binutils-gdb/bfd/elf64-x86-64.c
H.J. Lu 25f9434737 x86-64: Use dynobj instead of htab->elf.dynobj
* elf64-x86-64.c (elf_x86_64_link_setup_gnu_properties): Use
	dynobj instead of htab->elf.dynobj.
2017-05-22 07:41:16 -07:00

7851 lines
228 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* X86-64 specific support for ELF
Copyright (C) 2000-2017 Free Software Foundation, Inc.
Contributed by Jan Hubicka <jh@suse.cz>.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
#include "sysdep.h"
#include "bfd.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-nacl.h"
#include "bfd_stdint.h"
#include "objalloc.h"
#include "hashtab.h"
#include "dwarf2.h"
#include "libiberty.h"
#include "opcode/i386.h"
#include "elf/x86-64.h"
#ifdef CORE_HEADER
#include <stdarg.h>
#include CORE_HEADER
#endif
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
#define MINUS_ONE (~ (bfd_vma) 0)
/* Since both 32-bit and 64-bit x86-64 encode relocation type in the
identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
since they are the same. */
#define ABI_64_P(abfd) \
(get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
/* The relocation "howto" table. Order of fields:
type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
static reloc_howto_type x86_64_elf_howto_table[] =
{
HOWTO(R_X86_64_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
FALSE),
HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
FALSE),
HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
TRUE),
HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
FALSE),
HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
TRUE),
HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
FALSE),
HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
0xffffffff, TRUE),
HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
FALSE),
HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
FALSE),
HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
0xffffffff, TRUE),
HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
0xffffffff, TRUE),
HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
0xffffffff, FALSE),
HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
0xffffffff, TRUE),
HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
0xffffffff, FALSE),
HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
TRUE),
HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
FALSE, MINUS_ONE, MINUS_ONE, FALSE),
HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
FALSE, 0xffffffff, 0xffffffff, TRUE),
HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
FALSE),
HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
MINUS_ONE, TRUE),
HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
FALSE, MINUS_ONE, MINUS_ONE, TRUE),
HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
FALSE),
HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
FALSE),
HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
complain_overflow_bitfield, bfd_elf_generic_reloc,
"R_X86_64_GOTPC32_TLSDESC",
FALSE, 0xffffffff, 0xffffffff, TRUE),
HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
complain_overflow_dont, bfd_elf_generic_reloc,
"R_X86_64_TLSDESC_CALL",
FALSE, 0, 0, FALSE),
HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
complain_overflow_bitfield, bfd_elf_generic_reloc,
"R_X86_64_TLSDESC",
FALSE, MINUS_ONE, MINUS_ONE, FALSE),
HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
MINUS_ONE, FALSE),
HOWTO(R_X86_64_PC32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PC32_BND", FALSE, 0xffffffff, 0xffffffff,
TRUE),
HOWTO(R_X86_64_PLT32_BND, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_PLT32_BND", FALSE, 0xffffffff, 0xffffffff,
TRUE),
HOWTO(R_X86_64_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_GOTPCRELX", FALSE, 0xffffffff,
0xffffffff, TRUE),
HOWTO(R_X86_64_REX_GOTPCRELX, 0, 2, 32, TRUE, 0, complain_overflow_signed,
bfd_elf_generic_reloc, "R_X86_64_REX_GOTPCRELX", FALSE, 0xffffffff,
0xffffffff, TRUE),
/* We have a gap in the reloc numbers here.
R_X86_64_standard counts the number up to this point, and
R_X86_64_vt_offset is the value to subtract from a reloc type of
R_X86_64_GNU_VT* to form an index into this table. */
#define R_X86_64_standard (R_X86_64_REX_GOTPCRELX + 1)
#define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
/* GNU extension to record C++ vtable hierarchy. */
HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
/* GNU extension to record C++ vtable member usage. */
HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
_bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
FALSE),
/* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
FALSE)
};
#define IS_X86_64_PCREL_TYPE(TYPE) \
( ((TYPE) == R_X86_64_PC8) \
|| ((TYPE) == R_X86_64_PC16) \
|| ((TYPE) == R_X86_64_PC32) \
|| ((TYPE) == R_X86_64_PC32_BND) \
|| ((TYPE) == R_X86_64_PC64))
/* Map BFD relocs to the x86_64 elf relocs. */
struct elf_reloc_map
{
bfd_reloc_code_real_type bfd_reloc_val;
unsigned char elf_reloc_val;
};
static const struct elf_reloc_map x86_64_reloc_map[] =
{
{ BFD_RELOC_NONE, R_X86_64_NONE, },
{ BFD_RELOC_64, R_X86_64_64, },
{ BFD_RELOC_32_PCREL, R_X86_64_PC32, },
{ BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
{ BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
{ BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
{ BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
{ BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
{ BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
{ BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
{ BFD_RELOC_32, R_X86_64_32, },
{ BFD_RELOC_X86_64_32S, R_X86_64_32S, },
{ BFD_RELOC_16, R_X86_64_16, },
{ BFD_RELOC_16_PCREL, R_X86_64_PC16, },
{ BFD_RELOC_8, R_X86_64_8, },
{ BFD_RELOC_8_PCREL, R_X86_64_PC8, },
{ BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
{ BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
{ BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
{ BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
{ BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
{ BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
{ BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
{ BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
{ BFD_RELOC_64_PCREL, R_X86_64_PC64, },
{ BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
{ BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
{ BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
{ BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
{ BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
{ BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
{ BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
{ BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
{ BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
{ BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
{ BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
{ BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
{ BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
{ BFD_RELOC_X86_64_PC32_BND, R_X86_64_PC32_BND, },
{ BFD_RELOC_X86_64_PLT32_BND, R_X86_64_PLT32_BND, },
{ BFD_RELOC_X86_64_GOTPCRELX, R_X86_64_GOTPCRELX, },
{ BFD_RELOC_X86_64_REX_GOTPCRELX, R_X86_64_REX_GOTPCRELX, },
{ BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
{ BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
};
static reloc_howto_type *
elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
{
unsigned i;
if (r_type == (unsigned int) R_X86_64_32)
{
if (ABI_64_P (abfd))
i = r_type;
else
i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
}
else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
|| r_type >= (unsigned int) R_X86_64_max)
{
if (r_type >= (unsigned int) R_X86_64_standard)
{
/* xgettext:c-format */
_bfd_error_handler (_("%B: invalid relocation type %d"),
abfd, (int) r_type);
r_type = R_X86_64_NONE;
}
i = r_type;
}
else
i = r_type - (unsigned int) R_X86_64_vt_offset;
BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
return &x86_64_elf_howto_table[i];
}
/* Given a BFD reloc type, return a HOWTO structure. */
static reloc_howto_type *
elf_x86_64_reloc_type_lookup (bfd *abfd,
bfd_reloc_code_real_type code)
{
unsigned int i;
for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
i++)
{
if (x86_64_reloc_map[i].bfd_reloc_val == code)
return elf_x86_64_rtype_to_howto (abfd,
x86_64_reloc_map[i].elf_reloc_val);
}
return NULL;
}
static reloc_howto_type *
elf_x86_64_reloc_name_lookup (bfd *abfd,
const char *r_name)
{
unsigned int i;
if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
{
/* Get x32 R_X86_64_32. */
reloc_howto_type *reloc
= &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
return reloc;
}
for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
if (x86_64_elf_howto_table[i].name != NULL
&& strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
return &x86_64_elf_howto_table[i];
return NULL;
}
/* Given an x86_64 ELF reloc type, fill in an arelent structure. */
static void
elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
Elf_Internal_Rela *dst)
{
unsigned r_type;
r_type = ELF32_R_TYPE (dst->r_info);
cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
BFD_ASSERT (r_type == cache_ptr->howto->type);
}
/* Support for core dump NOTE sections. */
static bfd_boolean
elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
{
int offset;
size_t size;
switch (note->descsz)
{
default:
return FALSE;
case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
/* pr_cursig */
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
/* pr_reg */
offset = 72;
size = 216;
break;
case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
/* pr_cursig */
elf_tdata (abfd)->core->signal
= bfd_get_16 (abfd, note->descdata + 12);
/* pr_pid */
elf_tdata (abfd)->core->lwpid
= bfd_get_32 (abfd, note->descdata + 32);
/* pr_reg */
offset = 112;
size = 216;
break;
}
/* Make a ".reg/999" section. */
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
size, note->descpos + offset);
}
static bfd_boolean
elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
{
switch (note->descsz)
{
default:
return FALSE;
case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
elf_tdata (abfd)->core->pid
= bfd_get_32 (abfd, note->descdata + 12);
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
break;
case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
elf_tdata (abfd)->core->pid
= bfd_get_32 (abfd, note->descdata + 24);
elf_tdata (abfd)->core->program
= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
elf_tdata (abfd)->core->command
= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
}
/* Note that for some reason, a spurious space is tacked
onto the end of the args in some (at least one anyway)
implementations, so strip it off if it exists. */
{
char *command = elf_tdata (abfd)->core->command;
int n = strlen (command);
if (0 < n && command[n - 1] == ' ')
command[n - 1] = '\0';
}
return TRUE;
}
#ifdef CORE_HEADER
static char *
elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
int note_type, ...)
{
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
va_list ap;
const char *fname, *psargs;
long pid;
int cursig;
const void *gregs;
switch (note_type)
{
default:
return NULL;
case NT_PRPSINFO:
va_start (ap, note_type);
fname = va_arg (ap, const char *);
psargs = va_arg (ap, const char *);
va_end (ap);
if (bed->s->elfclass == ELFCLASS32)
{
prpsinfo32_t data;
memset (&data, 0, sizeof (data));
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&data, sizeof (data));
}
else
{
prpsinfo64_t data;
memset (&data, 0, sizeof (data));
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&data, sizeof (data));
}
/* NOTREACHED */
case NT_PRSTATUS:
va_start (ap, note_type);
pid = va_arg (ap, long);
cursig = va_arg (ap, int);
gregs = va_arg (ap, const void *);
va_end (ap);
if (bed->s->elfclass == ELFCLASS32)
{
if (bed->elf_machine_code == EM_X86_64)
{
prstatusx32_t prstat;
memset (&prstat, 0, sizeof (prstat));
prstat.pr_pid = pid;
prstat.pr_cursig = cursig;
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&prstat, sizeof (prstat));
}
else
{
prstatus32_t prstat;
memset (&prstat, 0, sizeof (prstat));
prstat.pr_pid = pid;
prstat.pr_cursig = cursig;
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&prstat, sizeof (prstat));
}
}
else
{
prstatus64_t prstat;
memset (&prstat, 0, sizeof (prstat));
prstat.pr_pid = pid;
prstat.pr_cursig = cursig;
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
&prstat, sizeof (prstat));
}
}
/* NOTREACHED */
}
#endif
/* Functions for the x86-64 ELF linker. */
/* The name of the dynamic interpreter. This is put in the .interp
section. */
#define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
#define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
copying dynamic variables from a shared lib into an app's dynbss
section, and instead use a dynamic relocation to point into the
shared lib. */
#define ELIMINATE_COPY_RELOCS 1
/* The size in bytes of an entry in the global offset table. */
#define GOT_ENTRY_SIZE 8
/* The size in bytes of an entry in the lazy procedure linkage table. */
#define LAZY_PLT_ENTRY_SIZE 16
/* The size in bytes of an entry in the non-lazy procedure linkage
table. */
#define NON_LAZY_PLT_ENTRY_SIZE 8
/* The first entry in a lazy procedure linkage table looks like this.
See the SVR4 ABI i386 supplement and the x86-64 ABI to see how this
works. */
static const bfd_byte elf_x86_64_lazy_plt0_entry[LAZY_PLT_ENTRY_SIZE] =
{
0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
};
/* Subsequent entries in a lazy procedure linkage table look like this. */
static const bfd_byte elf_x86_64_lazy_plt_entry[LAZY_PLT_ENTRY_SIZE] =
{
0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
0x68, /* pushq immediate */
0, 0, 0, 0, /* replaced with index into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt0. */
};
/* The first entry in a lazy procedure linkage table with BND prefix
like this. */
static const bfd_byte elf_x86_64_lazy_bnd_plt0_entry[LAZY_PLT_ENTRY_SIZE] =
{
0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
0xf2, 0xff, 0x25, 16, 0, 0, 0, /* bnd jmpq *GOT+16(%rip) */
0x0f, 0x1f, 0 /* nopl (%rax) */
};
/* Subsequent entries for branches with BND prefx in a lazy procedure
linkage table look like this. */
static const bfd_byte elf_x86_64_lazy_bnd_plt_entry[LAZY_PLT_ENTRY_SIZE] =
{
0x68, 0, 0, 0, 0, /* pushq immediate */
0xf2, 0xe9, 0, 0, 0, 0, /* bnd jmpq relative */
0x0f, 0x1f, 0x44, 0, 0 /* nopl 0(%rax,%rax,1) */
};
/* Entries in the non-lazey procedure linkage table look like this. */
static const bfd_byte elf_x86_64_non_lazy_plt_entry[NON_LAZY_PLT_ENTRY_SIZE] =
{
0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
0x66, 0x90 /* xchg %ax,%ax */
};
/* Entries for branches with BND prefix in the non-lazey procedure
linkage table look like this. */
static const bfd_byte elf_x86_64_non_lazy_bnd_plt_entry[NON_LAZY_PLT_ENTRY_SIZE] =
{
0xf2, 0xff, 0x25, /* bnd jmpq *name@GOTPC(%rip) */
0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
0x90 /* nop */
};
/* .eh_frame covering the lazy .plt section. */
static const bfd_byte elf_x86_64_eh_frame_lazy_plt[] =
{
#define PLT_CIE_LENGTH 20
#define PLT_FDE_LENGTH 36
#define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
#define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
0, 0, 0, 0, /* CIE ID */
1, /* CIE version */
'z', 'R', 0, /* Augmentation string */
1, /* Code alignment factor */
0x78, /* Data alignment factor */
16, /* Return address column */
1, /* Augmentation size */
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
DW_CFA_nop, DW_CFA_nop,
PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
0, 0, 0, 0, /* .plt size goes here */
0, /* Augmentation size */
DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
11, /* Block length */
DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
DW_OP_lit3, DW_OP_shl, DW_OP_plus,
DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
};
/* .eh_frame covering the lazy BND .plt section. */
static const bfd_byte elf_x86_64_eh_frame_lazy_bnd_plt[] =
{
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
0, 0, 0, 0, /* CIE ID */
1, /* CIE version */
'z', 'R', 0, /* Augmentation string */
1, /* Code alignment factor */
0x78, /* Data alignment factor */
16, /* Return address column */
1, /* Augmentation size */
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
DW_CFA_nop, DW_CFA_nop,
PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
0, 0, 0, 0, /* .plt size goes here */
0, /* Augmentation size */
DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
11, /* Block length */
DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
DW_OP_lit15, DW_OP_and, DW_OP_lit5, DW_OP_ge,
DW_OP_lit3, DW_OP_shl, DW_OP_plus,
DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
};
/* .eh_frame covering the non-lazy .plt section. */
static const bfd_byte elf_x86_64_eh_frame_non_lazy_plt[] =
{
#define PLT_GOT_FDE_LENGTH 20
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
0, 0, 0, 0, /* CIE ID */
1, /* CIE version */
'z', 'R', 0, /* Augmentation string */
1, /* Code alignment factor */
0x78, /* Data alignment factor */
16, /* Return address column */
1, /* Augmentation size */
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
DW_CFA_nop, DW_CFA_nop,
PLT_GOT_FDE_LENGTH, 0, 0, 0, /* FDE length */
PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
0, 0, 0, 0, /* the start of non-lazy .plt goes here */
0, 0, 0, 0, /* non-lazy .plt size goes here */
0, /* Augmentation size */
DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop,
DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
};
struct elf_x86_64_lazy_plt_layout
{
/* Templates for the initial PLT entry and for subsequent entries. */
const bfd_byte *plt0_entry;
const bfd_byte *plt_entry;
unsigned int plt_entry_size; /* Size of each PLT entry. */
/* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
unsigned int plt0_got1_offset;
unsigned int plt0_got2_offset;
/* Offset of the end of the PC-relative instruction containing
plt0_got2_offset. */
unsigned int plt0_got2_insn_end;
/* Offsets into plt_entry that are to be replaced with... */
unsigned int plt_got_offset; /* ... address of this symbol in .got. */
unsigned int plt_reloc_offset; /* ... offset into relocation table. */
unsigned int plt_plt_offset; /* ... offset to start of .plt. */
/* Length of the PC-relative instruction containing plt_got_offset. */
unsigned int plt_got_insn_size;
/* Offset of the end of the PC-relative jump to plt0_entry. */
unsigned int plt_plt_insn_end;
/* Offset into plt_entry where the initial value of the GOT entry points. */
unsigned int plt_lazy_offset;
/* .eh_frame covering the lazy .plt section. */
const bfd_byte *eh_frame_plt;
unsigned int eh_frame_plt_size;
};
struct elf_x86_64_non_lazy_plt_layout
{
/* Template for the lazy PLT entries. */
const bfd_byte *plt_entry;
unsigned int plt_entry_size; /* Size of each PLT entry. */
/* Offsets into plt_entry that are to be replaced with... */
unsigned int plt_got_offset; /* ... address of this symbol in .got. */
/* Length of the PC-relative instruction containing plt_got_offset. */
unsigned int plt_got_insn_size;
/* .eh_frame covering the non-lazy .plt section. */
const bfd_byte *eh_frame_plt;
unsigned int eh_frame_plt_size;
};
struct elf_x86_64_plt_layout
{
/* Template for the PLT entries. */
const bfd_byte *plt_entry;
unsigned int plt_entry_size; /* Size of each PLT entry. */
/* 1 has PLT0. */
unsigned int has_plt0;
/* Offsets into plt_entry that are to be replaced with... */
unsigned int plt_got_offset; /* ... address of this symbol in .got. */
/* Length of the PC-relative instruction containing plt_got_offset. */
unsigned int plt_got_insn_size;
/* .eh_frame covering the .plt section. */
const bfd_byte *eh_frame_plt;
unsigned int eh_frame_plt_size;
};
/* Architecture-specific backend data for x86-64. */
struct elf_x86_64_backend_data
{
/* Target system. */
enum
{
is_normal,
is_nacl
} os;
};
#define get_elf_x86_64_arch_data(bed) \
((const struct elf_x86_64_backend_data *) (bed)->arch_data)
#define get_elf_x86_64_backend_data(abfd) \
get_elf_x86_64_arch_data (get_elf_backend_data (abfd))
/* These are the standard parameters. */
static const struct elf_x86_64_lazy_plt_layout elf_x86_64_lazy_plt =
{
elf_x86_64_lazy_plt0_entry, /* plt0_entry */
elf_x86_64_lazy_plt_entry, /* plt_entry */
LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */
2, /* plt0_got1_offset */
8, /* plt0_got2_offset */
12, /* plt0_got2_insn_end */
2, /* plt_got_offset */
7, /* plt_reloc_offset */
12, /* plt_plt_offset */
6, /* plt_got_insn_size */
LAZY_PLT_ENTRY_SIZE, /* plt_plt_insn_end */
6, /* plt_lazy_offset */
elf_x86_64_eh_frame_lazy_plt, /* eh_frame_plt */
sizeof (elf_x86_64_eh_frame_lazy_plt) /* eh_frame_plt_size */
};
static const struct elf_x86_64_non_lazy_plt_layout elf_x86_64_non_lazy_plt =
{
elf_x86_64_non_lazy_plt_entry, /* plt_entry */
NON_LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */
2, /* plt_got_offset */
6, /* plt_got_insn_size */
elf_x86_64_eh_frame_non_lazy_plt, /* eh_frame_plt */
sizeof (elf_x86_64_eh_frame_non_lazy_plt) /* eh_frame_plt_size */
};
static const struct elf_x86_64_lazy_plt_layout elf_x86_64_lazy_bnd_plt =
{
elf_x86_64_lazy_bnd_plt0_entry, /* plt0_entry */
elf_x86_64_lazy_bnd_plt_entry, /* plt_entry */
LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */
2, /* plt0_got1_offset */
1+8, /* plt0_got2_offset */
1+12, /* plt0_got2_insn_end */
1+2, /* plt_got_offset */
1, /* plt_reloc_offset */
7, /* plt_plt_offset */
1+6, /* plt_got_insn_size */
11, /* plt_plt_insn_end */
0, /* plt_lazy_offset */
elf_x86_64_eh_frame_lazy_bnd_plt, /* eh_frame_plt */
sizeof (elf_x86_64_eh_frame_lazy_bnd_plt) /* eh_frame_plt_size */
};
static const struct elf_x86_64_non_lazy_plt_layout elf_x86_64_non_lazy_bnd_plt =
{
elf_x86_64_non_lazy_bnd_plt_entry, /* plt_entry */
NON_LAZY_PLT_ENTRY_SIZE, /* plt_entry_size */
1+2, /* plt_got_offset */
1+6, /* plt_got_insn_size */
elf_x86_64_eh_frame_non_lazy_plt, /* eh_frame_plt */
sizeof (elf_x86_64_eh_frame_non_lazy_plt) /* eh_frame_plt_size */
};
static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
{
is_normal /* os */
};
#define elf_backend_arch_data &elf_x86_64_arch_bed
/* Is a undefined weak symbol which is resolved to 0. Reference to an
undefined weak symbol is resolved to 0 when building executable if
it isn't dynamic and
1. Has non-GOT/non-PLT relocations in text section. Or
2. Has no GOT/PLT relocation.
*/
#define UNDEFINED_WEAK_RESOLVED_TO_ZERO(INFO, GOT_RELOC, EH) \
((EH)->elf.root.type == bfd_link_hash_undefweak \
&& bfd_link_executable (INFO) \
&& (elf_x86_64_hash_table (INFO)->interp == NULL \
|| !(GOT_RELOC) \
|| (EH)->has_non_got_reloc \
|| !(INFO)->dynamic_undefined_weak))
/* x86-64 ELF linker hash entry. */
struct elf_x86_64_link_hash_entry
{
struct elf_link_hash_entry elf;
/* Track dynamic relocs copied for this symbol. */
struct elf_dyn_relocs *dyn_relocs;
#define GOT_UNKNOWN 0
#define GOT_NORMAL 1
#define GOT_TLS_GD 2
#define GOT_TLS_IE 3
#define GOT_TLS_GDESC 4
#define GOT_TLS_GD_BOTH_P(type) \
((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
#define GOT_TLS_GD_P(type) \
((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
#define GOT_TLS_GDESC_P(type) \
((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
#define GOT_TLS_GD_ANY_P(type) \
(GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
unsigned char tls_type;
/* TRUE if a weak symbol with a real definition needs a copy reloc.
When there is a weak symbol with a real definition, the processor
independent code will have arranged for us to see the real
definition first. We need to copy the needs_copy bit from the
real definition and check it when allowing copy reloc in PIE. */
unsigned int needs_copy : 1;
/* TRUE if symbol has GOT or PLT relocations. */
unsigned int has_got_reloc : 1;
/* TRUE if symbol has non-GOT/non-PLT relocations in text sections. */
unsigned int has_non_got_reloc : 1;
/* Don't call finish_dynamic_symbol on this symbol. */
unsigned int no_finish_dynamic_symbol : 1;
/* 0: symbol isn't __tls_get_addr.
1: symbol is __tls_get_addr.
2: symbol is unknown. */
unsigned int tls_get_addr : 2;
/* Reference count of C/C++ function pointer relocations in read-write
section which can be resolved at run-time. */
bfd_signed_vma func_pointer_refcount;
/* Information about the GOT PLT entry. Filled when there are both
GOT and PLT relocations against the same function. */
union gotplt_union plt_got;
/* Information about the second PLT entry. */
union gotplt_union plt_second;
/* Offset of the GOTPLT entry reserved for the TLS descriptor,
starting at the end of the jump table. */
bfd_vma tlsdesc_got;
};
#define elf_x86_64_hash_entry(ent) \
((struct elf_x86_64_link_hash_entry *)(ent))
struct elf_x86_64_obj_tdata
{
struct elf_obj_tdata root;
/* tls_type for each local got entry. */
char *local_got_tls_type;
/* GOTPLT entries for TLS descriptors. */
bfd_vma *local_tlsdesc_gotent;
};
#define elf_x86_64_tdata(abfd) \
((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
#define elf_x86_64_local_got_tls_type(abfd) \
(elf_x86_64_tdata (abfd)->local_got_tls_type)
#define elf_x86_64_local_tlsdesc_gotent(abfd) \
(elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
#define is_x86_64_elf(bfd) \
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
&& elf_tdata (bfd) != NULL \
&& elf_object_id (bfd) == X86_64_ELF_DATA)
static bfd_boolean
elf_x86_64_mkobject (bfd *abfd)
{
return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
X86_64_ELF_DATA);
}
/* x86-64 ELF linker hash table. */
struct elf_x86_64_link_hash_table
{
struct elf_link_hash_table elf;
/* Short-cuts to get to dynamic linker sections. */
asection *interp;
asection *plt_eh_frame;
asection *plt_second;
asection *plt_second_eh_frame;
asection *plt_got;
asection *plt_got_eh_frame;
/* Parameters describing PLT generation, lazy or non-lazy. */
struct elf_x86_64_plt_layout plt;
/* Parameters describing lazy PLT generation. */
const struct elf_x86_64_lazy_plt_layout *lazy_plt;
/* Parameters describing non-lazy PLT generation. */
const struct elf_x86_64_non_lazy_plt_layout *non_lazy_plt;
union
{
bfd_signed_vma refcount;
bfd_vma offset;
} tls_ld_got;
/* The amount of space used by the jump slots in the GOT. */
bfd_vma sgotplt_jump_table_size;
/* Small local sym cache. */
struct sym_cache sym_cache;
bfd_vma (*r_info) (bfd_vma, bfd_vma);
bfd_vma (*r_sym) (bfd_vma);
unsigned int pointer_r_type;
const char *dynamic_interpreter;
int dynamic_interpreter_size;
/* _TLS_MODULE_BASE_ symbol. */
struct bfd_link_hash_entry *tls_module_base;
/* Used by local STT_GNU_IFUNC symbols. */
htab_t loc_hash_table;
void * loc_hash_memory;
/* The offset into splt of the PLT entry for the TLS descriptor
resolver. Special values are 0, if not necessary (or not found
to be necessary yet), and -1 if needed but not determined
yet. */
bfd_vma tlsdesc_plt;
/* The offset into sgot of the GOT entry used by the PLT entry
above. */
bfd_vma tlsdesc_got;
/* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
bfd_vma next_jump_slot_index;
/* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
bfd_vma next_irelative_index;
/* TRUE if there are dynamic relocs against IFUNC symbols that apply
to read-only sections. */
bfd_boolean readonly_dynrelocs_against_ifunc;
};
/* Get the x86-64 ELF linker hash table from a link_info structure. */
#define elf_x86_64_hash_table(p) \
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
== X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
#define elf_x86_64_compute_jump_table_size(htab) \
((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
/* Create an entry in an x86-64 ELF linker hash table. */
static struct bfd_hash_entry *
elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
struct bfd_hash_table *table,
const char *string)
{
/* Allocate the structure if it has not already been allocated by a
subclass. */
if (entry == NULL)
{
entry = (struct bfd_hash_entry *)
bfd_hash_allocate (table,
sizeof (struct elf_x86_64_link_hash_entry));
if (entry == NULL)
return entry;
}
/* Call the allocation method of the superclass. */
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
if (entry != NULL)
{
struct elf_x86_64_link_hash_entry *eh;
eh = (struct elf_x86_64_link_hash_entry *) entry;
eh->dyn_relocs = NULL;
eh->tls_type = GOT_UNKNOWN;
eh->needs_copy = 0;
eh->has_got_reloc = 0;
eh->has_non_got_reloc = 0;
eh->no_finish_dynamic_symbol = 0;
eh->tls_get_addr = 2;
eh->func_pointer_refcount = 0;
eh->plt_second.offset = (bfd_vma) -1;
eh->plt_got.offset = (bfd_vma) -1;
eh->tlsdesc_got = (bfd_vma) -1;
}
return entry;
}
/* Compute a hash of a local hash entry. We use elf_link_hash_entry
for local symbol so that we can handle local STT_GNU_IFUNC symbols
as global symbol. We reuse indx and dynstr_index for local symbol
hash since they aren't used by global symbols in this backend. */
static hashval_t
elf_x86_64_local_htab_hash (const void *ptr)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) ptr;
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
}
/* Compare local hash entries. */
static int
elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
{
struct elf_link_hash_entry *h1
= (struct elf_link_hash_entry *) ptr1;
struct elf_link_hash_entry *h2
= (struct elf_link_hash_entry *) ptr2;
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
}
/* Find and/or create a hash entry for local symbol. */
static struct elf_link_hash_entry *
elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
bfd *abfd, const Elf_Internal_Rela *rel,
bfd_boolean create)
{
struct elf_x86_64_link_hash_entry e, *ret;
asection *sec = abfd->sections;
hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
htab->r_sym (rel->r_info));
void **slot;
e.elf.indx = sec->id;
e.elf.dynstr_index = htab->r_sym (rel->r_info);
slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
create ? INSERT : NO_INSERT);
if (!slot)
return NULL;
if (*slot)
{
ret = (struct elf_x86_64_link_hash_entry *) *slot;
return &ret->elf;
}
ret = (struct elf_x86_64_link_hash_entry *)
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
sizeof (struct elf_x86_64_link_hash_entry));
if (ret)
{
memset (ret, 0, sizeof (*ret));
ret->elf.indx = sec->id;
ret->elf.dynstr_index = htab->r_sym (rel->r_info);
ret->elf.dynindx = -1;
ret->func_pointer_refcount = 0;
ret->plt_got.offset = (bfd_vma) -1;
*slot = ret;
}
return &ret->elf;
}
/* Destroy an X86-64 ELF linker hash table. */
static void
elf_x86_64_link_hash_table_free (bfd *obfd)
{
struct elf_x86_64_link_hash_table *htab
= (struct elf_x86_64_link_hash_table *) obfd->link.hash;
if (htab->loc_hash_table)
htab_delete (htab->loc_hash_table);
if (htab->loc_hash_memory)
objalloc_free ((struct objalloc *) htab->loc_hash_memory);
_bfd_elf_link_hash_table_free (obfd);
}
/* Create an X86-64 ELF linker hash table. */
static struct bfd_link_hash_table *
elf_x86_64_link_hash_table_create (bfd *abfd)
{
struct elf_x86_64_link_hash_table *ret;
bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
if (ret == NULL)
return NULL;
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
elf_x86_64_link_hash_newfunc,
sizeof (struct elf_x86_64_link_hash_entry),
X86_64_ELF_DATA))
{
free (ret);
return NULL;
}
if (ABI_64_P (abfd))
{
ret->r_info = elf64_r_info;
ret->r_sym = elf64_r_sym;
ret->pointer_r_type = R_X86_64_64;
ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
}
else
{
ret->r_info = elf32_r_info;
ret->r_sym = elf32_r_sym;
ret->pointer_r_type = R_X86_64_32;
ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
}
ret->loc_hash_table = htab_try_create (1024,
elf_x86_64_local_htab_hash,
elf_x86_64_local_htab_eq,
NULL);
ret->loc_hash_memory = objalloc_create ();
if (!ret->loc_hash_table || !ret->loc_hash_memory)
{
elf_x86_64_link_hash_table_free (abfd);
return NULL;
}
ret->elf.root.hash_table_free = elf_x86_64_link_hash_table_free;
return &ret->elf.root;
}
/* Copy the extra info we tack onto an elf_link_hash_entry. */
static void
elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *dir,
struct elf_link_hash_entry *ind)
{
struct elf_x86_64_link_hash_entry *edir, *eind;
edir = (struct elf_x86_64_link_hash_entry *) dir;
eind = (struct elf_x86_64_link_hash_entry *) ind;
edir->has_got_reloc |= eind->has_got_reloc;
edir->has_non_got_reloc |= eind->has_non_got_reloc;
if (eind->dyn_relocs != NULL)
{
if (edir->dyn_relocs != NULL)
{
struct elf_dyn_relocs **pp;
struct elf_dyn_relocs *p;
/* Add reloc counts against the indirect sym to the direct sym
list. Merge any entries against the same section. */
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
{
struct elf_dyn_relocs *q;
for (q = edir->dyn_relocs; q != NULL; q = q->next)
if (q->sec == p->sec)
{
q->pc_count += p->pc_count;
q->count += p->count;
*pp = p->next;
break;
}
if (q == NULL)
pp = &p->next;
}
*pp = edir->dyn_relocs;
}
edir->dyn_relocs = eind->dyn_relocs;
eind->dyn_relocs = NULL;
}
if (ind->root.type == bfd_link_hash_indirect
&& dir->got.refcount <= 0)
{
edir->tls_type = eind->tls_type;
eind->tls_type = GOT_UNKNOWN;
}
if (ELIMINATE_COPY_RELOCS
&& ind->root.type != bfd_link_hash_indirect
&& dir->dynamic_adjusted)
{
/* If called to transfer flags for a weakdef during processing
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
if (dir->versioned != versioned_hidden)
dir->ref_dynamic |= ind->ref_dynamic;
dir->ref_regular |= ind->ref_regular;
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
dir->needs_plt |= ind->needs_plt;
dir->pointer_equality_needed |= ind->pointer_equality_needed;
}
else
{
if (eind->func_pointer_refcount > 0)
{
edir->func_pointer_refcount += eind->func_pointer_refcount;
eind->func_pointer_refcount = 0;
}
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
}
}
static bfd_boolean
elf64_x86_64_elf_object_p (bfd *abfd)
{
/* Set the right machine number for an x86-64 elf64 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
return TRUE;
}
static bfd_boolean
elf32_x86_64_elf_object_p (bfd *abfd)
{
/* Set the right machine number for an x86-64 elf32 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
return TRUE;
}
/* Return TRUE if the TLS access code sequence support transition
from R_TYPE. */
static bfd_boolean
elf_x86_64_check_tls_transition (bfd *abfd,
struct bfd_link_info *info,
asection *sec,
bfd_byte *contents,
Elf_Internal_Shdr *symtab_hdr,
struct elf_link_hash_entry **sym_hashes,
unsigned int r_type,
const Elf_Internal_Rela *rel,
const Elf_Internal_Rela *relend)
{
unsigned int val;
unsigned long r_symndx;
bfd_boolean largepic = FALSE;
struct elf_link_hash_entry *h;
bfd_vma offset;
struct elf_x86_64_link_hash_table *htab;
bfd_byte *call;
bfd_boolean indirect_call, tls_get_addr;
htab = elf_x86_64_hash_table (info);
offset = rel->r_offset;
switch (r_type)
{
case R_X86_64_TLSGD:
case R_X86_64_TLSLD:
if ((rel + 1) >= relend)
return FALSE;
if (r_type == R_X86_64_TLSGD)
{
/* Check transition from GD access model. For 64bit, only
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
can transit to different access model. For 32bit, only
leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
can transit to different access model. For largepic,
we also support:
leaq foo@tlsgd(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq $r15, %rax
call *%rax
or
leaq foo@tlsgd(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq $rbx, %rax
call *%rax */
static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
if ((offset + 12) > sec->size)
return FALSE;
call = contents + offset + 4;
if (call[0] != 0x66
|| !((call[1] == 0x48
&& call[2] == 0xff
&& call[3] == 0x15)
|| (call[1] == 0x48
&& call[2] == 0x67
&& call[3] == 0xe8)
|| (call[1] == 0x66
&& call[2] == 0x48
&& call[3] == 0xe8)))
{
if (!ABI_64_P (abfd)
|| (offset + 19) > sec->size
|| offset < 3
|| memcmp (call - 7, leaq + 1, 3) != 0
|| memcmp (call, "\x48\xb8", 2) != 0
|| call[11] != 0x01
|| call[13] != 0xff
|| call[14] != 0xd0
|| !((call[10] == 0x48 && call[12] == 0xd8)
|| (call[10] == 0x4c && call[12] == 0xf8)))
return FALSE;
largepic = TRUE;
}
else if (ABI_64_P (abfd))
{
if (offset < 4
|| memcmp (contents + offset - 4, leaq, 4) != 0)
return FALSE;
}
else
{
if (offset < 3
|| memcmp (contents + offset - 3, leaq + 1, 3) != 0)
return FALSE;
}
indirect_call = call[2] == 0xff;
}
else
{
/* Check transition from LD access model. Only
leaq foo@tlsld(%rip), %rdi;
call __tls_get_addr@PLT
or
leaq foo@tlsld(%rip), %rdi;
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
can transit to different access model. For largepic
we also support:
leaq foo@tlsld(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq $r15, %rax
call *%rax
or
leaq foo@tlsld(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq $rbx, %rax
call *%rax */
static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
if (offset < 3 || (offset + 9) > sec->size)
return FALSE;
if (memcmp (contents + offset - 3, lea, 3) != 0)
return FALSE;
call = contents + offset + 4;
if (!(call[0] == 0xe8
|| (call[0] == 0xff && call[1] == 0x15)
|| (call[0] == 0x67 && call[1] == 0xe8)))
{
if (!ABI_64_P (abfd)
|| (offset + 19) > sec->size
|| memcmp (call, "\x48\xb8", 2) != 0
|| call[11] != 0x01
|| call[13] != 0xff
|| call[14] != 0xd0
|| !((call[10] == 0x48 && call[12] == 0xd8)
|| (call[10] == 0x4c && call[12] == 0xf8)))
return FALSE;
largepic = TRUE;
}
indirect_call = call[0] == 0xff;
}
r_symndx = htab->r_sym (rel[1].r_info);
if (r_symndx < symtab_hdr->sh_info)
return FALSE;
tls_get_addr = FALSE;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
if (h != NULL && h->root.root.string != NULL)
{
struct elf_x86_64_link_hash_entry *eh
= (struct elf_x86_64_link_hash_entry *) h;
tls_get_addr = eh->tls_get_addr == 1;
if (eh->tls_get_addr > 1)
{
/* Use strncmp to check __tls_get_addr since
__tls_get_addr may be versioned. */
if (strncmp (h->root.root.string, "__tls_get_addr", 14)
== 0)
{
eh->tls_get_addr = 1;
tls_get_addr = TRUE;
}
else
eh->tls_get_addr = 0;
}
}
if (!tls_get_addr)
return FALSE;
else if (largepic)
return ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLTOFF64;
else if (indirect_call)
return ELF32_R_TYPE (rel[1].r_info) == R_X86_64_GOTPCRELX;
else
return (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
|| ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
case R_X86_64_GOTTPOFF:
/* Check transition from IE access model:
mov foo@gottpoff(%rip), %reg
add foo@gottpoff(%rip), %reg
*/
/* Check REX prefix first. */
if (offset >= 3 && (offset + 4) <= sec->size)
{
val = bfd_get_8 (abfd, contents + offset - 3);
if (val != 0x48 && val != 0x4c)
{
/* X32 may have 0x44 REX prefix or no REX prefix. */
if (ABI_64_P (abfd))
return FALSE;
}
}
else
{
/* X32 may not have any REX prefix. */
if (ABI_64_P (abfd))
return FALSE;
if (offset < 2 || (offset + 3) > sec->size)
return FALSE;
}
val = bfd_get_8 (abfd, contents + offset - 2);
if (val != 0x8b && val != 0x03)
return FALSE;
val = bfd_get_8 (abfd, contents + offset - 1);
return (val & 0xc7) == 5;
case R_X86_64_GOTPC32_TLSDESC:
/* Check transition from GDesc access model:
leaq x@tlsdesc(%rip), %rax
Make sure it's a leaq adding rip to a 32-bit offset
into any register, although it's probably almost always
going to be rax. */
if (offset < 3 || (offset + 4) > sec->size)
return FALSE;
val = bfd_get_8 (abfd, contents + offset - 3);
if ((val & 0xfb) != 0x48)
return FALSE;
if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
return FALSE;
val = bfd_get_8 (abfd, contents + offset - 1);
return (val & 0xc7) == 0x05;
case R_X86_64_TLSDESC_CALL:
/* Check transition from GDesc access model:
call *x@tlsdesc(%rax)
*/
if (offset + 2 <= sec->size)
{
/* Make sure that it's a call *x@tlsdesc(%rax). */
call = contents + offset;
return call[0] == 0xff && call[1] == 0x10;
}
return FALSE;
default:
abort ();
}
}
/* Return TRUE if the TLS access transition is OK or no transition
will be performed. Update R_TYPE if there is a transition. */
static bfd_boolean
elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
asection *sec, bfd_byte *contents,
Elf_Internal_Shdr *symtab_hdr,
struct elf_link_hash_entry **sym_hashes,
unsigned int *r_type, int tls_type,
const Elf_Internal_Rela *rel,
const Elf_Internal_Rela *relend,
struct elf_link_hash_entry *h,
unsigned long r_symndx,
bfd_boolean from_relocate_section)
{
unsigned int from_type = *r_type;
unsigned int to_type = from_type;
bfd_boolean check = TRUE;
/* Skip TLS transition for functions. */
if (h != NULL
&& (h->type == STT_FUNC
|| h->type == STT_GNU_IFUNC))
return TRUE;
switch (from_type)
{
case R_X86_64_TLSGD:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_TLSDESC_CALL:
case R_X86_64_GOTTPOFF:
if (bfd_link_executable (info))
{
if (h == NULL)
to_type = R_X86_64_TPOFF32;
else
to_type = R_X86_64_GOTTPOFF;
}
/* When we are called from elf_x86_64_relocate_section, there may
be additional transitions based on TLS_TYPE. */
if (from_relocate_section)
{
unsigned int new_to_type = to_type;
if (bfd_link_executable (info)
&& h != NULL
&& h->dynindx == -1
&& tls_type == GOT_TLS_IE)
new_to_type = R_X86_64_TPOFF32;
if (to_type == R_X86_64_TLSGD
|| to_type == R_X86_64_GOTPC32_TLSDESC
|| to_type == R_X86_64_TLSDESC_CALL)
{
if (tls_type == GOT_TLS_IE)
new_to_type = R_X86_64_GOTTPOFF;
}
/* We checked the transition before when we were called from
elf_x86_64_check_relocs. We only want to check the new
transition which hasn't been checked before. */
check = new_to_type != to_type && from_type == to_type;
to_type = new_to_type;
}
break;
case R_X86_64_TLSLD:
if (bfd_link_executable (info))
to_type = R_X86_64_TPOFF32;
break;
default:
return TRUE;
}
/* Return TRUE if there is no transition. */
if (from_type == to_type)
return TRUE;
/* Check if the transition can be performed. */
if (check
&& ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
symtab_hdr, sym_hashes,
from_type, rel, relend))
{
reloc_howto_type *from, *to;
const char *name;
from = elf_x86_64_rtype_to_howto (abfd, from_type);
to = elf_x86_64_rtype_to_howto (abfd, to_type);
if (h)
name = h->root.root.string;
else
{
struct elf_x86_64_link_hash_table *htab;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
name = "*unknown*";
else
{
Elf_Internal_Sym *isym;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
}
}
_bfd_error_handler
/* xgettext:c-format */
(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
"in section `%A' failed"),
abfd, from->name, to->name, name,
(unsigned long) rel->r_offset, sec);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
*r_type = to_type;
return TRUE;
}
/* Rename some of the generic section flags to better document how they
are used here. */
#define need_convert_load sec_flg0
#define check_relocs_failed sec_flg1
static bfd_boolean
elf_x86_64_need_pic (bfd *input_bfd, asection *sec,
struct elf_link_hash_entry *h,
Elf_Internal_Shdr *symtab_hdr,
Elf_Internal_Sym *isym,
reloc_howto_type *howto)
{
const char *v = "";
const char *und = "";
const char *pic = "";
const char *name;
if (h)
{
name = h->root.root.string;
switch (ELF_ST_VISIBILITY (h->other))
{
case STV_HIDDEN:
v = _("hidden symbol ");
break;
case STV_INTERNAL:
v = _("internal symbol ");
break;
case STV_PROTECTED:
v = _("protected symbol ");
break;
default:
v = _("symbol ");
pic = _("; recompile with -fPIC");
break;
}
if (!h->def_regular && !h->def_dynamic)
und = _("undefined ");
}
else
{
name = bfd_elf_sym_name (input_bfd, symtab_hdr, isym, NULL);
pic = _("; recompile with -fPIC");
}
/* xgettext:c-format */
_bfd_error_handler (_("%B: relocation %s against %s%s`%s' can "
"not be used when making a shared object%s"),
input_bfd, howto->name, und, v, name, pic);
bfd_set_error (bfd_error_bad_value);
sec->check_relocs_failed = 1;
return FALSE;
}
/* With the local symbol, foo, we convert
mov foo@GOTPCREL(%rip), %reg
to
lea foo(%rip), %reg
and convert
call/jmp *foo@GOTPCREL(%rip)
to
nop call foo/jmp foo nop
When PIC is false, convert
test %reg, foo@GOTPCREL(%rip)
to
test $foo, %reg
and convert
binop foo@GOTPCREL(%rip), %reg
to
binop $foo, %reg
where binop is one of adc, add, and, cmp, or, sbb, sub, xor
instructions. */
static bfd_boolean
elf_x86_64_convert_load_reloc (bfd *abfd, asection *sec,
bfd_byte *contents,
Elf_Internal_Rela *irel,
struct elf_link_hash_entry *h,
bfd_boolean *converted,
struct bfd_link_info *link_info)
{
struct elf_x86_64_link_hash_table *htab;
bfd_boolean is_pic;
bfd_boolean require_reloc_pc32;
bfd_boolean relocx;
bfd_boolean to_reloc_pc32;
asection *tsec;
char symtype;
bfd_signed_vma raddend;
unsigned int opcode;
unsigned int modrm;
unsigned int r_type = ELF32_R_TYPE (irel->r_info);
unsigned int r_symndx;
bfd_vma toff;
bfd_vma roff = irel->r_offset;
if (roff < (r_type == R_X86_64_REX_GOTPCRELX ? 3 : 2))
return TRUE;
raddend = irel->r_addend;
/* Addend for 32-bit PC-relative relocation must be -4. */
if (raddend != -4)
return TRUE;
htab = elf_x86_64_hash_table (link_info);
is_pic = bfd_link_pic (link_info);
relocx = (r_type == R_X86_64_GOTPCRELX
|| r_type == R_X86_64_REX_GOTPCRELX);
/* TRUE if we can convert only to R_X86_64_PC32. Enable it for
--no-relax. */
require_reloc_pc32
= link_info->disable_target_specific_optimizations > 1;
r_symndx = htab->r_sym (irel->r_info);
opcode = bfd_get_8 (abfd, contents + roff - 2);
/* Convert mov to lea since it has been done for a while. */
if (opcode != 0x8b)
{
/* Only convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX
for call, jmp or one of adc, add, and, cmp, or, sbb, sub,
test, xor instructions. */
if (!relocx)
return TRUE;
}
/* We convert only to R_X86_64_PC32:
1. Branch.
2. R_X86_64_GOTPCREL since we can't modify REX byte.
3. require_reloc_pc32 is true.
4. PIC.
*/
to_reloc_pc32 = (opcode == 0xff
|| !relocx
|| require_reloc_pc32
|| is_pic);
/* Get the symbol referred to by the reloc. */
if (h == NULL)
{
Elf_Internal_Sym *isym
= bfd_sym_from_r_symndx (&htab->sym_cache, abfd, r_symndx);
/* Skip relocation against undefined symbols. */
if (isym->st_shndx == SHN_UNDEF)
return TRUE;
symtype = ELF_ST_TYPE (isym->st_info);
if (isym->st_shndx == SHN_ABS)
tsec = bfd_abs_section_ptr;
else if (isym->st_shndx == SHN_COMMON)
tsec = bfd_com_section_ptr;
else if (isym->st_shndx == SHN_X86_64_LCOMMON)
tsec = &_bfd_elf_large_com_section;
else
tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
toff = isym->st_value;
}
else
{
/* Undefined weak symbol is only bound locally in executable
and its reference is resolved as 0 without relocation
overflow. We can only perform this optimization for
GOTPCRELX relocations since we need to modify REX byte.
It is OK convert mov with R_X86_64_GOTPCREL to
R_X86_64_PC32. */
if ((relocx || opcode == 0x8b)
&& UNDEFINED_WEAK_RESOLVED_TO_ZERO (link_info,
TRUE,
elf_x86_64_hash_entry (h)))
{
if (opcode == 0xff)
{
/* Skip for branch instructions since R_X86_64_PC32
may overflow. */
if (require_reloc_pc32)
return TRUE;
}
else if (relocx)
{
/* For non-branch instructions, we can convert to
R_X86_64_32/R_X86_64_32S since we know if there
is a REX byte. */
to_reloc_pc32 = FALSE;
}
/* Since we don't know the current PC when PIC is true,
we can't convert to R_X86_64_PC32. */
if (to_reloc_pc32 && is_pic)
return TRUE;
goto convert;
}
/* Avoid optimizing GOTPCREL relocations againt _DYNAMIC since
ld.so may use its link-time address. */
else if ((h->def_regular
|| h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h != htab->elf.hdynamic
&& SYMBOL_REFERENCES_LOCAL (link_info, h))
{
/* bfd_link_hash_new or bfd_link_hash_undefined is
set by an assignment in a linker script in
bfd_elf_record_link_assignment. */
if (h->def_regular
&& (h->root.type == bfd_link_hash_new
|| h->root.type == bfd_link_hash_undefined
|| ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& h->root.u.def.section == bfd_und_section_ptr)))
{
/* Skip since R_X86_64_32/R_X86_64_32S may overflow. */
if (require_reloc_pc32)
return TRUE;
goto convert;
}
tsec = h->root.u.def.section;
toff = h->root.u.def.value;
symtype = h->type;
}
else
return TRUE;
}
/* Don't convert GOTPCREL relocation against large section. */
if (elf_section_data (tsec) != NULL
&& (elf_section_flags (tsec) & SHF_X86_64_LARGE) != 0)
return TRUE;
/* We can only estimate relocation overflow for R_X86_64_PC32. */
if (!to_reloc_pc32)
goto convert;
if (tsec->sec_info_type == SEC_INFO_TYPE_MERGE)
{
/* At this stage in linking, no SEC_MERGE symbol has been
adjusted, so all references to such symbols need to be
passed through _bfd_merged_section_offset. (Later, in
relocate_section, all SEC_MERGE symbols *except* for
section symbols have been adjusted.)
gas may reduce relocations against symbols in SEC_MERGE
sections to a relocation against the section symbol when
the original addend was zero. When the reloc is against
a section symbol we should include the addend in the
offset passed to _bfd_merged_section_offset, since the
location of interest is the original symbol. On the
other hand, an access to "sym+addend" where "sym" is not
a section symbol should not include the addend; Such an
access is presumed to be an offset from "sym"; The
location of interest is just "sym". */
if (symtype == STT_SECTION)
toff += raddend;
toff = _bfd_merged_section_offset (abfd, &tsec,
elf_section_data (tsec)->sec_info,
toff);
if (symtype != STT_SECTION)
toff += raddend;
}
else
toff += raddend;
/* Don't convert if R_X86_64_PC32 relocation overflows. */
if (tsec->output_section == sec->output_section)
{
if ((toff - roff + 0x80000000) > 0xffffffff)
return TRUE;
}
else
{
bfd_signed_vma distance;
/* At this point, we don't know the load addresses of TSEC
section nor SEC section. We estimate the distrance between
SEC and TSEC. We store the estimated distances in the
compressed_size field of the output section, which is only
used to decompress the compressed input section. */
if (sec->output_section->compressed_size == 0)
{
asection *asect;
bfd_size_type size = 0;
for (asect = link_info->output_bfd->sections;
asect != NULL;
asect = asect->next)
/* Skip debug sections since compressed_size is used to
compress debug sections. */
if ((asect->flags & SEC_DEBUGGING) == 0)
{
asection *i;
for (i = asect->map_head.s;
i != NULL;
i = i->map_head.s)
{
size = align_power (size, i->alignment_power);
size += i->size;
}
asect->compressed_size = size;
}
}
/* Don't convert GOTPCREL relocations if TSEC isn't placed
after SEC. */
distance = (tsec->output_section->compressed_size
- sec->output_section->compressed_size);
if (distance < 0)
return TRUE;
/* Take PT_GNU_RELRO segment into account by adding
maxpagesize. */
if ((toff + distance + get_elf_backend_data (abfd)->maxpagesize
- roff + 0x80000000) > 0xffffffff)
return TRUE;
}
convert:
if (opcode == 0xff)
{
/* We have "call/jmp *foo@GOTPCREL(%rip)". */
unsigned int nop;
unsigned int disp;
bfd_vma nop_offset;
/* Convert R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX to
R_X86_64_PC32. */
modrm = bfd_get_8 (abfd, contents + roff - 1);
if (modrm == 0x25)
{
/* Convert to "jmp foo nop". */
modrm = 0xe9;
nop = NOP_OPCODE;
nop_offset = irel->r_offset + 3;
disp = bfd_get_32 (abfd, contents + irel->r_offset);
irel->r_offset -= 1;
bfd_put_32 (abfd, disp, contents + irel->r_offset);
}
else
{
struct elf_x86_64_link_hash_entry *eh
= (struct elf_x86_64_link_hash_entry *) h;
/* Convert to "nop call foo". ADDR_PREFIX_OPCODE
is a nop prefix. */
modrm = 0xe8;
/* To support TLS optimization, always use addr32 prefix for
"call *__tls_get_addr@GOTPCREL(%rip)". */
if (eh && eh->tls_get_addr == 1)
{
nop = 0x67;
nop_offset = irel->r_offset - 2;
}
else
{
nop = link_info->call_nop_byte;
if (link_info->call_nop_as_suffix)
{
nop_offset = irel->r_offset + 3;
disp = bfd_get_32 (abfd, contents + irel->r_offset);
irel->r_offset -= 1;
bfd_put_32 (abfd, disp, contents + irel->r_offset);
}
else
nop_offset = irel->r_offset - 2;
}
}
bfd_put_8 (abfd, nop, contents + nop_offset);
bfd_put_8 (abfd, modrm, contents + irel->r_offset - 1);
r_type = R_X86_64_PC32;
}
else
{
unsigned int rex;
unsigned int rex_mask = REX_R;
if (r_type == R_X86_64_REX_GOTPCRELX)
rex = bfd_get_8 (abfd, contents + roff - 3);
else
rex = 0;
if (opcode == 0x8b)
{
if (to_reloc_pc32)
{
/* Convert "mov foo@GOTPCREL(%rip), %reg" to
"lea foo(%rip), %reg". */
opcode = 0x8d;
r_type = R_X86_64_PC32;
}
else
{
/* Convert "mov foo@GOTPCREL(%rip), %reg" to
"mov $foo, %reg". */
opcode = 0xc7;
modrm = bfd_get_8 (abfd, contents + roff - 1);
modrm = 0xc0 | (modrm & 0x38) >> 3;
if ((rex & REX_W) != 0
&& ABI_64_P (link_info->output_bfd))
{
/* Keep the REX_W bit in REX byte for LP64. */
r_type = R_X86_64_32S;
goto rewrite_modrm_rex;
}
else
{
/* If the REX_W bit in REX byte isn't needed,
use R_X86_64_32 and clear the W bit to avoid
sign-extend imm32 to imm64. */
r_type = R_X86_64_32;
/* Clear the W bit in REX byte. */
rex_mask |= REX_W;
goto rewrite_modrm_rex;
}
}
}
else
{
/* R_X86_64_PC32 isn't supported. */
if (to_reloc_pc32)
return TRUE;
modrm = bfd_get_8 (abfd, contents + roff - 1);
if (opcode == 0x85)
{
/* Convert "test %reg, foo@GOTPCREL(%rip)" to
"test $foo, %reg". */
modrm = 0xc0 | (modrm & 0x38) >> 3;
opcode = 0xf7;
}
else
{
/* Convert "binop foo@GOTPCREL(%rip), %reg" to
"binop $foo, %reg". */
modrm = 0xc0 | (modrm & 0x38) >> 3 | (opcode & 0x3c);
opcode = 0x81;
}
/* Use R_X86_64_32 with 32-bit operand to avoid relocation
overflow when sign-extending imm32 to imm64. */
r_type = (rex & REX_W) != 0 ? R_X86_64_32S : R_X86_64_32;
rewrite_modrm_rex:
bfd_put_8 (abfd, modrm, contents + roff - 1);
if (rex)
{
/* Move the R bit to the B bit in REX byte. */
rex = (rex & ~rex_mask) | (rex & REX_R) >> 2;
bfd_put_8 (abfd, rex, contents + roff - 3);
}
/* No addend for R_X86_64_32/R_X86_64_32S relocations. */
irel->r_addend = 0;
}
bfd_put_8 (abfd, opcode, contents + roff - 2);
}
irel->r_info = htab->r_info (r_symndx, r_type);
*converted = TRUE;
return TRUE;
}
/* Look through the relocs for a section during the first phase, and
calculate needed space in the global offset table, procedure
linkage table, and dynamic reloc sections. */
static bfd_boolean
elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
asection *sec,
const Elf_Internal_Rela *relocs)
{
struct elf_x86_64_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
bfd_byte *contents;
if (bfd_link_relocatable (info))
return TRUE;
/* Don't do anything special with non-loaded, non-alloced sections.
In particular, any relocs in such sections should not affect GOT
and PLT reference counting (ie. we don't allow them to create GOT
or PLT entries), there's no possibility or desire to optimize TLS
relocs, and there's not much point in propagating relocs to shared
libs that the dynamic linker won't relocate. */
if ((sec->flags & SEC_ALLOC) == 0)
return TRUE;
BFD_ASSERT (is_x86_64_elf (abfd));
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
{
sec->check_relocs_failed = 1;
return FALSE;
}
/* Get the section contents. */
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
{
sec->check_relocs_failed = 1;
return FALSE;
}
symtab_hdr = &elf_symtab_hdr (abfd);
sym_hashes = elf_sym_hashes (abfd);
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned int r_type;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
struct elf_x86_64_link_hash_entry *eh;
Elf_Internal_Sym *isym;
const char *name;
bfd_boolean size_reloc;
r_symndx = htab->r_sym (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
{
/* xgettext:c-format */
_bfd_error_handler (_("%B: bad symbol index: %d"),
abfd, r_symndx);
goto error_return;
}
if (r_symndx < symtab_hdr->sh_info)
{
/* A local symbol. */
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
goto error_return;
/* Check relocation against local STT_GNU_IFUNC symbol. */
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
{
h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
TRUE);
if (h == NULL)
goto error_return;
/* Fake a STT_GNU_IFUNC symbol. */
h->type = STT_GNU_IFUNC;
h->def_regular = 1;
h->ref_regular = 1;
h->forced_local = 1;
h->root.type = bfd_link_hash_defined;
}
else
h = NULL;
}
else
{
isym = NULL;
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* Check invalid x32 relocations. */
if (!ABI_64_P (abfd))
switch (r_type)
{
default:
break;
case R_X86_64_DTPOFF64:
case R_X86_64_TPOFF64:
case R_X86_64_PC64:
case R_X86_64_GOTOFF64:
case R_X86_64_GOT64:
case R_X86_64_GOTPCREL64:
case R_X86_64_GOTPC64:
case R_X86_64_GOTPLT64:
case R_X86_64_PLTOFF64:
{
if (h)
name = h->root.root.string;
else
name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
NULL);
_bfd_error_handler
/* xgettext:c-format */
(_("%B: relocation %s against symbol `%s' isn't "
"supported in x32 mode"), abfd,
x86_64_elf_howto_table[r_type].name, name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
break;
}
if (h != NULL)
{
/* It is referenced by a non-shared object. */
h->ref_regular = 1;
h->root.non_ir_ref_regular = 1;
if (h->type == STT_GNU_IFUNC)
elf_tdata (info->output_bfd)->has_gnu_symbols
|= elf_gnu_symbol_ifunc;
}
if (! elf_x86_64_tls_transition (info, abfd, sec, contents,
symtab_hdr, sym_hashes,
&r_type, GOT_UNKNOWN,
rel, rel_end, h, r_symndx, FALSE))
goto error_return;
eh = (struct elf_x86_64_link_hash_entry *) h;
switch (r_type)
{
case R_X86_64_TLSLD:
htab->tls_ld_got.refcount += 1;
goto create_got;
case R_X86_64_TPOFF32:
if (!bfd_link_executable (info) && ABI_64_P (abfd))
return elf_x86_64_need_pic (abfd, sec, h, symtab_hdr, isym,
&x86_64_elf_howto_table[r_type]);
if (eh != NULL)
eh->has_got_reloc = 1;
break;
case R_X86_64_GOTTPOFF:
if (!bfd_link_executable (info))
info->flags |= DF_STATIC_TLS;
/* Fall through */
case R_X86_64_GOT32:
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_TLSGD:
case R_X86_64_GOT64:
case R_X86_64_GOTPCREL64:
case R_X86_64_GOTPLT64:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_TLSDESC_CALL:
/* This symbol requires a global offset table entry. */
{
int tls_type, old_tls_type;
switch (r_type)
{
default: tls_type = GOT_NORMAL; break;
case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_TLSDESC_CALL:
tls_type = GOT_TLS_GDESC; break;
}
if (h != NULL)
{
h->got.refcount += 1;
old_tls_type = eh->tls_type;
}
else
{
bfd_signed_vma *local_got_refcounts;
/* This is a global offset table entry for a local symbol. */
local_got_refcounts = elf_local_got_refcounts (abfd);
if (local_got_refcounts == NULL)
{
bfd_size_type size;
size = symtab_hdr->sh_info;
size *= sizeof (bfd_signed_vma)
+ sizeof (bfd_vma) + sizeof (char);
local_got_refcounts = ((bfd_signed_vma *)
bfd_zalloc (abfd, size));
if (local_got_refcounts == NULL)
goto error_return;
elf_local_got_refcounts (abfd) = local_got_refcounts;
elf_x86_64_local_tlsdesc_gotent (abfd)
= (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
elf_x86_64_local_got_tls_type (abfd)
= (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
}
local_got_refcounts[r_symndx] += 1;
old_tls_type
= elf_x86_64_local_got_tls_type (abfd) [r_symndx];
}
/* If a TLS symbol is accessed using IE at least once,
there is no point to use dynamic model for it. */
if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
&& (! GOT_TLS_GD_ANY_P (old_tls_type)
|| tls_type != GOT_TLS_IE))
{
if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
tls_type = old_tls_type;
else if (GOT_TLS_GD_ANY_P (old_tls_type)
&& GOT_TLS_GD_ANY_P (tls_type))
tls_type |= old_tls_type;
else
{
if (h)
name = h->root.root.string;
else
name = bfd_elf_sym_name (abfd, symtab_hdr,
isym, NULL);
_bfd_error_handler
/* xgettext:c-format */
(_("%B: '%s' accessed both as normal and"
" thread local symbol"),
abfd, name);
bfd_set_error (bfd_error_bad_value);
goto error_return;
}
}
if (old_tls_type != tls_type)
{
if (eh != NULL)
eh->tls_type = tls_type;
else
elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
}
}
/* Fall through */
case R_X86_64_GOTOFF64:
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC64:
create_got:
if (eh != NULL)
eh->has_got_reloc = 1;
break;
case R_X86_64_PLT32:
case R_X86_64_PLT32_BND:
/* This symbol requires a procedure linkage table entry. We
actually build the entry in adjust_dynamic_symbol,
because this might be a case of linking PIC code which is
never referenced by a dynamic object, in which case we
don't need to generate a procedure linkage table entry
after all. */
/* If this is a local symbol, we resolve it directly without
creating a procedure linkage table entry. */
if (h == NULL)
continue;
eh->has_got_reloc = 1;
h->needs_plt = 1;
h->plt.refcount += 1;
break;
case R_X86_64_PLTOFF64:
/* This tries to form the 'address' of a function relative
to GOT. For global symbols we need a PLT entry. */
if (h != NULL)
{
h->needs_plt = 1;
h->plt.refcount += 1;
}
goto create_got;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
size_reloc = TRUE;
goto do_size;
case R_X86_64_32:
if (!ABI_64_P (abfd))
goto pointer;
/* Fall through. */
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32S:
/* Check relocation overflow as these relocs may lead to
run-time relocation overflow. Don't error out for
sections we don't care about, such as debug sections or
when relocation overflow check is disabled. */
if (!info->no_reloc_overflow_check
&& (bfd_link_pic (info)
|| (bfd_link_executable (info)
&& h != NULL
&& !h->def_regular
&& h->def_dynamic
&& (sec->flags & SEC_READONLY) == 0)))
return elf_x86_64_need_pic (abfd, sec, h, symtab_hdr, isym,
&x86_64_elf_howto_table[r_type]);
/* Fall through. */
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32:
case R_X86_64_PC32_BND:
case R_X86_64_PC64:
case R_X86_64_64:
pointer:
if (eh != NULL && (sec->flags & SEC_CODE) != 0)
eh->has_non_got_reloc = 1;
/* We are called after all symbols have been resolved. Only
relocation against STT_GNU_IFUNC symbol must go through
PLT. */
if (h != NULL
&& (bfd_link_executable (info)
|| h->type == STT_GNU_IFUNC))
{
/* If this reloc is in a read-only section, we might
need a copy reloc. We can't check reliably at this
stage whether the section is read-only, as input
sections have not yet been mapped to output sections.
Tentatively set the flag for now, and correct in
adjust_dynamic_symbol. */
h->non_got_ref = 1;
/* We may need a .plt entry if the symbol is a function
defined in a shared lib or is a STT_GNU_IFUNC function
referenced from the code or read-only section. */
if (!h->def_regular
|| (sec->flags & (SEC_CODE | SEC_READONLY)) != 0)
h->plt.refcount += 1;
if (r_type == R_X86_64_PC32)
{
/* Since something like ".long foo - ." may be used
as pointer, make sure that PLT is used if foo is
a function defined in a shared library. */
if ((sec->flags & SEC_CODE) == 0)
h->pointer_equality_needed = 1;
}
else if (r_type != R_X86_64_PC32_BND
&& r_type != R_X86_64_PC64)
{
h->pointer_equality_needed = 1;
/* At run-time, R_X86_64_64 can be resolved for both
x86-64 and x32. But R_X86_64_32 and R_X86_64_32S
can only be resolved for x32. */
if ((sec->flags & SEC_READONLY) == 0
&& (r_type == R_X86_64_64
|| (!ABI_64_P (abfd)
&& (r_type == R_X86_64_32
|| r_type == R_X86_64_32S))))
eh->func_pointer_refcount += 1;
}
}
size_reloc = FALSE;
do_size:
/* If we are creating a shared library, and this is a reloc
against a global symbol, or a non PC relative reloc
against a local symbol, then we need to copy the reloc
into the shared library. However, if we are linking with
-Bsymbolic, we do not need to copy a reloc against a
global symbol which is defined in an object we are
including in the link (i.e., DEF_REGULAR is set). At
this point we have not seen all the input files, so it is
possible that DEF_REGULAR is not set now but will be set
later (it is never cleared). In case of a weak definition,
DEF_REGULAR may be cleared later by a strong definition in
a shared library. We account for that possibility below by
storing information in the relocs_copied field of the hash
table entry. A similar situation occurs when creating
shared libraries and symbol visibility changes render the
symbol local.
If on the other hand, we are creating an executable, we
may need to keep relocations for symbols satisfied by a
dynamic library if we manage to avoid copy relocs for the
symbol.
Generate dynamic pointer relocation against STT_GNU_IFUNC
symbol in the non-code section. */
if ((bfd_link_pic (info)
&& (! IS_X86_64_PCREL_TYPE (r_type)
|| (h != NULL
&& (! (bfd_link_pie (info)
|| SYMBOLIC_BIND (info, h))
|| h->root.type == bfd_link_hash_defweak
|| !h->def_regular))))
|| (h != NULL
&& h->type == STT_GNU_IFUNC
&& r_type == htab->pointer_r_type
&& (sec->flags & SEC_CODE) == 0)
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& h != NULL
&& (h->root.type == bfd_link_hash_defweak
|| !h->def_regular)))
{
struct elf_dyn_relocs *p;
struct elf_dyn_relocs **head;
/* We must copy these reloc types into the output file.
Create a reloc section in dynobj and make room for
this reloc. */
if (sreloc == NULL)
{
sreloc = _bfd_elf_make_dynamic_reloc_section
(sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
abfd, /*rela?*/ TRUE);
if (sreloc == NULL)
goto error_return;
}
/* If this is a global symbol, we count the number of
relocations we need for this symbol. */
if (h != NULL)
head = &eh->dyn_relocs;
else
{
/* Track dynamic relocs needed for local syms too.
We really need local syms available to do this
easily. Oh well. */
asection *s;
void **vpp;
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
abfd, r_symndx);
if (isym == NULL)
goto error_return;
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
if (s == NULL)
s = sec;
/* Beware of type punned pointers vs strict aliasing
rules. */
vpp = &(elf_section_data (s)->local_dynrel);
head = (struct elf_dyn_relocs **)vpp;
}
p = *head;
if (p == NULL || p->sec != sec)
{
bfd_size_type amt = sizeof *p;
p = ((struct elf_dyn_relocs *)
bfd_alloc (htab->elf.dynobj, amt));
if (p == NULL)
goto error_return;
p->next = *head;
*head = p;
p->sec = sec;
p->count = 0;
p->pc_count = 0;
}
p->count += 1;
/* Count size relocation as PC-relative relocation. */
if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
p->pc_count += 1;
}
break;
/* This relocation describes the C++ object vtable hierarchy.
Reconstruct it for later use during GC. */
case R_X86_64_GNU_VTINHERIT:
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
goto error_return;
break;
/* This relocation describes which C++ vtable entries are actually
used. Record for later use during GC. */
case R_X86_64_GNU_VTENTRY:
BFD_ASSERT (h != NULL);
if (h != NULL
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
goto error_return;
break;
default:
break;
}
if ((r_type == R_X86_64_GOTPCREL
|| r_type == R_X86_64_GOTPCRELX
|| r_type == R_X86_64_REX_GOTPCRELX)
&& (h == NULL || h->type != STT_GNU_IFUNC))
sec->need_convert_load = 1;
}
if (elf_section_data (sec)->this_hdr.contents != contents)
{
if (!info->keep_memory)
free (contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (sec)->this_hdr.contents = contents;
}
}
return TRUE;
error_return:
if (elf_section_data (sec)->this_hdr.contents != contents)
free (contents);
sec->check_relocs_failed = 1;
return FALSE;
}
/* Return the section that should be marked against GC for a given
relocation. */
static asection *
elf_x86_64_gc_mark_hook (asection *sec,
struct bfd_link_info *info,
Elf_Internal_Rela *rel,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
if (h != NULL)
switch (ELF32_R_TYPE (rel->r_info))
{
case R_X86_64_GNU_VTINHERIT:
case R_X86_64_GNU_VTENTRY:
return NULL;
}
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
}
/* Remove undefined weak symbol from the dynamic symbol table if it
is resolved to 0. */
static bfd_boolean
elf_x86_64_fixup_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
if (h->dynindx != -1
&& UNDEFINED_WEAK_RESOLVED_TO_ZERO (info,
elf_x86_64_hash_entry (h)->has_got_reloc,
elf_x86_64_hash_entry (h)))
{
h->dynindx = -1;
_bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
h->dynstr_index);
}
return TRUE;
}
/* Adjust a symbol defined by a dynamic object and referenced by a
regular object. The current definition is in some section of the
dynamic object, but we're not including those sections. We have to
change the definition to something the rest of the link can
understand. */
static bfd_boolean
elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
struct elf_link_hash_entry *h)
{
struct elf_x86_64_link_hash_table *htab;
asection *s, *srel;
struct elf_x86_64_link_hash_entry *eh;
struct elf_dyn_relocs *p;
/* STT_GNU_IFUNC symbol must go through PLT. */
if (h->type == STT_GNU_IFUNC)
{
/* All local STT_GNU_IFUNC references must be treate as local
calls via local PLT. */
if (h->ref_regular
&& SYMBOL_CALLS_LOCAL (info, h))
{
bfd_size_type pc_count = 0, count = 0;
struct elf_dyn_relocs **pp;
eh = (struct elf_x86_64_link_hash_entry *) h;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
pc_count += p->pc_count;
p->count -= p->pc_count;
p->pc_count = 0;
count += p->count;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
if (pc_count || count)
{
h->non_got_ref = 1;
if (pc_count)
{
/* Increment PLT reference count only for PC-relative
references. */
h->needs_plt = 1;
if (h->plt.refcount <= 0)
h->plt.refcount = 1;
else
h->plt.refcount += 1;
}
}
}
if (h->plt.refcount <= 0)
{
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
return TRUE;
}
/* If this is a function, put it in the procedure linkage table. We
will fill in the contents of the procedure linkage table later,
when we know the address of the .got section. */
if (h->type == STT_FUNC
|| h->needs_plt)
{
if (h->plt.refcount <= 0
|| SYMBOL_CALLS_LOCAL (info, h)
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
&& h->root.type == bfd_link_hash_undefweak))
{
/* This case can occur if we saw a PLT32 reloc in an input
file, but the symbol was never referred to by a dynamic
object, or if all references were garbage collected. In
such a case, we don't actually need to build a procedure
linkage table, and we can just do a PC32 reloc instead. */
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
return TRUE;
}
else
/* It's possible that we incorrectly decided a .plt reloc was
needed for an R_X86_64_PC32 reloc to a non-function sym in
check_relocs. We can't decide accurately between function and
non-function syms in check-relocs; Objects loaded later in
the link may change h->type. So fix it now. */
h->plt.offset = (bfd_vma) -1;
/* If this is a weak symbol, and there is a real definition, the
processor independent code will have arranged for us to see the
real definition first, and we can just use the same value. */
if (h->u.weakdef != NULL)
{
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
h->root.u.def.section = h->u.weakdef->root.u.def.section;
h->root.u.def.value = h->u.weakdef->root.u.def.value;
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
{
eh = (struct elf_x86_64_link_hash_entry *) h;
h->non_got_ref = h->u.weakdef->non_got_ref;
eh->needs_copy = h->u.weakdef->needs_copy;
}
return TRUE;
}
/* This is a reference to a symbol defined by a dynamic object which
is not a function. */
/* If we are creating a shared library, we must presume that the
only references to the symbol are via the global offset table.
For such cases we need not do anything here; the relocations will
be handled correctly by relocate_section. */
if (!bfd_link_executable (info))
return TRUE;
/* If there are no references to this symbol that do not use the
GOT, we don't need to generate a copy reloc. */
if (!h->non_got_ref)
return TRUE;
/* If -z nocopyreloc was given, we won't generate them either. */
if (info->nocopyreloc)
{
h->non_got_ref = 0;
return TRUE;
}
if (ELIMINATE_COPY_RELOCS)
{
eh = (struct elf_x86_64_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
break;
}
/* If we didn't find any dynamic relocs in read-only sections, then
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
if (p == NULL)
{
h->non_got_ref = 0;
return TRUE;
}
}
/* We must allocate the symbol in our .dynbss section, which will
become part of the .bss section of the executable. There will be
an entry for this symbol in the .dynsym section. The dynamic
object will contain position independent code, so all references
from the dynamic object to this symbol will go through the global
offset table. The dynamic linker will use the .dynsym entry to
determine the address it must put in the global offset table, so
both the dynamic object and the regular object will refer to the
same memory location for the variable. */
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
/* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
to copy the initial value out of the dynamic object and into the
runtime process image. */
if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
{
s = htab->elf.sdynrelro;
srel = htab->elf.sreldynrelro;
}
else
{
s = htab->elf.sdynbss;
srel = htab->elf.srelbss;
}
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
{
const struct elf_backend_data *bed;
bed = get_elf_backend_data (info->output_bfd);
srel->size += bed->s->sizeof_rela;
h->needs_copy = 1;
}
return _bfd_elf_adjust_dynamic_copy (info, h, s);
}
/* Allocate space in .plt, .got and associated reloc sections for
dynamic relocs. */
static bfd_boolean
elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
{
struct bfd_link_info *info;
struct elf_x86_64_link_hash_table *htab;
struct elf_x86_64_link_hash_entry *eh;
struct elf_dyn_relocs *p;
const struct elf_backend_data *bed;
unsigned int plt_entry_size;
bfd_boolean resolved_to_zero;
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
eh = (struct elf_x86_64_link_hash_entry *) h;
info = (struct bfd_link_info *) inf;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
bed = get_elf_backend_data (info->output_bfd);
plt_entry_size = htab->plt.plt_entry_size;
resolved_to_zero = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info,
eh->has_got_reloc,
eh);
/* We can't use the GOT PLT if pointer equality is needed since
finish_dynamic_symbol won't clear symbol value and the dynamic
linker won't update the GOT slot. We will get into an infinite
loop at run-time. */
if (htab->plt_got != NULL
&& h->type != STT_GNU_IFUNC
&& !h->pointer_equality_needed
&& h->plt.refcount > 0
&& h->got.refcount > 0)
{
/* Don't use the regular PLT if there are both GOT and GOTPLT
reloctions. */
h->plt.offset = (bfd_vma) -1;
/* Use the GOT PLT. */
eh->plt_got.refcount = 1;
}
/* Clear the reference count of function pointer relocations if
symbol isn't a normal function. */
if (h->type != STT_FUNC)
eh->func_pointer_refcount = 0;
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
here if it is defined and referenced in a non-shared object. */
if (h->type == STT_GNU_IFUNC
&& h->def_regular)
{
if (_bfd_elf_allocate_ifunc_dyn_relocs (info, h,
&eh->dyn_relocs,
&htab->readonly_dynrelocs_against_ifunc,
plt_entry_size,
(htab->plt.has_plt0
* plt_entry_size),
GOT_ENTRY_SIZE, TRUE))
{
asection *s = htab->plt_second;
if (h->plt.offset != (bfd_vma) -1 && s != NULL)
{
/* Use the second PLT section if it is created. */
eh->plt_second.offset = s->size;
/* Make room for this entry in the second PLT section. */
s->size += htab->non_lazy_plt->plt_entry_size;
}
return TRUE;
}
else
return FALSE;
}
/* Don't create the PLT entry if there are only function pointer
relocations which can be resolved at run-time. */
else if (htab->elf.dynamic_sections_created
&& (h->plt.refcount > eh->func_pointer_refcount
|| eh->plt_got.refcount > 0))
{
bfd_boolean use_plt_got = eh->plt_got.refcount > 0;
/* Clear the reference count of function pointer relocations
if PLT is used. */
eh->func_pointer_refcount = 0;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local
&& !resolved_to_zero
&& h->root.type == bfd_link_hash_undefweak)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
if (bfd_link_pic (info)
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
{
asection *s = htab->elf.splt;
asection *second_s = htab->plt_second;
asection *got_s = htab->plt_got;
/* If this is the first .plt entry, make room for the special
first entry. The .plt section is used by prelink to undo
prelinking for dynamic relocations. */
if (s->size == 0)
s->size = htab->plt.has_plt0 * plt_entry_size;
if (use_plt_got)
eh->plt_got.offset = got_s->size;
else
{
h->plt.offset = s->size;
if (second_s)
eh->plt_second.offset = second_s->size;
}
/* If this symbol is not defined in a regular file, and we are
not generating a shared library, then set the symbol to this
location in the .plt. This is required to make function
pointers compare as equal between the normal executable and
the shared library. */
if (! bfd_link_pic (info)
&& !h->def_regular)
{
if (use_plt_got)
{
/* We need to make a call to the entry of the GOT PLT
instead of regular PLT entry. */
h->root.u.def.section = got_s;
h->root.u.def.value = eh->plt_got.offset;
}
else
{
if (second_s)
{
/* We need to make a call to the entry of the
second PLT instead of regular PLT entry. */
h->root.u.def.section = second_s;
h->root.u.def.value = eh->plt_second.offset;
}
else
{
h->root.u.def.section = s;
h->root.u.def.value = h->plt.offset;
}
}
}
/* Make room for this entry. */
if (use_plt_got)
got_s->size += htab->non_lazy_plt->plt_entry_size;
else
{
s->size += plt_entry_size;
if (second_s)
second_s->size += htab->non_lazy_plt->plt_entry_size;
/* We also need to make an entry in the .got.plt section,
which will be placed in the .got section by the linker
script. */
htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
/* There should be no PLT relocation against resolved
undefined weak symbol in executable. */
if (!resolved_to_zero)
{
/* We also need to make an entry in the .rela.plt
section. */
htab->elf.srelplt->size += bed->s->sizeof_rela;
htab->elf.srelplt->reloc_count++;
}
}
}
else
{
eh->plt_got.offset = (bfd_vma) -1;
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
}
else
{
eh->plt_got.offset = (bfd_vma) -1;
h->plt.offset = (bfd_vma) -1;
h->needs_plt = 0;
}
eh->tlsdesc_got = (bfd_vma) -1;
/* If R_X86_64_GOTTPOFF symbol is now local to the binary,
make it a R_X86_64_TPOFF32 requiring no GOT entry. */
if (h->got.refcount > 0
&& bfd_link_executable (info)
&& h->dynindx == -1
&& elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
{
h->got.offset = (bfd_vma) -1;
}
else if (h->got.refcount > 0)
{
asection *s;
bfd_boolean dyn;
int tls_type = elf_x86_64_hash_entry (h)->tls_type;
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& !h->forced_local
&& !resolved_to_zero
&& h->root.type == bfd_link_hash_undefweak)
{
if (! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
if (GOT_TLS_GDESC_P (tls_type))
{
eh->tlsdesc_got = htab->elf.sgotplt->size
- elf_x86_64_compute_jump_table_size (htab);
htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
h->got.offset = (bfd_vma) -2;
}
if (! GOT_TLS_GDESC_P (tls_type)
|| GOT_TLS_GD_P (tls_type))
{
s = htab->elf.sgot;
h->got.offset = s->size;
s->size += GOT_ENTRY_SIZE;
if (GOT_TLS_GD_P (tls_type))
s->size += GOT_ENTRY_SIZE;
}
dyn = htab->elf.dynamic_sections_created;
/* R_X86_64_TLSGD needs one dynamic relocation if local symbol
and two if global. R_X86_64_GOTTPOFF needs one dynamic
relocation. No dynamic relocation against resolved undefined
weak symbol in executable. */
if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
|| tls_type == GOT_TLS_IE)
htab->elf.srelgot->size += bed->s->sizeof_rela;
else if (GOT_TLS_GD_P (tls_type))
htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
else if (! GOT_TLS_GDESC_P (tls_type)
&& ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
&& !resolved_to_zero)
|| h->root.type != bfd_link_hash_undefweak)
&& (bfd_link_pic (info)
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
htab->elf.srelgot->size += bed->s->sizeof_rela;
if (GOT_TLS_GDESC_P (tls_type))
{
htab->elf.srelplt->size += bed->s->sizeof_rela;
htab->tlsdesc_plt = (bfd_vma) -1;
}
}
else
h->got.offset = (bfd_vma) -1;
if (eh->dyn_relocs == NULL)
return TRUE;
/* In the shared -Bsymbolic case, discard space allocated for
dynamic pc-relative relocs against symbols which turn out to be
defined in regular objects. For the normal shared case, discard
space for pc-relative relocs that have become local due to symbol
visibility changes. */
if (bfd_link_pic (info))
{
/* Relocs that use pc_count are those that appear on a call
insn, or certain REL relocs that can generated via assembly.
We want calls to protected symbols to resolve directly to the
function rather than going via the plt. If people want
function pointer comparisons to work as expected then they
should avoid writing weird assembly. */
if (SYMBOL_CALLS_LOCAL (info, h))
{
struct elf_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
p->count -= p->pc_count;
p->pc_count = 0;
if (p->count == 0)
*pp = p->next;
else
pp = &p->next;
}
}
/* Also discard relocs on undefined weak syms with non-default
visibility or in PIE. */
if (eh->dyn_relocs != NULL)
{
if (h->root.type == bfd_link_hash_undefweak)
{
/* Undefined weak symbol is never bound locally in shared
library. */
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|| resolved_to_zero)
eh->dyn_relocs = NULL;
else if (h->dynindx == -1
&& ! h->forced_local
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
/* For PIE, discard space for pc-relative relocs against
symbols which turn out to need copy relocs. */
else if (bfd_link_executable (info)
&& (h->needs_copy || eh->needs_copy)
&& h->def_dynamic
&& !h->def_regular)
{
struct elf_dyn_relocs **pp;
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
{
if (p->pc_count != 0)
*pp = p->next;
else
pp = &p->next;
}
}
}
}
else if (ELIMINATE_COPY_RELOCS)
{
/* For the non-shared case, discard space for relocs against
symbols which turn out to need copy relocs or are not
dynamic. Keep dynamic relocations for run-time function
pointer initialization. */
if ((!h->non_got_ref
|| eh->func_pointer_refcount > 0
|| (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero))
&& ((h->def_dynamic
&& !h->def_regular)
|| (htab->elf.dynamic_sections_created
&& (h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_undefined))))
{
/* Make sure this symbol is output as a dynamic symbol.
Undefined weak syms won't yet be marked as dynamic. */
if (h->dynindx == -1
&& ! h->forced_local
&& ! resolved_to_zero
&& h->root.type == bfd_link_hash_undefweak
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
/* If that succeeded, we know we'll be keeping all the
relocs. */
if (h->dynindx != -1)
goto keep;
}
eh->dyn_relocs = NULL;
eh->func_pointer_refcount = 0;
keep: ;
}
/* Finally, allocate space. */
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection * sreloc;
sreloc = elf_section_data (p->sec)->sreloc;
BFD_ASSERT (sreloc != NULL);
sreloc->size += p->count * bed->s->sizeof_rela;
}
return TRUE;
}
/* Allocate space in .plt, .got and associated reloc sections for
local dynamic relocs. */
static bfd_boolean
elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) *slot;
if (h->type != STT_GNU_IFUNC
|| !h->def_regular
|| !h->ref_regular
|| !h->forced_local
|| h->root.type != bfd_link_hash_defined)
abort ();
return elf_x86_64_allocate_dynrelocs (h, inf);
}
/* Find any dynamic relocs that apply to read-only sections. */
static bfd_boolean
elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
void * inf)
{
struct elf_x86_64_link_hash_entry *eh;
struct elf_dyn_relocs *p;
/* Skip local IFUNC symbols. */
if (h->forced_local && h->type == STT_GNU_IFUNC)
return TRUE;
eh = (struct elf_x86_64_link_hash_entry *) h;
for (p = eh->dyn_relocs; p != NULL; p = p->next)
{
asection *s = p->sec->output_section;
if (s != NULL && (s->flags & SEC_READONLY) != 0)
{
struct bfd_link_info *info = (struct bfd_link_info *) inf;
info->flags |= DF_TEXTREL;
if ((info->warn_shared_textrel && bfd_link_pic (info))
|| info->error_textrel)
/* xgettext:c-format */
info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'\n"),
p->sec->owner, h->root.root.string,
p->sec);
/* Not an error, just cut short the traversal. */
return FALSE;
}
}
return TRUE;
}
/* Convert load via the GOT slot to load immediate. */
static bfd_boolean
elf_x86_64_convert_load (bfd *abfd, asection *sec,
struct bfd_link_info *link_info)
{
Elf_Internal_Shdr *symtab_hdr;
Elf_Internal_Rela *internal_relocs;
Elf_Internal_Rela *irel, *irelend;
bfd_byte *contents;
struct elf_x86_64_link_hash_table *htab;
bfd_boolean changed;
bfd_signed_vma *local_got_refcounts;
/* Don't even try to convert non-ELF outputs. */
if (!is_elf_hash_table (link_info->hash))
return FALSE;
/* Nothing to do if there is no need or no output. */
if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
|| sec->need_convert_load == 0
|| bfd_is_abs_section (sec->output_section))
return TRUE;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
/* Load the relocations for this section. */
internal_relocs = (_bfd_elf_link_read_relocs
(abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
link_info->keep_memory));
if (internal_relocs == NULL)
return FALSE;
changed = FALSE;
htab = elf_x86_64_hash_table (link_info);
local_got_refcounts = elf_local_got_refcounts (abfd);
/* Get the section contents. */
if (elf_section_data (sec)->this_hdr.contents != NULL)
contents = elf_section_data (sec)->this_hdr.contents;
else
{
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
goto error_return;
}
irelend = internal_relocs + sec->reloc_count;
for (irel = internal_relocs; irel < irelend; irel++)
{
unsigned int r_type = ELF32_R_TYPE (irel->r_info);
unsigned int r_symndx;
struct elf_link_hash_entry *h;
bfd_boolean converted;
if (r_type != R_X86_64_GOTPCRELX
&& r_type != R_X86_64_REX_GOTPCRELX
&& r_type != R_X86_64_GOTPCREL)
continue;
r_symndx = htab->r_sym (irel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = elf_x86_64_get_local_sym_hash (htab, sec->owner,
(const Elf_Internal_Rela *) irel,
FALSE);
else
{
h = elf_sym_hashes (abfd)[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* STT_GNU_IFUNC must keep GOTPCREL relocations. */
if (h != NULL && h->type == STT_GNU_IFUNC)
continue;
converted = FALSE;
if (!elf_x86_64_convert_load_reloc (abfd, sec, contents, irel, h,
&converted, link_info))
goto error_return;
if (converted)
{
changed = converted;
if (h)
{
if (h->got.refcount > 0)
h->got.refcount -= 1;
}
else
{
if (local_got_refcounts != NULL
&& local_got_refcounts[r_symndx] > 0)
local_got_refcounts[r_symndx] -= 1;
}
}
}
if (contents != NULL
&& elf_section_data (sec)->this_hdr.contents != contents)
{
if (!changed && !link_info->keep_memory)
free (contents);
else
{
/* Cache the section contents for elf_link_input_bfd. */
elf_section_data (sec)->this_hdr.contents = contents;
}
}
if (elf_section_data (sec)->relocs != internal_relocs)
{
if (!changed)
free (internal_relocs);
else
elf_section_data (sec)->relocs = internal_relocs;
}
return TRUE;
error_return:
if (contents != NULL
&& elf_section_data (sec)->this_hdr.contents != contents)
free (contents);
if (internal_relocs != NULL
&& elf_section_data (sec)->relocs != internal_relocs)
free (internal_relocs);
return FALSE;
}
/* Set the sizes of the dynamic sections. */
static bfd_boolean
elf_x86_64_size_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct elf_x86_64_link_hash_table *htab;
bfd *dynobj;
asection *s;
bfd_boolean relocs;
bfd *ibfd;
const struct elf_backend_data *bed;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
bed = get_elf_backend_data (output_bfd);
dynobj = htab->elf.dynobj;
if (dynobj == NULL)
abort ();
/* Set up .got offsets for local syms, and space for local dynamic
relocs. */
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
{
bfd_signed_vma *local_got;
bfd_signed_vma *end_local_got;
char *local_tls_type;
bfd_vma *local_tlsdesc_gotent;
bfd_size_type locsymcount;
Elf_Internal_Shdr *symtab_hdr;
asection *srel;
if (! is_x86_64_elf (ibfd))
continue;
for (s = ibfd->sections; s != NULL; s = s->next)
{
struct elf_dyn_relocs *p;
if (!elf_x86_64_convert_load (ibfd, s, info))
return FALSE;
for (p = (struct elf_dyn_relocs *)
(elf_section_data (s)->local_dynrel);
p != NULL;
p = p->next)
{
if (!bfd_is_abs_section (p->sec)
&& bfd_is_abs_section (p->sec->output_section))
{
/* Input section has been discarded, either because
it is a copy of a linkonce section or due to
linker script /DISCARD/, so we'll be discarding
the relocs too. */
}
else if (p->count != 0)
{
srel = elf_section_data (p->sec)->sreloc;
srel->size += p->count * bed->s->sizeof_rela;
if ((p->sec->output_section->flags & SEC_READONLY) != 0
&& (info->flags & DF_TEXTREL) == 0)
{
info->flags |= DF_TEXTREL;
if ((info->warn_shared_textrel && bfd_link_pic (info))
|| info->error_textrel)
/* xgettext:c-format */
info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'\n"),
p->sec->owner, p->sec);
}
}
}
}
local_got = elf_local_got_refcounts (ibfd);
if (!local_got)
continue;
symtab_hdr = &elf_symtab_hdr (ibfd);
locsymcount = symtab_hdr->sh_info;
end_local_got = local_got + locsymcount;
local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
s = htab->elf.sgot;
srel = htab->elf.srelgot;
for (; local_got < end_local_got;
++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
{
*local_tlsdesc_gotent = (bfd_vma) -1;
if (*local_got > 0)
{
if (GOT_TLS_GDESC_P (*local_tls_type))
{
*local_tlsdesc_gotent = htab->elf.sgotplt->size
- elf_x86_64_compute_jump_table_size (htab);
htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
*local_got = (bfd_vma) -2;
}
if (! GOT_TLS_GDESC_P (*local_tls_type)
|| GOT_TLS_GD_P (*local_tls_type))
{
*local_got = s->size;
s->size += GOT_ENTRY_SIZE;
if (GOT_TLS_GD_P (*local_tls_type))
s->size += GOT_ENTRY_SIZE;
}
if (bfd_link_pic (info)
|| GOT_TLS_GD_ANY_P (*local_tls_type)
|| *local_tls_type == GOT_TLS_IE)
{
if (GOT_TLS_GDESC_P (*local_tls_type))
{
htab->elf.srelplt->size
+= bed->s->sizeof_rela;
htab->tlsdesc_plt = (bfd_vma) -1;
}
if (! GOT_TLS_GDESC_P (*local_tls_type)
|| GOT_TLS_GD_P (*local_tls_type))
srel->size += bed->s->sizeof_rela;
}
}
else
*local_got = (bfd_vma) -1;
}
}
if (htab->tls_ld_got.refcount > 0)
{
/* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
relocs. */
htab->tls_ld_got.offset = htab->elf.sgot->size;
htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
htab->elf.srelgot->size += bed->s->sizeof_rela;
}
else
htab->tls_ld_got.offset = -1;
/* Allocate global sym .plt and .got entries, and space for global
sym dynamic relocs. */
elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
info);
/* Allocate .plt and .got entries, and space for local symbols. */
htab_traverse (htab->loc_hash_table,
elf_x86_64_allocate_local_dynrelocs,
info);
/* For every jump slot reserved in the sgotplt, reloc_count is
incremented. However, when we reserve space for TLS descriptors,
it's not incremented, so in order to compute the space reserved
for them, it suffices to multiply the reloc count by the jump
slot size.
PR ld/13302: We start next_irelative_index at the end of .rela.plt
so that R_X86_64_IRELATIVE entries come last. */
if (htab->elf.srelplt)
{
htab->sgotplt_jump_table_size
= elf_x86_64_compute_jump_table_size (htab);
htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
}
else if (htab->elf.irelplt)
htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
if (htab->tlsdesc_plt)
{
/* If we're not using lazy TLS relocations, don't generate the
PLT and GOT entries they require. */
if ((info->flags & DF_BIND_NOW))
htab->tlsdesc_plt = 0;
else
{
htab->tlsdesc_got = htab->elf.sgot->size;
htab->elf.sgot->size += GOT_ENTRY_SIZE;
/* Reserve room for the initial entry.
FIXME: we could probably do away with it in this case. */
if (htab->elf.splt->size == 0)
htab->elf.splt->size = htab->plt.plt_entry_size;
htab->tlsdesc_plt = htab->elf.splt->size;
htab->elf.splt->size += htab->plt.plt_entry_size;
}
}
if (htab->elf.sgotplt)
{
/* Don't allocate .got.plt section if there are no GOT nor PLT
entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
if ((htab->elf.hgot == NULL
|| !htab->elf.hgot->ref_regular_nonweak)
&& (htab->elf.sgotplt->size
== get_elf_backend_data (output_bfd)->got_header_size)
&& (htab->elf.splt == NULL
|| htab->elf.splt->size == 0)
&& (htab->elf.sgot == NULL
|| htab->elf.sgot->size == 0)
&& (htab->elf.iplt == NULL
|| htab->elf.iplt->size == 0)
&& (htab->elf.igotplt == NULL
|| htab->elf.igotplt->size == 0))
htab->elf.sgotplt->size = 0;
}
if (_bfd_elf_eh_frame_present (info))
{
if (htab->plt_eh_frame != NULL
&& htab->elf.splt != NULL
&& htab->elf.splt->size != 0
&& !bfd_is_abs_section (htab->elf.splt->output_section))
htab->plt_eh_frame->size = htab->plt.eh_frame_plt_size;
if (htab->plt_got_eh_frame != NULL
&& htab->plt_got != NULL
&& htab->plt_got->size != 0
&& !bfd_is_abs_section (htab->plt_got->output_section))
htab->plt_got_eh_frame->size
= htab->non_lazy_plt->eh_frame_plt_size;
/* Unwind info for the second PLT and .plt.got sections are
identical. */
if (htab->plt_second_eh_frame != NULL
&& htab->plt_second != NULL
&& htab->plt_second->size != 0
&& !bfd_is_abs_section (htab->plt_second->output_section))
htab->plt_second_eh_frame->size
= htab->non_lazy_plt->eh_frame_plt_size;
}
/* We now have determined the sizes of the various dynamic sections.
Allocate memory for them. */
relocs = FALSE;
for (s = dynobj->sections; s != NULL; s = s->next)
{
if ((s->flags & SEC_LINKER_CREATED) == 0)
continue;
if (s == htab->elf.splt
|| s == htab->elf.sgot
|| s == htab->elf.sgotplt
|| s == htab->elf.iplt
|| s == htab->elf.igotplt
|| s == htab->plt_second
|| s == htab->plt_got
|| s == htab->plt_eh_frame
|| s == htab->plt_got_eh_frame
|| s == htab->plt_second_eh_frame
|| s == htab->elf.sdynbss
|| s == htab->elf.sdynrelro)
{
/* Strip this section if we don't need it; see the
comment below. */
}
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
{
if (s->size != 0 && s != htab->elf.srelplt)
relocs = TRUE;
/* We use the reloc_count field as a counter if we need
to copy relocs into the output file. */
if (s != htab->elf.srelplt)
s->reloc_count = 0;
}
else
{
/* It's not one of our sections, so don't allocate space. */
continue;
}
if (s->size == 0)
{
/* If we don't need this section, strip it from the
output file. This is mostly to handle .rela.bss and
.rela.plt. We must create both sections in
create_dynamic_sections, because they must be created
before the linker maps input sections to output
sections. The linker does that before
adjust_dynamic_symbol is called, and it is that
function which decides whether anything needs to go
into these sections. */
s->flags |= SEC_EXCLUDE;
continue;
}
if ((s->flags & SEC_HAS_CONTENTS) == 0)
continue;
/* Allocate memory for the section contents. We use bfd_zalloc
here in case unused entries are not reclaimed before the
section's contents are written out. This should not happen,
but this way if it does, we get a R_X86_64_NONE reloc instead
of garbage. */
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
if (s->contents == NULL)
return FALSE;
}
if (htab->plt_eh_frame != NULL
&& htab->plt_eh_frame->contents != NULL)
{
memcpy (htab->plt_eh_frame->contents,
htab->plt.eh_frame_plt, htab->plt_eh_frame->size);
bfd_put_32 (dynobj, htab->elf.splt->size,
htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
}
if (htab->plt_got_eh_frame != NULL
&& htab->plt_got_eh_frame->contents != NULL)
{
memcpy (htab->plt_got_eh_frame->contents,
htab->non_lazy_plt->eh_frame_plt,
htab->plt_got_eh_frame->size);
bfd_put_32 (dynobj, htab->plt_got->size,
(htab->plt_got_eh_frame->contents
+ PLT_FDE_LEN_OFFSET));
}
if (htab->plt_second_eh_frame != NULL
&& htab->plt_second_eh_frame->contents != NULL)
{
memcpy (htab->plt_second_eh_frame->contents,
htab->non_lazy_plt->eh_frame_plt,
htab->plt_second_eh_frame->size);
bfd_put_32 (dynobj, htab->plt_second->size,
(htab->plt_second_eh_frame->contents
+ PLT_FDE_LEN_OFFSET));
}
if (htab->elf.dynamic_sections_created)
{
/* Add some entries to the .dynamic section. We fill in the
values later, in elf_x86_64_finish_dynamic_sections, but we
must add the entries now so that we get the correct size for
the .dynamic section. The DT_DEBUG entry is filled in by the
dynamic linker and used by the debugger. */
#define add_dynamic_entry(TAG, VAL) \
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
if (bfd_link_executable (info))
{
if (!add_dynamic_entry (DT_DEBUG, 0))
return FALSE;
}
if (htab->elf.splt->size != 0)
{
/* DT_PLTGOT is used by prelink even if there is no PLT
relocation. */
if (!add_dynamic_entry (DT_PLTGOT, 0))
return FALSE;
}
if (htab->elf.srelplt->size != 0)
{
if (!add_dynamic_entry (DT_PLTRELSZ, 0)
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|| !add_dynamic_entry (DT_JMPREL, 0))
return FALSE;
}
if (htab->tlsdesc_plt
&& (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
|| !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
return FALSE;
if (relocs)
{
if (!add_dynamic_entry (DT_RELA, 0)
|| !add_dynamic_entry (DT_RELASZ, 0)
|| !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
return FALSE;
/* If any dynamic relocs apply to a read-only section,
then we need a DT_TEXTREL entry. */
if ((info->flags & DF_TEXTREL) == 0)
elf_link_hash_traverse (&htab->elf,
elf_x86_64_readonly_dynrelocs,
info);
if ((info->flags & DF_TEXTREL) != 0)
{
if (htab->readonly_dynrelocs_against_ifunc)
{
info->callbacks->einfo
(_("%P%X: read-only segment has dynamic IFUNC relocations; recompile with -fPIC\n"));
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
if (!add_dynamic_entry (DT_TEXTREL, 0))
return FALSE;
}
}
}
#undef add_dynamic_entry
return TRUE;
}
static bfd_boolean
elf_x86_64_always_size_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
asection *tls_sec = elf_hash_table (info)->tls_sec;
if (tls_sec)
{
struct elf_link_hash_entry *tlsbase;
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
"_TLS_MODULE_BASE_",
FALSE, FALSE, FALSE);
if (tlsbase && tlsbase->type == STT_TLS)
{
struct elf_x86_64_link_hash_table *htab;
struct bfd_link_hash_entry *bh = NULL;
const struct elf_backend_data *bed
= get_elf_backend_data (output_bfd);
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
if (!(_bfd_generic_link_add_one_symbol
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
tls_sec, 0, NULL, FALSE,
bed->collect, &bh)))
return FALSE;
htab->tls_module_base = bh;
tlsbase = (struct elf_link_hash_entry *)bh;
tlsbase->def_regular = 1;
tlsbase->other = STV_HIDDEN;
tlsbase->root.linker_def = 1;
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
}
}
return TRUE;
}
/* _TLS_MODULE_BASE_ needs to be treated especially when linking
executables. Rather than setting it to the beginning of the TLS
section, we have to set it to the end. This function may be called
multiple times, it is idempotent. */
static void
elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
{
struct elf_x86_64_link_hash_table *htab;
struct bfd_link_hash_entry *base;
if (!bfd_link_executable (info))
return;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return;
base = htab->tls_module_base;
if (base == NULL)
return;
base->u.def.value = htab->elf.tls_size;
}
/* Return the base VMA address which should be subtracted from real addresses
when resolving @dtpoff relocation.
This is PT_TLS segment p_vaddr. */
static bfd_vma
elf_x86_64_dtpoff_base (struct bfd_link_info *info)
{
/* If tls_sec is NULL, we should have signalled an error already. */
if (elf_hash_table (info)->tls_sec == NULL)
return 0;
return elf_hash_table (info)->tls_sec->vma;
}
/* Return the relocation value for @tpoff relocation
if STT_TLS virtual address is ADDRESS. */
static bfd_vma
elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
{
struct elf_link_hash_table *htab = elf_hash_table (info);
const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
bfd_vma static_tls_size;
/* If tls_segment is NULL, we should have signalled an error already. */
if (htab->tls_sec == NULL)
return 0;
/* Consider special static TLS alignment requirements. */
static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
return address - static_tls_size - htab->tls_sec->vma;
}
/* Is the instruction before OFFSET in CONTENTS a 32bit relative
branch? */
static bfd_boolean
is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
{
/* Opcode Instruction
0xe8 call
0xe9 jump
0x0f 0x8x conditional jump */
return ((offset > 0
&& (contents [offset - 1] == 0xe8
|| contents [offset - 1] == 0xe9))
|| (offset > 1
&& contents [offset - 2] == 0x0f
&& (contents [offset - 1] & 0xf0) == 0x80));
}
/* Relocate an x86_64 ELF section. */
static bfd_boolean
elf_x86_64_relocate_section (bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
Elf_Internal_Rela *relocs,
Elf_Internal_Sym *local_syms,
asection **local_sections)
{
struct elf_x86_64_link_hash_table *htab;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
bfd_vma *local_got_offsets;
bfd_vma *local_tlsdesc_gotents;
Elf_Internal_Rela *rel;
Elf_Internal_Rela *wrel;
Elf_Internal_Rela *relend;
unsigned int plt_entry_size;
BFD_ASSERT (is_x86_64_elf (input_bfd));
/* Skip if check_relocs failed. */
if (input_section->check_relocs_failed)
return FALSE;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
plt_entry_size = htab->plt.plt_entry_size;
symtab_hdr = &elf_symtab_hdr (input_bfd);
sym_hashes = elf_sym_hashes (input_bfd);
local_got_offsets = elf_local_got_offsets (input_bfd);
local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
elf_x86_64_set_tls_module_base (info);
rel = wrel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; wrel++, rel++)
{
unsigned int r_type;
reloc_howto_type *howto;
unsigned long r_symndx;
struct elf_link_hash_entry *h;
struct elf_x86_64_link_hash_entry *eh;
Elf_Internal_Sym *sym;
asection *sec;
bfd_vma off, offplt, plt_offset;
bfd_vma relocation;
bfd_boolean unresolved_reloc;
bfd_reloc_status_type r;
int tls_type;
asection *base_got, *resolved_plt;
bfd_vma st_size;
bfd_boolean resolved_to_zero;
bfd_boolean relative_reloc;
r_type = ELF32_R_TYPE (rel->r_info);
if (r_type == (int) R_X86_64_GNU_VTINHERIT
|| r_type == (int) R_X86_64_GNU_VTENTRY)
{
if (wrel != rel)
*wrel = *rel;
continue;
}
if (r_type >= (int) R_X86_64_standard)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%B: unrecognized relocation (0x%x) in section `%A'"),
input_bfd, r_type, input_section);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
if (r_type != (int) R_X86_64_32
|| ABI_64_P (output_bfd))
howto = x86_64_elf_howto_table + r_type;
else
howto = (x86_64_elf_howto_table
+ ARRAY_SIZE (x86_64_elf_howto_table) - 1);
r_symndx = htab->r_sym (rel->r_info);
h = NULL;
sym = NULL;
sec = NULL;
unresolved_reloc = FALSE;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
&sec, rel);
st_size = sym->st_size;
/* Relocate against local STT_GNU_IFUNC symbol. */
if (!bfd_link_relocatable (info)
&& ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
{
h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
rel, FALSE);
if (h == NULL)
abort ();
/* Set STT_GNU_IFUNC symbol value. */
h->root.u.def.value = sym->st_value;
h->root.u.def.section = sec;
}
}
else
{
bfd_boolean warned ATTRIBUTE_UNUSED;
bfd_boolean ignored ATTRIBUTE_UNUSED;
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
r_symndx, symtab_hdr, sym_hashes,
h, sec, relocation,
unresolved_reloc, warned, ignored);
st_size = h->size;
}
if (sec != NULL && discarded_section (sec))
{
_bfd_clear_contents (howto, input_bfd, input_section,
contents + rel->r_offset);
wrel->r_offset = rel->r_offset;
wrel->r_info = 0;
wrel->r_addend = 0;
/* For ld -r, remove relocations in debug sections against
sections defined in discarded sections. Not done for
eh_frame editing code expects to be present. */
if (bfd_link_relocatable (info)
&& (input_section->flags & SEC_DEBUGGING))
wrel--;
continue;
}
if (bfd_link_relocatable (info))
{
if (wrel != rel)
*wrel = *rel;
continue;
}
if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
{
if (r_type == R_X86_64_64)
{
/* For x32, treat R_X86_64_64 like R_X86_64_32 and
zero-extend it to 64bit if addend is zero. */
r_type = R_X86_64_32;
memset (contents + rel->r_offset + 4, 0, 4);
}
else if (r_type == R_X86_64_SIZE64)
{
/* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
zero-extend it to 64bit if addend is zero. */
r_type = R_X86_64_SIZE32;
memset (contents + rel->r_offset + 4, 0, 4);
}
}
eh = (struct elf_x86_64_link_hash_entry *) h;
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle
it here if it is defined in a non-shared object. */
if (h != NULL
&& h->type == STT_GNU_IFUNC
&& h->def_regular)
{
bfd_vma plt_index;
const char *name;
if ((input_section->flags & SEC_ALLOC) == 0)
{
/* Dynamic relocs are not propagated for SEC_DEBUGGING
sections because such sections are not SEC_ALLOC and
thus ld.so will not process them. */
if ((input_section->flags & SEC_DEBUGGING) != 0)
continue;
abort ();
}
switch (r_type)
{
default:
break;
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_GOTPCREL64:
base_got = htab->elf.sgot;
off = h->got.offset;
if (base_got == NULL)
abort ();
if (off == (bfd_vma) -1)
{
/* We can't use h->got.offset here to save state, or
even just remember the offset, as finish_dynamic_symbol
would use that as offset into .got. */
if (h->plt.offset == (bfd_vma) -1)
abort ();
if (htab->elf.splt != NULL)
{
plt_index = (h->plt.offset / plt_entry_size
- htab->plt.has_plt0);
off = (plt_index + 3) * GOT_ENTRY_SIZE;
base_got = htab->elf.sgotplt;
}
else
{
plt_index = h->plt.offset / plt_entry_size;
off = plt_index * GOT_ENTRY_SIZE;
base_got = htab->elf.igotplt;
}
if (h->dynindx == -1
|| h->forced_local
|| info->symbolic)
{
/* This references the local defitionion. We must
initialize this entry in the global offset table.
Since the offset must always be a multiple of 8,
we use the least significant bit to record
whether we have initialized it already.
When doing a dynamic link, we create a .rela.got
relocation entry to initialize the value. This
is done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
base_got->contents + off);
/* Note that this is harmless for the GOTPLT64
case, as -1 | 1 still is -1. */
h->got.offset |= 1;
}
}
}
relocation = (base_got->output_section->vma
+ base_got->output_offset + off);
goto do_relocation;
}
if (h->plt.offset == (bfd_vma) -1)
{
/* Handle static pointers of STT_GNU_IFUNC symbols. */
if (r_type == htab->pointer_r_type
&& (input_section->flags & SEC_CODE) == 0)
goto do_ifunc_pointer;
goto bad_ifunc_reloc;
}
/* STT_GNU_IFUNC symbol must go through PLT. */
if (htab->elf.splt != NULL)
{
if (htab->plt_second != NULL)
{
resolved_plt = htab->plt_second;
plt_offset = eh->plt_second.offset;
}
else
{
resolved_plt = htab->elf.splt;
plt_offset = h->plt.offset;
}
}
else
{
resolved_plt = htab->elf.iplt;
plt_offset = h->plt.offset;
}
relocation = (resolved_plt->output_section->vma
+ resolved_plt->output_offset + plt_offset);
switch (r_type)
{
default:
bad_ifunc_reloc:
if (h->root.root.string)
name = h->root.root.string;
else
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
NULL);
_bfd_error_handler
/* xgettext:c-format */
(_("%B: relocation %s against STT_GNU_IFUNC "
"symbol `%s' isn't supported"), input_bfd,
howto->name, name);
bfd_set_error (bfd_error_bad_value);
return FALSE;
case R_X86_64_32S:
if (bfd_link_pic (info))
abort ();
goto do_relocation;
case R_X86_64_32:
if (ABI_64_P (output_bfd))
goto do_relocation;
/* FALLTHROUGH */
case R_X86_64_64:
do_ifunc_pointer:
if (rel->r_addend != 0)
{
if (h->root.root.string)
name = h->root.root.string;
else
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
sym, NULL);
_bfd_error_handler
/* xgettext:c-format */
(_("%B: relocation %s against STT_GNU_IFUNC "
"symbol `%s' has non-zero addend: %d"),
input_bfd, howto->name, name, rel->r_addend);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
/* Generate dynamic relcoation only when there is a
non-GOT reference in a shared object or there is no
PLT. */
if ((bfd_link_pic (info) && h->non_got_ref)
|| h->plt.offset == (bfd_vma) -1)
{
Elf_Internal_Rela outrel;
asection *sreloc;
/* Need a dynamic relocation to get the real function
address. */
outrel.r_offset = _bfd_elf_section_offset (output_bfd,
info,
input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1
|| outrel.r_offset == (bfd_vma) -2)
abort ();
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (h->dynindx == -1
|| h->forced_local
|| bfd_link_executable (info))
{
/* This symbol is resolved locally. */
outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
outrel.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
outrel.r_info = htab->r_info (h->dynindx, r_type);
outrel.r_addend = 0;
}
/* Dynamic relocations are stored in
1. .rela.ifunc section in PIC object.
2. .rela.got section in dynamic executable.
3. .rela.iplt section in static executable. */
if (bfd_link_pic (info))
sreloc = htab->elf.irelifunc;
else if (htab->elf.splt != NULL)
sreloc = htab->elf.srelgot;
else
sreloc = htab->elf.irelplt;
elf_append_rela (output_bfd, sreloc, &outrel);
/* If this reloc is against an external symbol, we
do not want to fiddle with the addend. Otherwise,
we need to include the symbol value so that it
becomes an addend for the dynamic reloc. For an
internal symbol, we have updated addend. */
continue;
}
/* FALLTHROUGH */
case R_X86_64_PC32:
case R_X86_64_PC32_BND:
case R_X86_64_PC64:
case R_X86_64_PLT32:
case R_X86_64_PLT32_BND:
goto do_relocation;
}
}
resolved_to_zero = (eh != NULL
&& UNDEFINED_WEAK_RESOLVED_TO_ZERO (info,
eh->has_got_reloc,
eh));
/* When generating a shared object, the relocations handled here are
copied into the output file to be resolved at run time. */
switch (r_type)
{
case R_X86_64_GOT32:
case R_X86_64_GOT64:
/* Relocation is to the entry for this symbol in the global
offset table. */
case R_X86_64_GOTPCREL:
case R_X86_64_GOTPCRELX:
case R_X86_64_REX_GOTPCRELX:
case R_X86_64_GOTPCREL64:
/* Use global offset table entry as symbol value. */
case R_X86_64_GOTPLT64:
/* This is obsolete and treated the the same as GOT64. */
base_got = htab->elf.sgot;
if (htab->elf.sgot == NULL)
abort ();
relative_reloc = FALSE;
if (h != NULL)
{
bfd_boolean dyn;
off = h->got.offset;
if (h->needs_plt
&& h->plt.offset != (bfd_vma)-1
&& off == (bfd_vma)-1)
{
/* We can't use h->got.offset here to save
state, or even just remember the offset, as
finish_dynamic_symbol would use that as offset into
.got. */
bfd_vma plt_index = (h->plt.offset / plt_entry_size
- htab->plt.has_plt0);
off = (plt_index + 3) * GOT_ENTRY_SIZE;
base_got = htab->elf.sgotplt;
}
dyn = htab->elf.dynamic_sections_created;
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
|| (bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))
|| (ELF_ST_VISIBILITY (h->other)
&& h->root.type == bfd_link_hash_undefweak))
{
/* This is actually a static link, or it is a -Bsymbolic
link and the symbol is defined locally, or the symbol
was forced to be local because of a version file. We
must initialize this entry in the global offset table.
Since the offset must always be a multiple of 8, we
use the least significant bit to record whether we
have initialized it already.
When doing a dynamic link, we create a .rela.got
relocation entry to initialize the value. This is
done in the finish_dynamic_symbol routine. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
base_got->contents + off);
/* Note that this is harmless for the GOTPLT64 case,
as -1 | 1 still is -1. */
h->got.offset |= 1;
if (h->dynindx == -1
&& !h->forced_local
&& h->root.type != bfd_link_hash_undefweak
&& bfd_link_pic (info))
{
/* If this symbol isn't dynamic in PIC,
generate R_X86_64_RELATIVE here. */
eh->no_finish_dynamic_symbol = 1;
relative_reloc = TRUE;
}
}
}
else
unresolved_reloc = FALSE;
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
/* The offset must always be a multiple of 8. We use
the least significant bit to record whether we have
already generated the necessary reloc. */
if ((off & 1) != 0)
off &= ~1;
else
{
bfd_put_64 (output_bfd, relocation,
base_got->contents + off);
local_got_offsets[r_symndx] |= 1;
if (bfd_link_pic (info))
relative_reloc = TRUE;
}
}
if (relative_reloc)
{
asection *s;
Elf_Internal_Rela outrel;
/* We need to generate a R_X86_64_RELATIVE reloc
for the dynamic linker. */
s = htab->elf.srelgot;
if (s == NULL)
abort ();
outrel.r_offset = (base_got->output_section->vma
+ base_got->output_offset
+ off);
outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
outrel.r_addend = relocation;
elf_append_rela (output_bfd, s, &outrel);
}
if (off >= (bfd_vma) -2)
abort ();
relocation = base_got->output_section->vma
+ base_got->output_offset + off;
if (r_type != R_X86_64_GOTPCREL
&& r_type != R_X86_64_GOTPCRELX
&& r_type != R_X86_64_REX_GOTPCRELX
&& r_type != R_X86_64_GOTPCREL64)
relocation -= htab->elf.sgotplt->output_section->vma
- htab->elf.sgotplt->output_offset;
break;
case R_X86_64_GOTOFF64:
/* Relocation is relative to the start of the global offset
table. */
/* Check to make sure it isn't a protected function or data
symbol for shared library since it may not be local when
used as function address or with copy relocation. We also
need to make sure that a symbol is referenced locally. */
if (bfd_link_pic (info) && h)
{
if (!h->def_regular)
{
const char *v;
switch (ELF_ST_VISIBILITY (h->other))
{
case STV_HIDDEN:
v = _("hidden symbol");
break;
case STV_INTERNAL:
v = _("internal symbol");
break;
case STV_PROTECTED:
v = _("protected symbol");
break;
default:
v = _("symbol");
break;
}
_bfd_error_handler
/* xgettext:c-format */
(_("%B: relocation R_X86_64_GOTOFF64 against undefined %s"
" `%s' can not be used when making a shared object"),
input_bfd, v, h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
else if (!bfd_link_executable (info)
&& !SYMBOL_REFERENCES_LOCAL (info, h)
&& (h->type == STT_FUNC
|| h->type == STT_OBJECT)
&& ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%B: relocation R_X86_64_GOTOFF64 against protected %s"
" `%s' can not be used when making a shared object"),
input_bfd,
h->type == STT_FUNC ? "function" : "data",
h->root.root.string);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
/* Note that sgot is not involved in this
calculation. We always want the start of .got.plt. If we
defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
permitted by the ABI, we might have to change this
calculation. */
relocation -= htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset;
break;
case R_X86_64_GOTPC32:
case R_X86_64_GOTPC64:
/* Use global offset table as symbol value. */
relocation = htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset;
unresolved_reloc = FALSE;
break;
case R_X86_64_PLTOFF64:
/* Relocation is PLT entry relative to GOT. For local
symbols it's the symbol itself relative to GOT. */
if (h != NULL
/* See PLT32 handling. */
&& (h->plt.offset != (bfd_vma) -1
|| eh->plt_got.offset != (bfd_vma) -1)
&& htab->elf.splt != NULL)
{
if (eh->plt_got.offset != (bfd_vma) -1)
{
/* Use the GOT PLT. */
resolved_plt = htab->plt_got;
plt_offset = eh->plt_got.offset;
}
else if (htab->plt_second != NULL)
{
resolved_plt = htab->plt_second;
plt_offset = eh->plt_second.offset;
}
else
{
resolved_plt = htab->elf.splt;
plt_offset = h->plt.offset;
}
relocation = (resolved_plt->output_section->vma
+ resolved_plt->output_offset
+ plt_offset);
unresolved_reloc = FALSE;
}
relocation -= htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset;
break;
case R_X86_64_PLT32:
case R_X86_64_PLT32_BND:
/* Relocation is to the entry for this symbol in the
procedure linkage table. */
/* Resolve a PLT32 reloc against a local symbol directly,
without using the procedure linkage table. */
if (h == NULL)
break;
if ((h->plt.offset == (bfd_vma) -1
&& eh->plt_got.offset == (bfd_vma) -1)
|| htab->elf.splt == NULL)
{
/* We didn't make a PLT entry for this symbol. This
happens when statically linking PIC code, or when
using -Bsymbolic. */
break;
}
if (h->plt.offset != (bfd_vma) -1)
{
if (htab->plt_second != NULL)
{
resolved_plt = htab->plt_second;
plt_offset = eh->plt_second.offset;
}
else
{
resolved_plt = htab->elf.splt;
plt_offset = h->plt.offset;
}
}
else
{
/* Use the GOT PLT. */
resolved_plt = htab->plt_got;
plt_offset = eh->plt_got.offset;
}
relocation = (resolved_plt->output_section->vma
+ resolved_plt->output_offset
+ plt_offset);
unresolved_reloc = FALSE;
break;
case R_X86_64_SIZE32:
case R_X86_64_SIZE64:
/* Set to symbol size. */
relocation = st_size;
goto direct;
case R_X86_64_PC8:
case R_X86_64_PC16:
case R_X86_64_PC32:
case R_X86_64_PC32_BND:
/* Don't complain about -fPIC if the symbol is undefined when
building executable unless it is unresolved weak symbol. */
if ((input_section->flags & SEC_ALLOC) != 0
&& (input_section->flags & SEC_READONLY) != 0
&& h != NULL
&& ((bfd_link_executable (info)
&& h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero)
|| (bfd_link_pic (info)
&& !(bfd_link_pie (info)
&& h->root.type == bfd_link_hash_undefined))))
{
bfd_boolean fail = FALSE;
bfd_boolean branch
= ((r_type == R_X86_64_PC32
|| r_type == R_X86_64_PC32_BND)
&& is_32bit_relative_branch (contents, rel->r_offset));
if (SYMBOL_REFERENCES_LOCAL (info, h))
{
/* Symbol is referenced locally. Make sure it is
defined locally or for a branch. */
fail = (!(h->def_regular || ELF_COMMON_DEF_P (h))
&& !branch);
}
else if (!(bfd_link_pie (info)
&& (h->needs_copy || eh->needs_copy)))
{
/* Symbol doesn't need copy reloc and isn't referenced
locally. We only allow branch to symbol with
non-default visibility. */
fail = (!branch
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
}
if (fail)
return elf_x86_64_need_pic (input_bfd, input_section,
h, NULL, NULL, howto);
}
/* Fall through. */
case R_X86_64_8:
case R_X86_64_16:
case R_X86_64_32:
case R_X86_64_PC64:
case R_X86_64_64:
/* FIXME: The ABI says the linker should make sure the value is
the same when it's zeroextended to 64 bit. */
direct:
if ((input_section->flags & SEC_ALLOC) == 0)
break;
/* Don't copy a pc-relative relocation into the output file
if the symbol needs copy reloc or the symbol is undefined
when building executable. Copy dynamic function pointer
relocations. Don't generate dynamic relocations against
resolved undefined weak symbols in PIE. */
if ((bfd_link_pic (info)
&& !(bfd_link_pie (info)
&& h != NULL
&& (h->needs_copy
|| eh->needs_copy
|| h->root.type == bfd_link_hash_undefined)
&& (IS_X86_64_PCREL_TYPE (r_type)
|| r_type == R_X86_64_SIZE32
|| r_type == R_X86_64_SIZE64))
&& (h == NULL
|| ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
&& !resolved_to_zero)
|| h->root.type != bfd_link_hash_undefweak))
&& ((! IS_X86_64_PCREL_TYPE (r_type)
&& r_type != R_X86_64_SIZE32
&& r_type != R_X86_64_SIZE64)
|| ! SYMBOL_CALLS_LOCAL (info, h)))
|| (ELIMINATE_COPY_RELOCS
&& !bfd_link_pic (info)
&& h != NULL
&& h->dynindx != -1
&& (!h->non_got_ref
|| eh->func_pointer_refcount > 0
|| (h->root.type == bfd_link_hash_undefweak
&& !resolved_to_zero))
&& ((h->def_dynamic && !h->def_regular)
/* Undefined weak symbol is bound locally when
PIC is false. */
|| h->root.type == bfd_link_hash_undefined)))
{
Elf_Internal_Rela outrel;
bfd_boolean skip, relocate;
asection *sreloc;
/* When generating a shared object, these relocations
are copied into the output file to be resolved at run
time. */
skip = FALSE;
relocate = FALSE;
outrel.r_offset =
_bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset);
if (outrel.r_offset == (bfd_vma) -1)
skip = TRUE;
else if (outrel.r_offset == (bfd_vma) -2)
skip = TRUE, relocate = TRUE;
outrel.r_offset += (input_section->output_section->vma
+ input_section->output_offset);
if (skip)
memset (&outrel, 0, sizeof outrel);
/* h->dynindx may be -1 if this symbol was marked to
become local. */
else if (h != NULL
&& h->dynindx != -1
&& (IS_X86_64_PCREL_TYPE (r_type)
|| !(bfd_link_executable (info)
|| SYMBOLIC_BIND (info, h))
|| ! h->def_regular))
{
outrel.r_info = htab->r_info (h->dynindx, r_type);
outrel.r_addend = rel->r_addend;
}
else
{
/* This symbol is local, or marked to become local.
When relocation overflow check is disabled, we
convert R_X86_64_32 to dynamic R_X86_64_RELATIVE. */
if (r_type == htab->pointer_r_type
|| (r_type == R_X86_64_32
&& info->no_reloc_overflow_check))
{
relocate = TRUE;
outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
outrel.r_addend = relocation + rel->r_addend;
}
else if (r_type == R_X86_64_64
&& !ABI_64_P (output_bfd))
{
relocate = TRUE;
outrel.r_info = htab->r_info (0,
R_X86_64_RELATIVE64);
outrel.r_addend = relocation + rel->r_addend;
/* Check addend overflow. */
if ((outrel.r_addend & 0x80000000)
!= (rel->r_addend & 0x80000000))
{
const char *name;
int addend = rel->r_addend;
if (h && h->root.root.string)
name = h->root.root.string;
else
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
sym, NULL);
if (addend < 0)
_bfd_error_handler
/* xgettext:c-format */
(_("%B: addend -0x%x in relocation %s against "
"symbol `%s' at 0x%lx in section `%A' is "
"out of range"),
input_bfd, addend, howto->name, name,
(unsigned long) rel->r_offset, input_section);
else
_bfd_error_handler
/* xgettext:c-format */
(_("%B: addend 0x%x in relocation %s against "
"symbol `%s' at 0x%lx in section `%A' is "
"out of range"),
input_bfd, addend, howto->name, name,
(unsigned long) rel->r_offset, input_section);
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
}
else
{
long sindx;
if (bfd_is_abs_section (sec))
sindx = 0;
else if (sec == NULL || sec->owner == NULL)
{
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
else
{
asection *osec;
/* We are turning this relocation into one
against a section symbol. It would be
proper to subtract the symbol's value,
osec->vma, from the emitted reloc addend,
but ld.so expects buggy relocs. */
osec = sec->output_section;
sindx = elf_section_data (osec)->dynindx;
if (sindx == 0)
{
asection *oi = htab->elf.text_index_section;
sindx = elf_section_data (oi)->dynindx;
}
BFD_ASSERT (sindx != 0);
}
outrel.r_info = htab->r_info (sindx, r_type);
outrel.r_addend = relocation + rel->r_addend;
}
}
sreloc = elf_section_data (input_section)->sreloc;
if (sreloc == NULL || sreloc->contents == NULL)
{
r = bfd_reloc_notsupported;
goto check_relocation_error;
}
elf_append_rela (output_bfd, sreloc, &outrel);
/* If this reloc is against an external symbol, we do
not want to fiddle with the addend. Otherwise, we
need to include the symbol value so that it becomes
an addend for the dynamic reloc. */
if (! relocate)
continue;
}
break;
case R_X86_64_TLSGD:
case R_X86_64_GOTPC32_TLSDESC:
case R_X86_64_TLSDESC_CALL:
case R_X86_64_GOTTPOFF:
tls_type = GOT_UNKNOWN;
if (h == NULL && local_got_offsets)
tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
else if (h != NULL)
tls_type = elf_x86_64_hash_entry (h)->tls_type;
if (! elf_x86_64_tls_transition (info, input_bfd,
input_section, contents,
symtab_hdr, sym_hashes,
&r_type, tls_type, rel,
relend, h, r_symndx, TRUE))
return FALSE;
if (r_type == R_X86_64_TPOFF32)
{
bfd_vma roff = rel->r_offset;
BFD_ASSERT (! unresolved_reloc);
if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
{
/* GD->LE transition. For 64bit, change
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
into:
movq %fs:0, %rax
leaq foo@tpoff(%rax), %rax
For 32bit, change
leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
into:
movl %fs:0, %eax
leaq foo@tpoff(%rax), %rax
For largepic, change:
leaq foo@tlsgd(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq %r15, %rax
call *%rax
into:
movq %fs:0, %rax
leaq foo@tpoff(%rax), %rax
nopw 0x0(%rax,%rax,1) */
int largepic = 0;
if (ABI_64_P (output_bfd))
{
if (contents[roff + 5] == 0xb8)
{
memcpy (contents + roff - 3,
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80"
"\0\0\0\0\x66\x0f\x1f\x44\0", 22);
largepic = 1;
}
else
memcpy (contents + roff - 4,
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
16);
}
else
memcpy (contents + roff - 3,
"\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
15);
bfd_put_32 (output_bfd,
elf_x86_64_tpoff (info, relocation),
contents + roff + 8 + largepic);
/* Skip R_X86_64_PC32, R_X86_64_PLT32,
R_X86_64_GOTPCRELX and R_X86_64_PLTOFF64. */
rel++;
wrel++;
continue;
}
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
{
/* GDesc -> LE transition.
It's originally something like:
leaq x@tlsdesc(%rip), %rax
Change it to:
movl $x@tpoff, %rax. */
unsigned int val, type;
type = bfd_get_8 (input_bfd, contents + roff - 3);
val = bfd_get_8 (input_bfd, contents + roff - 1);
bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
contents + roff - 3);
bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
contents + roff - 1);
bfd_put_32 (output_bfd,
elf_x86_64_tpoff (info, relocation),
contents + roff);
continue;
}
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
{
/* GDesc -> LE transition.
It's originally:
call *(%rax)
Turn it into:
xchg %ax,%ax. */
bfd_put_8 (output_bfd, 0x66, contents + roff);
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
continue;
}
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
{
/* IE->LE transition:
For 64bit, originally it can be one of:
movq foo@gottpoff(%rip), %reg
addq foo@gottpoff(%rip), %reg
We change it into:
movq $foo, %reg
leaq foo(%reg), %reg
addq $foo, %reg.
For 32bit, originally it can be one of:
movq foo@gottpoff(%rip), %reg
addl foo@gottpoff(%rip), %reg
We change it into:
movq $foo, %reg
leal foo(%reg), %reg
addl $foo, %reg. */
unsigned int val, type, reg;
if (roff >= 3)
val = bfd_get_8 (input_bfd, contents + roff - 3);
else
val = 0;
type = bfd_get_8 (input_bfd, contents + roff - 2);
reg = bfd_get_8 (input_bfd, contents + roff - 1);
reg >>= 3;
if (type == 0x8b)
{
/* movq */
if (val == 0x4c)
bfd_put_8 (output_bfd, 0x49,
contents + roff - 3);
else if (!ABI_64_P (output_bfd) && val == 0x44)
bfd_put_8 (output_bfd, 0x41,
contents + roff - 3);
bfd_put_8 (output_bfd, 0xc7,
contents + roff - 2);
bfd_put_8 (output_bfd, 0xc0 | reg,
contents + roff - 1);
}
else if (reg == 4)
{
/* addq/addl -> addq/addl - addressing with %rsp/%r12
is special */
if (val == 0x4c)
bfd_put_8 (output_bfd, 0x49,
contents + roff - 3);
else if (!ABI_64_P (output_bfd) && val == 0x44)
bfd_put_8 (output_bfd, 0x41,
contents + roff - 3);
bfd_put_8 (output_bfd, 0x81,
contents + roff - 2);
bfd_put_8 (output_bfd, 0xc0 | reg,
contents + roff - 1);
}
else
{
/* addq/addl -> leaq/leal */
if (val == 0x4c)
bfd_put_8 (output_bfd, 0x4d,
contents + roff - 3);
else if (!ABI_64_P (output_bfd) && val == 0x44)
bfd_put_8 (output_bfd, 0x45,
contents + roff - 3);
bfd_put_8 (output_bfd, 0x8d,
contents + roff - 2);
bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
contents + roff - 1);
}
bfd_put_32 (output_bfd,
elf_x86_64_tpoff (info, relocation),
contents + roff);
continue;
}
else
BFD_ASSERT (FALSE);
}
if (htab->elf.sgot == NULL)
abort ();
if (h != NULL)
{
off = h->got.offset;
offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
}
else
{
if (local_got_offsets == NULL)
abort ();
off = local_got_offsets[r_symndx];
offplt = local_tlsdesc_gotents[r_symndx];
}
if ((off & 1) != 0)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
int dr_type, indx;
asection *sreloc;
if (htab->elf.srelgot == NULL)
abort ();
indx = h && h->dynindx != -1 ? h->dynindx : 0;
if (GOT_TLS_GDESC_P (tls_type))
{
outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
+ 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
outrel.r_offset = (htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ offplt
+ htab->sgotplt_jump_table_size);
sreloc = htab->elf.srelplt;
if (indx == 0)
outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
else
outrel.r_addend = 0;
elf_append_rela (output_bfd, sreloc, &outrel);
}
sreloc = htab->elf.srelgot;
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off);
if (GOT_TLS_GD_P (tls_type))
dr_type = R_X86_64_DTPMOD64;
else if (GOT_TLS_GDESC_P (tls_type))
goto dr_done;
else
dr_type = R_X86_64_TPOFF64;
bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
outrel.r_addend = 0;
if ((dr_type == R_X86_64_TPOFF64
|| dr_type == R_X86_64_TLSDESC) && indx == 0)
outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
outrel.r_info = htab->r_info (indx, dr_type);
elf_append_rela (output_bfd, sreloc, &outrel);
if (GOT_TLS_GD_P (tls_type))
{
if (indx == 0)
{
BFD_ASSERT (! unresolved_reloc);
bfd_put_64 (output_bfd,
relocation - elf_x86_64_dtpoff_base (info),
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
}
else
{
bfd_put_64 (output_bfd, 0,
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
outrel.r_info = htab->r_info (indx,
R_X86_64_DTPOFF64);
outrel.r_offset += GOT_ENTRY_SIZE;
elf_append_rela (output_bfd, sreloc,
&outrel);
}
}
dr_done:
if (h != NULL)
h->got.offset |= 1;
else
local_got_offsets[r_symndx] |= 1;
}
if (off >= (bfd_vma) -2
&& ! GOT_TLS_GDESC_P (tls_type))
abort ();
if (r_type == ELF32_R_TYPE (rel->r_info))
{
if (r_type == R_X86_64_GOTPC32_TLSDESC
|| r_type == R_X86_64_TLSDESC_CALL)
relocation = htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ offplt + htab->sgotplt_jump_table_size;
else
relocation = htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off;
unresolved_reloc = FALSE;
}
else
{
bfd_vma roff = rel->r_offset;
if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
{
/* GD->IE transition. For 64bit, change
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64
call *__tls_get_addr@GOTPCREL(%rip
which may be converted to
addr32 call __tls_get_addr
into:
movq %fs:0, %rax
addq foo@gottpoff(%rip), %rax
For 32bit, change
leaq foo@tlsgd(%rip), %rdi
.word 0x6666; rex64; call __tls_get_addr@PLT
or
leaq foo@tlsgd(%rip), %rdi
.byte 0x66; rex64;
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
into:
movl %fs:0, %eax
addq foo@gottpoff(%rip), %rax
For largepic, change:
leaq foo@tlsgd(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq %r15, %rax
call *%rax
into:
movq %fs:0, %rax
addq foo@gottpoff(%rax), %rax
nopw 0x0(%rax,%rax,1) */
int largepic = 0;
if (ABI_64_P (output_bfd))
{
if (contents[roff + 5] == 0xb8)
{
memcpy (contents + roff - 3,
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05"
"\0\0\0\0\x66\x0f\x1f\x44\0", 22);
largepic = 1;
}
else
memcpy (contents + roff - 4,
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
16);
}
else
memcpy (contents + roff - 3,
"\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
15);
relocation = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off
- roff
- largepic
- input_section->output_section->vma
- input_section->output_offset
- 12);
bfd_put_32 (output_bfd, relocation,
contents + roff + 8 + largepic);
/* Skip R_X86_64_PLT32/R_X86_64_PLTOFF64. */
rel++;
wrel++;
continue;
}
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
{
/* GDesc -> IE transition.
It's originally something like:
leaq x@tlsdesc(%rip), %rax
Change it to:
movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
/* Now modify the instruction as appropriate. To
turn a leaq into a movq in the form we use it, it
suffices to change the second byte from 0x8d to
0x8b. */
bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
bfd_put_32 (output_bfd,
htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off
- rel->r_offset
- input_section->output_section->vma
- input_section->output_offset
- 4,
contents + roff);
continue;
}
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
{
/* GDesc -> IE transition.
It's originally:
call *(%rax)
Change it to:
xchg %ax, %ax. */
bfd_put_8 (output_bfd, 0x66, contents + roff);
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
continue;
}
else
BFD_ASSERT (FALSE);
}
break;
case R_X86_64_TLSLD:
if (! elf_x86_64_tls_transition (info, input_bfd,
input_section, contents,
symtab_hdr, sym_hashes,
&r_type, GOT_UNKNOWN, rel,
relend, h, r_symndx, TRUE))
return FALSE;
if (r_type != R_X86_64_TLSLD)
{
/* LD->LE transition:
leaq foo@tlsld(%rip), %rdi
call __tls_get_addr@PLT
For 64bit, we change it into:
.word 0x6666; .byte 0x66; movq %fs:0, %rax
For 32bit, we change it into:
nopl 0x0(%rax); movl %fs:0, %eax
Or
leaq foo@tlsld(%rip), %rdi;
call *__tls_get_addr@GOTPCREL(%rip)
which may be converted to
addr32 call __tls_get_addr
For 64bit, we change it into:
.word 0x6666; .word 0x6666; movq %fs:0, %rax
For 32bit, we change it into:
nopw 0x0(%rax); movl %fs:0, %eax
For largepic, change:
leaq foo@tlsgd(%rip), %rdi
movabsq $__tls_get_addr@pltoff, %rax
addq %rbx, %rax
call *%rax
into
data16 data16 data16 nopw %cs:0x0(%rax,%rax,1)
movq %fs:0, %eax */
BFD_ASSERT (r_type == R_X86_64_TPOFF32);
if (ABI_64_P (output_bfd))
{
if (contents[rel->r_offset + 5] == 0xb8)
memcpy (contents + rel->r_offset - 3,
"\x66\x66\x66\x66\x2e\x0f\x1f\x84\0\0\0\0\0"
"\x64\x48\x8b\x04\x25\0\0\0", 22);
else if (contents[rel->r_offset + 4] == 0xff
|| contents[rel->r_offset + 4] == 0x67)
memcpy (contents + rel->r_offset - 3,
"\x66\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0",
13);
else
memcpy (contents + rel->r_offset - 3,
"\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
}
else
{
if (contents[rel->r_offset + 4] == 0xff)
memcpy (contents + rel->r_offset - 3,
"\x66\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0",
13);
else
memcpy (contents + rel->r_offset - 3,
"\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
}
/* Skip R_X86_64_PC32, R_X86_64_PLT32, R_X86_64_GOTPCRELX
and R_X86_64_PLTOFF64. */
rel++;
wrel++;
continue;
}
if (htab->elf.sgot == NULL)
abort ();
off = htab->tls_ld_got.offset;
if (off & 1)
off &= ~1;
else
{
Elf_Internal_Rela outrel;
if (htab->elf.srelgot == NULL)
abort ();
outrel.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off);
bfd_put_64 (output_bfd, 0,
htab->elf.sgot->contents + off);
bfd_put_64 (output_bfd, 0,
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
outrel.r_addend = 0;
elf_append_rela (output_bfd, htab->elf.srelgot,
&outrel);
htab->tls_ld_got.offset |= 1;
}
relocation = htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset + off;
unresolved_reloc = FALSE;
break;
case R_X86_64_DTPOFF32:
if (!bfd_link_executable (info)
|| (input_section->flags & SEC_CODE) == 0)
relocation -= elf_x86_64_dtpoff_base (info);
else
relocation = elf_x86_64_tpoff (info, relocation);
break;
case R_X86_64_TPOFF32:
case R_X86_64_TPOFF64:
BFD_ASSERT (bfd_link_executable (info));
relocation = elf_x86_64_tpoff (info, relocation);
break;
case R_X86_64_DTPOFF64:
BFD_ASSERT ((input_section->flags & SEC_CODE) == 0);
relocation -= elf_x86_64_dtpoff_base (info);
break;
default:
break;
}
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
because such sections are not SEC_ALLOC and thus ld.so will
not process them. */
if (unresolved_reloc
&& !((input_section->flags & SEC_DEBUGGING) != 0
&& h->def_dynamic)
&& _bfd_elf_section_offset (output_bfd, info, input_section,
rel->r_offset) != (bfd_vma) -1)
{
_bfd_error_handler
/* xgettext:c-format */
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
input_bfd,
input_section,
(long) rel->r_offset,
howto->name,
h->root.root.string);
return FALSE;
}
do_relocation:
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
contents, rel->r_offset,
relocation, rel->r_addend);
check_relocation_error:
if (r != bfd_reloc_ok)
{
const char *name;
if (h != NULL)
name = h->root.root.string;
else
{
name = bfd_elf_string_from_elf_section (input_bfd,
symtab_hdr->sh_link,
sym->st_name);
if (name == NULL)
return FALSE;
if (*name == '\0')
name = bfd_section_name (input_bfd, sec);
}
if (r == bfd_reloc_overflow)
(*info->callbacks->reloc_overflow)
(info, (h ? &h->root : NULL), name, howto->name,
(bfd_vma) 0, input_bfd, input_section, rel->r_offset);
else
{
_bfd_error_handler
/* xgettext:c-format */
(_("%B(%A+0x%lx): reloc against `%s': error %d"),
input_bfd, input_section,
(long) rel->r_offset, name, (int) r);
return FALSE;
}
}
if (wrel != rel)
*wrel = *rel;
}
if (wrel != rel)
{
Elf_Internal_Shdr *rel_hdr;
size_t deleted = rel - wrel;
rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
if (rel_hdr->sh_size == 0)
{
/* It is too late to remove an empty reloc section. Leave
one NONE reloc.
??? What is wrong with an empty section??? */
rel_hdr->sh_size = rel_hdr->sh_entsize;
deleted -= 1;
}
rel_hdr = _bfd_elf_single_rel_hdr (input_section);
rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
input_section->reloc_count -= deleted;
}
return TRUE;
}
/* Finish up dynamic symbol handling. We set the contents of various
dynamic sections here. */
static bfd_boolean
elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
struct bfd_link_info *info,
struct elf_link_hash_entry *h,
Elf_Internal_Sym *sym)
{
struct elf_x86_64_link_hash_table *htab;
bfd_boolean use_plt_second;
struct elf_x86_64_link_hash_entry *eh;
bfd_boolean local_undefweak;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
/* Use the second PLT section only if there is .plt section. */
use_plt_second = htab->elf.splt != NULL && htab->plt_second != NULL;
eh = (struct elf_x86_64_link_hash_entry *) h;
if (eh->no_finish_dynamic_symbol)
abort ();
/* We keep PLT/GOT entries without dynamic PLT/GOT relocations for
resolved undefined weak symbols in executable so that their
references have value 0 at run-time. */
local_undefweak = UNDEFINED_WEAK_RESOLVED_TO_ZERO (info,
eh->has_got_reloc,
eh);
if (h->plt.offset != (bfd_vma) -1)
{
bfd_vma plt_index;
bfd_vma got_offset, plt_offset;
Elf_Internal_Rela rela;
bfd_byte *loc;
asection *plt, *gotplt, *relplt, *resolved_plt;
const struct elf_backend_data *bed;
bfd_vma plt_got_pcrel_offset;
/* When building a static executable, use .iplt, .igot.plt and
.rela.iplt sections for STT_GNU_IFUNC symbols. */
if (htab->elf.splt != NULL)
{
plt = htab->elf.splt;
gotplt = htab->elf.sgotplt;
relplt = htab->elf.srelplt;
}
else
{
plt = htab->elf.iplt;
gotplt = htab->elf.igotplt;
relplt = htab->elf.irelplt;
}
/* This symbol has an entry in the procedure linkage table. Set
it up. */
if ((h->dynindx == -1
&& !local_undefweak
&& !((h->forced_local || bfd_link_executable (info))
&& h->def_regular
&& h->type == STT_GNU_IFUNC))
|| plt == NULL
|| gotplt == NULL
|| relplt == NULL)
abort ();
/* Get the index in the procedure linkage table which
corresponds to this symbol. This is the index of this symbol
in all the symbols for which we are making plt entries. The
first entry in the procedure linkage table is reserved.
Get the offset into the .got table of the entry that
corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
bytes. The first three are reserved for the dynamic linker.
For static executables, we don't reserve anything. */
if (plt == htab->elf.splt)
{
got_offset = (h->plt.offset / htab->plt.plt_entry_size
- htab->plt.has_plt0);
got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
}
else
{
got_offset = h->plt.offset / htab->plt.plt_entry_size;
got_offset = got_offset * GOT_ENTRY_SIZE;
}
/* Fill in the entry in the procedure linkage table. */
memcpy (plt->contents + h->plt.offset, htab->plt.plt_entry,
htab->plt.plt_entry_size);
if (use_plt_second)
{
memcpy (htab->plt_second->contents + eh->plt_second.offset,
htab->non_lazy_plt->plt_entry,
htab->non_lazy_plt->plt_entry_size);
resolved_plt = htab->plt_second;
plt_offset = eh->plt_second.offset;
}
else
{
resolved_plt = plt;
plt_offset = h->plt.offset;
}
/* Insert the relocation positions of the plt section. */
/* Put offset the PC-relative instruction referring to the GOT entry,
subtracting the size of that instruction. */
plt_got_pcrel_offset = (gotplt->output_section->vma
+ gotplt->output_offset
+ got_offset
- resolved_plt->output_section->vma
- resolved_plt->output_offset
- plt_offset
- htab->plt.plt_got_insn_size);
/* Check PC-relative offset overflow in PLT entry. */
if ((plt_got_pcrel_offset + 0x80000000) > 0xffffffff)
/* xgettext:c-format */
info->callbacks->einfo (_("%F%B: PC-relative offset overflow in PLT entry for `%s'\n"),
output_bfd, h->root.root.string);
bfd_put_32 (output_bfd, plt_got_pcrel_offset,
(resolved_plt->contents + plt_offset
+ htab->plt.plt_got_offset));
/* Fill in the entry in the global offset table, initially this
points to the second part of the PLT entry. Leave the entry
as zero for undefined weak symbol in PIE. No PLT relocation
against undefined weak symbol in PIE. */
if (!local_undefweak)
{
if (htab->plt.has_plt0)
bfd_put_64 (output_bfd, (plt->output_section->vma
+ plt->output_offset
+ h->plt.offset
+ htab->lazy_plt->plt_lazy_offset),
gotplt->contents + got_offset);
/* Fill in the entry in the .rela.plt section. */
rela.r_offset = (gotplt->output_section->vma
+ gotplt->output_offset
+ got_offset);
if (h->dynindx == -1
|| ((bfd_link_executable (info)
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
&& h->def_regular
&& h->type == STT_GNU_IFUNC))
{
/* If an STT_GNU_IFUNC symbol is locally defined, generate
R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
/* R_X86_64_IRELATIVE comes last. */
plt_index = htab->next_irelative_index--;
}
else
{
rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
rela.r_addend = 0;
plt_index = htab->next_jump_slot_index++;
}
/* Don't fill the second and third slots in PLT entry for
static executables nor without PLT0. */
if (plt == htab->elf.splt && htab->plt.has_plt0)
{
bfd_vma plt0_offset
= h->plt.offset + htab->lazy_plt->plt_plt_insn_end;
/* Put relocation index. */
bfd_put_32 (output_bfd, plt_index,
(plt->contents + h->plt.offset
+ htab->lazy_plt->plt_reloc_offset));
/* Put offset for jmp .PLT0 and check for overflow. We don't
check relocation index for overflow since branch displacement
will overflow first. */
if (plt0_offset > 0x80000000)
/* xgettext:c-format */
info->callbacks->einfo (_("%F%B: branch displacement overflow in PLT entry for `%s'\n"),
output_bfd, h->root.root.string);
bfd_put_32 (output_bfd, - plt0_offset,
(plt->contents + h->plt.offset
+ htab->lazy_plt->plt_plt_offset));
}
bed = get_elf_backend_data (output_bfd);
loc = relplt->contents + plt_index * bed->s->sizeof_rela;
bed->s->swap_reloca_out (output_bfd, &rela, loc);
}
}
else if (eh->plt_got.offset != (bfd_vma) -1)
{
bfd_vma got_offset, plt_offset;
asection *plt, *got;
bfd_boolean got_after_plt;
int32_t got_pcrel_offset;
/* Set the entry in the GOT procedure linkage table. */
plt = htab->plt_got;
got = htab->elf.sgot;
got_offset = h->got.offset;
if (got_offset == (bfd_vma) -1
|| (h->type == STT_GNU_IFUNC && h->def_regular)
|| plt == NULL
|| got == NULL)
abort ();
/* Use the non-lazy PLT entry template for the GOT PLT since they
are the identical. */
/* Fill in the entry in the GOT procedure linkage table. */
plt_offset = eh->plt_got.offset;
memcpy (plt->contents + plt_offset,
htab->non_lazy_plt->plt_entry,
htab->non_lazy_plt->plt_entry_size);
/* Put offset the PC-relative instruction referring to the GOT
entry, subtracting the size of that instruction. */
got_pcrel_offset = (got->output_section->vma
+ got->output_offset
+ got_offset
- plt->output_section->vma
- plt->output_offset
- plt_offset
- htab->non_lazy_plt->plt_got_insn_size);
/* Check PC-relative offset overflow in GOT PLT entry. */
got_after_plt = got->output_section->vma > plt->output_section->vma;
if ((got_after_plt && got_pcrel_offset < 0)
|| (!got_after_plt && got_pcrel_offset > 0))
/* xgettext:c-format */
info->callbacks->einfo (_("%F%B: PC-relative offset overflow in GOT PLT entry for `%s'\n"),
output_bfd, h->root.root.string);
bfd_put_32 (output_bfd, got_pcrel_offset,
(plt->contents + plt_offset
+ htab->non_lazy_plt->plt_got_offset));
}
if (!local_undefweak
&& !h->def_regular
&& (h->plt.offset != (bfd_vma) -1
|| eh->plt_got.offset != (bfd_vma) -1))
{
/* Mark the symbol as undefined, rather than as defined in
the .plt section. Leave the value if there were any
relocations where pointer equality matters (this is a clue
for the dynamic linker, to make function pointer
comparisons work between an application and shared
library), otherwise set it to zero. If a function is only
called from a binary, there is no need to slow down
shared libraries because of that. */
sym->st_shndx = SHN_UNDEF;
if (!h->pointer_equality_needed)
sym->st_value = 0;
}
/* Don't generate dynamic GOT relocation against undefined weak
symbol in executable. */
if (h->got.offset != (bfd_vma) -1
&& ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
&& elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE
&& !local_undefweak)
{
Elf_Internal_Rela rela;
asection *relgot = htab->elf.srelgot;
/* This symbol has an entry in the global offset table. Set it
up. */
if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
abort ();
rela.r_offset = (htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ (h->got.offset &~ (bfd_vma) 1));
/* If this is a static link, or it is a -Bsymbolic link and the
symbol is defined locally or was forced to be local because
of a version file, we just want to emit a RELATIVE reloc.
The entry in the global offset table will already have been
initialized in the relocate_section function. */
if (h->def_regular
&& h->type == STT_GNU_IFUNC)
{
if (h->plt.offset == (bfd_vma) -1)
{
/* STT_GNU_IFUNC is referenced without PLT. */
if (htab->elf.splt == NULL)
{
/* use .rel[a].iplt section to store .got relocations
in static executable. */
relgot = htab->elf.irelplt;
}
if (SYMBOL_REFERENCES_LOCAL (info, h))
{
rela.r_info = htab->r_info (0,
R_X86_64_IRELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
goto do_glob_dat;
}
else if (bfd_link_pic (info))
{
/* Generate R_X86_64_GLOB_DAT. */
goto do_glob_dat;
}
else
{
asection *plt;
bfd_vma plt_offset;
if (!h->pointer_equality_needed)
abort ();
/* For non-shared object, we can't use .got.plt, which
contains the real function addres if we need pointer
equality. We load the GOT entry with the PLT entry. */
if (htab->plt_second != NULL)
{
plt = htab->plt_second;
plt_offset = eh->plt_second.offset;
}
else
{
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
plt_offset = h->plt.offset;
}
bfd_put_64 (output_bfd, (plt->output_section->vma
+ plt->output_offset
+ plt_offset),
htab->elf.sgot->contents + h->got.offset);
return TRUE;
}
}
else if (bfd_link_pic (info)
&& SYMBOL_REFERENCES_LOCAL (info, h))
{
if (!h->def_regular)
return FALSE;
BFD_ASSERT((h->got.offset & 1) != 0);
rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
rela.r_addend = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
}
else
{
BFD_ASSERT((h->got.offset & 1) == 0);
do_glob_dat:
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.sgot->contents + h->got.offset);
rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
rela.r_addend = 0;
}
elf_append_rela (output_bfd, relgot, &rela);
}
if (h->needs_copy)
{
Elf_Internal_Rela rela;
asection *s;
/* This symbol needs a copy reloc. Set it up. */
if (h->dynindx == -1
|| (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
|| htab->elf.srelbss == NULL
|| htab->elf.sreldynrelro == NULL)
abort ();
rela.r_offset = (h->root.u.def.value
+ h->root.u.def.section->output_section->vma
+ h->root.u.def.section->output_offset);
rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
rela.r_addend = 0;
if (h->root.u.def.section == htab->elf.sdynrelro)
s = htab->elf.sreldynrelro;
else
s = htab->elf.srelbss;
elf_append_rela (output_bfd, s, &rela);
}
return TRUE;
}
/* Finish up local dynamic symbol handling. We set the contents of
various dynamic sections here. */
static bfd_boolean
elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
{
struct elf_link_hash_entry *h
= (struct elf_link_hash_entry *) *slot;
struct bfd_link_info *info
= (struct bfd_link_info *) inf;
return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
info, h, NULL);
}
/* Finish up undefined weak symbol handling in PIE. Fill its PLT entry
here since undefined weak symbol may not be dynamic and may not be
called for elf_x86_64_finish_dynamic_symbol. */
static bfd_boolean
elf_x86_64_pie_finish_undefweak_symbol (struct bfd_hash_entry *bh,
void *inf)
{
struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
struct bfd_link_info *info = (struct bfd_link_info *) inf;
if (h->root.type != bfd_link_hash_undefweak
|| h->dynindx != -1)
return TRUE;
return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
info, h, NULL);
}
/* Used to decide how to sort relocs in an optimal manner for the
dynamic linker, before writing them out. */
static enum elf_reloc_type_class
elf_x86_64_reloc_type_class (const struct bfd_link_info *info,
const asection *rel_sec ATTRIBUTE_UNUSED,
const Elf_Internal_Rela *rela)
{
bfd *abfd = info->output_bfd;
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
struct elf_x86_64_link_hash_table *htab = elf_x86_64_hash_table (info);
if (htab->elf.dynsym != NULL
&& htab->elf.dynsym->contents != NULL)
{
/* Check relocation against STT_GNU_IFUNC symbol if there are
dynamic symbols. */
unsigned long r_symndx = htab->r_sym (rela->r_info);
if (r_symndx != STN_UNDEF)
{
Elf_Internal_Sym sym;
if (!bed->s->swap_symbol_in (abfd,
(htab->elf.dynsym->contents
+ r_symndx * bed->s->sizeof_sym),
0, &sym))
abort ();
if (ELF_ST_TYPE (sym.st_info) == STT_GNU_IFUNC)
return reloc_class_ifunc;
}
}
switch ((int) ELF32_R_TYPE (rela->r_info))
{
case R_X86_64_IRELATIVE:
return reloc_class_ifunc;
case R_X86_64_RELATIVE:
case R_X86_64_RELATIVE64:
return reloc_class_relative;
case R_X86_64_JUMP_SLOT:
return reloc_class_plt;
case R_X86_64_COPY:
return reloc_class_copy;
default:
return reloc_class_normal;
}
}
/* Finish up the dynamic sections. */
static bfd_boolean
elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
struct bfd_link_info *info)
{
struct elf_x86_64_link_hash_table *htab;
bfd *dynobj;
asection *sdyn;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
dynobj = htab->elf.dynobj;
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
if (htab->elf.dynamic_sections_created)
{
bfd_byte *dyncon, *dynconend;
const struct elf_backend_data *bed;
bfd_size_type sizeof_dyn;
if (sdyn == NULL || htab->elf.sgot == NULL)
abort ();
bed = get_elf_backend_data (dynobj);
sizeof_dyn = bed->s->sizeof_dyn;
dyncon = sdyn->contents;
dynconend = sdyn->contents + sdyn->size;
for (; dyncon < dynconend; dyncon += sizeof_dyn)
{
Elf_Internal_Dyn dyn;
asection *s;
(*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
switch (dyn.d_tag)
{
default:
continue;
case DT_PLTGOT:
s = htab->elf.sgotplt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
break;
case DT_JMPREL:
dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
break;
case DT_PLTRELSZ:
s = htab->elf.srelplt->output_section;
dyn.d_un.d_val = s->size;
break;
case DT_TLSDESC_PLT:
s = htab->elf.splt;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
+ htab->tlsdesc_plt;
break;
case DT_TLSDESC_GOT:
s = htab->elf.sgot;
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
+ htab->tlsdesc_got;
break;
}
(*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
}
if (htab->elf.splt && htab->elf.splt->size > 0)
{
elf_section_data (htab->elf.splt->output_section)
->this_hdr.sh_entsize = htab->plt.plt_entry_size;
if (htab->plt.has_plt0)
{
/* Fill in the special first entry in the procedure linkage
table. */
memcpy (htab->elf.splt->contents,
htab->lazy_plt->plt0_entry,
htab->lazy_plt->plt_entry_size);
/* Add offset for pushq GOT+8(%rip), since the instruction
uses 6 bytes subtract this value. */
bfd_put_32 (output_bfd,
(htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ 8
- htab->elf.splt->output_section->vma
- htab->elf.splt->output_offset
- 6),
(htab->elf.splt->contents
+ htab->lazy_plt->plt0_got1_offset));
/* Add offset for the PC-relative instruction accessing
GOT+16, subtracting the offset to the end of that
instruction. */
bfd_put_32 (output_bfd,
(htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ 16
- htab->elf.splt->output_section->vma
- htab->elf.splt->output_offset
- htab->lazy_plt->plt0_got2_insn_end),
(htab->elf.splt->contents
+ htab->lazy_plt->plt0_got2_offset));
if (htab->tlsdesc_plt)
{
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.sgot->contents + htab->tlsdesc_got);
memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
htab->lazy_plt->plt0_entry,
htab->lazy_plt->plt_entry_size);
/* Add offset for pushq GOT+8(%rip), since the
instruction uses 6 bytes subtract this value. */
bfd_put_32 (output_bfd,
(htab->elf.sgotplt->output_section->vma
+ htab->elf.sgotplt->output_offset
+ 8
- htab->elf.splt->output_section->vma
- htab->elf.splt->output_offset
- htab->tlsdesc_plt
- 6),
(htab->elf.splt->contents
+ htab->tlsdesc_plt
+ htab->lazy_plt->plt0_got1_offset));
/* Add offset for the PC-relative instruction accessing
GOT+TDG, where TDG stands for htab->tlsdesc_got,
subtracting the offset to the end of that
instruction. */
bfd_put_32 (output_bfd,
(htab->elf.sgot->output_section->vma
+ htab->elf.sgot->output_offset
+ htab->tlsdesc_got
- htab->elf.splt->output_section->vma
- htab->elf.splt->output_offset
- htab->tlsdesc_plt
- htab->lazy_plt->plt0_got2_insn_end),
(htab->elf.splt->contents
+ htab->tlsdesc_plt
+ htab->lazy_plt->plt0_got2_offset));
}
}
}
}
if (htab->plt_got != NULL && htab->plt_got->size > 0)
elf_section_data (htab->plt_got->output_section)
->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
if (htab->plt_second != NULL && htab->plt_second->size > 0)
elf_section_data (htab->plt_second->output_section)
->this_hdr.sh_entsize = htab->non_lazy_plt->plt_entry_size;
/* GOT is always created in setup_gnu_properties. But it may not be
needed. */
if (htab->elf.sgotplt && htab->elf.sgotplt->size > 0)
{
if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
{
_bfd_error_handler
(_("discarded output section: `%A'"), htab->elf.sgotplt);
return FALSE;
}
/* Set the first entry in the global offset table to the address of
the dynamic section. */
if (sdyn == NULL)
bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
else
bfd_put_64 (output_bfd,
sdyn->output_section->vma + sdyn->output_offset,
htab->elf.sgotplt->contents);
/* Write GOT[1] and GOT[2], needed for the dynamic linker. */
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
bfd_put_64 (output_bfd, (bfd_vma) 0,
htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize
= GOT_ENTRY_SIZE;
}
/* Adjust .eh_frame for .plt section. */
if (htab->plt_eh_frame != NULL
&& htab->plt_eh_frame->contents != NULL)
{
if (htab->elf.splt != NULL
&& htab->elf.splt->size != 0
&& (htab->elf.splt->flags & SEC_EXCLUDE) == 0
&& htab->elf.splt->output_section != NULL
&& htab->plt_eh_frame->output_section != NULL)
{
bfd_vma plt_start = htab->elf.splt->output_section->vma;
bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
+ htab->plt_eh_frame->output_offset
+ PLT_FDE_START_OFFSET;
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
htab->plt_eh_frame->contents
+ PLT_FDE_START_OFFSET);
}
if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
{
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
htab->plt_eh_frame,
htab->plt_eh_frame->contents))
return FALSE;
}
}
/* Adjust .eh_frame for .plt.got section. */
if (htab->plt_got_eh_frame != NULL
&& htab->plt_got_eh_frame->contents != NULL)
{
if (htab->plt_got != NULL
&& htab->plt_got->size != 0
&& (htab->plt_got->flags & SEC_EXCLUDE) == 0
&& htab->plt_got->output_section != NULL
&& htab->plt_got_eh_frame->output_section != NULL)
{
bfd_vma plt_start = htab->plt_got->output_section->vma;
bfd_vma eh_frame_start = htab->plt_got_eh_frame->output_section->vma
+ htab->plt_got_eh_frame->output_offset
+ PLT_FDE_START_OFFSET;
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
htab->plt_got_eh_frame->contents
+ PLT_FDE_START_OFFSET);
}
if (htab->plt_got_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
{
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
htab->plt_got_eh_frame,
htab->plt_got_eh_frame->contents))
return FALSE;
}
}
/* Adjust .eh_frame for the second PLT section. */
if (htab->plt_second_eh_frame != NULL
&& htab->plt_second_eh_frame->contents != NULL)
{
if (htab->plt_second != NULL
&& htab->plt_second->size != 0
&& (htab->plt_second->flags & SEC_EXCLUDE) == 0
&& htab->plt_second->output_section != NULL
&& htab->plt_second_eh_frame->output_section != NULL)
{
bfd_vma plt_start = htab->plt_second->output_section->vma;
bfd_vma eh_frame_start
= (htab->plt_second_eh_frame->output_section->vma
+ htab->plt_second_eh_frame->output_offset
+ PLT_FDE_START_OFFSET);
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
htab->plt_second_eh_frame->contents
+ PLT_FDE_START_OFFSET);
}
if (htab->plt_second_eh_frame->sec_info_type
== SEC_INFO_TYPE_EH_FRAME)
{
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
htab->plt_second_eh_frame,
htab->plt_second_eh_frame->contents))
return FALSE;
}
}
if (htab->elf.sgot && htab->elf.sgot->size > 0)
elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
= GOT_ENTRY_SIZE;
/* Fill PLT entries for undefined weak symbols in PIE. */
if (bfd_link_pie (info))
bfd_hash_traverse (&info->hash->table,
elf_x86_64_pie_finish_undefweak_symbol,
info);
return TRUE;
}
/* Fill PLT/GOT entries and allocate dynamic relocations for local
STT_GNU_IFUNC symbols, which aren't in the ELF linker hash table.
It has to be done before elf_link_sort_relocs is called so that
dynamic relocations are properly sorted. */
static bfd_boolean
elf_x86_64_output_arch_local_syms
(bfd *output_bfd ATTRIBUTE_UNUSED,
struct bfd_link_info *info,
void *flaginfo ATTRIBUTE_UNUSED,
int (*func) (void *, const char *,
Elf_Internal_Sym *,
asection *,
struct elf_link_hash_entry *) ATTRIBUTE_UNUSED)
{
struct elf_x86_64_link_hash_table *htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return FALSE;
/* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
htab_traverse (htab->loc_hash_table,
elf_x86_64_finish_local_dynamic_symbol,
info);
return TRUE;
}
/* Sort relocs into address order. */
static int
compare_relocs (const void *ap, const void *bp)
{
const arelent *a = * (const arelent **) ap;
const arelent *b = * (const arelent **) bp;
if (a->address > b->address)
return 1;
else if (a->address < b->address)
return -1;
else
return 0;
}
enum elf_x86_64_plt_type
{
plt_non_lazy = 0,
plt_lazy = 1 << 0,
plt_second = 1 << 1,
plt_unknown = -1
};
struct elf_x86_64_plt
{
const char *name;
asection *sec;
bfd_byte *contents;
enum elf_x86_64_plt_type type;
unsigned int plt_got_offset;
unsigned int plt_got_insn_size;
unsigned int plt_entry_size;
long count;
};
/* Forward declaration. */
static const struct elf_x86_64_lazy_plt_layout elf_x86_64_nacl_plt;
/* Similar to _bfd_elf_get_synthetic_symtab. Support PLTs with all
dynamic relocations. */
static long
elf_x86_64_get_synthetic_symtab (bfd *abfd,
long symcount ATTRIBUTE_UNUSED,
asymbol **syms ATTRIBUTE_UNUSED,
long dynsymcount,
asymbol **dynsyms,
asymbol **ret)
{
long size, count, i, n;
int j;
unsigned int plt_got_offset, plt_entry_size, plt_got_insn_size;
asymbol *s;
bfd_byte *plt_contents;
long dynrelcount, relsize;
arelent **dynrelbuf;
const struct elf_x86_64_lazy_plt_layout *lazy_plt;
const struct elf_x86_64_non_lazy_plt_layout *non_lazy_plt;
const struct elf_x86_64_lazy_plt_layout *lazy_bnd_plt;
const struct elf_x86_64_non_lazy_plt_layout *non_lazy_bnd_plt;
asection *plt;
char *names;
enum elf_x86_64_plt_type plt_type;
struct elf_x86_64_plt plts[] =
{
{ ".plt", NULL, NULL, plt_unknown, 0, 0, 0, 0 },
{ ".plt.got", NULL, NULL, plt_non_lazy, 0, 0, 0, 0 },
{ ".plt.sec", NULL, NULL, plt_second, 0, 0, 0, 0 },
{ ".plt.bnd", NULL, NULL, plt_second, 0, 0, 0, 0 },
{ NULL, NULL, NULL, plt_non_lazy, 0, 0, 0, 0 }
};
*ret = NULL;
if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
return 0;
if (dynsymcount <= 0)
return 0;
relsize = bfd_get_dynamic_reloc_upper_bound (abfd);
if (relsize <= 0)
return -1;
dynrelbuf = (arelent **) bfd_malloc (relsize);
if (dynrelbuf == NULL)
return -1;
dynrelcount = bfd_canonicalize_dynamic_reloc (abfd, dynrelbuf,
dynsyms);
/* Sort the relocs by address. */
qsort (dynrelbuf, dynrelcount, sizeof (arelent *), compare_relocs);
if (get_elf_x86_64_backend_data (abfd)->os == is_normal)
{
lazy_plt = &elf_x86_64_lazy_plt;
non_lazy_plt = &elf_x86_64_non_lazy_plt;
lazy_bnd_plt = &elf_x86_64_lazy_bnd_plt;
non_lazy_bnd_plt = &elf_x86_64_non_lazy_bnd_plt;
}
else
{
lazy_plt = &elf_x86_64_nacl_plt;
non_lazy_plt = NULL;
lazy_bnd_plt = NULL;
non_lazy_bnd_plt = NULL;
}
count = 0;
for (j = 0; plts[j].name != NULL; j++)
{
plt = bfd_get_section_by_name (abfd, plts[j].name);
if (plt == NULL)
continue;
/* Get the PLT section contents. */
plt_contents = (bfd_byte *) bfd_malloc (plt->size);
if (plt_contents == NULL)
break;
if (!bfd_get_section_contents (abfd, (asection *) plt,
plt_contents, 0, plt->size))
{
free (plt_contents);
break;
}
/* Check what kind of PLT it is. */
plt_type = plt_unknown;
if (plts[j].type == plt_unknown)
{
/* Match lazy PLT first. Need to check the first two
instructions. */
if ((memcmp (plt_contents, lazy_plt->plt0_entry,
lazy_plt->plt0_got1_offset) == 0)
&& (memcmp (plt_contents + 6, lazy_plt->plt0_entry + 6,
2) == 0))
plt_type = plt_lazy;
else if (lazy_bnd_plt != NULL
&& (memcmp (plt_contents, lazy_bnd_plt->plt0_entry,
lazy_bnd_plt->plt0_got1_offset) == 0)
&& (memcmp (plt_contents + 6,
lazy_bnd_plt->plt0_entry + 6, 3) == 0))
{
plt_type = plt_lazy | plt_second;
lazy_plt = lazy_bnd_plt;
}
}
if (non_lazy_plt != NULL
&& (plt_type == plt_unknown || plt_type == plt_non_lazy))
{
/* Match non-lazy PLT. */
if (memcmp (plt_contents, non_lazy_plt->plt_entry,
non_lazy_plt->plt_got_offset) == 0)
plt_type = plt_non_lazy;
}
if (non_lazy_bnd_plt != NULL
&& (plt_type == plt_unknown || plt_type == plt_second))
{
/* Match BND PLT. */
if (memcmp (plt_contents, non_lazy_bnd_plt->plt_entry,
non_lazy_bnd_plt->plt_got_offset) == 0)
{
plt_type = plt_second;
non_lazy_plt = non_lazy_bnd_plt;
}
}
if (plt_type == plt_unknown)
continue;
plts[j].sec = plt;
plts[j].type = plt_type;
if ((plt_type & plt_lazy))
{
plts[j].plt_got_offset = lazy_plt->plt_got_offset;
plts[j].plt_got_insn_size = lazy_plt->plt_got_insn_size;
plts[j].plt_entry_size = lazy_plt->plt_entry_size;
/* Skip PLT0 in lazy PLT. */
i = 1;
}
else
{
plts[j].plt_got_offset = non_lazy_plt->plt_got_offset;
plts[j].plt_got_insn_size = non_lazy_plt->plt_got_insn_size;
plts[j].plt_entry_size = non_lazy_plt->plt_entry_size;
i = 0;
}
/* Skip lazy PLT when the second PLT is used. */
if (plt_type == (plt_lazy | plt_second))
plts[j].count = 0;
else
{
n = plt->size / plts[j].plt_entry_size;
plts[j].count = n;
count += n - i;
}
plts[j].contents = plt_contents;
}
size = count * sizeof (asymbol);
s = *ret = (asymbol *) bfd_zmalloc (size);
if (s == NULL)
{
bad_return:
for (j = 0; plts[j].name != NULL; j++)
if (plts[j].contents != NULL)
free (plts[j].contents);
free (dynrelbuf);
return -1;
}
/* Check for each PLT section. */
size = 0;
n = 0;
for (j = 0; plts[j].name != NULL; j++)
if ((plt_contents = plts[j].contents) != NULL)
{
long k;
bfd_vma offset;
plt_got_offset = plts[j].plt_got_offset;
plt_got_insn_size = plts[j].plt_got_insn_size;
plt_entry_size = plts[j].plt_entry_size;
plt = plts[j].sec;
if ((plts[j].type & plt_lazy))
{
/* Skip PLT0 in lazy PLT. */
k = 1;
offset = plt_entry_size;
}
else
{
k = 0;
offset = 0;
}
/* Check each PLT entry against dynamic relocations. */
for (; k < plts[j].count; k++)
{
int off;
bfd_vma got_vma;
long min, max, mid;
arelent *p;
/* Get the PC-relative offset, a signed 32-bit integer. */
off = H_GET_32 (abfd, (plt_contents + offset
+ plt_got_offset));
got_vma = plt->vma + offset + off + plt_got_insn_size;
/* Binary search. */
p = dynrelbuf[0];
min = 0;
max = dynrelcount;
while ((min + 1) < max)
{
arelent *r;
mid = (min + max) / 2;
r = dynrelbuf[mid];
if (got_vma > r->address)
min = mid;
else if (got_vma < r->address)
max = mid;
else
{
p = r;
break;
}
}
/* Skip unknown relocation. PR 17512: file: bc9d6cf5. */
if (got_vma == p->address
&& p->howto != NULL
&& (p->howto->type == R_X86_64_JUMP_SLOT
|| p->howto->type == R_X86_64_GLOB_DAT
|| p->howto->type == R_X86_64_IRELATIVE))
{
*s = **p->sym_ptr_ptr;
/* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL
set. Since we are defining a symbol, ensure one
of them is set. */
if ((s->flags & BSF_LOCAL) == 0)
s->flags |= BSF_GLOBAL;
s->flags |= BSF_SYNTHETIC;
/* This is no longer a section symbol. */
s->flags &= ~BSF_SECTION_SYM;
s->section = plt;
s->the_bfd = plt->owner;
s->value = offset;
/* Store relocation for later use. */
s->udata.p = p;
/* Add @plt to function name later. */
size += strlen (s->name) + sizeof ("@plt");
if (p->addend != 0)
size += sizeof ("+0x") - 1 + 8 + 8 * ABI_64_P (abfd);
n++;
s++;
}
offset += plt_entry_size;
}
}
/* PLT entries with R_X86_64_TLSDESC relocations are skipped. */
if (n == 0)
goto bad_return;
count = n;
/* Allocate space for @plt suffixes. */
names = (char *) bfd_malloc (size);
if (s == NULL)
goto bad_return;
s = *ret;
for (i = 0; i < count; i++)
{
/* Add @plt to function name. */
arelent *p = (arelent *) s->udata.p;
/* Clear it now. */
s->udata.p = NULL;
size = strlen (s->name);
memcpy (names, s->name, size);
s->name = names;
names += size;
if (p->addend != 0)
{
char buf[30], *a;
memcpy (names, "+0x", sizeof ("+0x") - 1);
names += sizeof ("+0x") - 1;
bfd_sprintf_vma (abfd, buf, p->addend);
for (a = buf; *a == '0'; ++a)
;
size = strlen (a);
memcpy (names, a, size);
names += size;
}
memcpy (names, "@plt", sizeof ("@plt"));
names += sizeof ("@plt");
s++;
}
for (j = 0; plts[j].name != NULL; j++)
if (plts[j].contents != NULL)
free (plts[j].contents);
free (dynrelbuf);
return count;
}
/* Handle an x86-64 specific section when reading an object file. This
is called when elfcode.h finds a section with an unknown type. */
static bfd_boolean
elf_x86_64_section_from_shdr (bfd *abfd, Elf_Internal_Shdr *hdr,
const char *name, int shindex)
{
if (hdr->sh_type != SHT_X86_64_UNWIND)
return FALSE;
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
return FALSE;
return TRUE;
}
/* Hook called by the linker routine which adds symbols from an object
file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
of .bss. */
static bfd_boolean
elf_x86_64_add_symbol_hook (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED,
Elf_Internal_Sym *sym,
const char **namep ATTRIBUTE_UNUSED,
flagword *flagsp ATTRIBUTE_UNUSED,
asection **secp,
bfd_vma *valp)
{
asection *lcomm;
switch (sym->st_shndx)
{
case SHN_X86_64_LCOMMON:
lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
if (lcomm == NULL)
{
lcomm = bfd_make_section_with_flags (abfd,
"LARGE_COMMON",
(SEC_ALLOC
| SEC_IS_COMMON
| SEC_LINKER_CREATED));
if (lcomm == NULL)
return FALSE;
elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
}
*secp = lcomm;
*valp = sym->st_size;
return TRUE;
}
return TRUE;
}
/* Given a BFD section, try to locate the corresponding ELF section
index. */
static bfd_boolean
elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
asection *sec, int *index_return)
{
if (sec == &_bfd_elf_large_com_section)
{
*index_return = SHN_X86_64_LCOMMON;
return TRUE;
}
return FALSE;
}
/* Process a symbol. */
static void
elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
asymbol *asym)
{
elf_symbol_type *elfsym = (elf_symbol_type *) asym;
switch (elfsym->internal_elf_sym.st_shndx)
{
case SHN_X86_64_LCOMMON:
asym->section = &_bfd_elf_large_com_section;
asym->value = elfsym->internal_elf_sym.st_size;
/* Common symbol doesn't set BSF_GLOBAL. */
asym->flags &= ~BSF_GLOBAL;
break;
}
}
static bfd_boolean
elf_x86_64_common_definition (Elf_Internal_Sym *sym)
{
return (sym->st_shndx == SHN_COMMON
|| sym->st_shndx == SHN_X86_64_LCOMMON);
}
static unsigned int
elf_x86_64_common_section_index (asection *sec)
{
if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
return SHN_COMMON;
else
return SHN_X86_64_LCOMMON;
}
static asection *
elf_x86_64_common_section (asection *sec)
{
if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
return bfd_com_section_ptr;
else
return &_bfd_elf_large_com_section;
}
static bfd_boolean
elf_x86_64_merge_symbol (struct elf_link_hash_entry *h,
const Elf_Internal_Sym *sym,
asection **psec,
bfd_boolean newdef,
bfd_boolean olddef,
bfd *oldbfd,
const asection *oldsec)
{
/* A normal common symbol and a large common symbol result in a
normal common symbol. We turn the large common symbol into a
normal one. */
if (!olddef
&& h->root.type == bfd_link_hash_common
&& !newdef
&& bfd_is_com_section (*psec)
&& oldsec != *psec)
{
if (sym->st_shndx == SHN_COMMON
&& (elf_section_flags (oldsec) & SHF_X86_64_LARGE) != 0)
{
h->root.u.c.p->section
= bfd_make_section_old_way (oldbfd, "COMMON");
h->root.u.c.p->section->flags = SEC_ALLOC;
}
else if (sym->st_shndx == SHN_X86_64_LCOMMON
&& (elf_section_flags (oldsec) & SHF_X86_64_LARGE) == 0)
*psec = bfd_com_section_ptr;
}
return TRUE;
}
static int
elf_x86_64_additional_program_headers (bfd *abfd,
struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
asection *s;
int count = 0;
/* Check to see if we need a large readonly segment. */
s = bfd_get_section_by_name (abfd, ".lrodata");
if (s && (s->flags & SEC_LOAD))
count++;
/* Check to see if we need a large data segment. Since .lbss sections
is placed right after the .bss section, there should be no need for
a large data segment just because of .lbss. */
s = bfd_get_section_by_name (abfd, ".ldata");
if (s && (s->flags & SEC_LOAD))
count++;
return count;
}
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
static bfd_boolean
elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
{
if (h->plt.offset != (bfd_vma) -1
&& !h->def_regular
&& !h->pointer_equality_needed)
return FALSE;
return _bfd_elf_hash_symbol (h);
}
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
static bfd_boolean
elf_x86_64_relocs_compatible (const bfd_target *input,
const bfd_target *output)
{
return ((xvec_get_elf_backend_data (input)->s->elfclass
== xvec_get_elf_backend_data (output)->s->elfclass)
&& _bfd_elf_relocs_compatible (input, output));
}
/* Parse x86-64 GNU properties. */
static enum elf_property_kind
elf_x86_64_parse_gnu_properties (bfd *abfd, unsigned int type,
bfd_byte *ptr, unsigned int datasz)
{
elf_property *prop;
switch (type)
{
case GNU_PROPERTY_X86_ISA_1_USED:
case GNU_PROPERTY_X86_ISA_1_NEEDED:
if (datasz != 4)
{
_bfd_error_handler
((type == GNU_PROPERTY_X86_ISA_1_USED
? _("error: %B: <corrupt x86 ISA used size: 0x%x>")
: _("error: %B: <corrupt x86 ISA needed size: 0x%x>")),
abfd, datasz);
return property_corrupt;
}
prop = _bfd_elf_get_property (abfd, type, datasz);
/* Combine properties of the same type. */
prop->u.number |= bfd_h_get_32 (abfd, ptr);
prop->pr_kind = property_number;
break;
default:
return property_ignored;
}
return property_number;
}
/* Merge x86-64 GNU property BPROP with APROP. If APROP isn't NULL,
return TRUE if APROP is updated. Otherwise, return TRUE if BPROP
should be merged with ABFD. */
static bfd_boolean
elf_x86_64_merge_gnu_properties (bfd *abfd ATTRIBUTE_UNUSED,
elf_property *aprop,
elf_property *bprop)
{
unsigned int number;
bfd_boolean updated = FALSE;
unsigned int pr_type = aprop != NULL ? aprop->pr_type : bprop->pr_type;
switch (pr_type)
{
case GNU_PROPERTY_X86_ISA_1_USED:
case GNU_PROPERTY_X86_ISA_1_NEEDED:
if (aprop != NULL && bprop != NULL)
{
number = aprop->u.number;
aprop->u.number = number | bprop->u.number;
updated = number != (unsigned int) aprop->u.number;
}
else
{
/* Return TRUE if APROP is NULL to indicate that BPROP should
be added to ABFD. */
updated = aprop == NULL;
}
break;
default:
/* Never should happen. */
abort ();
}
return updated;
}
/* Set up x86-64 GNU properties. Return the first relocatable ELF input
with GNU properties if found. Otherwise, return NULL. */
static bfd *
elf_x86_64_link_setup_gnu_properties (struct bfd_link_info *info)
{
bfd_boolean normal_target;
bfd_boolean lazy_plt;
asection *sec, *pltsec;
bfd *dynobj;
unsigned int plt_alignment;
struct elf_x86_64_link_hash_table *htab;
bfd *pbfd = _bfd_elf_link_setup_gnu_properties (info);
if (bfd_link_relocatable (info))
return pbfd;
htab = elf_x86_64_hash_table (info);
if (htab == NULL)
return pbfd;
dynobj = htab->elf.dynobj;
/* Set htab->elf.dynobj here so that there is no need to check and
set it in check_relocs. */
if (dynobj == NULL)
{
bfd *abfd;
/* Find a normal input file to hold linker created
sections. */
for (abfd = info->input_bfds;
abfd != NULL;
abfd = abfd->link.next)
if ((abfd->flags
& (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
{
htab->elf.dynobj = abfd;
dynobj = abfd;
break;
}
}
/* Even when lazy binding is disabled by "-z now", the PLT0 entry may
still be used with LD_AUDIT or LD_PROFILE if PLT entry is used for
canonical function address. */
htab->plt.has_plt0 = 1;
if (get_elf_x86_64_backend_data (info->output_bfd)->os
== is_normal)
{
if (info->bndplt)
{
htab->lazy_plt = &elf_x86_64_lazy_bnd_plt;
htab->non_lazy_plt = &elf_x86_64_non_lazy_bnd_plt;
}
else
{
htab->lazy_plt = &elf_x86_64_lazy_plt;
htab->non_lazy_plt = &elf_x86_64_non_lazy_plt;
}
normal_target = TRUE;
}
else
{
htab->lazy_plt = &elf_x86_64_nacl_plt;
htab->non_lazy_plt = NULL;
normal_target = FALSE;
}
pltsec = htab->elf.splt;
/* If the non-lazy PLT is available, use it for all PLT entries if
there are no PLT0 or no .plt section. */
if (htab->non_lazy_plt != NULL
&& (!htab->plt.has_plt0 || pltsec == NULL))
{
lazy_plt = FALSE;
htab->plt.plt_entry
= htab->non_lazy_plt->plt_entry;
htab->plt.plt_entry_size
= htab->non_lazy_plt->plt_entry_size;
htab->plt.plt_got_offset
= htab->non_lazy_plt->plt_got_offset;
htab->plt.plt_got_insn_size
= htab->non_lazy_plt->plt_got_insn_size;
htab->plt.eh_frame_plt_size
= htab->non_lazy_plt->eh_frame_plt_size;
htab->plt.eh_frame_plt
= htab->non_lazy_plt->eh_frame_plt;
}
else
{
lazy_plt = TRUE;
htab->plt.plt_entry
= htab->lazy_plt->plt_entry;
htab->plt.plt_entry_size
= htab->lazy_plt->plt_entry_size;
htab->plt.plt_got_offset
= htab->lazy_plt->plt_got_offset;
htab->plt.plt_got_insn_size
= htab->lazy_plt->plt_got_insn_size;
htab->plt.eh_frame_plt_size
= htab->lazy_plt->eh_frame_plt_size;
htab->plt.eh_frame_plt
= htab->lazy_plt->eh_frame_plt;
}
/* Return if there are no normal input files. */
if (dynobj == NULL)
return pbfd;
/* Since create_dynamic_sections isn't always called, but GOT
relocations need GOT relocations, create them here so that we
don't need to do it in check_relocs. */
if (htab->elf.sgot == NULL
&& !_bfd_elf_create_got_section (dynobj, info))
info->callbacks->einfo (_("%F: failed to create GOT sections\n"));
/* Align .got and .got.plt sections to their entry size. Do it here
instead of in create_dynamic_sections so that they are always
properly aligned even if create_dynamic_sections isn't called. */
sec = htab->elf.sgot;
if (!bfd_set_section_alignment (dynobj, sec, 3))
{
error_alignment:
info->callbacks->einfo (_("%F%A: failed to align section\n"),
sec);
}
sec = htab->elf.sgotplt;
if (!bfd_set_section_alignment (dynobj, sec, 3))
goto error_alignment;
/* Create the ifunc sections here so that check_relocs can be
simplified. */
if (!_bfd_elf_create_ifunc_sections (dynobj, info))
info->callbacks->einfo (_("%F: failed to create ifunc sections\n"));
plt_alignment = bfd_log2 (htab->plt.plt_entry_size);
if (pltsec != NULL)
{
/* Whe creating executable, set the contents of the .interp
section to the interpreter. */
if (bfd_link_executable (info) && !info->nointerp)
{
asection *s = bfd_get_linker_section (dynobj, ".interp");
if (s == NULL)
abort ();
s->size = htab->dynamic_interpreter_size;
s->contents = (unsigned char *) htab->dynamic_interpreter;
htab->interp = s;
}
/* Don't change PLT section alignment for NaCl since it uses
64-byte PLT entry and sets PLT section alignment to 32
bytes. Don't create additional PLT sections for NaCl. */
if (normal_target)
{
const struct elf_backend_data *bed
= get_elf_backend_data (dynobj);
flagword pltflags = (bed->dynamic_sec_flags
| SEC_ALLOC
| SEC_CODE
| SEC_LOAD
| SEC_READONLY);
unsigned int non_lazy_plt_alignment
= bfd_log2 (htab->non_lazy_plt->plt_entry_size);
sec = pltsec;
if (!bfd_set_section_alignment (sec->owner, sec,
plt_alignment))
goto error_alignment;
/* Create the GOT procedure linkage table. */
sec = bfd_make_section_anyway_with_flags (dynobj,
".plt.got",
pltflags);
if (sec == NULL)
info->callbacks->einfo (_("%F: failed to create GOT PLT section\n"));
if (!bfd_set_section_alignment (dynobj, sec,
non_lazy_plt_alignment))
goto error_alignment;
htab->plt_got = sec;
/* MPX PLT is supported only for non-NaCl target in 64-bit
mode and is needed only for lazy binding. */
if (lazy_plt
&& info->bndplt && ABI_64_P (dynobj))
{
/* Create the second PLT for Intel MPX support. */
sec = bfd_make_section_anyway_with_flags (dynobj,
".plt.sec",
pltflags);
if (sec == NULL)
info->callbacks->einfo (_("%F: failed to create BND PLT section\n"));
if (!bfd_set_section_alignment (dynobj, sec,
non_lazy_plt_alignment))
goto error_alignment;
htab->plt_second = sec;
}
}
if (!info->no_ld_generated_unwind_info)
{
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
| SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
sec = bfd_make_section_anyway_with_flags (dynobj,
".eh_frame",
flags);
if (sec == NULL)
info->callbacks->einfo (_("%F: failed to create PLT .eh_frame section\n"));
if (!bfd_set_section_alignment (dynobj, sec,
ABI_64_P (dynobj) ? 3 : 2))
goto error_alignment;
htab->plt_eh_frame = sec;
if (htab->plt_got != NULL)
{
sec = bfd_make_section_anyway_with_flags (dynobj,
".eh_frame",
flags);
if (sec == NULL)
info->callbacks->einfo (_("%F: failed to create GOT PLT .eh_frame section\n"));
if (!bfd_set_section_alignment (dynobj, sec,
ABI_64_P (dynobj) ? 3 : 2))
goto error_alignment;
htab->plt_got_eh_frame = sec;
}
if (htab->plt_second != NULL)
{
sec = bfd_make_section_anyway_with_flags (dynobj,
".eh_frame",
flags);
if (sec == NULL)
info->callbacks->einfo (_("%F: failed to create BND PLT .eh_frame section\n"));
if (!bfd_set_section_alignment (dynobj, sec, 3))
goto error_alignment;
htab->plt_second_eh_frame = sec;
}
}
}
if (normal_target)
{
/* The .iplt section is used for IFUNC symbols in static
executables. */
sec = htab->elf.iplt;
if (sec != NULL
&& !bfd_set_section_alignment (sec->owner, sec,
plt_alignment))
goto error_alignment;
}
return pbfd;
}
static const struct bfd_elf_special_section
elf_x86_64_special_sections[]=
{
{ STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
{ STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
{ STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
{ STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
{ STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
{ STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
{ NULL, 0, 0, 0, 0 }
};
#define TARGET_LITTLE_SYM x86_64_elf64_vec
#define TARGET_LITTLE_NAME "elf64-x86-64"
#define ELF_ARCH bfd_arch_i386
#define ELF_TARGET_ID X86_64_ELF_DATA
#define ELF_MACHINE_CODE EM_X86_64
#define ELF_MAXPAGESIZE 0x200000
#define ELF_MINPAGESIZE 0x1000
#define ELF_COMMONPAGESIZE 0x1000
#define elf_backend_can_gc_sections 1
#define elf_backend_can_refcount 1
#define elf_backend_want_got_plt 1
#define elf_backend_plt_readonly 1
#define elf_backend_want_plt_sym 0
#define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
#define elf_backend_rela_normal 1
#define elf_backend_plt_alignment 4
#define elf_backend_extern_protected_data 1
#define elf_backend_caches_rawsize 1
#define elf_backend_dtrel_excludes_plt 1
#define elf_backend_want_dynrelro 1
#define elf_info_to_howto elf_x86_64_info_to_howto
#define bfd_elf64_bfd_link_hash_table_create \
elf_x86_64_link_hash_table_create
#define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
#define bfd_elf64_bfd_reloc_name_lookup \
elf_x86_64_reloc_name_lookup
#define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
#define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
#define elf_backend_check_relocs elf_x86_64_check_relocs
#define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
#define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
#define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
#define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
#define elf_backend_output_arch_local_syms elf_x86_64_output_arch_local_syms
#define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
#define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
#define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
#ifdef CORE_HEADER
#define elf_backend_write_core_note elf_x86_64_write_core_note
#endif
#define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
#define elf_backend_relocate_section elf_x86_64_relocate_section
#define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
#define elf_backend_always_size_sections elf_x86_64_always_size_sections
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
#define elf_backend_object_p elf64_x86_64_elf_object_p
#define bfd_elf64_mkobject elf_x86_64_mkobject
#define bfd_elf64_get_synthetic_symtab elf_x86_64_get_synthetic_symtab
#define elf_backend_section_from_shdr \
elf_x86_64_section_from_shdr
#define elf_backend_section_from_bfd_section \
elf_x86_64_elf_section_from_bfd_section
#define elf_backend_add_symbol_hook \
elf_x86_64_add_symbol_hook
#define elf_backend_symbol_processing \
elf_x86_64_symbol_processing
#define elf_backend_common_section_index \
elf_x86_64_common_section_index
#define elf_backend_common_section \
elf_x86_64_common_section
#define elf_backend_common_definition \
elf_x86_64_common_definition
#define elf_backend_merge_symbol \
elf_x86_64_merge_symbol
#define elf_backend_special_sections \
elf_x86_64_special_sections
#define elf_backend_additional_program_headers \
elf_x86_64_additional_program_headers
#define elf_backend_hash_symbol \
elf_x86_64_hash_symbol
#define elf_backend_omit_section_dynsym \
((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
#define elf_backend_fixup_symbol \
elf_x86_64_fixup_symbol
#define elf_backend_parse_gnu_properties \
elf_x86_64_parse_gnu_properties
#define elf_backend_merge_gnu_properties \
elf_x86_64_merge_gnu_properties
#define elf_backend_setup_gnu_properties \
elf_x86_64_link_setup_gnu_properties
#include "elf64-target.h"
/* CloudABI support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf64_cloudabi_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-x86-64-cloudabi"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_CLOUDABI
#undef elf64_bed
#define elf64_bed elf64_x86_64_cloudabi_bed
#include "elf64-target.h"
/* FreeBSD support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf64_fbsd_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_FREEBSD
#undef elf64_bed
#define elf64_bed elf64_x86_64_fbsd_bed
#include "elf64-target.h"
/* Solaris 2 support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf64_sol2_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
/* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
objects won't be recognized. */
#undef ELF_OSABI
#undef elf64_bed
#define elf64_bed elf64_x86_64_sol2_bed
/* The 64-bit static TLS arena size is rounded to the nearest 16-byte
boundary. */
#undef elf_backend_static_tls_alignment
#define elf_backend_static_tls_alignment 16
/* The Solaris 2 ABI requires a plt symbol on all platforms.
Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
File, p.63. */
#undef elf_backend_want_plt_sym
#define elf_backend_want_plt_sym 1
#undef elf_backend_strtab_flags
#define elf_backend_strtab_flags SHF_STRINGS
static bfd_boolean
elf64_x86_64_copy_solaris_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
bfd *obfd ATTRIBUTE_UNUSED,
const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
Elf_Internal_Shdr *osection ATTRIBUTE_UNUSED)
{
/* PR 19938: FIXME: Need to add code for setting the sh_info
and sh_link fields of Solaris specific section types. */
return FALSE;
}
#undef elf_backend_copy_special_section_fields
#define elf_backend_copy_special_section_fields elf64_x86_64_copy_solaris_special_section_fields
#include "elf64-target.h"
/* Native Client support. */
static bfd_boolean
elf64_x86_64_nacl_elf_object_p (bfd *abfd)
{
/* Set the right machine number for a NaCl x86-64 ELF64 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64_nacl);
return TRUE;
}
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf64_nacl_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
#undef elf64_bed
#define elf64_bed elf64_x86_64_nacl_bed
#undef ELF_MAXPAGESIZE
#undef ELF_MINPAGESIZE
#undef ELF_COMMONPAGESIZE
#define ELF_MAXPAGESIZE 0x10000
#define ELF_MINPAGESIZE 0x10000
#define ELF_COMMONPAGESIZE 0x10000
/* Restore defaults. */
#undef ELF_OSABI
#undef elf_backend_static_tls_alignment
#undef elf_backend_want_plt_sym
#define elf_backend_want_plt_sym 0
#undef elf_backend_strtab_flags
#undef elf_backend_copy_special_section_fields
/* NaCl uses substantially different PLT entries for the same effects. */
#undef elf_backend_plt_alignment
#define elf_backend_plt_alignment 5
#define NACL_PLT_ENTRY_SIZE 64
#define NACLMASK 0xe0 /* 32-byte alignment mask. */
static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
{
0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
0x4d, 0x01, 0xfb, /* add %r15, %r11 */
0x41, 0xff, 0xe3, /* jmpq *%r11 */
/* 9-byte nop sequence to pad out to the next 32-byte boundary. */
0x66, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw 0x0(%rax,%rax,1) */
/* 32 bytes of nop to pad out to the standard size. */
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data16 prefixes */
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data16 prefixes */
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
0x66, /* excess data16 prefix */
0x90 /* nop */
};
static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
{
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
0x4d, 0x01, 0xfb, /* add %r15, %r11 */
0x41, 0xff, 0xe3, /* jmpq *%r11 */
/* 15-byte nop sequence to pad out to the next 32-byte boundary. */
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data16 prefixes */
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
/* Lazy GOT entries point here (32-byte aligned). */
0x68, /* pushq immediate */
0, 0, 0, 0, /* replaced with index into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0, /* replaced with offset to start of .plt0. */
/* 22 bytes of nop to pad out to the standard size. */
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data16 prefixes */
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
};
/* .eh_frame covering the .plt section. */
static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
{
#if (PLT_CIE_LENGTH != 20 \
|| PLT_FDE_LENGTH != 36 \
|| PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
|| PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
# error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
#endif
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
0, 0, 0, 0, /* CIE ID */
1, /* CIE version */
'z', 'R', 0, /* Augmentation string */
1, /* Code alignment factor */
0x78, /* Data alignment factor */
16, /* Return address column */
1, /* Augmentation size */
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
DW_CFA_nop, DW_CFA_nop,
PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
0, 0, 0, 0, /* .plt size goes here */
0, /* Augmentation size */
DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
13, /* Block length */
DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
DW_OP_lit3, DW_OP_shl, DW_OP_plus,
DW_CFA_nop, DW_CFA_nop
};
static const struct elf_x86_64_lazy_plt_layout elf_x86_64_nacl_plt =
{
elf_x86_64_nacl_plt0_entry, /* plt0_entry */
elf_x86_64_nacl_plt_entry, /* plt_entry */
NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
2, /* plt0_got1_offset */
9, /* plt0_got2_offset */
13, /* plt0_got2_insn_end */
3, /* plt_got_offset */
33, /* plt_reloc_offset */
38, /* plt_plt_offset */
7, /* plt_got_insn_size */
42, /* plt_plt_insn_end */
32, /* plt_lazy_offset */
elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
sizeof (elf_x86_64_nacl_eh_frame_plt) /* eh_frame_plt_size */
};
static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
{
is_nacl /* os */
};
#undef elf_backend_arch_data
#define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
#undef elf_backend_object_p
#define elf_backend_object_p elf64_x86_64_nacl_elf_object_p
#undef elf_backend_modify_segment_map
#define elf_backend_modify_segment_map nacl_modify_segment_map
#undef elf_backend_modify_program_headers
#define elf_backend_modify_program_headers nacl_modify_program_headers
#undef elf_backend_final_write_processing
#define elf_backend_final_write_processing nacl_final_write_processing
#include "elf64-target.h"
/* Native Client x32 support. */
static bfd_boolean
elf32_x86_64_nacl_elf_object_p (bfd *abfd)
{
/* Set the right machine number for a NaCl x86-64 ELF32 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32_nacl);
return TRUE;
}
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf32_nacl_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
#undef elf32_bed
#define elf32_bed elf32_x86_64_nacl_bed
#define bfd_elf32_bfd_link_hash_table_create \
elf_x86_64_link_hash_table_create
#define bfd_elf32_bfd_reloc_type_lookup \
elf_x86_64_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup \
elf_x86_64_reloc_name_lookup
#define bfd_elf32_mkobject \
elf_x86_64_mkobject
#define bfd_elf32_get_synthetic_symtab \
elf_x86_64_get_synthetic_symtab
#undef elf_backend_object_p
#define elf_backend_object_p \
elf32_x86_64_nacl_elf_object_p
#undef elf_backend_bfd_from_remote_memory
#define elf_backend_bfd_from_remote_memory \
_bfd_elf32_bfd_from_remote_memory
#undef elf_backend_size_info
#define elf_backend_size_info \
_bfd_elf32_size_info
#include "elf32-target.h"
/* Restore defaults. */
#undef elf_backend_object_p
#define elf_backend_object_p elf64_x86_64_elf_object_p
#undef elf_backend_bfd_from_remote_memory
#undef elf_backend_size_info
#undef elf_backend_modify_segment_map
#undef elf_backend_modify_program_headers
#undef elf_backend_final_write_processing
/* Intel L1OM support. */
static bfd_boolean
elf64_l1om_elf_object_p (bfd *abfd)
{
/* Set the right machine number for an L1OM elf64 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
return TRUE;
}
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM l1om_elf64_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-l1om"
#undef ELF_ARCH
#define ELF_ARCH bfd_arch_l1om
#undef ELF_MACHINE_CODE
#define ELF_MACHINE_CODE EM_L1OM
#undef ELF_OSABI
#undef elf64_bed
#define elf64_bed elf64_l1om_bed
#undef elf_backend_object_p
#define elf_backend_object_p elf64_l1om_elf_object_p
/* Restore defaults. */
#undef ELF_MAXPAGESIZE
#undef ELF_MINPAGESIZE
#undef ELF_COMMONPAGESIZE
#define ELF_MAXPAGESIZE 0x200000
#define ELF_MINPAGESIZE 0x1000
#define ELF_COMMONPAGESIZE 0x1000
#undef elf_backend_plt_alignment
#define elf_backend_plt_alignment 4
#undef elf_backend_arch_data
#define elf_backend_arch_data &elf_x86_64_arch_bed
#include "elf64-target.h"
/* FreeBSD L1OM support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM l1om_elf64_fbsd_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_FREEBSD
#undef elf64_bed
#define elf64_bed elf64_l1om_fbsd_bed
#include "elf64-target.h"
/* Intel K1OM support. */
static bfd_boolean
elf64_k1om_elf_object_p (bfd *abfd)
{
/* Set the right machine number for an K1OM elf64 file. */
bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
return TRUE;
}
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM k1om_elf64_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-k1om"
#undef ELF_ARCH
#define ELF_ARCH bfd_arch_k1om
#undef ELF_MACHINE_CODE
#define ELF_MACHINE_CODE EM_K1OM
#undef ELF_OSABI
#undef elf64_bed
#define elf64_bed elf64_k1om_bed
#undef elf_backend_object_p
#define elf_backend_object_p elf64_k1om_elf_object_p
#undef elf_backend_static_tls_alignment
#undef elf_backend_want_plt_sym
#define elf_backend_want_plt_sym 0
#include "elf64-target.h"
/* FreeBSD K1OM support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM k1om_elf64_fbsd_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
#undef ELF_OSABI
#define ELF_OSABI ELFOSABI_FREEBSD
#undef elf64_bed
#define elf64_bed elf64_k1om_fbsd_bed
#include "elf64-target.h"
/* 32bit x86-64 support. */
#undef TARGET_LITTLE_SYM
#define TARGET_LITTLE_SYM x86_64_elf32_vec
#undef TARGET_LITTLE_NAME
#define TARGET_LITTLE_NAME "elf32-x86-64"
#undef elf32_bed
#undef ELF_ARCH
#define ELF_ARCH bfd_arch_i386
#undef ELF_MACHINE_CODE
#define ELF_MACHINE_CODE EM_X86_64
#undef ELF_OSABI
#undef elf_backend_object_p
#define elf_backend_object_p \
elf32_x86_64_elf_object_p
#undef elf_backend_bfd_from_remote_memory
#define elf_backend_bfd_from_remote_memory \
_bfd_elf32_bfd_from_remote_memory
#undef elf_backend_size_info
#define elf_backend_size_info \
_bfd_elf32_size_info
#include "elf32-target.h"