binutils-gdb/sim/m32r/traps.c
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

1373 lines
32 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* m32r exception, interrupt, and trap (EIT) support
Copyright (C) 1998-2024 Free Software Foundation, Inc.
Contributed by Cygnus Solutions & Renesas.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This must come before any other includes. */
#include "defs.h"
#include "portability.h"
#include "sim-main.h"
#include "sim-signal.h"
#include "sim-syscall.h"
#include "sim/callback.h"
#include "syscall.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <utime.h>
/* TODO: The Linux syscall emulation needs work to support non-Linux hosts.
Use an OS hack for now so the CPU emulation is available everywhere.
NB: The emulation is also missing argument conversion (endian & bitsize)
even on Linux hosts. */
#ifdef __linux__
#include <syslog.h>
#include <sys/file.h>
#include <sys/fsuid.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/poll.h>
#include <sys/resource.h>
#include <sys/sendfile.h>
#include <sys/sysinfo.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/timeb.h>
#include <sys/timex.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/utsname.h>
#include <sys/vfs.h>
#include <linux/sysctl.h>
#include <linux/types.h>
#include <linux/unistd.h>
#endif
#include "m32r-sim.h"
#define TRAP_LINUX_SYSCALL 2
#define TRAP_FLUSH_CACHE 12
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC pc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
#if 0
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
h_bsm_set (current_cpu, h_sm_get (current_cpu));
h_bie_set (current_cpu, h_ie_get (current_cpu));
h_bcond_set (current_cpu, h_cond_get (current_cpu));
/* sm not changed */
h_ie_set (current_cpu, 0);
h_cond_set (current_cpu, 0);
h_bpc_set (current_cpu, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_RSVD_INSN_ADDR);
}
else
#endif
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
return pc;
}
/* Process an address exception. */
void
m32r_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
m32rbf_h_cr_set (current_cpu, H_CR_BBPC,
m32rbf_h_cr_get (current_cpu, H_CR_BPC));
switch (MACH_NUM (CPU_MACH (current_cpu)))
{
case MACH_M32R:
m32rbf_h_bpsw_set (current_cpu, m32rbf_h_psw_get (current_cpu));
/* sm not changed. */
m32rbf_h_psw_set (current_cpu, m32rbf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32RX:
m32rxf_h_bpsw_set (current_cpu, m32rxf_h_psw_get (current_cpu));
/* sm not changed. */
m32rxf_h_psw_set (current_cpu, m32rxf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32R2:
m32r2f_h_bpsw_set (current_cpu, m32r2f_h_psw_get (current_cpu));
/* sm not changed. */
m32r2f_h_psw_set (current_cpu, m32r2f_h_psw_get (current_cpu) & 0x80);
break;
default:
abort ();
}
m32rbf_h_cr_set (current_cpu, H_CR_BPC, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_ADDR_EXCP_ADDR);
}
else
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
transfer, sig);
}
/* Translate target's address to host's address. */
static void *
t2h_addr (host_callback *cb, struct cb_syscall *sc,
unsigned long taddr)
{
SIM_DESC sd = (SIM_DESC) sc->p1;
SIM_CPU *cpu = (SIM_CPU *) sc->p2;
if (taddr == 0)
return NULL;
return sim_core_trans_addr (sd, cpu, read_map, taddr);
}
/* TODO: These functions are a big hack and assume that the host runtime has
type sizes and struct layouts that match the target. So the Linux emulation
probaly only really works in 32-bit runtimes. */
static void
translate_endian_h2t (void *addr, size_t size)
{
unsigned int *p = (unsigned int *) addr;
int i;
for (i = 0; i <= size - 4; i += 4,p++)
*p = H2T_4 (*p);
if (i <= size - 2)
*((unsigned short *) p) = H2T_2 (*((unsigned short *) p));
}
static void
translate_endian_t2h (void *addr, size_t size)
{
unsigned int *p = (unsigned int *) addr;
int i;
for (i = 0; i <= size - 4; i += 4,p++)
*p = T2H_4 (*p);
if (i <= size - 2)
*((unsigned short *) p) = T2H_2 (*((unsigned short *) p));
}
/* Trap support.
The result is the pc address to continue at.
Preprocessing like saving the various registers has already been done. */
USI
m32r_trap (SIM_CPU *current_cpu, PCADDR pc, int num)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
goto case_default;
switch (num)
{
case TRAP_SYSCALL:
{
long result, result2;
int errcode;
sim_syscall_multi (current_cpu,
m32rbf_h_gr_get (current_cpu, 0),
m32rbf_h_gr_get (current_cpu, 1),
m32rbf_h_gr_get (current_cpu, 2),
m32rbf_h_gr_get (current_cpu, 3),
m32rbf_h_gr_get (current_cpu, 4),
&result, &result2, &errcode);
m32rbf_h_gr_set (current_cpu, 2, errcode);
m32rbf_h_gr_set (current_cpu, 0, result);
m32rbf_h_gr_set (current_cpu, 1, result2);
break;
}
#ifdef __linux__
case TRAP_LINUX_SYSCALL:
{
CB_SYSCALL s;
unsigned int func, arg1, arg2, arg3, arg4, arg5, arg6, arg7;
int result, errcode;
if (STATE_ENVIRONMENT (sd) != USER_ENVIRONMENT)
goto case_default;
func = m32rbf_h_gr_get (current_cpu, 7);
arg1 = m32rbf_h_gr_get (current_cpu, 0);
arg2 = m32rbf_h_gr_get (current_cpu, 1);
arg3 = m32rbf_h_gr_get (current_cpu, 2);
arg4 = m32rbf_h_gr_get (current_cpu, 3);
arg5 = m32rbf_h_gr_get (current_cpu, 4);
arg6 = m32rbf_h_gr_get (current_cpu, 5);
arg7 = m32rbf_h_gr_get (current_cpu, 6);
CB_SYSCALL_INIT (&s);
s.func = func;
s.arg1 = arg1;
s.arg2 = arg2;
s.arg3 = arg3;
s.arg4 = arg4;
s.arg5 = arg5;
s.arg6 = arg6;
s.arg7 = arg7;
s.p1 = sd;
s.p2 = current_cpu;
s.read_mem = sim_syscall_read_mem;
s.write_mem = sim_syscall_write_mem;
result = 0;
errcode = 0;
switch (func)
{
case TARGET_LINUX_SYS_exit:
sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, arg1);
break;
case TARGET_LINUX_SYS_read:
result = read (arg1, t2h_addr (cb, &s, arg2), arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_write:
result = write (arg1, t2h_addr (cb, &s, arg2), arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_open:
result = open ((char *) t2h_addr (cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_close:
result = close (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_creat:
result = creat ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_link:
result = link ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_unlink:
result = unlink ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_chdir:
result = chdir ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_time:
{
time_t t;
if (arg1 == 0)
{
result = (int) time (NULL);
errcode = errno;
}
else
{
result = (int) time (&t);
errcode = errno;
if (result != 0)
break;
t = H2T_4 (t);
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t)) != sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case TARGET_LINUX_SYS_mknod:
result = mknod ((char *) t2h_addr (cb, &s, arg1),
(mode_t) arg2, (dev_t) arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_chmod:
result = chmod ((char *) t2h_addr (cb, &s, arg1), (mode_t) arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_lchown32:
case TARGET_LINUX_SYS_lchown:
result = lchown ((char *) t2h_addr (cb, &s, arg1),
(uid_t) arg2, (gid_t) arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_lseek:
result = (int) lseek (arg1, (off_t) arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_getpid:
result = getpid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getuid32:
case TARGET_LINUX_SYS_getuid:
result = getuid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_utime:
{
struct utimbuf buf;
if (arg2 == 0)
{
result = utime ((char *) t2h_addr (cb, &s, arg1), NULL);
errcode = errno;
}
else
{
buf = *((struct utimbuf *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&buf, sizeof(buf));
result = utime ((char *) t2h_addr (cb, &s, arg1), &buf);
errcode = errno;
}
}
break;
case TARGET_LINUX_SYS_access:
result = access ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_ftime:
{
struct timeb t;
struct timespec ts;
result = clock_gettime (CLOCK_REALTIME, &ts);
errcode = errno;
if (result != 0)
break;
t.time = H2T_4 (ts.tv_sec);
t.millitm = H2T_2 (ts.tv_nsec / 1000000);
/* POSIX.1-2001 says the contents of the timezone and dstflag
members of tp after a call to ftime() are unspecified. */
t.timezone = H2T_2 (0);
t.dstflag = H2T_2 (0);
if ((s.write_mem) (cb, &s, arg1, (char *) &t, sizeof(t))
!= sizeof(t))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_sync:
sync ();
result = 0;
break;
case TARGET_LINUX_SYS_rename:
result = rename ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_mkdir:
result = mkdir ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_rmdir:
result = rmdir ((char *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_dup:
result = dup (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_brk:
result = brk ((void *) (uintptr_t) arg1);
errcode = errno;
//result = arg1;
break;
case TARGET_LINUX_SYS_getgid32:
case TARGET_LINUX_SYS_getgid:
result = getgid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_geteuid32:
case TARGET_LINUX_SYS_geteuid:
result = geteuid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getegid32:
case TARGET_LINUX_SYS_getegid:
result = getegid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_ioctl:
result = ioctl (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_fcntl:
result = fcntl (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_dup2:
result = dup2 (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_getppid:
result = getppid ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getpgrp:
result = getpgrp ();
errcode = errno;
break;
case TARGET_LINUX_SYS_getrlimit:
{
struct rlimit rlim;
result = getrlimit (arg1, &rlim);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&rlim, sizeof(rlim));
if ((s.write_mem) (cb, &s, arg2, (char *) &rlim, sizeof(rlim))
!= sizeof(rlim))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getrusage:
{
struct rusage usage;
result = getrusage (arg1, &usage);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&usage, sizeof(usage));
if ((s.write_mem) (cb, &s, arg2, (char *) &usage, sizeof(usage))
!= sizeof(usage))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_gettimeofday:
{
struct timeval tv;
struct timezone tz;
result = gettimeofday (&tv, &tz);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&tv, sizeof(tv));
if ((s.write_mem) (cb, &s, arg1, (char *) &tv, sizeof(tv))
!= sizeof(tv))
{
result = -1;
errcode = EINVAL;
}
translate_endian_h2t (&tz, sizeof(tz));
if ((s.write_mem) (cb, &s, arg2, (char *) &tz, sizeof(tz))
!= sizeof(tz))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getgroups32:
case TARGET_LINUX_SYS_getgroups:
{
gid_t *list = NULL;
if (arg1 > 0)
list = (gid_t *) malloc (arg1 * sizeof(gid_t));
result = getgroups (arg1, list);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (list, arg1 * sizeof(gid_t));
if (arg1 > 0)
if ((s.write_mem) (cb, &s, arg2, (char *) list, arg1 * sizeof(gid_t))
!= arg1 * sizeof(gid_t))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_select:
{
int n;
fd_set readfds;
unsigned int treadfdsp;
fd_set *hreadfdsp;
fd_set writefds;
unsigned int twritefdsp;
fd_set *hwritefdsp;
fd_set exceptfds;
unsigned int texceptfdsp;
fd_set *hexceptfdsp;
unsigned int ttimeoutp;
struct timeval timeout;
n = arg1;
treadfdsp = arg2;
if (treadfdsp !=0)
{
readfds = *((fd_set *) t2h_addr (cb, &s, treadfdsp));
translate_endian_t2h (&readfds, sizeof(readfds));
hreadfdsp = &readfds;
}
else
hreadfdsp = NULL;
twritefdsp = arg3;
if (twritefdsp != 0)
{
writefds = *((fd_set *) t2h_addr (cb, &s, twritefdsp));
translate_endian_t2h (&writefds, sizeof(writefds));
hwritefdsp = &writefds;
}
else
hwritefdsp = NULL;
texceptfdsp = arg4;
if (texceptfdsp != 0)
{
exceptfds = *((fd_set *) t2h_addr (cb, &s, texceptfdsp));
translate_endian_t2h (&exceptfds, sizeof(exceptfds));
hexceptfdsp = &exceptfds;
}
else
hexceptfdsp = NULL;
ttimeoutp = arg5;
timeout = *((struct timeval *) t2h_addr (cb, &s, ttimeoutp));
translate_endian_t2h (&timeout, sizeof(timeout));
result = select (n, hreadfdsp, hwritefdsp, hexceptfdsp, &timeout);
errcode = errno;
if (result != 0)
break;
if (treadfdsp != 0)
{
translate_endian_h2t (&readfds, sizeof(readfds));
if ((s.write_mem) (cb, &s, treadfdsp,
(char *) &readfds, sizeof(readfds)) != sizeof(readfds))
{
result = -1;
errcode = EINVAL;
}
}
if (twritefdsp != 0)
{
translate_endian_h2t (&writefds, sizeof(writefds));
if ((s.write_mem) (cb, &s, twritefdsp,
(char *) &writefds, sizeof(writefds)) != sizeof(writefds))
{
result = -1;
errcode = EINVAL;
}
}
if (texceptfdsp != 0)
{
translate_endian_h2t (&exceptfds, sizeof(exceptfds));
if ((s.write_mem) (cb, &s, texceptfdsp,
(char *) &exceptfds, sizeof(exceptfds)) != sizeof(exceptfds))
{
result = -1;
errcode = EINVAL;
}
}
translate_endian_h2t (&timeout, sizeof(timeout));
if ((s.write_mem) (cb, &s, ttimeoutp,
(char *) &timeout, sizeof(timeout)) != sizeof(timeout))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_symlink:
result = symlink ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2));
errcode = errno;
break;
case TARGET_LINUX_SYS_readlink:
result = readlink ((char *) t2h_addr (cb, &s, arg1),
(char *) t2h_addr (cb, &s, arg2),
arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_readdir:
#if SIZEOF_VOID_P == 4
result = (int) readdir ((DIR *) t2h_addr (cb, &s, arg1));
errcode = errno;
#else
result = 0;
errcode = ENOSYS;
#endif
break;
#if 0
case TARGET_LINUX_SYS_mmap:
{
result = (int) mmap ((void *) t2h_addr (cb, &s, arg1),
arg2, arg3, arg4, arg5, arg6);
errcode = errno;
if (errno == 0)
{
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, arg2, 0, NULL, NULL);
}
}
break;
#endif
case TARGET_LINUX_SYS_mmap2:
{
#if SIZEOF_VOID_P == 4 /* Code assumes m32r pointer size matches host. */
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = (void *) t2h_addr (cb, &s, arg1);
len = arg2;
prot = arg3;
flags = arg4;
fildes = arg5;
off = arg6 << 12;
result = (int) mmap (addr, len, prot, flags, fildes, off);
errcode = errno;
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
#else
result = 0;
errcode = ENOSYS;
#endif
}
break;
case TARGET_LINUX_SYS_mmap:
{
#if SIZEOF_VOID_P == 4 /* Code assumes m32r pointer size matches host. */
void *addr;
size_t len;
int prot, flags, fildes;
off_t off;
addr = *((void **) t2h_addr (cb, &s, arg1));
len = *((size_t *) t2h_addr (cb, &s, arg1 + 4));
prot = *((int *) t2h_addr (cb, &s, arg1 + 8));
flags = *((int *) t2h_addr (cb, &s, arg1 + 12));
fildes = *((int *) t2h_addr (cb, &s, arg1 + 16));
off = *((off_t *) t2h_addr (cb, &s, arg1 + 20));
addr = (void *) T2H_4 ((unsigned int) addr);
len = T2H_4 (len);
prot = T2H_4 (prot);
flags = T2H_4 (flags);
fildes = T2H_4 (fildes);
off = T2H_4 (off);
//addr = (void *) t2h_addr (cb, &s, (unsigned int) addr);
result = (int) mmap (addr, len, prot, flags, fildes, off);
errcode = errno;
//if (errno == 0)
if (result != -1)
{
char c;
if (sim_core_read_buffer (sd, NULL, read_map, &c, result, 1) == 0)
sim_core_attach (sd, NULL,
0, access_read_write_exec, 0,
result, len, 0, NULL, NULL);
}
#else
result = 0;
errcode = ENOSYS;
#endif
}
break;
case TARGET_LINUX_SYS_munmap:
result = munmap ((void *) (uintptr_t) arg1, arg2);
errcode = errno;
if (result != -1)
sim_core_detach (sd, NULL, 0, arg2, result);
break;
case TARGET_LINUX_SYS_truncate:
result = truncate ((char *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_ftruncate:
result = ftruncate (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchmod:
result = fchmod (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchown32:
case TARGET_LINUX_SYS_fchown:
result = fchown (arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_statfs:
{
struct statfs statbuf;
result = statfs ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_fstatfs:
{
struct statfs statbuf;
result = fstatfs (arg1, &statbuf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&statbuf, sizeof(statbuf));
if ((s.write_mem) (cb, &s, arg2, (char *) &statbuf, sizeof(statbuf))
!= sizeof(statbuf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_syslog:
syslog (arg1, "%s", (char *) t2h_addr (cb, &s, arg2));
result = 0;
errcode = errno;
break;
case TARGET_LINUX_SYS_setitimer:
{
struct itimerval value, ovalue;
value = *((struct itimerval *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&value, sizeof(value));
if (arg2 == 0)
{
result = setitimer (arg1, &value, NULL);
errcode = errno;
}
else
{
result = setitimer (arg1, &value, &ovalue);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&ovalue, sizeof(ovalue));
if ((s.write_mem) (cb, &s, arg3, (char *) &ovalue, sizeof(ovalue))
!= sizeof(ovalue))
{
result = -1;
errcode = EINVAL;
}
}
}
break;
case TARGET_LINUX_SYS_getitimer:
{
struct itimerval value;
result = getitimer (arg1, &value);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&value, sizeof(value));
if ((s.write_mem) (cb, &s, arg2, (char *) &value, sizeof(value))
!= sizeof(value))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_stat:
{
char *buf;
int buflen;
struct stat statbuf;
result = stat ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_lstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = lstat ((char *) t2h_addr (cb, &s, arg1), &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_fstat:
{
char *buf;
int buflen;
struct stat statbuf;
result = fstat (arg1, &statbuf);
errcode = errno;
if (result < 0)
break;
buflen = cb_host_to_target_stat (cb, NULL, NULL);
buf = xmalloc (buflen);
if (cb_host_to_target_stat (cb, &statbuf, buf) != buflen)
{
/* The translation failed. This is due to an internal
host program error, not the target's fault. */
free (buf);
result = -1;
errcode = ENOSYS;
break;
}
if ((s.write_mem) (cb, &s, arg2, buf, buflen) != buflen)
{
free (buf);
result = -1;
errcode = EINVAL;
break;
}
free (buf);
}
break;
case TARGET_LINUX_SYS_sysinfo:
{
struct sysinfo info;
result = sysinfo (&info);
errcode = errno;
if (result != 0)
break;
info.uptime = H2T_4 (info.uptime);
info.loads[0] = H2T_4 (info.loads[0]);
info.loads[1] = H2T_4 (info.loads[1]);
info.loads[2] = H2T_4 (info.loads[2]);
info.totalram = H2T_4 (info.totalram);
info.freeram = H2T_4 (info.freeram);
info.sharedram = H2T_4 (info.sharedram);
info.bufferram = H2T_4 (info.bufferram);
info.totalswap = H2T_4 (info.totalswap);
info.freeswap = H2T_4 (info.freeswap);
info.procs = H2T_2 (info.procs);
#if LINUX_VERSION_CODE >= 0x20400
info.totalhigh = H2T_4 (info.totalhigh);
info.freehigh = H2T_4 (info.freehigh);
info.mem_unit = H2T_4 (info.mem_unit);
#endif
if ((s.write_mem) (cb, &s, arg1, (char *) &info, sizeof(info))
!= sizeof(info))
{
result = -1;
errcode = EINVAL;
}
}
break;
#if 0
case TARGET_LINUX_SYS_ipc:
{
result = ipc (arg1, arg2, arg3, arg4,
(void *) t2h_addr (cb, &s, arg5), arg6);
errcode = errno;
}
break;
#endif
case TARGET_LINUX_SYS_fsync:
result = fsync (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_uname:
/* utsname contains only arrays of char, so it is not necessary
to translate endian. */
result = uname ((struct utsname *) t2h_addr (cb, &s, arg1));
errcode = errno;
break;
case TARGET_LINUX_SYS_adjtimex:
{
struct timex buf;
result = adjtimex (&buf);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&buf, sizeof(buf));
if ((s.write_mem) (cb, &s, arg1, (char *) &buf, sizeof(buf))
!= sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_mprotect:
result = mprotect ((void *) (uintptr_t) arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_fchdir:
result = fchdir (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_setfsuid32:
case TARGET_LINUX_SYS_setfsuid:
result = setfsuid (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_setfsgid32:
case TARGET_LINUX_SYS_setfsgid:
result = setfsgid (arg1);
errcode = errno;
break;
#if 0
case TARGET_LINUX_SYS__llseek:
{
loff_t buf;
result = _llseek (arg1, arg2, arg3, &buf, arg5);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&buf, sizeof(buf));
if ((s.write_mem) (cb, &s, t2h_addr (cb, &s, arg4),
(char *) &buf, sizeof(buf)) != sizeof(buf))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_getdents:
{
struct dirent dir;
result = getdents (arg1, &dir, arg3);
errcode = errno;
if (result != 0)
break;
dir.d_ino = H2T_4 (dir.d_ino);
dir.d_off = H2T_4 (dir.d_off);
dir.d_reclen = H2T_2 (dir.d_reclen);
if ((s.write_mem) (cb, &s, arg2, (char *) &dir, sizeof(dir))
!= sizeof(dir))
{
result = -1;
errcode = EINVAL;
}
}
break;
#endif
case TARGET_LINUX_SYS_flock:
result = flock (arg1, arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_msync:
result = msync ((void *) (uintptr_t) arg1, arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_readv:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&vector, sizeof(vector));
result = readv (arg1, &vector, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_writev:
{
struct iovec vector;
vector = *((struct iovec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&vector, sizeof(vector));
result = writev (arg1, &vector, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_fdatasync:
result = fdatasync (arg1);
errcode = errno;
break;
case TARGET_LINUX_SYS_mlock:
result = mlock ((void *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_munlock:
result = munlock ((void *) t2h_addr (cb, &s, arg1), arg2);
errcode = errno;
break;
case TARGET_LINUX_SYS_nanosleep:
{
struct timespec req, rem;
req = *((struct timespec *) t2h_addr (cb, &s, arg2));
translate_endian_t2h (&req, sizeof(req));
result = nanosleep (&req, &rem);
errcode = errno;
if (result != 0)
break;
translate_endian_h2t (&rem, sizeof(rem));
if ((s.write_mem) (cb, &s, arg2, (char *) &rem, sizeof(rem))
!= sizeof(rem))
{
result = -1;
errcode = EINVAL;
}
}
break;
case TARGET_LINUX_SYS_mremap: /* FIXME */
#if SIZEOF_VOID_P == 4 /* Code assumes m32r pointer size matches host. */
result = (int) mremap ((void *) t2h_addr (cb, &s, arg1), arg2, arg3, arg4);
errcode = errno;
#else
result = -1;
errcode = ENOSYS;
#endif
break;
case TARGET_LINUX_SYS_getresuid32:
case TARGET_LINUX_SYS_getresuid:
{
uid_t ruid, euid, suid;
result = getresuid (&ruid, &euid, &suid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr (cb, &s, arg1)) = H2T_4 (ruid);
*((uid_t *) t2h_addr (cb, &s, arg2)) = H2T_4 (euid);
*((uid_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (suid);
}
break;
case TARGET_LINUX_SYS_poll:
{
struct pollfd ufds;
ufds = *((struct pollfd *) t2h_addr (cb, &s, arg1));
ufds.fd = T2H_4 (ufds.fd);
ufds.events = T2H_2 (ufds.events);
ufds.revents = T2H_2 (ufds.revents);
result = poll (&ufds, arg2, arg3);
errcode = errno;
}
break;
case TARGET_LINUX_SYS_getresgid32:
case TARGET_LINUX_SYS_getresgid:
{
uid_t rgid, egid, sgid;
result = getresgid (&rgid, &egid, &sgid);
errcode = errno;
if (result != 0)
break;
*((uid_t *) t2h_addr (cb, &s, arg1)) = H2T_4 (rgid);
*((uid_t *) t2h_addr (cb, &s, arg2)) = H2T_4 (egid);
*((uid_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (sgid);
}
break;
case TARGET_LINUX_SYS_pread:
result = pread (arg1, (void *) t2h_addr (cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case TARGET_LINUX_SYS_pwrite:
result = pwrite (arg1, (void *) t2h_addr (cb, &s, arg2), arg3, arg4);
errcode = errno;
break;
case TARGET_LINUX_SYS_chown32:
case TARGET_LINUX_SYS_chown:
result = chown ((char *) t2h_addr (cb, &s, arg1), arg2, arg3);
errcode = errno;
break;
case TARGET_LINUX_SYS_getcwd:
{
void *ret;
ret = getcwd ((char *) t2h_addr (cb, &s, arg1), arg2);
result = ret == NULL ? 0 : arg1;
errcode = errno;
}
break;
case TARGET_LINUX_SYS_sendfile:
{
off_t offset;
offset = *((off_t *) t2h_addr (cb, &s, arg3));
offset = T2H_4 (offset);
result = sendfile (arg1, arg2, &offset, arg3);
errcode = errno;
if (result != 0)
break;
*((off_t *) t2h_addr (cb, &s, arg3)) = H2T_4 (offset);
}
break;
default:
result = -1;
errcode = ENOSYS;
break;
}
if (result == -1)
m32rbf_h_gr_set (current_cpu, 0, -errcode);
else
m32rbf_h_gr_set (current_cpu, 0, result);
break;
}
#endif
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc,
sim_stopped, SIM_SIGTRAP);
break;
case TRAP_FLUSH_CACHE:
/* Do nothing. */
break;
case_default:
default:
{
/* The new pc is the trap vector entry.
We assume there's a branch there to some handler.
Use cr5 as EVB (EIT Vector Base) register. */
/* USI new_pc = EIT_TRAP_BASE_ADDR + num * 4; */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
}
/* Fake an "rte" insn. */
/* FIXME: Should duplicate all of rte processing. */
return (pc & -4) + 4;
}