binutils-gdb/gdb/mips-linux-tdep.c
John Baldwin 481695ed5f Remove unnecessary function prototypes.
These prototypes were required when compiling GDB as C but are not
required for C++.

gdb/ChangeLog:

	* aarch64-linux-nat.c: Remove _initialize_aarch64_linux_nat
	prototype.
	* aarch64-linux-tdep.c: Remove _initialize_aarch64_linux_tdep
	prototype.
	* aarch64-newlib-tdep.c: Remove _initialize_aarch64_newlib_tdep
	prototype.
	* aarch64-tdep.c: Remove _initialize_aarch64_tdep prototype.
	* ada-exp.y: Remove _initialize_ada_exp prototype.
	* ada-lang.c: Remove _initialize_ada_language prototype.
	* ada-tasks.c: Remove _initialize_tasks prototype.
	* addrmap.c: Remove _initialize_addrmap prototype.
	* agent.c: Remove _initialize_agent prototype.
	* aix-thread.c: Remove _initialize_aix_thread prototype.
	* alpha-bsd-nat.c: Remove _initialize_alphabsd_nat prototype.
	* alpha-linux-nat.c: Remove _initialize_alpha_linux_nat prototype.
	* alpha-linux-tdep.c: Remove _initialize_alpha_linux_tdep
	prototype.
	* alpha-nbsd-tdep.c: Remove _initialize_alphanbsd_tdep prototype.
	* alpha-obsd-tdep.c: Remove _initialize_alphaobsd_tdep prototype.
	* alpha-tdep.c: Remove _initialize_alpha_tdep prototype.
	* amd64-darwin-tdep.c: Remove _initialize_amd64_darwin_tdep
	prototype.
	* amd64-dicos-tdep.c: Remove _initialize_amd64_dicos_tdep
	prototype.
	* amd64-fbsd-nat.c: Remove _initialize_amd64fbsd_nat prototype.
	* amd64-fbsd-tdep.c: Remove _initialize_amd64fbsd_tdep prototype.
	* amd64-linux-nat.c: Remove _initialize_amd64_linux_nat prototype.
	* amd64-linux-tdep.c: Remove _initialize_amd64_linux_tdep
	prototype.
	* amd64-nbsd-nat.c: Remove _initialize_amd64nbsd_nat prototype.
	* amd64-nbsd-tdep.c: Remove _initialize_amd64nbsd_tdep prototype.
	* amd64-obsd-nat.c: Remove _initialize_amd64obsd_nat prototype.
	* amd64-obsd-tdep.c: Remove _initialize_amd64obsd_tdep prototype.
	* amd64-sol2-tdep.c: Remove _initialize_amd64_sol2_tdep prototype.
	* amd64-tdep.c: Remove _initialize_amd64_tdep prototype.
	* amd64-windows-nat.c: Remove _initialize_amd64_windows_nat
	prototype.
	* amd64-windows-tdep.c: Remove _initialize_amd64_windows_tdep
	prototype.
	* annotate.c: Remove _initialize_annotate prototype.
	* arc-newlib-tdep.c: Remove _initialize_arc_newlib_tdep prototype.
	* arc-tdep.c: Remove _initialize_arc_tdep prototype.
	* arch-utils.c: Remove _initialize_gdbarch_utils prototype.
	* arm-linux-nat.c: Remove _initialize_arm_linux_nat prototype.
	* arm-linux-tdep.c: Remove _initialize_arm_linux_tdep prototype.
	* arm-nbsd-tdep.c: Remove _initialize_arm_netbsd_tdep prototype.
	* arm-obsd-tdep.c: Remove _initialize_armobsd_tdep prototype.
	* arm-symbian-tdep.c: Remove _initialize_arm_symbian_tdep
	prototype.
	* arm-tdep.c: Remove _initialize_arm_tdep prototype.
	* arm-wince-tdep.c: Remove _initialize_arm_wince_tdep prototype.
	* auto-load.c: Remove _initialize_auto_load prototype.
	* auxv.c: Remove _initialize_auxv prototype.
	* avr-tdep.c: Remove _initialize_avr_tdep prototype.
	* ax-gdb.c: Remove _initialize_ax_gdb prototype.
	* bfin-linux-tdep.c: Remove _initialize_bfin_linux_tdep prototype.
	* bfin-tdep.c: Remove _initialize_bfin_tdep prototype.
	* break-catch-sig.c: Remove _initialize_break_catch_sig prototype.
	* break-catch-syscall.c: Remove _initialize_break_catch_syscall
	prototype.
	* break-catch-throw.c: Remove _initialize_break_catch_throw
	prototype.
	* breakpoint.c: Remove _initialize_breakpoint prototype.
	* bsd-uthread.c: Remove _initialize_bsd_uthread prototype.
	* btrace.c: Remove _initialize_btrace prototype.
	* charset.c: Remove _initialize_charset prototype.
	* cli/cli-cmds.c: Remove _initialize_cli_cmds prototype.
	* cli/cli-dump.c: Remove _initialize_cli_dump prototype.
	* cli/cli-interp.c: Remove _initialize_cli_interp prototype.
	* cli/cli-logging.c: Remove _initialize_cli_logging prototype.
	* cli/cli-script.c: Remove _initialize_cli_script prototype.
	* coff-pe-read.c: Remove _initialize_coff_pe_read prototype.
	* coffread.c: Remove _initialize_coffread prototype.
	* compile/compile.c: Remove _initialize_compile prototype.
	* complaints.c: Remove _initialize_complaints prototype.
	* completer.c: Remove _initialize_completer prototype.
	* copying.awk: Remove _initialize_copying prototype.
	* copying.c: Regenerate.
	* core-regset.c: Remove _initialize_core_regset prototype.
	* corefile.c: Remove _initialize_core prototype.
	* corelow.c: Remove _initialize_corelow prototype.
	* cp-abi.c: Remove _initialize_cp_abi prototype.
	* cp-namespace.c: Remove _initialize_cp_namespace prototype.
	* cp-support.c: Remove _initialize_cp_support prototype.
	* cp-valprint.c: Remove _initialize_cp_valprint prototype.
	* cris-linux-tdep.c: Remove _initialize_cris_linux_tdep prototype.
	* cris-tdep.c: Remove _initialize_cris_tdep prototype.
	* ctf.c: Remove _initialize_ctf prototype.
	* d-lang.c: Remove _initialize_d_language prototype.
	* darwin-nat-info.c: Remove _initialize_darwin_info_commands
	prototype.
	* darwin-nat.c: Remove _initialize_darwin_inferior prototype.
	* dbxread.c: Remove _initialize_dbxread prototype.
	* dcache.c: Remove _initialize_dcache prototype.
	* demangle.c: Remove _initialize_demangler prototype.
	* disasm-selftests.c: Remove _initialize_disasm_selftests
	prototype.
	* disasm.c: Remove _initialize_disasm prototype.
	* dtrace-probe.c: Remove _initialize_dtrace_probe prototype.
	* dummy-frame.c: Remove _initialize_dummy_frame prototype.
	* dwarf2-frame-tailcall.c: Remove _initialize_tailcall_frame
	prototype.
	* dwarf2-frame.c: Remove _initialize_dwarf2_frame prototype.
	* dwarf2expr.c: Remove _initialize_dwarf2expr prototype.
	* dwarf2loc.c: Remove _initialize_dwarf2loc prototype.
	* dwarf2read.c: Remove _initialize_dwarf2_read prototype.
	* elfread.c: Remove _initialize_elfread prototype.
	* exec.c: Remove _initialize_exec prototype.
	* extension.c: Remove _initialize_extension prototype.
	* f-lang.c: Remove _initialize_f_language prototype.
	* f-valprint.c: Remove _initialize_f_valprint prototype.
	* fbsd-nat.c: Remove _initialize_fbsd_nat prototype.
	* fbsd-tdep.c: Remove _initialize_fbsd_tdep prototype.
	* filesystem.c: Remove _initialize_filesystem prototype.
	* findcmd.c: Remove _initialize_mem_search prototype.
	* fork-child.c: Remove _initialize_fork_child prototype.
	* frame-base.c: Remove _initialize_frame_base prototype.
	* frame-unwind.c: Remove _initialize_frame_unwind prototype.
	* frame.c: Remove _initialize_frame prototype.
	* frv-linux-tdep.c: Remove _initialize_frv_linux_tdep prototype.
	* frv-tdep.c: Remove _initialize_frv_tdep prototype.
	* ft32-tdep.c: Remove _initialize_ft32_tdep prototype.
	* gcore.c: Remove _initialize_gcore prototype.
	* gdb_bfd.c: Remove _initialize_gdb_bfd prototype.
	* gdbarch.c: Regenerate.
	* gdbarch.sh: Remove _initialize_gdbarch prototype.
	* gdbtypes.c: Remove _initialize_gdbtypes prototype.
	* gnu-nat.c: Remove _initialize_gnu_nat prototype.
	* gnu-v2-abi.c: Remove _initialize_gnu_v2_abi prototype.
	* gnu-v3-abi.c: Remove _initialize_gnu_v3_abi prototype.
	* go-lang.c: Remove _initialize_go_language prototype.
	* go32-nat.c: Remove _initialize_go32_nat prototype.
	* guile/guile.c: Remove _initialize_guile prototype.
	* h8300-tdep.c: Remove _initialize_h8300_tdep prototype.
	* hppa-linux-nat.c: Remove _initialize_hppa_linux_nat prototype.
	* hppa-linux-tdep.c: Remove _initialize_hppa_linux_tdep prototype.
	* hppa-nbsd-nat.c: Remove _initialize_hppanbsd_nat prototype.
	* hppa-nbsd-tdep.c: Remove _initialize_hppanbsd_tdep prototype.
	* hppa-obsd-nat.c: Remove _initialize_hppaobsd_nat prototype.
	* hppa-obsd-tdep.c: Remove _initialize_hppaobsd_tdep prototype.
	* hppa-tdep.c: Remove _initialize_hppa_tdep prototype.
	* i386-bsd-nat.c: Remove _initialize_i386bsd_nat prototype.
	* i386-cygwin-tdep.c: Remove _initialize_i386_cygwin_tdep
	prototype.
	* i386-darwin-tdep.c: Remove _initialize_i386_darwin_tdep
	prototype.
	* i386-dicos-tdep.c: Remove _initialize_i386_dicos_tdep prototype.
	* i386-fbsd-nat.c: Remove _initialize_i386fbsd_nat prototype.
	* i386-fbsd-tdep.c: Remove _initialize_i386fbsd_tdep prototype.
	* i386-gnu-nat.c: Remove _initialize_i386gnu_nat prototype.
	* i386-gnu-tdep.c: Remove _initialize_i386gnu_tdep prototype.
	* i386-linux-nat.c: Remove _initialize_i386_linux_nat prototype.
	* i386-linux-tdep.c: Remove _initialize_i386_linux_tdep prototype.
	* i386-nbsd-nat.c: Remove _initialize_i386nbsd_nat prototype.
	* i386-nbsd-tdep.c: Remove _initialize_i386nbsd_tdep prototype.
	* i386-nto-tdep.c: Remove _initialize_i386nto_tdep prototype.
	* i386-obsd-nat.c: Remove _initialize_i386obsd_nat prototype.
	* i386-obsd-tdep.c: Remove _initialize_i386obsd_tdep prototype.
	* i386-sol2-nat.c: Remove _initialize_amd64_sol2_nat prototype.
	* i386-sol2-tdep.c: Remove _initialize_amd64_sol2_tdep prototype.
	* i386-tdep.c: Remove _initialize_i386_tdep prototype.
	* i386-windows-nat.c: Remove _initialize_i386_windows_nat
	prototype.
	* ia64-libunwind-tdep.c: Remove _initialize_libunwind_frame
	prototype.
	* ia64-linux-nat.c: Remove _initialize_ia64_linux_nat prototype.
	* ia64-linux-tdep.c: Remove _initialize_ia64_linux_tdep prototype.
	* ia64-tdep.c: Remove _initialize_ia64_tdep prototype.
	* ia64-vms-tdep.c: Remove _initialize_ia64_vms_tdep prototype.
	* infcall.c: Remove _initialize_infcall prototype.
	* infcmd.c: Remove _initialize_infcmd prototype.
	* inferior.c: Remove _initialize_inferiors prototype.
	* inflow.c: Remove _initialize_inflow prototype.
	* infrun.c: Remove _initialize_infrun prototype.
	* interps.c: Remove _initialize_interpreter prototype.
	* iq2000-tdep.c: Remove _initialize_iq2000_tdep prototype.
	* jit.c: Remove _initialize_jit prototype.
	* language.c: Remove _initialize_language prototype.
	* linux-fork.c: Remove _initialize_linux_fork prototype.
	* linux-nat.c: Remove _initialize_linux_nat prototype.
	* linux-tdep.c: Remove _initialize_linux_tdep prototype.
	* linux-thread-db.c: Remove _initialize_thread_db prototype.
	* lm32-tdep.c: Remove _initialize_lm32_tdep prototype.
	* m2-lang.c: Remove _initialize_m2_language prototype.
	* m32c-tdep.c: Remove _initialize_m32c_tdep prototype.
	* m32r-linux-nat.c: Remove _initialize_m32r_linux_nat prototype.
	* m32r-linux-tdep.c: Remove _initialize_m32r_linux_tdep prototype.
	* m32r-tdep.c: Remove _initialize_m32r_tdep prototype.
	* m68hc11-tdep.c: Remove _initialize_m68hc11_tdep prototype.
	* m68k-bsd-nat.c: Remove _initialize_m68kbsd_nat prototype.
	* m68k-bsd-tdep.c: Remove _initialize_m68kbsd_tdep prototype.
	* m68k-linux-nat.c: Remove _initialize_m68k_linux_tdep prototype.
	* m68k-linux-tdep.c: Remove _initialize_m68k_linux_tdep prototype.
	* m68k-tdep.c: Remove _initialize_m68k_tdep prototype.
	* m88k-bsd-nat.c: Remove _initialize_m68kbsd_nat prototype.
	* m88k-tdep.c: Remove _initialize_m68kbsd_tdep prototype.
	* machoread.c: Remove _initialize_machoread prototype.
	* macrocmd.c: Remove _initialize_macrocmd prototype.
	* macroscope.c: Remove _initialize_macroscope prototype.
	* maint.c: Remove _initialize_maint_cmds prototype.
	* mdebugread.c: Remove _initialize_mdebugread prototype.
	* memattr.c: Remove _initialize_mem prototype.
	* mep-tdep.c: Remove _initialize_mep_tdep prototype.
	* mi/mi-cmd-env.c: Remove _initialize_mi_cmd_env prototype.
	* mi/mi-cmds.c: Remove _initialize_mi_cmds prototype.
	* mi/mi-interp.c: Remove _initialize_mi_interp prototype.
	* mi/mi-main.c: Remove _initialize_mi_main prototype.
	* microblaze-linux-tdep.c: Remove
	_initialize_microblaze_linux_tdep prototype.
	* microblaze-tdep.c: Remove _initialize_microblaze_tdep prototype.
	* mips-fbsd-nat.c: Remove _initialize_mips_fbsd_nat prototype.
	* mips-fbsd-tdep.c: Remove _initialize_mips_fbsd_tdep prototype.
	* mips-linux-nat.c: Remove _initialize_mips_linux_nat prototype.
	* mips-linux-tdep.c: Remove _initialize_mips_linux_tdep prototype.
	* mips-nbsd-nat.c: Remove _initialize_mipsnbsd_nat prototype.
	* mips-nbsd-tdep.c: Remove _initialize_mipsnbsd_tdep prototype.
	* mips-sde-tdep.c: Remove _initialize_mips_sde_tdep prototype.
	* mips-tdep.c: Remove _initialize_mips_tdep prototype.
	* mips64-obsd-nat.c: Remove _initialize_mips64obsd_nat prototype.
	* mips64-obsd-tdep.c: Remove _initialize_mips64obsd_tdep
	prototype.
	* mipsread.c: Remove _initialize_mipsread prototype.
	* mn10300-linux-tdep.c: Remove _initialize_mn10300_linux_tdep
	prototype.
	* mn10300-tdep.c: Remove _initialize_mn10300_tdep prototype.
	* moxie-tdep.c: Remove _initialize_moxie_tdep prototype.
	* msp430-tdep.c: Remove _initialize_msp430_tdep prototype.
	* mt-tdep.c: Remove _initialize_mt_tdep prototype.
	* nds32-tdep.c: Remove _initialize_nds32_tdep prototype.
	* nios2-linux-tdep.c: Remove _initialize_nios2_linux_tdep
	prototype.
	* nios2-tdep.c: Remove _initialize_nios2_tdep prototype.
	* nto-procfs.c: Remove _initialize_procfs prototype.
	* nto-tdep.c: Remove _initialize_nto_tdep prototype.
	* objc-lang.c: Remove _initialize_objc_language prototype.
	* objfiles.c: Remove _initialize_objfiles prototype.
	* observer.c: Remove observer_test_first_notification_function,
	observer_test_second_notification_function,
	observer_test_third_notification_function, and
	_initialize_observer prototypes.
	* opencl-lang.c: Remove _initialize_opencl_language prototypes.
	* osabi.c: Remove _initialize_gdb_osabi prototype.
	* osdata.c: Remove _initialize_osdata prototype.
	* p-valprint.c: Remove _initialize_pascal_valprint prototype.
	* parse.c: Remove _initialize_parse prototype.
	* ppc-fbsd-nat.c: Remove _initialize_ppcfbsd_nat prototype.
	* ppc-fbsd-tdep.c: Remove _initialize_ppcfbsd_tdep prototype.
	* ppc-linux-nat.c: Remove _initialize_ppc_linux_nat prototype.
	* ppc-linux-tdep.c: Remove _initialize_ppc_linux_tdep prototype.
	* ppc-nbsd-nat.c: Remove _initialize_ppcnbsd_nat prototype.
	* ppc-nbsd-tdep.c: Remove _initialize_ppcnbsd_tdep prototype.
	* ppc-obsd-nat.c: Remove _initialize_ppcobsd_nat prototype.
	* ppc-obsd-tdep.c: Remove _initialize_ppcobsd_tdep prototype.
	* printcmd.c: Remove _initialize_printcmd prototype.
	* probe.c: Remove _initialize_probe prototype.
	* proc-api.c: Remove _initialize_proc_api prototype.
	* proc-events.c: Remove _initialize_proc_events prototype.
	* proc-service.c: Remove _initialize_proc_service prototype.
	* procfs.c: Remove _initialize_procfs prototype.
	* psymtab.c: Remove _initialize_psymtab prototype.
	* python/python.c: Remove _initialize_python prototype.
	* ravenscar-thread.c: Remove _initialize_ravenscar prototype.
	* record-btrace.c: Remove _initialize_record_btrace prototype.
	* record-full.c: Remove _initialize_record_full prototype.
	* record.c: Remove _initialize_record prototype.
	* regcache.c: Remove _initialize_regcache prototype.
	* reggroups.c: Remove _initialize_reggroup prototype.
	* remote-notif.c: Remove _initialize_notif prototype.
	* remote-sim.c: Remove _initialize_remote_sim prototype.
	* remote.c: Remove _initialize_remote prototype.
	* reverse.c: Remove _initialize_reverse prototype.
	* rl78-tdep.c: Remove _initialize_rl78_tdep prototype.
	* rs6000-aix-tdep.c: Remove _initialize_rs6000_aix_tdep prototype.
	* rs6000-lynx178-tdep.c: Remove _initialize_rs6000_lynx178_tdep
	prototype.
	* rs6000-nat.c: Remove _initialize_rs6000_nat prototype.
	* rs6000-tdep.c: Remove _initialize_rs6000_tdep prototype.
	* rust-exp.y: Remove _initialize_rust_exp prototype.
	* rx-tdep.c: Remove _initialize_rx_tdep prototype.
	* s390-linux-nat.c: Remove _initialize_s390_nat prototype.
	* s390-linux-tdep.c: Remove _initialize_s390_tdep prototype.
	* score-tdep.c: Remove _initialize_score_tdep prototype.
	* selftest-arch.c: Remove _initialize_selftests_foreach_arch
	prototype.
	* ser-go32.c: Remove _initialize_ser_dos prototype.
	* ser-mingw.c: Remove _initialize_ser_windows prototype.
	* ser-pipe.c: Remove _initialize_ser_pipe prototype.
	* ser-tcp.c: Remove _initialize_ser_tcp prototype.
	* ser-unix.c: Remove _initialize_ser_hardwire prototype.
	* serial.c: Remove _initialize_serial prototype.
	* sh-linux-tdep.c: Remove _initialize_sh_linux_tdep prototype.
	* sh-nbsd-nat.c: Remove _initialize_shnbsd_nat prototype.
	* sh-nbsd-tdep.c: Remove _initialize_shnbsd_tdep prototype.
	* sh-tdep.c: Remove _initialize_sh_tdep prototype.
	* skip.c: Remove _initialize_step_skip prototype.
	* sol-thread.c: Remove _initialize_sol_thread prototype.
	* solib-aix.c: Remove _initialize_solib_aix prototype.
	* solib-darwin.c: Remove _initialize_darwin_solib prototype.
	* solib-dsbt.c: Remove _initialize_dsbt_solib prototype.
	* solib-frv.c: Remove _initialize_frv_solib prototype.
	* solib-spu.c: Remove _initialize_spu_solib prototype.
	* solib-svr4.c: Remove _initialize_svr4_solib prototype.
	* solib-target.c: Remove _initialize_solib_target prototype.
	* solib.c: Remove _initialize_solib prototype.
	* source.c: Remove _initialize_source prototype.
	* sparc-linux-nat.c: Remove _initialize_sparc_linux_nat prototype.
	* sparc-linux-tdep.c: Remove _initialize_sparc_linux_tdep
	prototype.
	* sparc-nat.c: Remove _initialize_sparc_nat prototype.
	* sparc-nbsd-nat.c: Remove _initialize_sparcnbsd_nat prototype.
	* sparc-nbsd-tdep.c: Remove _initialize_sparcnbsd_tdep prototype.
	* sparc-obsd-tdep.c: Remove _initialize_sparc32obsd_tdep
	prototype.
	* sparc-sol2-nat.c: Remove _initialize_sparc_sol2_nat prototype.
	* sparc-sol2-tdep.c: Remove _initialize_sparc_sol2_tdep prototype.
	* sparc-tdep.c: Remove _initialize_sparc_tdep prototype.
	* sparc64-fbsd-nat.c: Remove _initialize_sparc64fbsd_nat
	prototype.
	* sparc64-fbsd-tdep.c: Remove _initialize_sparc64fbsd_tdep
	prototype.
	* sparc64-linux-nat.c: Remove _initialize_sparc64_linux_nat
	prototype.
	* sparc64-linux-tdep.c: Remove _initialize_sparc64_linux_tdep
	prototype.
	* sparc64-nat.c: Remove _initialize_sparc64_nat prototype.
	* sparc64-nbsd-nat.c: Remove _initialize_sparc64nbsd_nat
	prototype.
	* sparc64-nbsd-tdep.c: Remove _initialize_sparc64nbsd_tdep
	prototype.
	* sparc64-obsd-nat.c: Remove _initialize_sparc64obsd_nat
	prototype.
	* sparc64-obsd-tdep.c: Remove _initialize_sparc64obsd_tdep
	prototype.
	* sparc64-sol2-tdep.c: Remove _initialize_sparc64_sol2_tdep
	prototype.
	* spu-linux-nat.c: Remove _initialize_spu_nat prototype.
	* spu-multiarch.c: Remove _initialize_spu_multiarch prototype.
	* spu-tdep.c: Remove _initialize_spu_tdep prototype.
	* stabsread.c: Remove _initialize_stabsread prototype.
	* stack.c: Remove _initialize_stack prototype.
	* stap-probe.c: Remove _initialize_stap_probe prototype.
	* std-regs.c: Remove _initialize_frame_reg prototype.
	* symfile-debug.c: Remove _initialize_symfile_debug prototype.
	* symfile-mem.c: Remove _initialize_symfile_mem prototype.
	* symfile.c: Remove _initialize_symfile prototype.
	* symmisc.c: Remove _initialize_symmisc prototype.
	* symtab.c: Remove _initialize_symtab prototype.
	* target-dcache.c: Remove _initialize_target_dcache prototype.
	* target-descriptions.c: Remove _initialize_target_descriptions
	prototype.
	* thread.c: Remove _initialize_thread prototype.
	* tic6x-linux-tdep.c: Remove _initialize_tic6x_linux_tdep
	prototype.
	* tic6x-tdep.c: Remove _initialize_tic6x_tdep prototype.
	* tilegx-linux-nat.c: Remove _initialize_tile_linux_nat prototype.
	* tilegx-linux-tdep.c: Remove _initialize_tilegx_linux_tdep
	prototype.
	* tilegx-tdep.c: Remove _initialize_tilegx_tdep prototype.
	* tracefile-tfile.c: Remove _initialize_tracefile_tfile prototype.
	* tracefile.c: Remove _initialize_tracefile prototype.
	* tracepoint.c: Remove _initialize_tracepoint prototype.
	* tui/tui-hooks.c: Remove _initialize_tui_hooks prototype.
	* tui/tui-interp.c: Remove _initialize_tui_interp prototype.
	* tui/tui-layout.c: Remove _initialize_tui_layout prototype.
	* tui/tui-regs.c: Remove _initialize_tui_regs prototype.
	* tui/tui-stack.c: Remove _initialize_tui_stack prototype.
	* tui/tui-win.c: Remove _initialize_tui_win prototype.
	* tui/tui.c: Remove _initialize_tui prototype.
	* typeprint.c: Remove _initialize_typeprint prototype.
	* user-regs.c: Remove _initialize_user_regs prototype.
	* utils.c: Remove _initialize_utils prototype.
	* v850-tdep.c: Remove _initialize_v850_tdep prototype.
	* valarith.c: Remove _initialize_valarith prototype.
	* valops.c: Remove _initialize_valops prototype.
	* valprint.c: Remove _initialize_valprint prototype.
	* value.c: Remove _initialize_values prototype.
	* varobj.c: Remove _initialize_varobj prototype.
	* vax-bsd-nat.c: Remove _initialize_vaxbsd_nat prototype.
	* vax-nbsd-tdep.c: Remove _initialize_vaxnbsd_tdep prototype.
	* vax-tdep.c: Remove _initialize_vax_tdep prototype.
	* windows-nat.c: Remove _initialize_windows_nat,
	_initialize_check_for_gdb_ini, and _initialize_loadable
	prototypes.
	* windows-tdep.c: Remove _initialize_windows_tdep prototype.
	* xcoffread.c: Remove _initialize_xcoffread prototype.
	* xml-support.c: Remove _initialize_xml_support prototype.
	* xstormy16-tdep.c: Remove _initialize_xstormy16_tdep prototype.
	* xtensa-linux-nat.c: Remove _initialize_xtensa_linux_nat
	prototype.
	* xtensa-linux-tdep.c: Remove _initialize_xtensa_linux_tdep
	prototype.
	* xtensa-tdep.c: Remove _initialize_xtensa_tdep prototype.
2017-09-09 11:02:37 -07:00

1750 lines
53 KiB
C

/* Target-dependent code for GNU/Linux on MIPS processors.
Copyright (C) 2001-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "mips-tdep.h"
#include "frame.h"
#include "regcache.h"
#include "trad-frame.h"
#include "tramp-frame.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "solib.h"
#include "solist.h"
#include "symtab.h"
#include "target-descriptions.h"
#include "regset.h"
#include "mips-linux-tdep.h"
#include "glibc-tdep.h"
#include "linux-tdep.h"
#include "xml-syscall.h"
#include "gdb_signals.h"
#include "features/mips-linux.c"
#include "features/mips-dsp-linux.c"
#include "features/mips64-linux.c"
#include "features/mips64-dsp-linux.c"
static struct target_so_ops mips_svr4_so_ops;
/* This enum represents the signals' numbers on the MIPS
architecture. It just contains the signal definitions which are
different from the generic implementation.
It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
from the Linux kernel tree. */
enum
{
MIPS_LINUX_SIGEMT = 7,
MIPS_LINUX_SIGBUS = 10,
MIPS_LINUX_SIGSYS = 12,
MIPS_LINUX_SIGUSR1 = 16,
MIPS_LINUX_SIGUSR2 = 17,
MIPS_LINUX_SIGCHLD = 18,
MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
MIPS_LINUX_SIGPWR = 19,
MIPS_LINUX_SIGWINCH = 20,
MIPS_LINUX_SIGURG = 21,
MIPS_LINUX_SIGIO = 22,
MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
MIPS_LINUX_SIGSTOP = 23,
MIPS_LINUX_SIGTSTP = 24,
MIPS_LINUX_SIGCONT = 25,
MIPS_LINUX_SIGTTIN = 26,
MIPS_LINUX_SIGTTOU = 27,
MIPS_LINUX_SIGVTALRM = 28,
MIPS_LINUX_SIGPROF = 29,
MIPS_LINUX_SIGXCPU = 30,
MIPS_LINUX_SIGXFSZ = 31,
MIPS_LINUX_SIGRTMIN = 32,
MIPS_LINUX_SIGRT64 = 64,
MIPS_LINUX_SIGRTMAX = 127,
};
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
at. The pc is copied into PC. This routine returns 1 on
success. */
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
#define MIPS_LINUX_JB_PC 0
static int
mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
if (target_read_memory ((jb_addr
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
byte_order);
return 1;
}
/* Transform the bits comprising a 32-bit register to the right size
for regcache_raw_supply(). This is needed when mips_isa_regsize()
is 8. */
static void
supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
{
regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, 4, true);
}
/* Unpack an elf_gregset_t into GDB's register cache. */
void
mips_supply_gregset (struct regcache *regcache,
const mips_elf_gregset_t *gregsetp)
{
int regi;
const mips_elf_greg_t *regp = *gregsetp;
struct gdbarch *gdbarch = get_regcache_arch (regcache);
for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
if (mips_linux_restart_reg_p (gdbarch))
supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
regp + EF_CP0_EPC);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
regp + EF_CP0_BADVADDR);
supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
regp + EF_CP0_CAUSE);
/* Fill the inaccessible zero register with zero. */
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
}
static void
mips_supply_gregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_gregset_t));
mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
}
/* Pack our registers (or one register) into an elf_gregset_t. */
void
mips_fill_gregset (const struct regcache *regcache,
mips_elf_gregset_t *gregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regaddr, regi;
mips_elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips_elf_gregset_t));
for (regi = 1; regi < 32; regi++)
mips_fill_gregset (regcache, gregsetp, regi);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
return;
}
if (regno > 0 && regno < 32)
{
dst = regp + regno + EF_REG0;
regcache_raw_collect (regcache, regno, dst);
return;
}
if (regno == mips_regnum (gdbarch)->lo)
regaddr = EF_LO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = EF_HI;
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = EF_CP0_EPC;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = EF_CP0_BADVADDR;
else if (regno == MIPS_PS_REGNUM)
regaddr = EF_CP0_STATUS;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = EF_CP0_CAUSE;
else if (mips_linux_restart_reg_p (gdbarch)
&& regno == MIPS_RESTART_REGNUM)
regaddr = EF_REG0;
else
regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
regcache_raw_collect (regcache, regno, dst);
}
}
static void
mips_fill_gregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_gregset_t));
mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
}
/* Likewise, unpack an elf_fpregset_t. */
void
mips_supply_fpregset (struct regcache *regcache,
const mips_elf_fpregset_t *fpregsetp)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regi;
for (regi = 0; regi < 32; regi++)
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
*fpregsetp + regi);
regcache_raw_supply (regcache,
mips_regnum (gdbarch)->fp_control_status,
*fpregsetp + 32);
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
regcache->raw_supply_zeroed
(mips_regnum (gdbarch)->fp_implementation_revision);
}
static void
mips_supply_fpregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
mips_fill_fpregset (const struct regcache *regcache,
mips_elf_fpregset_t *fpregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
char *to;
if ((regno >= gdbarch_fp0_regnum (gdbarch))
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
{
to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
regcache_raw_collect (regcache, regno, to);
}
else if (regno == mips_regnum (gdbarch)->fp_control_status)
{
to = (char *) (*fpregsetp + 32);
regcache_raw_collect (regcache, regno, to);
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips_fill_fpregset (regcache, fpregsetp,
gdbarch_fp0_regnum (gdbarch) + regi);
mips_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_control_status);
}
}
static void
mips_fill_fpregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips_elf_fpregset_t));
mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
}
/* Support for 64-bit ABIs. */
/* Figure out where the longjmp will land.
We expect the first arg to be a pointer to the jmp_buf structure
from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
at. The pc is copied into PC. This routine returns 1 on
success. */
/* Details about jmp_buf. */
#define MIPS64_LINUX_JB_PC 0
static int
mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
CORE_ADDR jb_addr;
struct gdbarch *gdbarch = get_frame_arch (frame);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte *buf
= (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
return 0;
*pc = extract_unsigned_integer (buf,
gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
byte_order);
return 1;
}
/* Register set support functions. These operate on standard 64-bit
regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
target will still use the 64-bit format for PTRACE_GETREGS. */
/* Supply a 64-bit register. */
static void
supply_64bit_reg (struct regcache *regcache, int regnum,
const gdb_byte *buf)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
&& register_size (gdbarch, regnum) == 4)
regcache_raw_supply (regcache, regnum, buf + 4);
else
regcache_raw_supply (regcache, regnum, buf);
}
/* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
void
mips64_supply_gregset (struct regcache *regcache,
const mips64_elf_gregset_t *gregsetp)
{
int regi;
const mips64_elf_greg_t *regp = *gregsetp;
struct gdbarch *gdbarch = get_regcache_arch (regcache);
for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
(const gdb_byte *) (regp + regi));
if (mips_linux_restart_reg_p (gdbarch))
supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
(const gdb_byte *) (regp + MIPS64_EF_REG0));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
(const gdb_byte *) (regp + MIPS64_EF_LO));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
(const gdb_byte *) (regp + MIPS64_EF_HI));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
(const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
(const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
supply_64bit_reg (regcache, MIPS_PS_REGNUM,
(const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
(const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
/* Fill the inaccessible zero register with zero. */
regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
}
static void
mips64_supply_gregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
}
/* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
void
mips64_fill_gregset (const struct regcache *regcache,
mips64_elf_gregset_t *gregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regaddr, regi;
mips64_elf_greg_t *regp = *gregsetp;
void *dst;
if (regno == -1)
{
memset (regp, 0, sizeof (mips64_elf_gregset_t));
for (regi = 1; regi < 32; regi++)
mips64_fill_gregset (regcache, gregsetp, regi);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
mips64_fill_gregset (regcache, gregsetp,
mips_regnum (gdbarch)->badvaddr);
mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
return;
}
if (regno > 0 && regno < 32)
regaddr = regno + MIPS64_EF_REG0;
else if (regno == mips_regnum (gdbarch)->lo)
regaddr = MIPS64_EF_LO;
else if (regno == mips_regnum (gdbarch)->hi)
regaddr = MIPS64_EF_HI;
else if (regno == mips_regnum (gdbarch)->pc)
regaddr = MIPS64_EF_CP0_EPC;
else if (regno == mips_regnum (gdbarch)->badvaddr)
regaddr = MIPS64_EF_CP0_BADVADDR;
else if (regno == MIPS_PS_REGNUM)
regaddr = MIPS64_EF_CP0_STATUS;
else if (regno == mips_regnum (gdbarch)->cause)
regaddr = MIPS64_EF_CP0_CAUSE;
else if (mips_linux_restart_reg_p (gdbarch)
&& regno == MIPS_RESTART_REGNUM)
regaddr = MIPS64_EF_REG0;
else
regaddr = -1;
if (regaddr != -1)
{
dst = regp + regaddr;
regcache->raw_collect_integer (regno, (gdb_byte *) dst, 8, true);
}
}
static void
mips64_fill_gregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_gregset_t));
mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
}
/* Likewise, unpack an elf_fpregset_t. */
void
mips64_supply_fpregset (struct regcache *regcache,
const mips64_elf_fpregset_t *fpregsetp)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
int regi;
/* See mips_linux_o32_sigframe_init for a description of the
peculiar FP register layout. */
if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
for (regi = 0; regi < 32; regi++)
{
const gdb_byte *reg_ptr
= (const gdb_byte *) (*fpregsetp + (regi & ~1));
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
reg_ptr += 4;
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
reg_ptr);
}
else
for (regi = 0; regi < 32; regi++)
regcache_raw_supply (regcache,
gdbarch_fp0_regnum (gdbarch) + regi,
(const char *) (*fpregsetp + regi));
supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
(const gdb_byte *) (*fpregsetp + 32));
/* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
include it - but the result of PTRACE_GETFPREGS does. The best we
can do is to assume that its value is present. */
supply_32bit_reg (regcache,
mips_regnum (gdbarch)->fp_implementation_revision,
(const gdb_byte *) (*fpregsetp + 32) + 4);
}
static void
mips64_supply_fpregset_wrapper (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
}
/* Likewise, pack one or all floating point registers into an
elf_fpregset_t. */
void
mips64_fill_fpregset (const struct regcache *regcache,
mips64_elf_fpregset_t *fpregsetp, int regno)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte *to;
if ((regno >= gdbarch_fp0_regnum (gdbarch))
&& (regno < gdbarch_fp0_regnum (gdbarch) + 32))
{
/* See mips_linux_o32_sigframe_init for a description of the
peculiar FP register layout. */
if (register_size (gdbarch, regno) == 4)
{
int regi = regno - gdbarch_fp0_regnum (gdbarch);
to = (gdb_byte *) (*fpregsetp + (regi & ~1));
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
to += 4;
regcache_raw_collect (regcache, regno, to);
}
else
{
to = (gdb_byte *) (*fpregsetp + regno
- gdbarch_fp0_regnum (gdbarch));
regcache_raw_collect (regcache, regno, to);
}
}
else if (regno == mips_regnum (gdbarch)->fp_control_status)
{
to = (gdb_byte *) (*fpregsetp + 32);
regcache->raw_collect_integer (regno, to, 4, true);
}
else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
{
to = (gdb_byte *) (*fpregsetp + 32) + 4;
regcache->raw_collect_integer (regno, to, 4, true);
}
else if (regno == -1)
{
int regi;
for (regi = 0; regi < 32; regi++)
mips64_fill_fpregset (regcache, fpregsetp,
gdbarch_fp0_regnum (gdbarch) + regi);
mips64_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_control_status);
mips64_fill_fpregset (regcache, fpregsetp,
mips_regnum (gdbarch)->fp_implementation_revision);
}
}
static void
mips64_fill_fpregset_wrapper (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *gregs, size_t len)
{
gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
}
static const struct regset mips_linux_gregset =
{
NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
};
static const struct regset mips64_linux_gregset =
{
NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
};
static const struct regset mips_linux_fpregset =
{
NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
};
static const struct regset mips64_linux_fpregset =
{
NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
};
static void
mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
iterate_over_regset_sections_cb *cb,
void *cb_data,
const struct regcache *regcache)
{
if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
{
cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
NULL, cb_data);
cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
NULL, cb_data);
}
else
{
cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
NULL, cb_data);
cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
NULL, cb_data);
}
}
static const struct target_desc *
mips_linux_core_read_description (struct gdbarch *gdbarch,
struct target_ops *target,
bfd *abfd)
{
asection *section = bfd_get_section_by_name (abfd, ".reg");
if (! section)
return NULL;
switch (bfd_section_size (abfd, section))
{
case sizeof (mips_elf_gregset_t):
return mips_tdesc_gp32;
case sizeof (mips64_elf_gregset_t):
return mips_tdesc_gp64;
default:
return NULL;
}
}
/* Check the code at PC for a dynamic linker lazy resolution stub.
GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
section uniformly since version 2.15. If the pc is in that section,
then we are in such a stub. Before that ".stub" was used in 32-bit
ELF binaries, however we do not bother checking for that since we
have never had and that case should be extremely rare these days.
Instead we pattern-match on the code generated by GNU ld. They look
like this:
lw t9,0x8010(gp)
addu t7,ra
jalr t9,ra
addiu t8,zero,INDEX
(with the appropriate doubleword instructions for N64). As any lazy
resolution stubs in microMIPS binaries will always be in a
".MIPS.stubs" section we only ever verify standard MIPS patterns. */
static int
mips_linux_in_dynsym_stub (CORE_ADDR pc)
{
gdb_byte buf[28], *p;
ULONGEST insn, insn1;
int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
if (in_mips_stubs_section (pc))
return 1;
read_memory (pc - 12, buf, 28);
if (n64)
{
/* ld t9,0x8010(gp) */
insn1 = 0xdf998010;
}
else
{
/* lw t9,0x8010(gp) */
insn1 = 0x8f998010;
}
p = buf + 12;
while (p >= buf)
{
insn = extract_unsigned_integer (p, 4, byte_order);
if (insn == insn1)
break;
p -= 4;
}
if (p < buf)
return 0;
insn = extract_unsigned_integer (p + 4, 4, byte_order);
if (n64)
{
/* 'daddu t7,ra' or 'or t7, ra, zero'*/
if (insn != 0x03e0782d || insn != 0x03e07825)
return 0;
}
else
{
/* 'addu t7,ra' or 'or t7, ra, zero'*/
if (insn != 0x03e07821 || insn != 0x03e07825)
return 0;
}
insn = extract_unsigned_integer (p + 8, 4, byte_order);
/* jalr t9,ra */
if (insn != 0x0320f809)
return 0;
insn = extract_unsigned_integer (p + 12, 4, byte_order);
if (n64)
{
/* daddiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x64180000)
return 0;
}
else
{
/* addiu t8,zero,0 */
if ((insn & 0xffff0000) != 0x24180000)
return 0;
}
return 1;
}
/* Return non-zero iff PC belongs to the dynamic linker resolution
code, a PLT entry, or a lazy binding stub. */
static int
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
{
/* Check whether PC is in the dynamic linker. This also checks
whether it is in the .plt section, used by non-PIC executables. */
if (svr4_in_dynsym_resolve_code (pc))
return 1;
/* Likewise for the stubs. They live in the .MIPS.stubs section these
days, so we check if the PC is within, than fall back to a pattern
match. */
if (mips_linux_in_dynsym_stub (pc))
return 1;
return 0;
}
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
implementation of this triggers at "fixup" from the same objfile as
"_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
"__dl_runtime_resolve" directly. An unresolved lazy binding
stub will point to _dl_runtime_resolve, which will first call
__dl_runtime_resolve, and then pass control to the resolved
function. */
static CORE_ADDR
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
{
struct bound_minimal_symbol resolver;
resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
return frame_unwind_caller_pc (get_current_frame ());
return glibc_skip_solib_resolver (gdbarch, pc);
}
/* Signal trampoline support. There are four supported layouts for a
signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
n64 rt_sigframe. We handle them all independently; not the most
efficient way, but simplest. First, declare all the unwinders. */
static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func);
static int mips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc);
static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc);
#define MIPS_NR_LINUX 4000
#define MIPS_NR_N64_LINUX 5000
#define MIPS_NR_N32_LINUX 6000
#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
#define MIPS_INST_SYSCALL 0x0000000c
#define MICROMIPS_INST_LI_V0 0x3040
#define MICROMIPS_INST_POOL32A 0x0000
#define MICROMIPS_INST_SYSCALL 0x8b7c
static const struct tramp_frame mips_linux_o32_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_o32_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 } },
mips_linux_o32_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_n32_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame mips_linux_n64_rt_sigframe = {
SIGTRAMP_FRAME,
4,
{
{ MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
{ MIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
mips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_o32_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_o32_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_N32_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
micromips_linux_sigframe_validate
};
static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
SIGTRAMP_FRAME,
2,
{
{ MICROMIPS_INST_LI_V0, -1 },
{ MIPS_NR_N64_rt_sigreturn, -1 },
{ MICROMIPS_INST_POOL32A, -1 },
{ MICROMIPS_INST_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN, -1 }
},
mips_linux_n32n64_sigframe_init,
micromips_linux_sigframe_validate
};
/* *INDENT-OFF* */
/* The unwinder for o32 signal frames. The legacy structures look
like this:
struct sigframe {
u32 sf_ass[4]; [argument save space for o32]
u32 sf_code[2]; [signal trampoline or fill]
struct sigcontext sf_sc;
sigset_t sf_mask;
};
Pre-2.6.12 sigcontext:
struct sigcontext {
unsigned int sc_regmask; [Unused]
unsigned int sc_status;
unsigned long long sc_pc;
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned int sc_ownedfp;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir; [Unused]
unsigned int sc_used_math;
unsigned int sc_ssflags; [Unused]
[Alignment hole of four bytes]
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned int sc_cause; [Unused]
unsigned int sc_badvaddr; [Unused]
unsigned long sc_sigset[4]; [kernel's sigset_t]
};
Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
struct sigcontext {
unsigned int sc_regmask; [Unused]
unsigned int sc_status; [Unused]
unsigned long long sc_pc;
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned int sc_acx;
unsigned int sc_fpc_csr;
unsigned int sc_fpc_eir; [Unused]
unsigned int sc_used_math;
unsigned int sc_dsp;
[Alignment hole of four bytes]
unsigned long long sc_mdhi;
unsigned long long sc_mdlo;
unsigned long sc_hi1;
unsigned long sc_lo1;
unsigned long sc_hi2;
unsigned long sc_lo2;
unsigned long sc_hi3;
unsigned long sc_lo3;
};
The RT signal frames look like this:
struct rt_sigframe {
u32 rs_ass[4]; [argument save space for o32]
u32 rs_code[2] [signal trampoline or fill]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
[Alignment hole of four bytes]
struct sigcontext uc_mcontext;
sigset_t uc_sigmask;
}; */
/* *INDENT-ON* */
#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
#define RTSIGFRAME_SIGINFO_SIZE 128
#define STACK_T_SIZE (3 * 4)
#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ UCONTEXT_SIGCONTEXT_OFFSET)
#define SIGCONTEXT_PC (1 * 8)
#define SIGCONTEXT_REGS (2 * 8)
#define SIGCONTEXT_FPREGS (34 * 8)
#define SIGCONTEXT_FPCSR (66 * 8 + 4)
#define SIGCONTEXT_DSPCTL (68 * 8 + 0)
#define SIGCONTEXT_HI (69 * 8)
#define SIGCONTEXT_LO (70 * 8)
#define SIGCONTEXT_CAUSE (71 * 8 + 0)
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
#define SIGCONTEXT_HI1 (71 * 8 + 0)
#define SIGCONTEXT_LO1 (71 * 8 + 4)
#define SIGCONTEXT_HI2 (72 * 8 + 0)
#define SIGCONTEXT_LO2 (72 * 8 + 4)
#define SIGCONTEXT_HI3 (73 * 8 + 0)
#define SIGCONTEXT_LO3 (73 * 8 + 4)
#define SIGCONTEXT_REG_SIZE 8
static void
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
int ireg;
CORE_ADDR frame_sp = get_frame_sp (this_frame);
CORE_ADDR sigcontext_base;
const struct mips_regnum *regs = mips_regnum (gdbarch);
CORE_ADDR regs_base;
if (self == &mips_linux_o32_sigframe
|| self == &micromips_linux_o32_sigframe)
sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
/* I'm not proud of this hack. Eventually we will have the
infrastructure to indicate the size of saved registers on a
per-frame basis, but right now we don't; the kernel saves eight
bytes but we only want four. Use regs_base to access any
64-bit fields. */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
regs_base = sigcontext_base + 4;
else
regs_base = sigcontext_base;
if (mips_linux_restart_reg_p (gdbarch))
trad_frame_set_reg_addr (this_cache,
(MIPS_RESTART_REGNUM
+ gdbarch_num_regs (gdbarch)),
regs_base + SIGCONTEXT_REGS);
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
(ireg + MIPS_ZERO_REGNUM
+ gdbarch_num_regs (gdbarch)),
(regs_base + SIGCONTEXT_REGS
+ ireg * SIGCONTEXT_REG_SIZE));
/* The way that floating point registers are saved, unfortunately,
depends on the architecture the kernel is built for. For the r3000 and
tx39, four bytes of each register are at the beginning of each of the
32 eight byte slots. For everything else, the registers are saved
using double precision; only the even-numbered slots are initialized,
and the high bits are the odd-numbered register. Assume the latter
layout, since we can't tell, and it's much more common. Which bits are
the "high" bits depends on endianness. */
for (ireg = 0; ireg < 32; ireg++)
if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + SIGCONTEXT_FPREGS + 4
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
else
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + SIGCONTEXT_FPREGS
+ (ireg & ~1) * SIGCONTEXT_REG_SIZE));
trad_frame_set_reg_addr (this_cache,
regs->pc + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache,
(regs->fp_control_status
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + SIGCONTEXT_FPCSR);
if (regs->dspctl != -1)
trad_frame_set_reg_addr (this_cache,
regs->dspctl + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_DSPCTL);
trad_frame_set_reg_addr (this_cache,
regs->hi + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache,
regs->lo + gdbarch_num_regs (gdbarch),
regs_base + SIGCONTEXT_LO);
if (regs->dspacc != -1)
{
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_HI3);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_LO3);
}
else
{
trad_frame_set_reg_addr (this_cache,
regs->cause + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_CAUSE);
trad_frame_set_reg_addr (this_cache,
regs->badvaddr + gdbarch_num_regs (gdbarch),
sigcontext_base + SIGCONTEXT_BADVADDR);
}
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
}
/* *INDENT-OFF* */
/* For N32/N64 things look different. There is no non-rt signal frame.
struct rt_sigframe_n32 {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline or fill ]
struct siginfo rs_info;
struct ucontextn32 rs_uc;
};
struct ucontextn32 {
u32 uc_flags;
s32 uc_link;
stack32_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
struct rt_sigframe {
u32 rs_ass[4]; [ argument save space for o32 ]
u32 rs_code[2]; [ signal trampoline ]
struct siginfo rs_info;
struct ucontext rs_uc;
};
struct ucontext {
unsigned long uc_flags;
struct ucontext *uc_link;
stack_t uc_stack;
struct sigcontext uc_mcontext;
sigset_t uc_sigmask; [ mask last for extensibility ]
};
And the sigcontext is different (this is for both n32 and n64):
struct sigcontext {
unsigned long long sc_regs[32];
unsigned long long sc_fpregs[32];
unsigned long long sc_mdhi;
unsigned long long sc_hi1;
unsigned long long sc_hi2;
unsigned long long sc_hi3;
unsigned long long sc_mdlo;
unsigned long long sc_lo1;
unsigned long long sc_lo2;
unsigned long long sc_lo3;
unsigned long long sc_pc;
unsigned int sc_fpc_csr;
unsigned int sc_used_math;
unsigned int sc_dsp;
unsigned int sc_reserved;
};
That is the post-2.6.12 definition of the 64-bit sigcontext; before
then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
included too. */
/* *INDENT-ON* */
#define N32_STACK_T_SIZE STACK_T_SIZE
#define N64_STACK_T_SIZE (2 * 8 + 4)
#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N32_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
+ RTSIGFRAME_SIGINFO_SIZE \
+ N64_UCONTEXT_SIGCONTEXT_OFFSET)
#define N64_SIGCONTEXT_REGS (0 * 8)
#define N64_SIGCONTEXT_FPREGS (32 * 8)
#define N64_SIGCONTEXT_HI (64 * 8)
#define N64_SIGCONTEXT_HI1 (65 * 8)
#define N64_SIGCONTEXT_HI2 (66 * 8)
#define N64_SIGCONTEXT_HI3 (67 * 8)
#define N64_SIGCONTEXT_LO (68 * 8)
#define N64_SIGCONTEXT_LO1 (69 * 8)
#define N64_SIGCONTEXT_LO2 (70 * 8)
#define N64_SIGCONTEXT_LO3 (71 * 8)
#define N64_SIGCONTEXT_PC (72 * 8)
#define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
#define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
#define N64_SIGCONTEXT_REG_SIZE 8
static void
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
struct frame_info *this_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
int ireg;
CORE_ADDR frame_sp = get_frame_sp (this_frame);
CORE_ADDR sigcontext_base;
const struct mips_regnum *regs = mips_regnum (gdbarch);
if (self == &mips_linux_n32_rt_sigframe
|| self == &micromips_linux_n32_rt_sigframe)
sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
else
sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
if (mips_linux_restart_reg_p (gdbarch))
trad_frame_set_reg_addr (this_cache,
(MIPS_RESTART_REGNUM
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + N64_SIGCONTEXT_REGS);
for (ireg = 1; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
(ireg + MIPS_ZERO_REGNUM
+ gdbarch_num_regs (gdbarch)),
(sigcontext_base + N64_SIGCONTEXT_REGS
+ ireg * N64_SIGCONTEXT_REG_SIZE));
for (ireg = 0; ireg < 32; ireg++)
trad_frame_set_reg_addr (this_cache,
ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
(sigcontext_base + N64_SIGCONTEXT_FPREGS
+ ireg * N64_SIGCONTEXT_REG_SIZE));
trad_frame_set_reg_addr (this_cache,
regs->pc + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_PC);
trad_frame_set_reg_addr (this_cache,
(regs->fp_control_status
+ gdbarch_num_regs (gdbarch)),
sigcontext_base + N64_SIGCONTEXT_FPCSR);
trad_frame_set_reg_addr (this_cache,
regs->hi + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI);
trad_frame_set_reg_addr (this_cache,
regs->lo + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO);
if (regs->dspacc != -1)
{
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO1);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO2);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_HI3);
trad_frame_set_reg_addr (this_cache,
regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_LO3);
}
if (regs->dspctl != -1)
trad_frame_set_reg_addr (this_cache,
regs->dspctl + gdbarch_num_regs (gdbarch),
sigcontext_base + N64_SIGCONTEXT_DSPCTL);
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
}
/* Implement struct tramp_frame's "validate" method for standard MIPS code. */
static int
mips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc)
{
return mips_pc_is_mips (*pc);
}
/* Implement struct tramp_frame's "validate" method for microMIPS code. */
static int
micromips_linux_sigframe_validate (const struct tramp_frame *self,
struct frame_info *this_frame,
CORE_ADDR *pc)
{
if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
{
*pc = mips_unmake_compact_addr (*pc);
return 1;
}
else
return 0;
}
/* Implement the "write_pc" gdbarch method. */
static void
mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = get_regcache_arch (regcache);
mips_write_pc (regcache, pc);
/* Clear the syscall restart flag. */
if (mips_linux_restart_reg_p (gdbarch))
regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
}
/* Return 1 if MIPS_RESTART_REGNUM is usable. */
int
mips_linux_restart_reg_p (struct gdbarch *gdbarch)
{
/* If we do not have a target description with registers, then
MIPS_RESTART_REGNUM will not be included in the register set. */
if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
return 0;
/* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
either be GPR-sized or missing. */
return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
}
/* When FRAME is at a syscall instruction, return the PC of the next
instruction to be executed. */
static CORE_ADDR
mips_linux_syscall_next_pc (struct frame_info *frame)
{
CORE_ADDR pc = get_frame_pc (frame);
ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
/* If we are about to make a sigreturn syscall, use the unwinder to
decode the signal frame. */
if (v0 == MIPS_NR_sigreturn
|| v0 == MIPS_NR_rt_sigreturn
|| v0 == MIPS_NR_N64_rt_sigreturn
|| v0 == MIPS_NR_N32_rt_sigreturn)
return frame_unwind_caller_pc (get_current_frame ());
return pc + 4;
}
/* Return the current system call's number present in the
v0 register. When the function fails, it returns -1. */
static LONGEST
mips_linux_get_syscall_number (struct gdbarch *gdbarch,
ptid_t ptid)
{
struct regcache *regcache = get_thread_regcache (ptid);
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
/* The content of a register */
gdb_byte buf[8];
/* The result */
LONGEST ret;
/* Make sure we're in a known ABI */
gdb_assert (tdep->mips_abi == MIPS_ABI_O32
|| tdep->mips_abi == MIPS_ABI_N32
|| tdep->mips_abi == MIPS_ABI_N64);
gdb_assert (regsize <= sizeof (buf));
/* Getting the system call number from the register.
syscall number is in v0 or $2. */
regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
ret = extract_signed_integer (buf, regsize, byte_order);
return ret;
}
/* Implementation of `gdbarch_gdb_signal_to_target', as defined in
gdbarch.h. */
static int
mips_gdb_signal_to_target (struct gdbarch *gdbarch,
enum gdb_signal signal)
{
switch (signal)
{
case GDB_SIGNAL_EMT:
return MIPS_LINUX_SIGEMT;
case GDB_SIGNAL_BUS:
return MIPS_LINUX_SIGBUS;
case GDB_SIGNAL_SYS:
return MIPS_LINUX_SIGSYS;
case GDB_SIGNAL_USR1:
return MIPS_LINUX_SIGUSR1;
case GDB_SIGNAL_USR2:
return MIPS_LINUX_SIGUSR2;
case GDB_SIGNAL_CHLD:
return MIPS_LINUX_SIGCHLD;
case GDB_SIGNAL_PWR:
return MIPS_LINUX_SIGPWR;
case GDB_SIGNAL_WINCH:
return MIPS_LINUX_SIGWINCH;
case GDB_SIGNAL_URG:
return MIPS_LINUX_SIGURG;
case GDB_SIGNAL_IO:
return MIPS_LINUX_SIGIO;
case GDB_SIGNAL_POLL:
return MIPS_LINUX_SIGPOLL;
case GDB_SIGNAL_STOP:
return MIPS_LINUX_SIGSTOP;
case GDB_SIGNAL_TSTP:
return MIPS_LINUX_SIGTSTP;
case GDB_SIGNAL_CONT:
return MIPS_LINUX_SIGCONT;
case GDB_SIGNAL_TTIN:
return MIPS_LINUX_SIGTTIN;
case GDB_SIGNAL_TTOU:
return MIPS_LINUX_SIGTTOU;
case GDB_SIGNAL_VTALRM:
return MIPS_LINUX_SIGVTALRM;
case GDB_SIGNAL_PROF:
return MIPS_LINUX_SIGPROF;
case GDB_SIGNAL_XCPU:
return MIPS_LINUX_SIGXCPU;
case GDB_SIGNAL_XFSZ:
return MIPS_LINUX_SIGXFSZ;
/* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
therefore we have to handle it here. */
case GDB_SIGNAL_REALTIME_32:
return MIPS_LINUX_SIGRTMIN;
}
if (signal >= GDB_SIGNAL_REALTIME_33
&& signal <= GDB_SIGNAL_REALTIME_63)
{
int offset = signal - GDB_SIGNAL_REALTIME_33;
return MIPS_LINUX_SIGRTMIN + 1 + offset;
}
else if (signal >= GDB_SIGNAL_REALTIME_64
&& signal <= GDB_SIGNAL_REALTIME_127)
{
int offset = signal - GDB_SIGNAL_REALTIME_64;
return MIPS_LINUX_SIGRT64 + offset;
}
return linux_gdb_signal_to_target (gdbarch, signal);
}
/* Translate signals based on MIPS signal values.
Adapted from gdb/common/signals.c. */
static enum gdb_signal
mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
{
switch (signal)
{
case MIPS_LINUX_SIGEMT:
return GDB_SIGNAL_EMT;
case MIPS_LINUX_SIGBUS:
return GDB_SIGNAL_BUS;
case MIPS_LINUX_SIGSYS:
return GDB_SIGNAL_SYS;
case MIPS_LINUX_SIGUSR1:
return GDB_SIGNAL_USR1;
case MIPS_LINUX_SIGUSR2:
return GDB_SIGNAL_USR2;
case MIPS_LINUX_SIGCHLD:
return GDB_SIGNAL_CHLD;
case MIPS_LINUX_SIGPWR:
return GDB_SIGNAL_PWR;
case MIPS_LINUX_SIGWINCH:
return GDB_SIGNAL_WINCH;
case MIPS_LINUX_SIGURG:
return GDB_SIGNAL_URG;
/* No way to differentiate between SIGIO and SIGPOLL.
Therefore, we just handle the first one. */
case MIPS_LINUX_SIGIO:
return GDB_SIGNAL_IO;
case MIPS_LINUX_SIGSTOP:
return GDB_SIGNAL_STOP;
case MIPS_LINUX_SIGTSTP:
return GDB_SIGNAL_TSTP;
case MIPS_LINUX_SIGCONT:
return GDB_SIGNAL_CONT;
case MIPS_LINUX_SIGTTIN:
return GDB_SIGNAL_TTIN;
case MIPS_LINUX_SIGTTOU:
return GDB_SIGNAL_TTOU;
case MIPS_LINUX_SIGVTALRM:
return GDB_SIGNAL_VTALRM;
case MIPS_LINUX_SIGPROF:
return GDB_SIGNAL_PROF;
case MIPS_LINUX_SIGXCPU:
return GDB_SIGNAL_XCPU;
case MIPS_LINUX_SIGXFSZ:
return GDB_SIGNAL_XFSZ;
}
if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
{
/* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
int offset = signal - MIPS_LINUX_SIGRTMIN;
if (offset == 0)
return GDB_SIGNAL_REALTIME_32;
else if (offset < 32)
return (enum gdb_signal) (offset - 1
+ (int) GDB_SIGNAL_REALTIME_33);
else
return (enum gdb_signal) (offset - 32
+ (int) GDB_SIGNAL_REALTIME_64);
}
return linux_gdb_signal_from_target (gdbarch, signal);
}
/* Initialize one of the GNU/Linux OS ABIs. */
static void
mips_linux_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
enum mips_abi abi = mips_abi (gdbarch);
struct tdesc_arch_data *tdesc_data = info.tdesc_data;
linux_init_abi (info, gdbarch);
/* Get the syscall number from the arch's register. */
set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
switch (abi)
{
case MIPS_ABI_O32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
tramp_frame_prepend_unwinder (gdbarch,
&micromips_linux_o32_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
break;
case MIPS_ABI_N32:
set_gdbarch_get_longjmp_target (gdbarch,
mips_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
set_gdbarch_long_double_bit (gdbarch, 128);
/* These floatformats should probably be renamed. MIPS uses
the same 128-bit IEEE floating point format that IA-64 uses,
except that the quiet/signalling NaN bit is reversed (GDB
does not distinguish between quiet and signalling NaNs). */
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
tramp_frame_prepend_unwinder (gdbarch,
&micromips_linux_n32_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
break;
case MIPS_ABI_N64:
set_gdbarch_get_longjmp_target (gdbarch,
mips64_linux_get_longjmp_target);
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_lp64_fetch_link_map_offsets);
set_gdbarch_long_double_bit (gdbarch, 128);
/* These floatformats should probably be renamed. MIPS uses
the same 128-bit IEEE floating point format that IA-64 uses,
except that the quiet/signalling NaN bit is reversed (GDB
does not distinguish between quiet and signalling NaNs). */
set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
tramp_frame_prepend_unwinder (gdbarch,
&micromips_linux_n64_rt_sigframe);
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
break;
default:
break;
}
set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
/* Initialize this lazily, to avoid an initialization order
dependency on solib-svr4.c's _initialize routine. */
if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
{
mips_svr4_so_ops = svr4_so_ops;
mips_svr4_so_ops.in_dynsym_resolve_code
= mips_linux_in_dynsym_resolve_code;
}
set_solib_ops (gdbarch, &mips_svr4_so_ops);
set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
set_gdbarch_core_read_description (gdbarch,
mips_linux_core_read_description);
set_gdbarch_iterate_over_regset_sections
(gdbarch, mips_linux_iterate_over_regset_sections);
set_gdbarch_gdb_signal_from_target (gdbarch,
mips_gdb_signal_from_target);
set_gdbarch_gdb_signal_to_target (gdbarch,
mips_gdb_signal_to_target);
tdep->syscall_next_pc = mips_linux_syscall_next_pc;
if (tdesc_data)
{
const struct tdesc_feature *feature;
/* If we have target-described registers, then we can safely
reserve a number for MIPS_RESTART_REGNUM (whether it is
described or not). */
gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
/* If it's present, then assign it to the reserved number. */
feature = tdesc_find_feature (info.target_desc,
"org.gnu.gdb.mips.linux");
if (feature != NULL)
tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
"restart");
}
}
void
_initialize_mips_linux_tdep (void)
{
const struct bfd_arch_info *arch_info;
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
arch_info != NULL;
arch_info = arch_info->next)
{
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
GDB_OSABI_LINUX,
mips_linux_init_abi);
}
/* Initialize the standard target descriptions. */
initialize_tdesc_mips_linux ();
initialize_tdesc_mips_dsp_linux ();
initialize_tdesc_mips64_linux ();
initialize_tdesc_mips64_dsp_linux ();
}