mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 13:33:53 +08:00
1d506c26d9
This commit is the result of the following actions: - Running gdb/copyright.py to update all of the copyright headers to include 2024, - Manually updating a few files the copyright.py script told me to update, these files had copyright headers embedded within the file, - Regenerating gdbsupport/Makefile.in to refresh it's copyright date, - Using grep to find other files that still mentioned 2023. If these files were updated last year from 2022 to 2023 then I've updated them this year to 2024. I'm sure I've probably missed some dates. Feel free to fix them up as you spot them.
325 lines
7.8 KiB
C
325 lines
7.8 KiB
C
# Simulator main loop for m32r. -*- C -*-
|
|
#
|
|
# Copyright (C) 1996-2024 Free Software Foundation, Inc.
|
|
#
|
|
# This file is part of the GNU Simulators.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# Syntax:
|
|
# /bin/sh mainloop.in command
|
|
#
|
|
# Command is one of:
|
|
#
|
|
# init
|
|
# support
|
|
# extract-{simple,scache,pbb}
|
|
# {full,fast}-exec-{simple,scache,pbb}
|
|
#
|
|
# A target need only provide a "full" version of one of simple,scache,pbb.
|
|
# If the target wants it can also provide a fast version of same, or if
|
|
# the slow (full featured) version is `simple', then the fast version can be
|
|
# one of scache/pbb.
|
|
# A target can't provide more than this.
|
|
# However for illustration's sake this file provides examples of all.
|
|
|
|
# ??? After a few more ports are done, revisit.
|
|
# Will eventually need to machine generate a lot of this.
|
|
|
|
case "x$1" in
|
|
|
|
xsupport)
|
|
|
|
cat <<EOF
|
|
#line $LINENO "$0"
|
|
#include <stdlib.h>
|
|
|
|
static INLINE const IDESC *
|
|
extract16 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
|
|
ARGBUF *abuf, int fast_p)
|
|
{
|
|
const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
|
|
|
|
@cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
|
|
if (! fast_p)
|
|
{
|
|
int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
|
|
int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
|
|
@cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
|
|
}
|
|
return id;
|
|
}
|
|
|
|
static INLINE const IDESC *
|
|
extract32 (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
|
|
ARGBUF *abuf, int fast_p)
|
|
{
|
|
const IDESC *id = @cpu@_decode (current_cpu, pc, (USI) insn >> 16, insn, abuf);
|
|
|
|
@cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
|
|
if (! fast_p)
|
|
{
|
|
int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
|
|
int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
|
|
@cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
|
|
}
|
|
return id;
|
|
}
|
|
|
|
static INLINE SEM_PC
|
|
execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
|
|
{
|
|
SEM_PC vpc;
|
|
|
|
if (fast_p)
|
|
{
|
|
#if ! WITH_SEM_SWITCH_FAST
|
|
#if WITH_SCACHE
|
|
vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
|
|
#else
|
|
vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, &sc->argbuf);
|
|
#endif
|
|
#else
|
|
abort ();
|
|
#endif /* WITH_SEM_SWITCH_FAST */
|
|
}
|
|
else
|
|
{
|
|
#if ! WITH_SEM_SWITCH_FULL
|
|
ARGBUF *abuf = &sc->argbuf;
|
|
const IDESC *idesc = abuf->idesc;
|
|
const CGEN_INSN *idata = idesc->idata;
|
|
#if WITH_SCACHE_PBB
|
|
int virtual_p = CGEN_INSN_ATTR_VALUE (idata, CGEN_INSN_VIRTUAL);
|
|
#else
|
|
int virtual_p = 0;
|
|
#endif
|
|
|
|
if (! virtual_p)
|
|
{
|
|
/* FIXME: call x-before */
|
|
if (ARGBUF_PROFILE_P (abuf))
|
|
PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
|
|
/* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
|
|
if (PROFILE_MODEL_P (current_cpu)
|
|
&& ARGBUF_PROFILE_P (abuf))
|
|
@cpu@_model_insn_before (current_cpu, 1 /*first_p*/);
|
|
CGEN_TRACE_INSN_INIT (current_cpu, abuf, 1);
|
|
CGEN_TRACE_INSN (current_cpu, idata,
|
|
(const struct argbuf *) abuf, abuf->addr);
|
|
}
|
|
#if WITH_SCACHE
|
|
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
|
|
#else
|
|
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
|
|
#endif
|
|
if (! virtual_p)
|
|
{
|
|
/* FIXME: call x-after */
|
|
if (PROFILE_MODEL_P (current_cpu)
|
|
&& ARGBUF_PROFILE_P (abuf))
|
|
{
|
|
int cycles;
|
|
|
|
cycles = (*idesc->timing->model_fn) (current_cpu, sc);
|
|
@cpu@_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
|
|
}
|
|
CGEN_TRACE_INSN_FINI (current_cpu, abuf, 1);
|
|
}
|
|
#else
|
|
abort ();
|
|
#endif /* WITH_SEM_SWITCH_FULL */
|
|
}
|
|
|
|
return vpc;
|
|
}
|
|
|
|
EOF
|
|
|
|
;;
|
|
|
|
xinit)
|
|
|
|
# Nothing needed.
|
|
|
|
;;
|
|
|
|
xextract-simple | xextract-scache)
|
|
|
|
cat <<EOF
|
|
#line $LINENO "$0"
|
|
{
|
|
if ((pc & 3) != 0)
|
|
{
|
|
/* This only occurs when single stepping.
|
|
The test is unnecessary otherwise, but the cost is teensy,
|
|
compared with decoding/extraction. */
|
|
UHI insn = GETIMEMUHI (current_cpu, pc);
|
|
extract16 (current_cpu, pc, insn & 0x7fff, sc, FAST_P);
|
|
}
|
|
else
|
|
{
|
|
USI insn = GETIMEMUSI (current_cpu, pc);
|
|
if ((SI) insn < 0)
|
|
{
|
|
extract32 (current_cpu, pc, insn, sc, FAST_P);
|
|
}
|
|
else
|
|
{
|
|
extract16 (current_cpu, pc, insn >> 16, sc, FAST_P);
|
|
extract16 (current_cpu, pc + 2, insn & 0x7fff, sc + 1, FAST_P);
|
|
/* The m32r doesn't support parallel execution. */
|
|
if ((insn & 0x8000) != 0
|
|
&& (insn & 0x7fff) != 0x7000) /* parallel nops are ok */
|
|
sim_engine_illegal_insn (current_cpu, pc);
|
|
}
|
|
}
|
|
}
|
|
EOF
|
|
|
|
;;
|
|
|
|
xextract-pbb)
|
|
|
|
# Inputs: current_cpu, pc, sc, max_insns, FAST_P
|
|
# Outputs: sc, pc
|
|
# sc must be left pointing past the last created entry.
|
|
# pc must be left pointing past the last created entry.
|
|
# If the pbb is terminated by a cti insn, SET_CTI_VPC(sc) must be called
|
|
# to record the vpc of the cti insn.
|
|
# SET_INSN_COUNT(n) must be called to record number of real insns.
|
|
|
|
cat <<EOF
|
|
#line $LINENO "$0"
|
|
{
|
|
const IDESC *idesc;
|
|
int icount = 0;
|
|
|
|
if ((pc & 3) != 0)
|
|
{
|
|
/* This only occurs when single stepping.
|
|
The test is unnecessary otherwise, but the cost is teensy,
|
|
compared with decoding/extraction. */
|
|
UHI insn = GETIMEMUHI (current_cpu, pc);
|
|
idesc = extract16 (current_cpu, pc, insn & 0x7fff, &sc->argbuf, FAST_P);
|
|
++sc;
|
|
--max_insns;
|
|
++icount;
|
|
pc += 2;
|
|
if (IDESC_CTI_P (idesc))
|
|
{
|
|
SET_CTI_VPC (sc - 1);
|
|
goto Finish;
|
|
}
|
|
}
|
|
|
|
while (max_insns > 0)
|
|
{
|
|
USI insn = GETIMEMUSI (current_cpu, pc);
|
|
if ((SI) insn < 0)
|
|
{
|
|
idesc = extract32 (current_cpu, pc, insn, &sc->argbuf, FAST_P);
|
|
++sc;
|
|
--max_insns;
|
|
++icount;
|
|
pc += 4;
|
|
if (IDESC_CTI_P (idesc))
|
|
{
|
|
SET_CTI_VPC (sc - 1);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
idesc = extract16 (current_cpu, pc, insn >> 16, &sc->argbuf, FAST_P);
|
|
++sc;
|
|
--max_insns;
|
|
++icount;
|
|
pc += 2;
|
|
if (IDESC_CTI_P (idesc))
|
|
{
|
|
SET_CTI_VPC (sc - 1);
|
|
break;
|
|
}
|
|
/* The m32r doesn't support parallel execution. */
|
|
if ((insn & 0x8000) != 0)
|
|
{
|
|
/* ??? Defer signalling to execution. */
|
|
if ((insn & 0x7fff) != 0x7000) /* parallel nops are ok */
|
|
sim_engine_invalid_insn (current_cpu, pc - 2, 0);
|
|
/* There's no point in processing parallel nops in fast mode.
|
|
We might as well do this test since we've already tested
|
|
that we have a parallel nop. */
|
|
if (0 && FAST_P)
|
|
{
|
|
pc += 2;
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Non-parallel case.
|
|
While we're guaranteed that there's room to extract the
|
|
insn, when single stepping we can't; the pbb must stop
|
|
after the first insn. */
|
|
if (max_insns == 0)
|
|
break;
|
|
}
|
|
/* We're guaranteed that we can always process 16 bit insns in
|
|
pairs. */
|
|
idesc = extract16 (current_cpu, pc, insn & 0x7fff, &sc->argbuf, FAST_P);
|
|
++sc;
|
|
--max_insns;
|
|
++icount;
|
|
pc += 2;
|
|
if (IDESC_CTI_P (idesc))
|
|
{
|
|
SET_CTI_VPC (sc - 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
Finish:
|
|
SET_INSN_COUNT (icount);
|
|
}
|
|
EOF
|
|
|
|
;;
|
|
|
|
xfull-exec-* | xfast-exec-*)
|
|
|
|
# Inputs: current_cpu, vpc, FAST_P
|
|
# Outputs: vpc
|
|
# vpc is the virtual program counter.
|
|
|
|
cat <<EOF
|
|
#line $LINENO "$0"
|
|
#if (! FAST_P && WITH_SEM_SWITCH_FULL) || (FAST_P && WITH_SEM_SWITCH_FAST)
|
|
#define DEFINE_SWITCH
|
|
#include "sem-switch.c"
|
|
#else
|
|
vpc = execute (current_cpu, vpc, FAST_P);
|
|
#endif
|
|
EOF
|
|
|
|
;;
|
|
|
|
*)
|
|
echo "Invalid argument to mainloop.in: $1" >&2
|
|
exit 1
|
|
;;
|
|
|
|
esac
|