binutils-gdb/bfd/elf32-sh.c
2000-03-01 20:39:07 +00:00

2231 lines
65 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Hitachi SH specific support for 32-bit ELF
Copyright 1996, 97, 98, 1999, 2000 Free Software Foundation, Inc.
Contributed by Ian Lance Taylor, Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/sh.h"
static bfd_reloc_status_type sh_elf_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static bfd_reloc_status_type sh_elf_ignore_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static reloc_howto_type *sh_elf_reloc_type_lookup
PARAMS ((bfd *, bfd_reloc_code_real_type));
static void sh_elf_info_to_howto
PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
static boolean sh_elf_set_private_flags
PARAMS ((bfd *, flagword));
static boolean sh_elf_copy_private_data
PARAMS ((bfd *, bfd *));
static boolean sh_elf_merge_private_data
PARAMS ((bfd *, bfd *));
boolean sh_elf_set_mach_from_flags
PARAMS ((bfd *));
static boolean sh_elf_relax_section
PARAMS ((bfd *, asection *, struct bfd_link_info *, boolean *));
static boolean sh_elf_relax_delete_bytes
PARAMS ((bfd *, asection *, bfd_vma, int));
static boolean sh_elf_align_loads
PARAMS ((bfd *, asection *, Elf_Internal_Rela *, bfd_byte *, boolean *));
static boolean sh_elf_swap_insns
PARAMS ((bfd *, asection *, PTR, bfd_byte *, bfd_vma));
static boolean sh_elf_relocate_section
PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
static bfd_byte *sh_elf_get_relocated_section_contents
PARAMS ((bfd *, struct bfd_link_info *, struct bfd_link_order *,
bfd_byte *, boolean, asymbol **));
static reloc_howto_type sh_elf_howto_table[] =
{
/* No relocation. */
HOWTO (R_SH_NONE, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_NONE", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* 32 bit absolute relocation. Setting partial_inplace to true and
src_mask to a non-zero value is similar to the COFF toolchain. */
HOWTO (R_SH_DIR32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR32", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* 32 bit PC relative relocation. */
HOWTO (R_SH_REL32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_REL32", /* name */
false, /* partial_inplace */
0, /* src_mask */
0xffffffff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit PC relative branch divided by 2. */
HOWTO (R_SH_DIR8WPN, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8WPN", /* name */
true, /* partial_inplace */
0xff, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
/* 12 bit PC relative branch divided by 2. */
HOWTO (R_SH_IND12W, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
12, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_IND12W", /* name */
true, /* partial_inplace */
0xfff, /* src_mask */
0xfff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit unsigned PC relative divided by 4. */
HOWTO (R_SH_DIR8WPL, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8WPL", /* name */
true, /* partial_inplace */
0xff, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit unsigned PC relative divided by 2. */
HOWTO (R_SH_DIR8WPZ, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8WPZ", /* name */
true, /* partial_inplace */
0xff, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit GBR relative. FIXME: This only makes sense if we have some
special symbol for the GBR relative area, and that is not
implemented. */
HOWTO (R_SH_DIR8BP, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8BP", /* name */
false, /* partial_inplace */
0, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit GBR relative divided by 2. FIXME: This only makes sense if
we have some special symbol for the GBR relative area, and that
is not implemented. */
HOWTO (R_SH_DIR8W, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8W", /* name */
false, /* partial_inplace */
0, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
/* 8 bit GBR relative divided by 4. FIXME: This only makes sense if
we have some special symbol for the GBR relative area, and that
is not implemented. */
HOWTO (R_SH_DIR8L, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_reloc, /* special_function */
"R_SH_DIR8L", /* name */
false, /* partial_inplace */
0, /* src_mask */
0xff, /* dst_mask */
true), /* pcrel_offset */
EMPTY_HOWTO (10),
EMPTY_HOWTO (11),
EMPTY_HOWTO (12),
EMPTY_HOWTO (13),
EMPTY_HOWTO (14),
EMPTY_HOWTO (15),
EMPTY_HOWTO (16),
EMPTY_HOWTO (17),
EMPTY_HOWTO (18),
EMPTY_HOWTO (19),
EMPTY_HOWTO (20),
EMPTY_HOWTO (21),
EMPTY_HOWTO (22),
EMPTY_HOWTO (23),
EMPTY_HOWTO (24),
/* The remaining relocs are a GNU extension used for relaxing. The
final pass of the linker never needs to do anything with any of
these relocs. Any required operations are handled by the
relaxation code. */
/* A 16 bit switch table entry. This is generated for an expression
such as ``.word L1 - L2''. The offset holds the difference
between the reloc address and L2. */
HOWTO (R_SH_SWITCH16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_SWITCH16", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* A 32 bit switch table entry. This is generated for an expression
such as ``.long L1 - L2''. The offset holds the difference
between the reloc address and L2. */
HOWTO (R_SH_SWITCH32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_SWITCH32", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* Indicates a .uses pseudo-op. The compiler will generate .uses
pseudo-ops when it finds a function call which can be relaxed.
The offset field holds the PC relative offset to the instruction
which loads the register used in the function call. */
HOWTO (R_SH_USES, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_USES", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* The assembler will generate this reloc for addresses referred to
by the register loads associated with USES relocs. The offset
field holds the number of times the address is referenced in the
object file. */
HOWTO (R_SH_COUNT, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_COUNT", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* Indicates an alignment statement. The offset field is the power
of 2 to which subsequent portions of the object file must be
aligned. */
HOWTO (R_SH_ALIGN, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_ALIGN", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* The assembler will generate this reloc before a block of
instructions. A section should be processed as assumining it
contains data, unless this reloc is seen. */
HOWTO (R_SH_CODE, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_CODE", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* The assembler will generate this reloc after a block of
instructions when it sees data that is not instructions. */
HOWTO (R_SH_DATA, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_DATA", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* The assembler generates this reloc for each label within a block
of instructions. This permits the linker to avoid swapping
instructions which are the targets of branches. */
HOWTO (R_SH_LABEL, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_LABEL", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* An 8 bit switch table entry. This is generated for an expression
such as ``.word L1 - L2''. The offset holds the difference
between the reloc address and L2. */
HOWTO (R_SH_SWITCH8, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_unsigned, /* complain_on_overflow */
sh_elf_ignore_reloc, /* special_function */
"R_SH_SWITCH8", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
true), /* pcrel_offset */
/* GNU extension to record C++ vtable hierarchy */
HOWTO (R_SH_GNU_VTINHERIT, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
NULL, /* special_function */
"R_SH_GNU_VTINHERIT", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* GNU extension to record C++ vtable member usage */
HOWTO (R_SH_GNU_VTENTRY, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
0, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
_bfd_elf_rel_vtable_reloc_fn, /* special_function */
"R_SH_GNU_VTENTRY", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
};
/* This function is used for normal relocs. This is like the COFF
function, and is almost certainly incorrect for other ELF targets. */
static bfd_reloc_status_type
sh_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
error_message)
bfd *abfd;
arelent *reloc_entry;
asymbol *symbol_in;
PTR data;
asection *input_section;
bfd *output_bfd;
char **error_message ATTRIBUTE_UNUSED;
{
unsigned long insn;
bfd_vma sym_value;
enum elf_sh_reloc_type r_type;
bfd_vma addr = reloc_entry->address;
bfd_byte *hit_data = addr + (bfd_byte *) data;
r_type = (enum elf_sh_reloc_type) reloc_entry->howto->type;
if (output_bfd != NULL)
{
/* Partial linking--do nothing. */
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* Almost all relocs have to do with relaxing. If any work must be
done for them, it has been done in sh_relax_section. */
if (r_type != R_SH_DIR32
&& (r_type != R_SH_IND12W
|| (symbol_in->flags & BSF_LOCAL) != 0))
return bfd_reloc_ok;
if (symbol_in != NULL
&& bfd_is_und_section (symbol_in->section))
return bfd_reloc_undefined;
if (bfd_is_com_section (symbol_in->section))
sym_value = 0;
else
sym_value = (symbol_in->value +
symbol_in->section->output_section->vma +
symbol_in->section->output_offset);
switch (r_type)
{
case R_SH_DIR32:
insn = bfd_get_32 (abfd, hit_data);
insn += sym_value + reloc_entry->addend;
bfd_put_32 (abfd, insn, hit_data);
break;
case R_SH_IND12W:
insn = bfd_get_16 (abfd, hit_data);
sym_value += reloc_entry->addend;
sym_value -= (input_section->output_section->vma
+ input_section->output_offset
+ addr
+ 4);
sym_value += (insn & 0xfff) << 1;
if (insn & 0x800)
sym_value -= 0x1000;
insn = (insn & 0xf000) | (sym_value & 0xfff);
bfd_put_16 (abfd, insn, hit_data);
if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
return bfd_reloc_overflow;
break;
default:
abort ();
break;
}
return bfd_reloc_ok;
}
/* This function is used for relocs which are only used for relaxing,
which the linker should otherwise ignore. */
static bfd_reloc_status_type
sh_elf_ignore_reloc (abfd, reloc_entry, symbol, data, input_section,
output_bfd, error_message)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *reloc_entry;
asymbol *symbol ATTRIBUTE_UNUSED;
PTR data ATTRIBUTE_UNUSED;
asection *input_section;
bfd *output_bfd;
char **error_message ATTRIBUTE_UNUSED;
{
if (output_bfd != NULL)
reloc_entry->address += input_section->output_offset;
return bfd_reloc_ok;
}
/* This structure is used to map BFD reloc codes to SH ELF relocs. */
struct elf_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned char elf_reloc_val;
};
/* An array mapping BFD reloc codes to SH ELF relocs. */
static const struct elf_reloc_map sh_reloc_map[] =
{
{ BFD_RELOC_NONE, R_SH_NONE },
{ BFD_RELOC_32, R_SH_DIR32 },
{ BFD_RELOC_CTOR, R_SH_DIR32 },
{ BFD_RELOC_32_PCREL, R_SH_REL32 },
{ BFD_RELOC_SH_PCDISP8BY2, R_SH_DIR8WPN },
{ BFD_RELOC_SH_PCDISP12BY2, R_SH_IND12W },
{ BFD_RELOC_SH_PCRELIMM8BY2, R_SH_DIR8WPZ },
{ BFD_RELOC_SH_PCRELIMM8BY4, R_SH_DIR8WPL },
{ BFD_RELOC_8_PCREL, R_SH_SWITCH8 },
{ BFD_RELOC_SH_SWITCH16, R_SH_SWITCH16 },
{ BFD_RELOC_SH_SWITCH32, R_SH_SWITCH32 },
{ BFD_RELOC_SH_USES, R_SH_USES },
{ BFD_RELOC_SH_COUNT, R_SH_COUNT },
{ BFD_RELOC_SH_ALIGN, R_SH_ALIGN },
{ BFD_RELOC_SH_CODE, R_SH_CODE },
{ BFD_RELOC_SH_DATA, R_SH_DATA },
{ BFD_RELOC_SH_LABEL, R_SH_LABEL },
{ BFD_RELOC_VTABLE_INHERIT, R_SH_GNU_VTINHERIT },
{ BFD_RELOC_VTABLE_ENTRY, R_SH_GNU_VTENTRY },
};
/* Given a BFD reloc code, return the howto structure for the
corresponding SH ELf reloc. */
static reloc_howto_type *
sh_elf_reloc_type_lookup (abfd, code)
bfd *abfd ATTRIBUTE_UNUSED;
bfd_reloc_code_real_type code;
{
unsigned int i;
for (i = 0; i < sizeof (sh_reloc_map) / sizeof (struct elf_reloc_map); i++)
{
if (sh_reloc_map[i].bfd_reloc_val == code)
return &sh_elf_howto_table[(int) sh_reloc_map[i].elf_reloc_val];
}
return NULL;
}
/* Given an ELF reloc, fill in the howto field of a relent. */
static void
sh_elf_info_to_howto (abfd, cache_ptr, dst)
bfd *abfd ATTRIBUTE_UNUSED;
arelent *cache_ptr;
Elf_Internal_Rela *dst;
{
unsigned int r;
r = ELF32_R_TYPE (dst->r_info);
BFD_ASSERT (r < (unsigned int) R_SH_max);
BFD_ASSERT (r < R_SH_FIRST_INVALID_RELOC || r > R_SH_LAST_INVALID_RELOC);
cache_ptr->howto = &sh_elf_howto_table[r];
}
/* This function handles relaxing for SH ELF. See the corresponding
function in coff-sh.c for a description of what this does. FIXME:
There is a lot of duplication here between this code and the COFF
specific code. The format of relocs and symbols is wound deeply
into this code, but it would still be better if the duplication
could be eliminated somehow. Note in particular that although both
functions use symbols like R_SH_CODE, those symbols have different
values; in coff-sh.c they come from include/coff/sh.h, whereas here
they come from enum elf_sh_reloc_type in include/elf/sh.h. */
static boolean
sh_elf_relax_section (abfd, sec, link_info, again)
bfd *abfd;
asection *sec;
struct bfd_link_info *link_info;
boolean *again;
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Rela *internal_relocs;
Elf_Internal_Rela *free_relocs = NULL;
boolean have_code;
Elf_Internal_Rela *irel, *irelend;
bfd_byte *contents = NULL;
bfd_byte *free_contents = NULL;
Elf32_External_Sym *extsyms = NULL;
Elf32_External_Sym *free_extsyms = NULL;
*again = false;
if (link_info->relocateable
|| (sec->flags & SEC_RELOC) == 0
|| sec->reloc_count == 0)
return true;
/* If this is the first time we have been called for this section,
initialize the cooked size. */
if (sec->_cooked_size == 0)
sec->_cooked_size = sec->_raw_size;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
internal_relocs = (_bfd_elf32_link_read_relocs
(abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
link_info->keep_memory));
if (internal_relocs == NULL)
goto error_return;
if (! link_info->keep_memory)
free_relocs = internal_relocs;
have_code = false;
irelend = internal_relocs + sec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
bfd_vma laddr, paddr, symval;
unsigned short insn;
Elf_Internal_Rela *irelfn, *irelscan, *irelcount;
bfd_signed_vma foff;
if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_CODE)
have_code = true;
if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_USES)
continue;
/* Get the section contents. */
if (contents == NULL)
{
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else
{
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
if (contents == NULL)
goto error_return;
free_contents = contents;
if (! bfd_get_section_contents (abfd, sec, contents,
(file_ptr) 0, sec->_raw_size))
goto error_return;
}
}
/* The r_addend field of the R_SH_USES reloc will point us to
the register load. The 4 is because the r_addend field is
computed as though it were a jump offset, which are based
from 4 bytes after the jump instruction. */
laddr = irel->r_offset + 4 + irel->r_addend;
if (laddr >= sec->_raw_size)
{
(*_bfd_error_handler) (_("%s: 0x%lx: warning: bad R_SH_USES offset"),
bfd_get_filename (abfd),
(unsigned long) irel->r_offset);
continue;
}
insn = bfd_get_16 (abfd, contents + laddr);
/* If the instruction is not mov.l NN,rN, we don't know what to
do. */
if ((insn & 0xf000) != 0xd000)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x"),
bfd_get_filename (abfd), (unsigned long) irel->r_offset, insn));
continue;
}
/* Get the address from which the register is being loaded. The
displacement in the mov.l instruction is quadrupled. It is a
displacement from four bytes after the movl instruction, but,
before adding in the PC address, two least significant bits
of the PC are cleared. We assume that the section is aligned
on a four byte boundary. */
paddr = insn & 0xff;
paddr *= 4;
paddr += (laddr + 4) &~ 3;
if (paddr >= sec->_raw_size)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: warning: bad R_SH_USES load offset"),
bfd_get_filename (abfd), (unsigned long) irel->r_offset));
continue;
}
/* Get the reloc for the address from which the register is
being loaded. This reloc will tell us which function is
actually being called. */
for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
if (irelfn->r_offset == paddr
&& ELF32_R_TYPE (irelfn->r_info) == (int) R_SH_DIR32)
break;
if (irelfn >= irelend)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: warning: could not find expected reloc"),
bfd_get_filename (abfd), (unsigned long) paddr));
continue;
}
/* Read this BFD's symbols if we haven't done so already. */
if (extsyms == NULL)
{
if (symtab_hdr->contents != NULL)
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
else
{
extsyms = ((Elf32_External_Sym *)
bfd_malloc (symtab_hdr->sh_size));
if (extsyms == NULL)
goto error_return;
free_extsyms = extsyms;
if (bfd_seek (abfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|| (bfd_read (extsyms, 1, symtab_hdr->sh_size, abfd)
!= symtab_hdr->sh_size))
goto error_return;
}
}
/* Get the value of the symbol referred to by the reloc. */
if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
{
Elf_Internal_Sym isym;
/* A local symbol. */
bfd_elf32_swap_symbol_in (abfd,
extsyms + ELF32_R_SYM (irelfn->r_info),
&isym);
if (isym.st_shndx != _bfd_elf_section_from_bfd_section (abfd, sec))
{
((*_bfd_error_handler)
(_("%s: 0x%lx: warning: symbol in unexpected section"),
bfd_get_filename (abfd), (unsigned long) paddr));
continue;
}
symval = (isym.st_value
+ sec->output_section->vma
+ sec->output_offset);
}
else
{
unsigned long indx;
struct elf_link_hash_entry *h;
indx = ELF32_R_SYM (irelfn->r_info) - symtab_hdr->sh_info;
h = elf_sym_hashes (abfd)[indx];
BFD_ASSERT (h != NULL);
if (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
{
/* This appears to be a reference to an undefined
symbol. Just ignore it--it will be caught by the
regular reloc processing. */
continue;
}
symval = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
symval += bfd_get_32 (abfd, contents + paddr);
/* See if this function call can be shortened. */
foff = (symval
- (irel->r_offset
+ sec->output_section->vma
+ sec->output_offset
+ 4));
if (foff < -0x1000 || foff >= 0x1000)
{
/* After all that work, we can't shorten this function call. */
continue;
}
/* Shorten the function call. */
/* For simplicity of coding, we are going to modify the section
contents, the section relocs, and the BFD symbol table. We
must tell the rest of the code not to free up this
information. It would be possible to instead create a table
of changes which have to be made, as is done in coff-mips.c;
that would be more work, but would require less memory when
the linker is run. */
elf_section_data (sec)->relocs = internal_relocs;
free_relocs = NULL;
elf_section_data (sec)->this_hdr.contents = contents;
free_contents = NULL;
symtab_hdr->contents = (bfd_byte *) extsyms;
free_extsyms = NULL;
/* Replace the jsr with a bsr. */
/* Change the R_SH_USES reloc into an R_SH_IND12W reloc, and
replace the jsr with a bsr. */
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irelfn->r_info), R_SH_IND12W);
if (ELF32_R_SYM (irelfn->r_info) < symtab_hdr->sh_info)
{
/* If this needs to be changed because of future relaxing,
it will be handled here like other internal IND12W
relocs. */
bfd_put_16 (abfd,
0xb000 | ((foff >> 1) & 0xfff),
contents + irel->r_offset);
}
else
{
/* We can't fully resolve this yet, because the external
symbol value may be changed by future relaxing. We let
the final link phase handle it. */
bfd_put_16 (abfd, 0xb000, contents + irel->r_offset);
}
/* See if there is another R_SH_USES reloc referring to the same
register load. */
for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_USES
&& laddr == irelscan->r_offset + 4 + irelscan->r_addend)
break;
if (irelscan < irelend)
{
/* Some other function call depends upon this register load,
and we have not yet converted that function call.
Indeed, we may never be able to convert it. There is
nothing else we can do at this point. */
continue;
}
/* Look for a R_SH_COUNT reloc on the location where the
function address is stored. Do this before deleting any
bytes, to avoid confusion about the address. */
for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
if (irelcount->r_offset == paddr
&& ELF32_R_TYPE (irelcount->r_info) == (int) R_SH_COUNT)
break;
/* Delete the register load. */
if (! sh_elf_relax_delete_bytes (abfd, sec, laddr, 2))
goto error_return;
/* That will change things, so, just in case it permits some
other function call to come within range, we should relax
again. Note that this is not required, and it may be slow. */
*again = true;
/* Now check whether we got a COUNT reloc. */
if (irelcount >= irelend)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: warning: could not find expected COUNT reloc"),
bfd_get_filename (abfd), (unsigned long) paddr));
continue;
}
/* The number of uses is stored in the r_addend field. We've
just deleted one. */
if (irelcount->r_addend == 0)
{
((*_bfd_error_handler) (_("%s: 0x%lx: warning: bad count"),
bfd_get_filename (abfd),
(unsigned long) paddr));
continue;
}
--irelcount->r_addend;
/* If there are no more uses, we can delete the address. Reload
the address from irelfn, in case it was changed by the
previous call to sh_elf_relax_delete_bytes. */
if (irelcount->r_addend == 0)
{
if (! sh_elf_relax_delete_bytes (abfd, sec, irelfn->r_offset, 4))
goto error_return;
}
/* We've done all we can with that function call. */
}
/* Look for load and store instructions that we can align on four
byte boundaries. */
if (have_code)
{
boolean swapped;
/* Get the section contents. */
if (contents == NULL)
{
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else
{
contents = (bfd_byte *) bfd_malloc (sec->_raw_size);
if (contents == NULL)
goto error_return;
free_contents = contents;
if (! bfd_get_section_contents (abfd, sec, contents,
(file_ptr) 0, sec->_raw_size))
goto error_return;
}
}
if (! sh_elf_align_loads (abfd, sec, internal_relocs, contents,
&swapped))
goto error_return;
if (swapped)
{
elf_section_data (sec)->relocs = internal_relocs;
free_relocs = NULL;
elf_section_data (sec)->this_hdr.contents = contents;
free_contents = NULL;
symtab_hdr->contents = (bfd_byte *) extsyms;
free_extsyms = NULL;
}
}
if (free_relocs != NULL)
{
free (free_relocs);
free_relocs = NULL;
}
if (free_contents != NULL)
{
if (! link_info->keep_memory)
free (free_contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (sec)->this_hdr.contents = contents;
}
free_contents = NULL;
}
if (free_extsyms != NULL)
{
if (! link_info->keep_memory)
free (free_extsyms);
else
{
/* Cache the symbols for elf_link_input_bfd. */
symtab_hdr->contents = extsyms;
}
free_extsyms = NULL;
}
return true;
error_return:
if (free_relocs != NULL)
free (free_relocs);
if (free_contents != NULL)
free (free_contents);
if (free_extsyms != NULL)
free (free_extsyms);
return false;
}
/* Delete some bytes from a section while relaxing. FIXME: There is a
lot of duplication between this function and sh_relax_delete_bytes
in coff-sh.c. */
static boolean
sh_elf_relax_delete_bytes (abfd, sec, addr, count)
bfd *abfd;
asection *sec;
bfd_vma addr;
int count;
{
Elf_Internal_Shdr *symtab_hdr;
Elf32_External_Sym *extsyms;
int shndx, index;
bfd_byte *contents;
Elf_Internal_Rela *irel, *irelend;
Elf_Internal_Rela *irelalign;
bfd_vma toaddr;
Elf32_External_Sym *esym, *esymend;
struct elf_link_hash_entry *sym_hash;
asection *o;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
extsyms = (Elf32_External_Sym *) symtab_hdr->contents;
shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
contents = elf_section_data (sec)->this_hdr.contents;
/* The deletion must stop at the next ALIGN reloc for an aligment
power larger than the number of bytes we are deleting. */
irelalign = NULL;
toaddr = sec->_cooked_size;
irel = elf_section_data (sec)->relocs;
irelend = irel + sec->reloc_count;
for (; irel < irelend; irel++)
{
if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
&& irel->r_offset > addr
&& count < (1 << irel->r_addend))
{
irelalign = irel;
toaddr = irel->r_offset;
break;
}
}
/* Actually delete the bytes. */
memmove (contents + addr, contents + addr + count, toaddr - addr - count);
if (irelalign == NULL)
sec->_cooked_size -= count;
else
{
int i;
#define NOP_OPCODE (0x0009)
BFD_ASSERT ((count & 1) == 0);
for (i = 0; i < count; i += 2)
bfd_put_16 (abfd, NOP_OPCODE, contents + toaddr - count + i);
}
/* Adjust all the relocs. */
for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
{
bfd_vma nraddr, stop;
bfd_vma start = 0;
int insn = 0;
Elf_Internal_Sym sym;
int off, adjust, oinsn;
bfd_signed_vma voff = 0;
boolean overflow;
/* Get the new reloc address. */
nraddr = irel->r_offset;
if ((irel->r_offset > addr
&& irel->r_offset < toaddr)
|| (ELF32_R_TYPE (irel->r_info) == (int) R_SH_ALIGN
&& irel->r_offset == toaddr))
nraddr -= count;
/* See if this reloc was for the bytes we have deleted, in which
case we no longer care about it. Don't delete relocs which
represent addresses, though. */
if (irel->r_offset >= addr
&& irel->r_offset < addr + count
&& ELF32_R_TYPE (irel->r_info) != (int) R_SH_ALIGN
&& ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE
&& ELF32_R_TYPE (irel->r_info) != (int) R_SH_DATA
&& ELF32_R_TYPE (irel->r_info) != (int) R_SH_LABEL)
irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
(int) R_SH_NONE);
/* If this is a PC relative reloc, see if the range it covers
includes the bytes we have deleted. */
switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
{
default:
break;
case R_SH_DIR8WPN:
case R_SH_IND12W:
case R_SH_DIR8WPZ:
case R_SH_DIR8WPL:
start = irel->r_offset;
insn = bfd_get_16 (abfd, contents + nraddr);
break;
}
switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
{
default:
start = stop = addr;
break;
case R_SH_DIR32:
/* If this reloc is against a symbol defined in this
section, and the symbol will not be adjusted below, we
must check the addend to see it will put the value in
range to be adjusted, and hence must be changed. */
if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
{
bfd_elf32_swap_symbol_in (abfd,
extsyms + ELF32_R_SYM (irel->r_info),
&sym);
if (sym.st_shndx == shndx
&& (sym.st_value <= addr
|| sym.st_value >= toaddr))
{
bfd_vma val;
val = bfd_get_32 (abfd, contents + nraddr);
val += sym.st_value;
if (val > addr && val < toaddr)
bfd_put_32 (abfd, val - count, contents + nraddr);
}
}
start = stop = addr;
break;
case R_SH_DIR8WPN:
off = insn & 0xff;
if (off & 0x80)
off -= 0x100;
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
break;
case R_SH_IND12W:
if (ELF32_R_SYM (irel->r_info) >= symtab_hdr->sh_info)
start = stop = addr;
else
{
off = insn & 0xfff;
if (off & 0x800)
off -= 0x1000;
stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
}
break;
case R_SH_DIR8WPZ:
off = insn & 0xff;
stop = start + 4 + off * 2;
break;
case R_SH_DIR8WPL:
off = insn & 0xff;
stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
break;
case R_SH_SWITCH8:
case R_SH_SWITCH16:
case R_SH_SWITCH32:
/* These relocs types represent
.word L2-L1
The r_addend field holds the difference between the reloc
address and L1. That is the start of the reloc, and
adding in the contents gives us the top. We must adjust
both the r_offset field and the section contents.
N.B. in gas / coff bfd, the elf bfd r_addend is called r_offset,
and the elf bfd r_offset is called r_vaddr. */
stop = irel->r_offset;
start = (bfd_vma) ((bfd_signed_vma) stop - (long) irel->r_addend);
if (start > addr
&& start < toaddr
&& (stop <= addr || stop >= toaddr))
irel->r_addend += count;
else if (stop > addr
&& stop < toaddr
&& (start <= addr || start >= toaddr))
irel->r_addend -= count;
if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH16)
voff = bfd_get_signed_16 (abfd, contents + nraddr);
else if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_SWITCH8)
voff = bfd_get_8 (abfd, contents + nraddr);
else
voff = bfd_get_signed_32 (abfd, contents + nraddr);
stop = (bfd_vma) ((bfd_signed_vma) start + voff);
break;
case R_SH_USES:
start = irel->r_offset;
stop = (bfd_vma) ((bfd_signed_vma) start
+ (long) irel->r_addend
+ 4);
break;
}
if (start > addr
&& start < toaddr
&& (stop <= addr || stop >= toaddr))
adjust = count;
else if (stop > addr
&& stop < toaddr
&& (start <= addr || start >= toaddr))
adjust = - count;
else
adjust = 0;
if (adjust != 0)
{
oinsn = insn;
overflow = false;
switch ((enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info))
{
default:
abort ();
break;
case R_SH_DIR8WPN:
case R_SH_DIR8WPZ:
insn += adjust / 2;
if ((oinsn & 0xff00) != (insn & 0xff00))
overflow = true;
bfd_put_16 (abfd, insn, contents + nraddr);
break;
case R_SH_IND12W:
insn += adjust / 2;
if ((oinsn & 0xf000) != (insn & 0xf000))
overflow = true;
bfd_put_16 (abfd, insn, contents + nraddr);
break;
case R_SH_DIR8WPL:
BFD_ASSERT (adjust == count || count >= 4);
if (count >= 4)
insn += adjust / 4;
else
{
if ((irel->r_offset & 3) == 0)
++insn;
}
if ((oinsn & 0xff00) != (insn & 0xff00))
overflow = true;
bfd_put_16 (abfd, insn, contents + nraddr);
break;
case R_SH_SWITCH16:
voff += adjust;
if (voff < - 0x8000 || voff >= 0x8000)
overflow = true;
bfd_put_signed_16 (abfd, voff, contents + nraddr);
break;
case R_SH_SWITCH32:
voff += adjust;
bfd_put_signed_32 (abfd, voff, contents + nraddr);
break;
case R_SH_USES:
irel->r_addend += adjust;
break;
}
if (overflow)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: fatal: reloc overflow while relaxing"),
bfd_get_filename (abfd), (unsigned long) irel->r_offset));
bfd_set_error (bfd_error_bad_value);
return false;
}
}
irel->r_offset = nraddr;
}
/* Look through all the other sections. If there contain any IMM32
relocs against internal symbols which we are not going to adjust
below, we may need to adjust the addends. */
for (o = abfd->sections; o != NULL; o = o->next)
{
Elf_Internal_Rela *internal_relocs;
Elf_Internal_Rela *irelscan, *irelscanend;
bfd_byte *ocontents;
if (o == sec
|| (o->flags & SEC_RELOC) == 0
|| o->reloc_count == 0)
continue;
/* We always cache the relocs. Perhaps, if info->keep_memory is
false, we should free them, if we are permitted to, when we
leave sh_coff_relax_section. */
internal_relocs = (_bfd_elf32_link_read_relocs
(abfd, o, (PTR) NULL, (Elf_Internal_Rela *) NULL,
true));
if (internal_relocs == NULL)
return false;
ocontents = NULL;
irelscanend = internal_relocs + o->reloc_count;
for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
{
Elf_Internal_Sym sym;
/* Dwarf line numbers use R_SH_SWITCH32 relocs. */
if (ELF32_R_TYPE (irelscan->r_info) == (int) R_SH_SWITCH32)
{
bfd_vma start, stop;
bfd_signed_vma voff;
if (ocontents == NULL)
{
if (elf_section_data (o)->this_hdr.contents != NULL)
ocontents = elf_section_data (o)->this_hdr.contents;
else
{
/* We always cache the section contents.
Perhaps, if info->keep_memory is false, we
should free them, if we are permitted to,
when we leave sh_coff_relax_section. */
ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
if (ocontents == NULL)
return false;
if (! bfd_get_section_contents (abfd, o, ocontents,
(file_ptr) 0,
o->_raw_size))
return false;
elf_section_data (o)->this_hdr.contents = ocontents;
}
}
stop = irelscan->r_offset;
start
= (bfd_vma) ((bfd_signed_vma) stop - (long) irelscan->r_addend);
/* STOP is in a different section, so it won't change. */
if (start > addr && start < toaddr)
irelscan->r_addend += count;
voff = bfd_get_signed_32 (abfd, ocontents + irelscan->r_offset);
stop = (bfd_vma) ((bfd_signed_vma) start + voff);
if (start > addr
&& start < toaddr
&& (stop <= addr || stop >= toaddr))
bfd_put_signed_32 (abfd, voff + count,
ocontents + irelscan->r_offset);
else if (stop > addr
&& stop < toaddr
&& (start <= addr || start >= toaddr))
bfd_put_signed_32 (abfd, voff - count,
ocontents + irelscan->r_offset);
}
if (ELF32_R_TYPE (irelscan->r_info) != (int) R_SH_DIR32)
continue;
if (ELF32_R_SYM (irelscan->r_info) >= symtab_hdr->sh_info)
continue;
bfd_elf32_swap_symbol_in (abfd,
extsyms + ELF32_R_SYM (irelscan->r_info),
&sym);
if (sym.st_shndx == shndx
&& (sym.st_value <= addr
|| sym.st_value >= toaddr))
{
bfd_vma val;
if (ocontents == NULL)
{
if (elf_section_data (o)->this_hdr.contents != NULL)
ocontents = elf_section_data (o)->this_hdr.contents;
else
{
/* We always cache the section contents.
Perhaps, if info->keep_memory is false, we
should free them, if we are permitted to,
when we leave sh_coff_relax_section. */
ocontents = (bfd_byte *) bfd_malloc (o->_raw_size);
if (ocontents == NULL)
return false;
if (! bfd_get_section_contents (abfd, o, ocontents,
(file_ptr) 0,
o->_raw_size))
return false;
elf_section_data (o)->this_hdr.contents = ocontents;
}
}
val = bfd_get_32 (abfd, ocontents + irelscan->r_offset);
val += sym.st_value;
if (val > addr && val < toaddr)
bfd_put_32 (abfd, val - count,
ocontents + irelscan->r_offset);
}
}
}
/* Adjust the local symbols defined in this section. */
esym = extsyms;
esymend = esym + symtab_hdr->sh_info;
for (; esym < esymend; esym++)
{
Elf_Internal_Sym isym;
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
if (isym.st_shndx == shndx
&& isym.st_value > addr
&& isym.st_value < toaddr)
{
isym.st_value -= count;
bfd_elf32_swap_symbol_out (abfd, &isym, esym);
}
}
/* Now adjust the global symbols defined in this section. */
esym = extsyms + symtab_hdr->sh_info;
esymend = extsyms + (symtab_hdr->sh_size / sizeof (Elf32_External_Sym));
for (index = 0; esym < esymend; esym++, index++)
{
Elf_Internal_Sym isym;
bfd_elf32_swap_symbol_in (abfd, esym, &isym);
sym_hash = elf_sym_hashes (abfd)[index];
if (isym.st_shndx == shndx
&& ((sym_hash)->root.type == bfd_link_hash_defined
|| (sym_hash)->root.type == bfd_link_hash_defweak)
&& (sym_hash)->root.u.def.section == sec
&& (sym_hash)->root.u.def.value > addr
&& (sym_hash)->root.u.def.value < toaddr)
{
(sym_hash)->root.u.def.value -= count;
}
}
/* See if we can move the ALIGN reloc forward. We have adjusted
r_offset for it already. */
if (irelalign != NULL)
{
bfd_vma alignto, alignaddr;
alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_addend);
alignaddr = BFD_ALIGN (irelalign->r_offset,
1 << irelalign->r_addend);
if (alignto != alignaddr)
{
/* Tail recursion. */
return sh_elf_relax_delete_bytes (abfd, sec, alignaddr,
alignto - alignaddr);
}
}
return true;
}
/* Look for loads and stores which we can align to four byte
boundaries. This is like sh_align_loads in coff-sh.c. */
static boolean
sh_elf_align_loads (abfd, sec, internal_relocs, contents, pswapped)
bfd *abfd;
asection *sec;
Elf_Internal_Rela *internal_relocs;
bfd_byte *contents;
boolean *pswapped;
{
Elf_Internal_Rela *irel, *irelend;
bfd_vma *labels = NULL;
bfd_vma *label, *label_end;
*pswapped = false;
irelend = internal_relocs + sec->reloc_count;
/* Get all the addresses with labels on them. */
labels = (bfd_vma *) bfd_malloc (sec->reloc_count * sizeof (bfd_vma));
if (labels == NULL)
goto error_return;
label_end = labels;
for (irel = internal_relocs; irel < irelend; irel++)
{
if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_LABEL)
{
*label_end = irel->r_offset;
++label_end;
}
}
/* Note that the assembler currently always outputs relocs in
address order. If that ever changes, this code will need to sort
the label values and the relocs. */
label = labels;
for (irel = internal_relocs; irel < irelend; irel++)
{
bfd_vma start, stop;
if (ELF32_R_TYPE (irel->r_info) != (int) R_SH_CODE)
continue;
start = irel->r_offset;
for (irel++; irel < irelend; irel++)
if (ELF32_R_TYPE (irel->r_info) == (int) R_SH_DATA)
break;
if (irel < irelend)
stop = irel->r_offset;
else
stop = sec->_cooked_size;
if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_elf_swap_insns,
(PTR) internal_relocs, &label,
label_end, start, stop, pswapped))
goto error_return;
}
free (labels);
return true;
error_return:
if (labels != NULL)
free (labels);
return false;
}
/* Swap two SH instructions. This is like sh_swap_insns in coff-sh.c. */
static boolean
sh_elf_swap_insns (abfd, sec, relocs, contents, addr)
bfd *abfd;
asection *sec;
PTR relocs;
bfd_byte *contents;
bfd_vma addr;
{
Elf_Internal_Rela *internal_relocs = (Elf_Internal_Rela *) relocs;
unsigned short i1, i2;
Elf_Internal_Rela *irel, *irelend;
/* Swap the instructions themselves. */
i1 = bfd_get_16 (abfd, contents + addr);
i2 = bfd_get_16 (abfd, contents + addr + 2);
bfd_put_16 (abfd, i2, contents + addr);
bfd_put_16 (abfd, i1, contents + addr + 2);
/* Adjust all reloc addresses. */
irelend = internal_relocs + sec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
enum elf_sh_reloc_type type;
int add;
/* There are a few special types of relocs that we don't want to
adjust. These relocs do not apply to the instruction itself,
but are only associated with the address. */
type = (enum elf_sh_reloc_type) ELF32_R_TYPE (irel->r_info);
if (type == R_SH_ALIGN
|| type == R_SH_CODE
|| type == R_SH_DATA
|| type == R_SH_LABEL)
continue;
/* If an R_SH_USES reloc points to one of the addresses being
swapped, we must adjust it. It would be incorrect to do this
for a jump, though, since we want to execute both
instructions after the jump. (We have avoided swapping
around a label, so the jump will not wind up executing an
instruction it shouldn't). */
if (type == R_SH_USES)
{
bfd_vma off;
off = irel->r_offset + 4 + irel->r_addend;
if (off == addr)
irel->r_offset += 2;
else if (off == addr + 2)
irel->r_offset -= 2;
}
if (irel->r_offset == addr)
{
irel->r_offset += 2;
add = -2;
}
else if (irel->r_offset == addr + 2)
{
irel->r_offset -= 2;
add = 2;
}
else
add = 0;
if (add != 0)
{
bfd_byte *loc;
unsigned short insn, oinsn;
boolean overflow;
loc = contents + irel->r_offset;
overflow = false;
switch (type)
{
default:
break;
case R_SH_DIR8WPN:
case R_SH_DIR8WPZ:
insn = bfd_get_16 (abfd, loc);
oinsn = insn;
insn += add / 2;
if ((oinsn & 0xff00) != (insn & 0xff00))
overflow = true;
bfd_put_16 (abfd, insn, loc);
break;
case R_SH_IND12W:
insn = bfd_get_16 (abfd, loc);
oinsn = insn;
insn += add / 2;
if ((oinsn & 0xf000) != (insn & 0xf000))
overflow = true;
bfd_put_16 (abfd, insn, loc);
break;
case R_SH_DIR8WPL:
/* This reloc ignores the least significant 3 bits of
the program counter before adding in the offset.
This means that if ADDR is at an even address, the
swap will not affect the offset. If ADDR is an at an
odd address, then the instruction will be crossing a
four byte boundary, and must be adjusted. */
if ((addr & 3) != 0)
{
insn = bfd_get_16 (abfd, loc);
oinsn = insn;
insn += add / 2;
if ((oinsn & 0xff00) != (insn & 0xff00))
overflow = true;
bfd_put_16 (abfd, insn, loc);
}
break;
}
if (overflow)
{
((*_bfd_error_handler)
(_("%s: 0x%lx: fatal: reloc overflow while relaxing"),
bfd_get_filename (abfd), (unsigned long) irel->r_offset));
bfd_set_error (bfd_error_bad_value);
return false;
}
}
}
return true;
}
/* Relocate an SH ELF section. */
static boolean
sh_elf_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd *output_bfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
bfd *input_bfd;
asection *input_section;
bfd_byte *contents;
Elf_Internal_Rela *relocs;
Elf_Internal_Sym *local_syms;
asection **local_sections;
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
Elf_Internal_Rela *rel, *relend;
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
Elf_Internal_Sym *sym;
asection *sec;
struct elf_link_hash_entry *h;
bfd_vma relocation;
bfd_vma addend = (bfd_vma)0;
bfd_reloc_status_type r;
r_symndx = ELF32_R_SYM (rel->r_info);
if (info->relocateable)
{
/* This is a relocateable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sec = local_sections[r_symndx];
rel->r_addend += sec->output_offset + sym->st_value;
}
}
continue;
}
r_type = ELF32_R_TYPE (rel->r_info);
/* Many of the relocs are only used for relaxing, and are
handled entirely by the relaxation code. */
if (r_type > (int) R_SH_LAST_INVALID_RELOC)
continue;
if (r_type < 0
|| r_type >= (int) R_SH_FIRST_INVALID_RELOC)
{
bfd_set_error (bfd_error_bad_value);
return false;
}
/* FIXME: This is certainly incorrect. However, it is how the
COFF linker works. */
if (r_type != (int) R_SH_DIR32
&& r_type != (int) R_SH_IND12W)
continue;
howto = sh_elf_howto_table + r_type;
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
/* There is nothing to be done for an internal IND12W
relocation. FIXME: This is probably wrong, but it's how
the COFF relocations work. */
if (r_type == (int) R_SH_IND12W)
continue;
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
}
else if (h->root.type == bfd_link_hash_undefweak)
relocation = 0;
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset, true)))
return false;
relocation = 0;
}
}
/* FIXME: This is how the COFF relocations work. */
if (r_type == (int) R_SH_IND12W)
relocation -= 4;
switch ((int)r_type)
{
case (int)R_SH_DIR32:
addend = rel->r_addend;
break;
}
/* COFF relocs don't use the addend. The addend is used for R_SH_DIR32
to be compatible with other compilers. */
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, addend);
if (r != bfd_reloc_ok)
{
switch (r)
{
default:
case bfd_reloc_outofrange:
abort ();
case bfd_reloc_overflow:
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name));
if (name == NULL)
return false;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
}
break;
}
}
}
return true;
}
/* This is a version of bfd_generic_get_relocated_section_contents
which uses sh_elf_relocate_section. */
static bfd_byte *
sh_elf_get_relocated_section_contents (output_bfd, link_info, link_order,
data, relocateable, symbols)
bfd *output_bfd;
struct bfd_link_info *link_info;
struct bfd_link_order *link_order;
bfd_byte *data;
boolean relocateable;
asymbol **symbols;
{
Elf_Internal_Shdr *symtab_hdr;
asection *input_section = link_order->u.indirect.section;
bfd *input_bfd = input_section->owner;
asection **sections = NULL;
Elf_Internal_Rela *internal_relocs = NULL;
Elf32_External_Sym *external_syms = NULL;
Elf_Internal_Sym *internal_syms = NULL;
/* We only need to handle the case of relaxing, or of having a
particular set of section contents, specially. */
if (relocateable
|| elf_section_data (input_section)->this_hdr.contents == NULL)
return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
link_order, data,
relocateable,
symbols);
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
memcpy (data, elf_section_data (input_section)->this_hdr.contents,
input_section->_raw_size);
if ((input_section->flags & SEC_RELOC) != 0
&& input_section->reloc_count > 0)
{
Elf_Internal_Sym *isymp;
asection **secpp;
Elf32_External_Sym *esym, *esymend;
if (symtab_hdr->contents != NULL)
external_syms = (Elf32_External_Sym *) symtab_hdr->contents;
else
{
external_syms = ((Elf32_External_Sym *)
bfd_malloc (symtab_hdr->sh_info
* sizeof (Elf32_External_Sym)));
if (external_syms == NULL && symtab_hdr->sh_info > 0)
goto error_return;
if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
|| (bfd_read (external_syms, sizeof (Elf32_External_Sym),
symtab_hdr->sh_info, input_bfd)
!= (symtab_hdr->sh_info * sizeof (Elf32_External_Sym))))
goto error_return;
}
internal_relocs = (_bfd_elf32_link_read_relocs
(input_bfd, input_section, (PTR) NULL,
(Elf_Internal_Rela *) NULL, false));
if (internal_relocs == NULL)
goto error_return;
internal_syms = ((Elf_Internal_Sym *)
bfd_malloc (symtab_hdr->sh_info
* sizeof (Elf_Internal_Sym)));
if (internal_syms == NULL && symtab_hdr->sh_info > 0)
goto error_return;
sections = (asection **) bfd_malloc (symtab_hdr->sh_info
* sizeof (asection *));
if (sections == NULL && symtab_hdr->sh_info > 0)
goto error_return;
isymp = internal_syms;
secpp = sections;
esym = external_syms;
esymend = esym + symtab_hdr->sh_info;
for (; esym < esymend; ++esym, ++isymp, ++secpp)
{
asection *isec;
bfd_elf32_swap_symbol_in (input_bfd, esym, isymp);
if (isymp->st_shndx == SHN_UNDEF)
isec = bfd_und_section_ptr;
else if (isymp->st_shndx > 0 && isymp->st_shndx < SHN_LORESERVE)
isec = bfd_section_from_elf_index (input_bfd, isymp->st_shndx);
else if (isymp->st_shndx == SHN_ABS)
isec = bfd_abs_section_ptr;
else if (isymp->st_shndx == SHN_COMMON)
isec = bfd_com_section_ptr;
else
{
/* Who knows? */
isec = NULL;
}
*secpp = isec;
}
if (! sh_elf_relocate_section (output_bfd, link_info, input_bfd,
input_section, data, internal_relocs,
internal_syms, sections))
goto error_return;
if (sections != NULL)
free (sections);
sections = NULL;
if (internal_syms != NULL)
free (internal_syms);
internal_syms = NULL;
if (external_syms != NULL && symtab_hdr->contents == NULL)
free (external_syms);
external_syms = NULL;
if (internal_relocs != elf_section_data (input_section)->relocs)
free (internal_relocs);
internal_relocs = NULL;
}
return data;
error_return:
if (internal_relocs != NULL
&& internal_relocs != elf_section_data (input_section)->relocs)
free (internal_relocs);
if (external_syms != NULL && symtab_hdr->contents == NULL)
free (external_syms);
if (internal_syms != NULL)
free (internal_syms);
if (sections != NULL)
free (sections);
return NULL;
}
static asection *
sh_elf_gc_mark_hook (abfd, info, rel, h, sym)
bfd *abfd;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
Elf_Internal_Rela *rel;
struct elf_link_hash_entry *h;
Elf_Internal_Sym *sym;
{
if (h != NULL)
{
switch (ELF32_R_TYPE (rel->r_info))
{
case R_SH_GNU_VTINHERIT:
case R_SH_GNU_VTENTRY:
break;
default:
switch (h->root.type)
{
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
return h->root.u.def.section;
case bfd_link_hash_common:
return h->root.u.c.p->section;
default:
break;
}
}
}
else
{
if (!(elf_bad_symtab (abfd)
&& ELF_ST_BIND (sym->st_info) != STB_LOCAL)
&& ! ((sym->st_shndx <= 0 || sym->st_shndx >= SHN_LORESERVE)
&& sym->st_shndx != SHN_COMMON))
{
return bfd_section_from_elf_index (abfd, sym->st_shndx);
}
}
return NULL;
}
static boolean
sh_elf_gc_sweep_hook (abfd, info, sec, relocs)
bfd *abfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info ATTRIBUTE_UNUSED;
asection *sec ATTRIBUTE_UNUSED;
const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
{
/* we don't use got and plt entries for sh. */
return true;
}
/* Look through the relocs for a section during the first phase.
Since we don't do .gots or .plts, we just need to consider the
virtual table relocs for gc. */
static boolean
sh_elf_check_relocs (abfd, info, sec, relocs)
bfd *abfd;
struct bfd_link_info *info;
asection *sec;
const Elf_Internal_Rela *relocs;
{
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
if (info->relocateable)
return true;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf32_External_Sym);
if (!elf_bad_symtab (abfd))
sym_hashes_end -= symtab_hdr->sh_info;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
struct elf_link_hash_entry *h;
unsigned long r_symndx;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
switch (ELF32_R_TYPE (rel->r_info))
{
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_SH_GNU_VTINHERIT:
if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
return false;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_SH_GNU_VTENTRY:
if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_addend))
return false;
break;
}
}
return true;
}
boolean
sh_elf_set_mach_from_flags (abfd)
bfd * abfd;
{
flagword flags = elf_elfheader (abfd)->e_flags;
switch (flags & EF_SH_MACH_MASK)
{
case EF_SH1:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh);
break;
case EF_SH2:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh2);
break;
case EF_SH_DSP:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh_dsp);
break;
case EF_SH3:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh3);
break;
case EF_SH3_DSP:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh3_dsp);
break;
case EF_SH3E:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh3e);
break;
case EF_SH_UNKNOWN:
case EF_SH4:
bfd_default_set_arch_mach (abfd, bfd_arch_sh, bfd_mach_sh4);
break;
default:
return false;
}
return true;
}
/* Function to keep SH specific file flags. */
static boolean
sh_elf_set_private_flags (abfd, flags)
bfd * abfd;
flagword flags;
{
BFD_ASSERT (! elf_flags_init (abfd)
|| elf_elfheader (abfd)->e_flags == flags);
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = true;
return sh_elf_set_mach_from_flags (abfd);
}
/* Copy backend specific data from one object module to another */
static boolean
sh_elf_copy_private_data (ibfd, obfd)
bfd * ibfd;
bfd * obfd;
{
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
return sh_elf_set_private_flags (obfd, elf_elfheader (ibfd)->e_flags);
}
/* This routine checks for linking big and little endian objects
together, and for linking sh-dsp with sh3e / sh4 objects. */
static boolean
sh_elf_merge_private_data (ibfd, obfd)
bfd *ibfd;
bfd *obfd;
{
flagword old_flags, new_flags;
if (_bfd_generic_verify_endian_match (ibfd, obfd) == false)
return false;
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
if (! elf_flags_init (obfd))
{
elf_flags_init (obfd) = true;
elf_elfheader (obfd)->e_flags = 0;
}
old_flags = elf_elfheader (obfd)->e_flags;
new_flags = elf_elfheader (ibfd)->e_flags;
if ((EF_SH_HAS_DSP (old_flags) && EF_SH_HAS_FP (new_flags))
|| (EF_SH_HAS_DSP (new_flags) && EF_SH_HAS_FP (old_flags)))
{
(*_bfd_error_handler)
("%s: uses %s instructions while previous modules use %s instructions",
bfd_get_filename (ibfd),
EF_SH_HAS_DSP (new_flags) ? "dsp" : "floating point",
EF_SH_HAS_DSP (new_flags) ? "floating point" : "dsp");
bfd_set_error (bfd_error_bad_value);
return false;
}
elf_elfheader (obfd)->e_flags = EF_SH_MERGE_MACH (old_flags, new_flags);
return sh_elf_set_mach_from_flags (obfd);
}
#define TARGET_BIG_SYM bfd_elf32_sh_vec
#define TARGET_BIG_NAME "elf32-sh"
#define TARGET_LITTLE_SYM bfd_elf32_shl_vec
#define TARGET_LITTLE_NAME "elf32-shl"
#define ELF_ARCH bfd_arch_sh
#define ELF_MACHINE_CODE EM_SH
#define ELF_MAXPAGESIZE 0x1
#define elf_symbol_leading_char '_'
#define bfd_elf32_bfd_reloc_type_lookup sh_elf_reloc_type_lookup
#define elf_info_to_howto sh_elf_info_to_howto
#define bfd_elf32_bfd_relax_section sh_elf_relax_section
#define elf_backend_relocate_section sh_elf_relocate_section
#define bfd_elf32_bfd_get_relocated_section_contents \
sh_elf_get_relocated_section_contents
#define elf_backend_object_p sh_elf_set_mach_from_flags
#define bfd_elf32_bfd_set_private_bfd_flags \
sh_elf_set_private_flags
#define bfd_elf32_bfd_copy_private_bfd_data \
sh_elf_copy_private_data
#define bfd_elf32_bfd_merge_private_bfd_data \
sh_elf_merge_private_data
#define elf_backend_gc_mark_hook sh_elf_gc_mark_hook
#define elf_backend_gc_sweep_hook sh_elf_gc_sweep_hook
#define elf_backend_check_relocs sh_elf_check_relocs
#define elf_backend_can_gc_sections 1
#include "elf32-target.h"