
sp = push_word (sp, read_register (FP_REGNUM));
|
||
write_register (FP_REGNUM, sp);
|
||
#if defined (HAVE_68881)
|
||
for (regnum = FP0_REGNUM + 7; regnum >= FP0_REGNUM; regnum--)
|
||
{
|
||
read_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
||
sp = push_bytes (sp, raw_buffer, 12);
|
||
}
|
||
#endif
|
||
for (regnum = FP_REGNUM - 1; regnum >= 0; regnum--)
|
||
{
|
||
sp = push_word (sp, read_register (regnum));
|
||
}
|
||
sp = push_word (sp, read_register (PS_REGNUM));
|
||
write_register (SP_REGNUM, sp);
|
||
}
|
||
|
||
/* Discard from the stack the innermost frame,
|
||
restoring all saved registers. */
|
||
|
||
void
|
||
m68k_pop_frame ()
|
||
{
|
||
register FRAME frame = get_current_frame ();
|
||
register CORE_ADDR fp;
|
||
register int regnum;
|
||
struct frame_saved_regs fsr;
|
||
struct frame_info *fi;
|
||
char raw_buffer[12];
|
||
|
||
fi = get_frame_info (frame);
|
||
fp = fi -> frame;
|
||
get_frame_saved_regs (fi, &fsr);
|
||
#if defined (HAVE_68881)
|
||
for (regnum = FP0_REGNUM + 7 ; regnum >= FP0_REGNUM ; regnum--)
|
||
{
|
||
if (fsr.regs[regnum])
|
||
{
|
||
read_memory (fsr.regs[regnum], raw_buffer, 12);
|
||
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, 12);
|
||
}
|
||
}
|
||
#endif
|
||
for (regnum = FP_REGNUM - 1 ; regnum >= 0 ; regnum--)
|
||
{
|
||
if (fsr.regs[regnum])
|
||
{
|
||
write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
|
||
}
|
||
}
|
||
if (fsr.regs[PS_REGNUM])
|
||
{
|
||
write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
|
||
}
|
||
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
||
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
||
write_register (SP_REGNUM, fp + 8);
|
||
flush_cached_frames ();
|
||
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
||
read_pc ()));
|
||
}
|
||
|
||
|
||
/* Given an ip value corresponding to the start of a function,
|
||
return the ip of the first instruction after the function
|
||
prologue. This is the generic m68k support. Machines which
|
||
require something different can override the SKIP_PROLOGUE
|
||
macro to point elsewhere.
|
||
|
||
Some instructions which typically may appear in a function
|
||
prologue include:
|
||
|
||
A link instruction, word form:
|
||
|
||
link.w %a6,&0 4e56 XXXX
|
||
|
||
A link instruction, long form:
|
||
|
||
link.l %fp,&F%1 480e XXXX XXXX
|
||
|
||
A movm instruction to preserve integer regs:
|
||
|
||
movm.l &M%1,(4,%sp) 48ef XXXX XXXX
|
||
|
||
A fmovm instruction to preserve float regs:
|
||
|
||
fmovm &FPM%1,(FPO%1,%sp) f237 XXXX XXXX XXXX XXXX
|
||
|
||
Some profiling setup code (FIXME, not recognized yet):
|
||
|
||
lea.l (.L3,%pc),%a1 43fb XXXX XXXX XXXX
|
||
bsr _mcount 61ff XXXX XXXX
|
||
|
||
*/
|
||
|
||
#define P_LINK_L 0x480e
|
||
#define P_LINK_W 0x4e56
|
||
#define P_MOV_L 0x207c
|
||
#define P_JSR 0x4eb9
|
||
#define P_BSR 0x61ff
|
||
#define P_LEA_L 0x43fb
|
||
#define P_MOVM_L 0x48ef
|
||
#define P_FMOVM 0xf237
|
||
#define P_TRAP 0x4e40
|
||
|
||
CORE_ADDR
|
||
m68k_skip_prologue (ip)
|
||
CORE_ADDR ip;
|
||
{
|
||
register CORE_ADDR limit;
|
||
struct symtab_and_line sal;
|
||
register int op;
|
||
|
||
/* Find out if there is a known limit for the extent of the prologue.
|
||
If so, ensure we don't go past it. If not, assume "infinity". */
|
||
|
||
sal = find_pc_line (ip, 0);
|
||
limit = (sal.end) ? sal.end : (CORE_ADDR) ~0;
|
||
|
||
while (ip < limit)
|
||
{
|
||
op = read_memory_integer (ip, 2);
|
||
op &= 0xFFFF;
|
||
|
||
if (op == P_LINK_W)
|
||
{
|
||
ip += 4; /* Skip link.w */
|
||
}
|
||
else if (op == P_LINK_L)
|
||
{
|
||
ip += 6; /* Skip link.l */
|
||
}
|
||
else if (op == P_MOVM_L)
|
||
{
|
||
ip += 6; /* Skip movm.l */
|
||
}
|
||
else if (op == P_FMOVM)
|
||
{
|
||
ip += 10; /* Skip fmovm */
|
||
}
|
||
else
|
||
{
|
||
break; /* Found unknown code, bail out. */
|
||
}
|
||
}
|
||
return (ip);
|
||
}
|
||
|
||
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
||
|
||
#include <sys/procfs.h>
|
||
|
||
/* The /proc interface divides the target machine's register set up into
|
||
two different sets, the general register set (gregset) and the floating
|
||
point register set (fpregset). For each set, there is an ioctl to get
|
||
the current register set and another ioctl to set the current values.
|
||
|
||
The actual structure passed through the ioctl interface is, of course,
|
||
naturally machine dependent, and is different for each set of registers.
|
||
For the m68k for example, the general register set is typically defined
|
||
by:
|
||
|
||
typedef int gregset_t[18];
|
||
|
||
#define R_D0 0
|
||
...
|
||
#define R_PS 17
|
||
|
||
and the floating point set by:
|
||
|
||
typedef struct fpregset {
|
||
int f_pcr;
|
||
int f_psr;
|
||
int f_fpiaddr;
|
||
int f_fpregs[8][3]; (8 regs, 96 bits each)
|
||
} fpregset_t;
|
||
|
||
These routines provide the packing and unpacking of gregset_t and
|
||
fpregset_t formatted data.
|
||
|
||
*/
|
||
|
||
|
||
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
||
unpack the register contents and supply them as gdb's idea of the current
|
||
register values. */
|
||
|
||
void
|
||
supply_gregset (gregsetp)
|
||
gregset_t *gregsetp;
|
||
{
|
||
register int regi;
|
||
register greg_t *regp = (greg_t *) gregsetp;
|
||
|
||
for (regi = 0 ; regi < R_PC ; regi++)
|
||
{
|
||
supply_register (regi, (char *) (regp + regi));
|
||
}
|
||
supply_register (PS_REGNUM, (char *) (regp + R_PS));
|
||
supply_register (PC_REGNUM, (char *) (regp + R_PC));
|
||
}
|
||
|
||
void
|
||
fill_gregset (gregsetp, regno)
|
||
gregset_t *gregsetp;
|
||
int regno;
|
||
{
|
||
register int regi;
|
||
register greg_t *regp = (greg_t *) gregsetp;
|
||
extern char registers[];
|
||
|
||
for (regi = 0 ; regi < R_PC ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
*(regp + regi) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == PS_REGNUM))
|
||
{
|
||
*(regp + R_PS) = *(int *) ®isters[REGISTER_BYTE (PS_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == PC_REGNUM))
|
||
{
|
||
*(regp + R_PC) = *(int *) ®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#if defined (FP0_REGNUM)
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), unpack the register contents and supply them as gdb's
|
||
idea of the current floating point register values. */
|
||
|
||
void
|
||
supply_fpregset (fpregsetp)
|
||
fpregset_t *fpregsetp;
|
||
{
|
||
register int regi;
|
||
char *from;
|
||
|
||
for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
|
||
{
|
||
from = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
|
||
supply_register (regi, from);
|
||
}
|
||
supply_register (FPC_REGNUM, (char *) &(fpregsetp -> f_pcr));
|
||
supply_register (FPS_REGNUM, (char *) &(fpregsetp -> f_psr));
|
||
supply_register (FPI_REGNUM, (char *) &(fpregsetp -> f_fpiaddr));
|
||
}
|
||
|
||
/* Given a pointer to a floating point register set in /proc format
|
||
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
||
of the current floating point register set. If REGNO is -1, update
|
||
them all. */
|
||
|
||
void
|
||
fill_fpregset (fpregsetp, regno)
|
||
fpregset_t *fpregsetp;
|
||
int regno;
|
||
{
|
||
int regi;
|
||
char *to;
|
||
char *from;
|
||
extern char registers[];
|
||
|
||
for (regi = FP0_REGNUM ; regi < FPC_REGNUM ; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
||
to = (char *) &(fpregsetp -> f_fpregs[regi-FP0_REGNUM][0]);
|
||
bcopy (from, to, REGISTER_RAW_SIZE (regi));
|
||
}
|
||
}
|
||
if ((regno == -1) || (regno == FPC_REGNUM))
|
||
{
|
||
fpregsetp -> f_pcr = *(int *) ®isters[REGISTER_BYTE (FPC_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == FPS_REGNUM))
|
||
{
|
||
fpregsetp -> f_psr = *(int *) ®isters[REGISTER_BYTE (FPS_REGNUM)];
|
||
}
|
||
if ((regno == -1) || (regno == FPI_REGNUM))
|
||
{
|
||
fpregsetp -> f_fpiaddr = *(int *) ®isters[REGISTER_BYTE (FPI_REGNUM)];
|
||
}
|
||
}
|
||
|
||
#endif /* defined (FP0_REGNUM) */
|
||
|
||
#endif /* USE_PROC_FS */
|
||
|
||
#ifdef GET_LONGJMP_TARGET
|
||
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
||
We expect the first arg to be a pointer to the jmp_buf structure from which
|
||
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
||
This routine returns true on success. */
|
||
|
||
int
|
||
get_longjmp_target(pc)
|
||
CORE_ADDR *pc;
|
||
{
|
||
CORE_ADDR sp, jb_addr;
|
||
|
||
sp = read_register(SP_REGNUM);
|
||
|
||
if (target_read_memory(sp + SP_ARG0, /* Offset of first arg on stack */
|
||
&jb_addr,
|
||
sizeof(CORE_ADDR)))
|
||
return 0;
|
||
|
||
|
||
SWAP_TARGET_AND_HOST(&jb_addr, sizeof(CORE_ADDR));
|
||
|
||
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, pc,
|
||
sizeof(CORE_ADDR)))
|
||
return 0;
|
||
|
||
SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
|
||
|
||
return 1;
|
||
}
|
||
#endif /* GET_LONGJMP_TARGET */
|
||
|
||
/* Immediately after a function call, return the saved pc before the frame
|
||
is setup. We check for the common case of being inside of a system call,
|
||
and if so, we know that Sun pushes the call # on the stack prior to doing
|
||
the trap. */
|
||
|
||
CORE_ADDR
|
||
m68k_saved_pc_after_call(frame)
|
||
struct frame_info *frame;
|
||
{
|
||
#ifdef sun
|
||
int op;
|
||
|
||
op = read_memory_integer (frame->pc, 2);
|
||
op &= 0xFFFF;
|
||
|
||
if (op == P_TRAP)
|
||
return read_memory_integer (read_register (SP_REGNUM) + 4, 4);
|
||
else
|
||
#endif /* sun */
|
||
return read_memory_integer (read_register (SP_REGNUM), 4);
|
||
}
|