mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 18:14:13 +08:00
eb4c3f4aaa
This constifies the add_setshow_* family of functions, and then fixes up the fallout. The bulk of this patch was written by script. gdb/ChangeLog 2017-11-07 Tom Tromey <tom@tromey.com> * ada-lang.c (catch_ada_exception_command): Constify. (catch_assert_command): Constify. * break-catch-throw.c (catch_catch_command, catch_throw_command) (catch_rethrow_command): Constify. (catch_exception_command_1): Constify. * breakpoint.h (add_catch_command): Constify. * break-catch-syscall.c (catch_syscall_command_1): Constify. (catch_syscall_split_args): Constify. * break-catch-sig.c (catch_signal_command): Constify. (catch_signal_split_args): Constify. * cli/cli-decode.h (struct cmd_list_element) <function>: Use cmd_const_sfunc_ftype. * cli/cli-decode.c (add_setshow_cmd_full): Constify. (add_setshow_enum_cmd, add_setshow_auto_boolean_cmd) (add_setshow_boolean_cmd, add_setshow_filename_cmd) (add_setshow_string_cmd, struct cmd_list_element) (add_setshow_optional_filename_cmd, add_setshow_integer_cmd) (add_setshow_uinteger_cmd, add_setshow_zinteger_cmd) (add_setshow_zuinteger_unlimited_cmd, add_setshow_zuinteger_cmd): Constify. (set_cmd_sfunc): Constify. (empty_sfunc): Constify. * command.h (add_setshow_enum_cmd, add_setshow_auto_boolean_cmd) (add_setshow_boolean_cmd, add_setshow_filename_cmd) (add_setshow_string_cmd, add_setshow_string_noescape_cmd) (add_setshow_optional_filename_cmd, add_setshow_integer_cmd) (add_setshow_uinteger_cmd, add_setshow_zinteger_cmd) (add_setshow_zuinteger_cmd, add_setshow_zuinteger_unlimited_cmd): Constify. (set_cmd_sfunc): Constify. (cmd_sfunc_ftype): Remove. * compile/compile.c (set_compile_args): Constify. * infrun.c (set_disable_randomization): Constify. * infcmd.c (set_args_command, set_cwd_command): Constify. * breakpoint.c (set_condition_evaluation_mode): Constify. (add_catch_command): Constify. (catch_fork_command_1, catch_exec_command_1) (catch_load_command_1, catch_unload_command_1): Constify. (catch_load_or_unload): Constify. * guile/scm-param.c (pascm_set_func): Constify. (add_setshow_generic): Constify. * python/py-param.c (get_set_value): Constify. * top.h (set_verbose): Constify. * tui/tui-win.c (tui_set_var_cmd): Constify. * mi/mi-main.c (set_mi_async_command): Constify. * cli/cli-logging.c (set_logging_overwrite) (set_logging_redirect): Constify. * value.c (set_max_value_size): Constify. * valprint.c (set_input_radix, set_output_radix): Constify. * utils.c (set_width_command, set_height_command): Constify. * typeprint.c (set_print_type_methods, set_print_type_typedefs): Constify. * tracepoint.c (set_disconnected_tracing) (set_circular_trace_buffer, set_trace_buffer_size) (set_trace_user, set_trace_notes, set_trace_stop_notes): Constify. * top.c (set_history_size_command, set_verbose, set_editing) (set_gdb_datadir, set_history_filename): Constify. * target.c (set_targetdebug, maint_set_target_async_command) (maint_set_target_non_stop_command, set_target_permissions) (set_write_memory_permission): Constify. (open_target): Constify. * target-descriptions.c (set_tdesc_filename_cmd): Constify. * target-dcache.c (set_stack_cache, set_code_cache): Constify. * symtab.c (set_symbol_cache_size_handler): Constify. * symfile.c (set_ext_lang_command): Constify. * symfile-debug.c (set_debug_symfile): Constify. * source.c (set_directories_command): Constify. * solib.c (reload_shared_libraries, gdb_sysroot_changed): Constify. * serial.c (set_parity): Constify. * rs6000-tdep.c (powerpc_set_soft_float, powerpc_set_vector_abi): Constify. * remote.c (set_remote_exec_file, set_remotebreak) (set_remote_protocol_Z_packet_cmd, set_range_stepping): Constify. * record.c (set_record_insn_history_size) (set_record_call_history_size): Constify. * record-full.c (set_record_full_insn_max_num): Constify. * proc-api.c (set_procfs_trace_cmd, set_procfs_file_cmd): Constify. * osabi.c (set_osabi): Constify. * mips-tdep.c (set_mips64_transfers_32bit_regs) (reinit_frame_cache_sfunc, mips_abi_update): Constify. * maint.c (maintenance_set_profile_cmd): Constify. * linux-thread-db.c (set_libthread_db_search_path): Constify. * language.c (set_language_command, set_range_command) (set_case_command): Constify. * infrun.c (set_non_stop, set_observer_mode) (set_stop_on_solib_events, set_schedlock_func) (set_exec_direction_func): Constify. * infcmd.c (set_inferior_tty_command): Constify. * disasm.c (set_disassembler_options_sfunc): Constify. * demangle.c (set_demangling_command): Constify. * dcache.c (set_dcache_size, set_dcache_line_size): Constify. * cris-tdep.c (set_cris_version, set_cris_mode) (set_cris_dwarf2_cfi): Constify. * corefile.c (set_gnutarget_command): Constify. * charset.c (set_host_charset_sfunc, set_target_charset_sfunc) (set_target_wide_charset_sfunc): Constify. * breakpoint.c (update_dprintf_commands): Constify. * auto-load.c (set_auto_load_dir, set_auto_load_safe_path): Constify. * arm-tdep.c (set_fp_model_sfunc, arm_set_abi) (set_disassembly_style_sfunc): Constify. * arch-utils.c (set_endian, set_architecture): Constify. * alpha-tdep.c (reinit_frame_cache_sfunc): Constify. * agent.c (set_can_use_agent): Constify.
4144 lines
108 KiB
C
4144 lines
108 KiB
C
/* Select target systems and architectures at runtime for GDB.
|
||
|
||
Copyright (C) 1990-2017 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "target.h"
|
||
#include "target-dcache.h"
|
||
#include "gdbcmd.h"
|
||
#include "symtab.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "dcache.h"
|
||
#include <signal.h>
|
||
#include "regcache.h"
|
||
#include "gdbcore.h"
|
||
#include "target-descriptions.h"
|
||
#include "gdbthread.h"
|
||
#include "solib.h"
|
||
#include "exec.h"
|
||
#include "inline-frame.h"
|
||
#include "tracepoint.h"
|
||
#include "gdb/fileio.h"
|
||
#include "agent.h"
|
||
#include "auxv.h"
|
||
#include "target-debug.h"
|
||
#include "top.h"
|
||
#include "event-top.h"
|
||
#include <algorithm>
|
||
#include "byte-vector.h"
|
||
|
||
static void generic_tls_error (void) ATTRIBUTE_NORETURN;
|
||
|
||
static void default_terminal_info (struct target_ops *, const char *, int);
|
||
|
||
static int default_watchpoint_addr_within_range (struct target_ops *,
|
||
CORE_ADDR, CORE_ADDR, int);
|
||
|
||
static int default_region_ok_for_hw_watchpoint (struct target_ops *,
|
||
CORE_ADDR, int);
|
||
|
||
static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
|
||
|
||
static ptid_t default_get_ada_task_ptid (struct target_ops *self,
|
||
long lwp, long tid);
|
||
|
||
static int default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork);
|
||
|
||
static void default_mourn_inferior (struct target_ops *self);
|
||
|
||
static int default_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr,
|
||
ULONGEST search_space_len,
|
||
const gdb_byte *pattern,
|
||
ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp);
|
||
|
||
static int default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data,
|
||
CORE_ADDR memaddr, ULONGEST size);
|
||
|
||
static struct address_space *default_thread_address_space
|
||
(struct target_ops *self, ptid_t ptid);
|
||
|
||
static void tcomplain (void) ATTRIBUTE_NORETURN;
|
||
|
||
static int return_zero (struct target_ops *);
|
||
|
||
static int return_zero_has_execution (struct target_ops *, ptid_t);
|
||
|
||
static struct target_ops *find_default_run_target (const char *);
|
||
|
||
static struct gdbarch *default_thread_architecture (struct target_ops *ops,
|
||
ptid_t ptid);
|
||
|
||
static int dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1,
|
||
void *ignore2);
|
||
|
||
static char *dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2);
|
||
|
||
static const char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
|
||
|
||
static enum exec_direction_kind default_execution_direction
|
||
(struct target_ops *self);
|
||
|
||
static struct target_ops debug_target;
|
||
|
||
#include "target-delegates.c"
|
||
|
||
static void init_dummy_target (void);
|
||
|
||
static void update_current_target (void);
|
||
|
||
/* Vector of existing target structures. */
|
||
typedef struct target_ops *target_ops_p;
|
||
DEF_VEC_P (target_ops_p);
|
||
static VEC (target_ops_p) *target_structs;
|
||
|
||
/* The initial current target, so that there is always a semi-valid
|
||
current target. */
|
||
|
||
static struct target_ops dummy_target;
|
||
|
||
/* Top of target stack. */
|
||
|
||
static struct target_ops *target_stack;
|
||
|
||
/* The target structure we are currently using to talk to a process
|
||
or file or whatever "inferior" we have. */
|
||
|
||
struct target_ops current_target;
|
||
|
||
/* Command list for target. */
|
||
|
||
static struct cmd_list_element *targetlist = NULL;
|
||
|
||
/* Nonzero if we should trust readonly sections from the
|
||
executable when reading memory. */
|
||
|
||
static int trust_readonly = 0;
|
||
|
||
/* Nonzero if we should show true memory content including
|
||
memory breakpoint inserted by gdb. */
|
||
|
||
static int show_memory_breakpoints = 0;
|
||
|
||
/* These globals control whether GDB attempts to perform these
|
||
operations; they are useful for targets that need to prevent
|
||
inadvertant disruption, such as in non-stop mode. */
|
||
|
||
int may_write_registers = 1;
|
||
|
||
int may_write_memory = 1;
|
||
|
||
int may_insert_breakpoints = 1;
|
||
|
||
int may_insert_tracepoints = 1;
|
||
|
||
int may_insert_fast_tracepoints = 1;
|
||
|
||
int may_stop = 1;
|
||
|
||
/* Non-zero if we want to see trace of target level stuff. */
|
||
|
||
static unsigned int targetdebug = 0;
|
||
|
||
static void
|
||
set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
update_current_target ();
|
||
}
|
||
|
||
static void
|
||
show_targetdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Target debugging is %s.\n"), value);
|
||
}
|
||
|
||
static void setup_target_debug (void);
|
||
|
||
/* The user just typed 'target' without the name of a target. */
|
||
|
||
static void
|
||
target_command (const char *arg, int from_tty)
|
||
{
|
||
fputs_filtered ("Argument required (target name). Try `help target'\n",
|
||
gdb_stdout);
|
||
}
|
||
|
||
/* Default target_has_* methods for process_stratum targets. */
|
||
|
||
int
|
||
default_child_has_all_memory (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, then we can't read memory here. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_memory (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, then we can't read memory here. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_stack (struct target_ops *ops)
|
||
{
|
||
/* If no inferior selected, there's no stack. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_registers (struct target_ops *ops)
|
||
{
|
||
/* Can't read registers from no inferior. */
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
|
||
{
|
||
/* If there's no thread selected, then we can't make it run through
|
||
hoops. */
|
||
if (ptid_equal (the_ptid, null_ptid))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
int
|
||
target_has_all_memory_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_all_memory (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_memory_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_memory (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_stack_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_stack (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_registers_1 (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_registers (t))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_execution_1 (ptid_t the_ptid)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_has_execution (t, the_ptid))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_execution_current (void)
|
||
{
|
||
return target_has_execution_1 (inferior_ptid);
|
||
}
|
||
|
||
/* Complete initialization of T. This ensures that various fields in
|
||
T are set, if needed by the target implementation. */
|
||
|
||
void
|
||
complete_target_initialization (struct target_ops *t)
|
||
{
|
||
/* Provide default values for all "must have" methods. */
|
||
|
||
if (t->to_has_all_memory == NULL)
|
||
t->to_has_all_memory = return_zero;
|
||
|
||
if (t->to_has_memory == NULL)
|
||
t->to_has_memory = return_zero;
|
||
|
||
if (t->to_has_stack == NULL)
|
||
t->to_has_stack = return_zero;
|
||
|
||
if (t->to_has_registers == NULL)
|
||
t->to_has_registers = return_zero;
|
||
|
||
if (t->to_has_execution == NULL)
|
||
t->to_has_execution = return_zero_has_execution;
|
||
|
||
/* These methods can be called on an unpushed target and so require
|
||
a default implementation if the target might plausibly be the
|
||
default run target. */
|
||
gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
|
||
&& t->to_supports_non_stop != NULL));
|
||
|
||
install_delegators (t);
|
||
}
|
||
|
||
/* This is used to implement the various target commands. */
|
||
|
||
static void
|
||
open_target (const char *args, int from_tty, struct cmd_list_element *command)
|
||
{
|
||
struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
|
||
ops->to_shortname);
|
||
|
||
ops->to_open (args, from_tty);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
|
||
ops->to_shortname, args, from_tty);
|
||
}
|
||
|
||
/* Add possible target architecture T to the list and add a new
|
||
command 'target T->to_shortname'. Set COMPLETER as the command's
|
||
completer if not NULL. */
|
||
|
||
void
|
||
add_target_with_completer (struct target_ops *t,
|
||
completer_ftype *completer)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
complete_target_initialization (t);
|
||
|
||
VEC_safe_push (target_ops_p, target_structs, t);
|
||
|
||
if (targetlist == NULL)
|
||
add_prefix_cmd ("target", class_run, target_command, _("\
|
||
Connect to a target machine or process.\n\
|
||
The first argument is the type or protocol of the target machine.\n\
|
||
Remaining arguments are interpreted by the target protocol. For more\n\
|
||
information on the arguments for a particular protocol, type\n\
|
||
`help target ' followed by the protocol name."),
|
||
&targetlist, "target ", 0, &cmdlist);
|
||
c = add_cmd (t->to_shortname, no_class, t->to_doc, &targetlist);
|
||
set_cmd_sfunc (c, open_target);
|
||
set_cmd_context (c, t);
|
||
if (completer != NULL)
|
||
set_cmd_completer (c, completer);
|
||
}
|
||
|
||
/* Add a possible target architecture to the list. */
|
||
|
||
void
|
||
add_target (struct target_ops *t)
|
||
{
|
||
add_target_with_completer (t, NULL);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_deprecated_target_alias (struct target_ops *t, const char *alias)
|
||
{
|
||
struct cmd_list_element *c;
|
||
char *alt;
|
||
|
||
/* If we use add_alias_cmd, here, we do not get the deprecated warning,
|
||
see PR cli/15104. */
|
||
c = add_cmd (alias, no_class, t->to_doc, &targetlist);
|
||
set_cmd_sfunc (c, open_target);
|
||
set_cmd_context (c, t);
|
||
alt = xstrprintf ("target %s", t->to_shortname);
|
||
deprecate_cmd (c, alt);
|
||
}
|
||
|
||
/* Stub functions */
|
||
|
||
void
|
||
target_kill (void)
|
||
{
|
||
current_target.to_kill (¤t_target);
|
||
}
|
||
|
||
void
|
||
target_load (const char *arg, int from_tty)
|
||
{
|
||
target_dcache_invalidate ();
|
||
(*current_target.to_load) (¤t_target, arg, from_tty);
|
||
}
|
||
|
||
/* Define it. */
|
||
|
||
enum target_terminal::terminal_state target_terminal::terminal_state
|
||
= target_terminal::terminal_is_ours;
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::init (void)
|
||
{
|
||
(*current_target.to_terminal_init) (¤t_target);
|
||
|
||
terminal_state = terminal_is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::inferior (void)
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* A background resume (``run&'') should leave GDB in control of the
|
||
terminal. */
|
||
if (ui->prompt_state != PROMPT_BLOCKED)
|
||
return;
|
||
|
||
/* Since we always run the inferior in the main console (unless "set
|
||
inferior-tty" is in effect), when some UI other than the main one
|
||
calls target_terminal::inferior, then we leave the main UI's
|
||
terminal settings as is. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (terminal_state == terminal_is_inferior)
|
||
return;
|
||
|
||
/* If GDB is resuming the inferior in the foreground, install
|
||
inferior's terminal modes. */
|
||
(*current_target.to_terminal_inferior) (¤t_target);
|
||
terminal_state = terminal_is_inferior;
|
||
|
||
/* If the user hit C-c before, pretend that it was hit right
|
||
here. */
|
||
if (check_quit_flag ())
|
||
target_pass_ctrlc ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (terminal_state == terminal_is_ours)
|
||
return;
|
||
|
||
(*current_target.to_terminal_ours) (¤t_target);
|
||
terminal_state = terminal_is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours_for_output ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (terminal_state != terminal_is_inferior)
|
||
return;
|
||
(*current_target.to_terminal_ours_for_output) (¤t_target);
|
||
terminal_state = terminal_is_ours_for_output;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::info (const char *arg, int from_tty)
|
||
{
|
||
(*current_target.to_terminal_info) (¤t_target, arg, from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_terminal_ours (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_terminal_ours != delegate_terminal_ours
|
||
&& t->to_terminal_ours != tdefault_terminal_ours)
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
tcomplain (void)
|
||
{
|
||
error (_("You can't do that when your target is `%s'"),
|
||
current_target.to_shortname);
|
||
}
|
||
|
||
void
|
||
noprocess (void)
|
||
{
|
||
error (_("You can't do that without a process to debug."));
|
||
}
|
||
|
||
static void
|
||
default_terminal_info (struct target_ops *self, const char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("No saved terminal information.\n"));
|
||
}
|
||
|
||
/* A default implementation for the to_get_ada_task_ptid target method.
|
||
|
||
This function builds the PTID by using both LWP and TID as part of
|
||
the PTID lwp and tid elements. The pid used is the pid of the
|
||
inferior_ptid. */
|
||
|
||
static ptid_t
|
||
default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
|
||
{
|
||
return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
|
||
}
|
||
|
||
static enum exec_direction_kind
|
||
default_execution_direction (struct target_ops *self)
|
||
{
|
||
if (!target_can_execute_reverse)
|
||
return EXEC_FORWARD;
|
||
else if (!target_can_async_p ())
|
||
return EXEC_FORWARD;
|
||
else
|
||
gdb_assert_not_reached ("\
|
||
to_execution_direction must be implemented for reverse async");
|
||
}
|
||
|
||
/* Go through the target stack from top to bottom, copying over zero
|
||
entries in current_target, then filling in still empty entries. In
|
||
effect, we are doing class inheritance through the pushed target
|
||
vectors.
|
||
|
||
NOTE: cagney/2003-10-17: The problem with this inheritance, as it
|
||
is currently implemented, is that it discards any knowledge of
|
||
which target an inherited method originally belonged to.
|
||
Consequently, new new target methods should instead explicitly and
|
||
locally search the target stack for the target that can handle the
|
||
request. */
|
||
|
||
static void
|
||
update_current_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* First, reset current's contents. */
|
||
memset (¤t_target, 0, sizeof (current_target));
|
||
|
||
/* Install the delegators. */
|
||
install_delegators (¤t_target);
|
||
|
||
current_target.to_stratum = target_stack->to_stratum;
|
||
|
||
#define INHERIT(FIELD, TARGET) \
|
||
if (!current_target.FIELD) \
|
||
current_target.FIELD = (TARGET)->FIELD
|
||
|
||
/* Do not add any new INHERITs here. Instead, use the delegation
|
||
mechanism provided by make-target-delegates. */
|
||
for (t = target_stack; t; t = t->beneath)
|
||
{
|
||
INHERIT (to_shortname, t);
|
||
INHERIT (to_longname, t);
|
||
INHERIT (to_attach_no_wait, t);
|
||
INHERIT (to_have_steppable_watchpoint, t);
|
||
INHERIT (to_have_continuable_watchpoint, t);
|
||
INHERIT (to_has_thread_control, t);
|
||
}
|
||
#undef INHERIT
|
||
|
||
/* Finally, position the target-stack beneath the squashed
|
||
"current_target". That way code looking for a non-inherited
|
||
target method can quickly and simply find it. */
|
||
current_target.beneath = target_stack;
|
||
|
||
if (targetdebug)
|
||
setup_target_debug ();
|
||
}
|
||
|
||
/* Push a new target type into the stack of the existing target accessors,
|
||
possibly superseding some of the existing accessors.
|
||
|
||
Rather than allow an empty stack, we always have the dummy target at
|
||
the bottom stratum, so we can call the function vectors without
|
||
checking them. */
|
||
|
||
void
|
||
push_target (struct target_ops *t)
|
||
{
|
||
struct target_ops **cur;
|
||
|
||
/* Check magic number. If wrong, it probably means someone changed
|
||
the struct definition, but not all the places that initialize one. */
|
||
if (t->to_magic != OPS_MAGIC)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Magic number of %s target struct wrong\n",
|
||
t->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
|
||
/* Find the proper stratum to install this target in. */
|
||
for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
|
||
{
|
||
if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
|
||
break;
|
||
}
|
||
|
||
/* If there's already targets at this stratum, remove them. */
|
||
/* FIXME: cagney/2003-10-15: I think this should be popping all
|
||
targets to CUR, and not just those at this stratum level. */
|
||
while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
|
||
{
|
||
/* There's already something at this stratum level. Close it,
|
||
and un-hook it from the stack. */
|
||
struct target_ops *tmp = (*cur);
|
||
|
||
(*cur) = (*cur)->beneath;
|
||
tmp->beneath = NULL;
|
||
target_close (tmp);
|
||
}
|
||
|
||
/* We have removed all targets in our stratum, now add the new one. */
|
||
t->beneath = (*cur);
|
||
(*cur) = t;
|
||
|
||
update_current_target ();
|
||
}
|
||
|
||
/* Remove a target_ops vector from the stack, wherever it may be.
|
||
Return how many times it was removed (0 or 1). */
|
||
|
||
int
|
||
unpush_target (struct target_ops *t)
|
||
{
|
||
struct target_ops **cur;
|
||
struct target_ops *tmp;
|
||
|
||
if (t->to_stratum == dummy_stratum)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Attempt to unpush the dummy target"));
|
||
|
||
/* Look for the specified target. Note that we assume that a target
|
||
can only occur once in the target stack. */
|
||
|
||
for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
|
||
{
|
||
if ((*cur) == t)
|
||
break;
|
||
}
|
||
|
||
/* If we don't find target_ops, quit. Only open targets should be
|
||
closed. */
|
||
if ((*cur) == NULL)
|
||
return 0;
|
||
|
||
/* Unchain the target. */
|
||
tmp = (*cur);
|
||
(*cur) = (*cur)->beneath;
|
||
tmp->beneath = NULL;
|
||
|
||
update_current_target ();
|
||
|
||
/* Finally close the target. Note we do this after unchaining, so
|
||
any target method calls from within the target_close
|
||
implementation don't end up in T anymore. */
|
||
target_close (t);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Unpush TARGET and assert that it worked. */
|
||
|
||
static void
|
||
unpush_target_and_assert (struct target_ops *target)
|
||
{
|
||
if (!unpush_target (target))
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"pop_all_targets couldn't find target %s\n",
|
||
target->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
}
|
||
|
||
void
|
||
pop_all_targets_above (enum strata above_stratum)
|
||
{
|
||
while ((int) (current_target.to_stratum) > (int) above_stratum)
|
||
unpush_target_and_assert (target_stack);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
pop_all_targets_at_and_above (enum strata stratum)
|
||
{
|
||
while ((int) (current_target.to_stratum) >= (int) stratum)
|
||
unpush_target_and_assert (target_stack);
|
||
}
|
||
|
||
void
|
||
pop_all_targets (void)
|
||
{
|
||
pop_all_targets_above (dummy_stratum);
|
||
}
|
||
|
||
/* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
|
||
|
||
int
|
||
target_is_pushed (struct target_ops *t)
|
||
{
|
||
struct target_ops *cur;
|
||
|
||
/* Check magic number. If wrong, it probably means someone changed
|
||
the struct definition, but not all the places that initialize one. */
|
||
if (t->to_magic != OPS_MAGIC)
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Magic number of %s target struct wrong\n",
|
||
t->to_shortname);
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
|
||
for (cur = target_stack; cur != NULL; cur = cur->beneath)
|
||
if (cur == t)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Default implementation of to_get_thread_local_address. */
|
||
|
||
static void
|
||
generic_tls_error (void)
|
||
{
|
||
throw_error (TLS_GENERIC_ERROR,
|
||
_("Cannot find thread-local variables on this target"));
|
||
}
|
||
|
||
/* Using the objfile specified in OBJFILE, find the address for the
|
||
current thread's thread-local storage with offset OFFSET. */
|
||
CORE_ADDR
|
||
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
|
||
{
|
||
volatile CORE_ADDR addr = 0;
|
||
struct target_ops *target = ¤t_target;
|
||
|
||
if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
|
||
{
|
||
ptid_t ptid = inferior_ptid;
|
||
|
||
TRY
|
||
{
|
||
CORE_ADDR lm_addr;
|
||
|
||
/* Fetch the load module address for this objfile. */
|
||
lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
|
||
objfile);
|
||
|
||
addr = target->to_get_thread_local_address (target, ptid,
|
||
lm_addr, offset);
|
||
}
|
||
/* If an error occurred, print TLS related messages here. Otherwise,
|
||
throw the error to some higher catcher. */
|
||
CATCH (ex, RETURN_MASK_ALL)
|
||
{
|
||
int objfile_is_library = (objfile->flags & OBJF_SHARED);
|
||
|
||
switch (ex.error)
|
||
{
|
||
case TLS_NO_LIBRARY_SUPPORT_ERROR:
|
||
error (_("Cannot find thread-local variables "
|
||
"in this thread library."));
|
||
break;
|
||
case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find shared library `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
else
|
||
error (_("Cannot find executable file `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
break;
|
||
case TLS_NOT_ALLOCATED_YET_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the shared library `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile), target_pid_to_str (ptid));
|
||
else
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the executable `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile), target_pid_to_str (ptid));
|
||
break;
|
||
case TLS_GENERIC_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"shared library %s:\n%s"),
|
||
target_pid_to_str (ptid),
|
||
objfile_name (objfile), ex.message);
|
||
else
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"executable file %s:\n%s"),
|
||
target_pid_to_str (ptid),
|
||
objfile_name (objfile), ex.message);
|
||
break;
|
||
default:
|
||
throw_exception (ex);
|
||
break;
|
||
}
|
||
}
|
||
END_CATCH
|
||
}
|
||
/* It wouldn't be wrong here to try a gdbarch method, too; finding
|
||
TLS is an ABI-specific thing. But we don't do that yet. */
|
||
else
|
||
error (_("Cannot find thread-local variables on this target"));
|
||
|
||
return addr;
|
||
}
|
||
|
||
const char *
|
||
target_xfer_status_to_string (enum target_xfer_status status)
|
||
{
|
||
#define CASE(X) case X: return #X
|
||
switch (status)
|
||
{
|
||
CASE(TARGET_XFER_E_IO);
|
||
CASE(TARGET_XFER_UNAVAILABLE);
|
||
default:
|
||
return "<unknown>";
|
||
}
|
||
#undef CASE
|
||
};
|
||
|
||
|
||
#undef MIN
|
||
#define MIN(A, B) (((A) <= (B)) ? (A) : (B))
|
||
|
||
/* target_read_string -- read a null terminated string, up to LEN bytes,
|
||
from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
|
||
Set *STRING to a pointer to malloc'd memory containing the data; the caller
|
||
is responsible for freeing it. Return the number of bytes successfully
|
||
read. */
|
||
|
||
int
|
||
target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
|
||
{
|
||
int tlen, offset, i;
|
||
gdb_byte buf[4];
|
||
int errcode = 0;
|
||
char *buffer;
|
||
int buffer_allocated;
|
||
char *bufptr;
|
||
unsigned int nbytes_read = 0;
|
||
|
||
gdb_assert (string);
|
||
|
||
/* Small for testing. */
|
||
buffer_allocated = 4;
|
||
buffer = (char *) xmalloc (buffer_allocated);
|
||
bufptr = buffer;
|
||
|
||
while (len > 0)
|
||
{
|
||
tlen = MIN (len, 4 - (memaddr & 3));
|
||
offset = memaddr & 3;
|
||
|
||
errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
|
||
if (errcode != 0)
|
||
{
|
||
/* The transfer request might have crossed the boundary to an
|
||
unallocated region of memory. Retry the transfer, requesting
|
||
a single byte. */
|
||
tlen = 1;
|
||
offset = 0;
|
||
errcode = target_read_memory (memaddr, buf, 1);
|
||
if (errcode != 0)
|
||
goto done;
|
||
}
|
||
|
||
if (bufptr - buffer + tlen > buffer_allocated)
|
||
{
|
||
unsigned int bytes;
|
||
|
||
bytes = bufptr - buffer;
|
||
buffer_allocated *= 2;
|
||
buffer = (char *) xrealloc (buffer, buffer_allocated);
|
||
bufptr = buffer + bytes;
|
||
}
|
||
|
||
for (i = 0; i < tlen; i++)
|
||
{
|
||
*bufptr++ = buf[i + offset];
|
||
if (buf[i + offset] == '\000')
|
||
{
|
||
nbytes_read += i + 1;
|
||
goto done;
|
||
}
|
||
}
|
||
|
||
memaddr += tlen;
|
||
len -= tlen;
|
||
nbytes_read += tlen;
|
||
}
|
||
done:
|
||
*string = buffer;
|
||
if (errnop != NULL)
|
||
*errnop = errcode;
|
||
return nbytes_read;
|
||
}
|
||
|
||
struct target_section_table *
|
||
target_get_section_table (struct target_ops *target)
|
||
{
|
||
return (*target->to_get_section_table) (target);
|
||
}
|
||
|
||
/* Find a section containing ADDR. */
|
||
|
||
struct target_section *
|
||
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
|
||
{
|
||
struct target_section_table *table = target_get_section_table (target);
|
||
struct target_section *secp;
|
||
|
||
if (table == NULL)
|
||
return NULL;
|
||
|
||
for (secp = table->sections; secp < table->sections_end; secp++)
|
||
{
|
||
if (addr >= secp->addr && addr < secp->endaddr)
|
||
return secp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/* Helper for the memory xfer routines. Checks the attributes of the
|
||
memory region of MEMADDR against the read or write being attempted.
|
||
If the access is permitted returns true, otherwise returns false.
|
||
REGION_P is an optional output parameter. If not-NULL, it is
|
||
filled with a pointer to the memory region of MEMADDR. REG_LEN
|
||
returns LEN trimmed to the end of the region. This is how much the
|
||
caller can continue requesting, if the access is permitted. A
|
||
single xfer request must not straddle memory region boundaries. */
|
||
|
||
static int
|
||
memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
|
||
struct mem_region **region_p)
|
||
{
|
||
struct mem_region *region;
|
||
|
||
region = lookup_mem_region (memaddr);
|
||
|
||
if (region_p != NULL)
|
||
*region_p = region;
|
||
|
||
switch (region->attrib.mode)
|
||
{
|
||
case MEM_RO:
|
||
if (writebuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_WO:
|
||
if (readbuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_FLASH:
|
||
/* We only support writing to flash during "load" for now. */
|
||
if (writebuf != NULL)
|
||
error (_("Writing to flash memory forbidden in this context"));
|
||
break;
|
||
|
||
case MEM_NONE:
|
||
return 0;
|
||
}
|
||
|
||
/* region->hi == 0 means there's no upper bound. */
|
||
if (memaddr + len < region->hi || region->hi == 0)
|
||
*reg_len = len;
|
||
else
|
||
*reg_len = region->hi - memaddr;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read memory from more than one valid target. A core file, for
|
||
instance, could have some of memory but delegate other bits to
|
||
the target below it. So, we must manually try all targets. */
|
||
|
||
enum target_xfer_status
|
||
raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
do
|
||
{
|
||
res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
readbuf, writebuf, memaddr, len,
|
||
xfered_len);
|
||
if (res == TARGET_XFER_OK)
|
||
break;
|
||
|
||
/* Stop if the target reports that the memory is not available. */
|
||
if (res == TARGET_XFER_UNAVAILABLE)
|
||
break;
|
||
|
||
/* We want to continue past core files to executables, but not
|
||
past a running target's memory. */
|
||
if (ops->to_has_all_memory (ops))
|
||
break;
|
||
|
||
ops = ops->beneath;
|
||
}
|
||
while (ops != NULL);
|
||
|
||
/* The cache works at the raw memory level. Make sure the cache
|
||
gets updated with raw contents no matter what kind of memory
|
||
object was originally being written. Note we do write-through
|
||
first, so that if it fails, we don't write to the cache contents
|
||
that never made it to the target. */
|
||
if (writebuf != NULL
|
||
&& !ptid_equal (inferior_ptid, null_ptid)
|
||
&& target_dcache_init_p ()
|
||
&& (stack_cache_enabled_p () || code_cache_enabled_p ()))
|
||
{
|
||
DCACHE *dcache = target_dcache_get ();
|
||
|
||
/* Note that writing to an area of memory which wasn't present
|
||
in the cache doesn't cause it to be loaded in. */
|
||
dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer.
|
||
For docs see target.h, to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
|
||
ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
ULONGEST reg_len;
|
||
struct mem_region *region;
|
||
struct inferior *inf;
|
||
|
||
/* For accesses to unmapped overlay sections, read directly from
|
||
files. Must do this first, as MEMADDR may need adjustment. */
|
||
if (readbuf != NULL && overlay_debugging)
|
||
{
|
||
struct obj_section *section = find_pc_overlay (memaddr);
|
||
|
||
if (pc_in_unmapped_range (memaddr, section))
|
||
{
|
||
struct target_section_table *table
|
||
= target_get_section_table (ops);
|
||
const char *section_name = section->the_bfd_section->name;
|
||
|
||
memaddr = overlay_mapped_address (memaddr, section);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
section_name);
|
||
}
|
||
}
|
||
|
||
/* Try the executable files, if "trust-readonly-sections" is set. */
|
||
if (readbuf != NULL && trust_readonly)
|
||
{
|
||
struct target_section *secp;
|
||
struct target_section_table *table;
|
||
|
||
secp = target_section_by_addr (ops, memaddr);
|
||
if (secp != NULL
|
||
&& (bfd_get_section_flags (secp->the_bfd_section->owner,
|
||
secp->the_bfd_section)
|
||
& SEC_READONLY))
|
||
{
|
||
table = target_get_section_table (ops);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
table->sections,
|
||
table->sections_end,
|
||
NULL);
|
||
}
|
||
}
|
||
|
||
/* Try GDB's internal data cache. */
|
||
|
||
if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
|
||
®ion))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
if (!ptid_equal (inferior_ptid, null_ptid))
|
||
inf = find_inferior_ptid (inferior_ptid);
|
||
else
|
||
inf = NULL;
|
||
|
||
if (inf != NULL
|
||
&& readbuf != NULL
|
||
/* The dcache reads whole cache lines; that doesn't play well
|
||
with reading from a trace buffer, because reading outside of
|
||
the collected memory range fails. */
|
||
&& get_traceframe_number () == -1
|
||
&& (region->attrib.cache
|
||
|| (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
|
||
|| (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
|
||
{
|
||
DCACHE *dcache = target_dcache_get_or_init ();
|
||
|
||
return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
|
||
reg_len, xfered_len);
|
||
}
|
||
|
||
/* If none of those methods found the memory we wanted, fall back
|
||
to a target partial transfer. Normally a single call to
|
||
to_xfer_partial is enough; if it doesn't recognize an object
|
||
it will call the to_xfer_partial of the next target down.
|
||
But for memory this won't do. Memory is the only target
|
||
object which can be read from more than one valid target.
|
||
A core file, for instance, could have some of memory but
|
||
delegate other bits to the target below it. So, we must
|
||
manually try all targets. */
|
||
|
||
res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
|
||
xfered_len);
|
||
|
||
/* If we still haven't got anything, return the last error. We
|
||
give up. */
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer. For docs see target.h,
|
||
to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
/* Zero length requests are ok and require no work. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
/* Fill in READBUF with breakpoint shadows, or WRITEBUF with
|
||
breakpoint insns, thus hiding out from higher layers whether
|
||
there are software breakpoints inserted in the code stream. */
|
||
if (readbuf != NULL)
|
||
{
|
||
res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
|
||
xfered_len);
|
||
|
||
if (res == TARGET_XFER_OK && !show_memory_breakpoints)
|
||
breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
|
||
}
|
||
else
|
||
{
|
||
/* A large write request is likely to be partially satisfied
|
||
by memory_xfer_partial_1. We will continually malloc
|
||
and free a copy of the entire write request for breakpoint
|
||
shadow handling even though we only end up writing a small
|
||
subset of it. Cap writes to a limit specified by the target
|
||
to mitigate this. */
|
||
len = std::min (ops->to_get_memory_xfer_limit (ops), len);
|
||
|
||
gdb::byte_vector buf (writebuf, writebuf + len);
|
||
breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
|
||
res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
|
||
xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_restore_show_memory_breakpoints (int show)
|
||
{
|
||
return make_scoped_restore (&show_memory_breakpoints, show);
|
||
}
|
||
|
||
/* For docs see target.h, to_xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
target_xfer_partial (struct target_ops *ops,
|
||
enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status retval;
|
||
|
||
gdb_assert (ops->to_xfer_partial != NULL);
|
||
|
||
/* Transfer is done when LEN is zero. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
if (writebuf && !may_write_memory)
|
||
error (_("Writing to memory is not allowed (addr %s, len %s)"),
|
||
core_addr_to_string_nz (offset), plongest (len));
|
||
|
||
*xfered_len = 0;
|
||
|
||
/* If this is a memory transfer, let the memory-specific code
|
||
have a look at it instead. Memory transfers are more
|
||
complicated. */
|
||
if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY)
|
||
retval = memory_xfer_partial (ops, object, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
else if (object == TARGET_OBJECT_RAW_MEMORY)
|
||
{
|
||
/* Skip/avoid accessing the target if the memory region
|
||
attributes block the access. Check this here instead of in
|
||
raw_memory_xfer_partial as otherwise we'd end up checking
|
||
this twice in the case of the memory_xfer_partial path is
|
||
taken; once before checking the dcache, and another in the
|
||
tail call to raw_memory_xfer_partial. */
|
||
if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
|
||
NULL))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
/* Request the normal memory object from other layers. */
|
||
retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
else
|
||
retval = ops->to_xfer_partial (ops, object, annex, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
|
||
if (targetdebug)
|
||
{
|
||
const unsigned char *myaddr = NULL;
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"%s:target_xfer_partial "
|
||
"(%d, %s, %s, %s, %s, %s) = %d, %s",
|
||
ops->to_shortname,
|
||
(int) object,
|
||
(annex ? annex : "(null)"),
|
||
host_address_to_string (readbuf),
|
||
host_address_to_string (writebuf),
|
||
core_addr_to_string_nz (offset),
|
||
pulongest (len), retval,
|
||
pulongest (*xfered_len));
|
||
|
||
if (readbuf)
|
||
myaddr = readbuf;
|
||
if (writebuf)
|
||
myaddr = writebuf;
|
||
if (retval == TARGET_XFER_OK && myaddr != NULL)
|
||
{
|
||
int i;
|
||
|
||
fputs_unfiltered (", bytes =", gdb_stdlog);
|
||
for (i = 0; i < *xfered_len; i++)
|
||
{
|
||
if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
|
||
{
|
||
if (targetdebug < 2 && i > 0)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, " ...");
|
||
break;
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog, "\n");
|
||
}
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
|
||
}
|
||
}
|
||
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
/* Check implementations of to_xfer_partial update *XFERED_LEN
|
||
properly. Do assertion after printing debug messages, so that we
|
||
can find more clues on assertion failure from debugging messages. */
|
||
if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
|
||
gdb_assert (*xfered_len > 0);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns either 0 for success or
|
||
-1 if any error occurs.
|
||
|
||
If an error occurs, no guarantee is made about the contents of the data at
|
||
MYADDR. In particular, the caller should not depend upon partial reads
|
||
filling the buffer with good data. There is no way for the caller to know
|
||
how much good data might have been transfered anyway. Callers that can
|
||
deal with partial reads should call target_read (which will retry until
|
||
it makes no progress, and then return how much was transferred). */
|
||
|
||
int
|
||
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* Dispatch to the topmost target, not the flattened current_target.
|
||
Memory accesses check target->to_has_(all_)memory, and the
|
||
flattened target doesn't inherit those. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
|
||
{
|
||
gdb_byte buf[4];
|
||
int r;
|
||
|
||
r = target_read_memory (memaddr, buf, sizeof buf);
|
||
if (r != 0)
|
||
return r;
|
||
*result = extract_unsigned_integer (buf, sizeof buf,
|
||
gdbarch_byte_order (target_gdbarch ()));
|
||
return 0;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read
|
||
from the target's raw memory. That is, this read bypasses the
|
||
dcache, breakpoint shadowing, etc. */
|
||
|
||
int
|
||
target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's stack. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's code. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
|
||
Returns either 0 for success or -1 if any error occurs. If an
|
||
error occurs, no guarantee is made about how much data got written.
|
||
Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target raw memory at address
|
||
MEMADDR. Returns either 0 for success or -1 if any error occurs.
|
||
If an error occurs, no guarantee is made about how much data got
|
||
written. Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
/* See comment in target_read_memory about why the request starts at
|
||
current_target.beneath. */
|
||
if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Fetch the target's memory map. */
|
||
|
||
std::vector<mem_region>
|
||
target_memory_map (void)
|
||
{
|
||
std::vector<mem_region> result
|
||
= current_target.to_memory_map (¤t_target);
|
||
if (result.empty ())
|
||
return result;
|
||
|
||
std::sort (result.begin (), result.end ());
|
||
|
||
/* Check that regions do not overlap. Simultaneously assign
|
||
a numbering for the "mem" commands to use to refer to
|
||
each region. */
|
||
mem_region *last_one = NULL;
|
||
for (size_t ix = 0; ix < result.size (); ix++)
|
||
{
|
||
mem_region *this_one = &result[ix];
|
||
this_one->number = ix;
|
||
|
||
if (last_one != NULL && last_one->hi > this_one->lo)
|
||
{
|
||
warning (_("Overlapping regions in memory map: ignoring"));
|
||
return std::vector<mem_region> ();
|
||
}
|
||
|
||
last_one = this_one;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
target_flash_erase (ULONGEST address, LONGEST length)
|
||
{
|
||
current_target.to_flash_erase (¤t_target, address, length);
|
||
}
|
||
|
||
void
|
||
target_flash_done (void)
|
||
{
|
||
current_target.to_flash_done (¤t_target);
|
||
}
|
||
|
||
static void
|
||
show_trust_readonly (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Mode for reading from readonly sections is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Target vector read/write partial wrapper functions. */
|
||
|
||
static enum target_xfer_status
|
||
target_read_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
static enum target_xfer_status
|
||
target_write_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
/* Wrappers to perform the full transfer. */
|
||
|
||
/* For docs on target_read see target.h. */
|
||
|
||
LONGEST
|
||
target_read (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are reading from a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (status == TARGET_XFER_EOF)
|
||
return xfered_total;
|
||
else if (status == TARGET_XFER_OK)
|
||
{
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* Assuming that the entire [begin, end) range of memory cannot be
|
||
read, try to read whatever subrange is possible to read.
|
||
|
||
The function returns, in RESULT, either zero or one memory block.
|
||
If there's a readable subrange at the beginning, it is completely
|
||
read and returned. Any further readable subrange will not be read.
|
||
Otherwise, if there's a readable subrange at the end, it will be
|
||
completely read and returned. Any readable subranges before it
|
||
(obviously, not starting at the beginning), will be ignored. In
|
||
other cases -- either no readable subrange, or readable subrange(s)
|
||
that is neither at the beginning, or end, nothing is returned.
|
||
|
||
The purpose of this function is to handle a read across a boundary
|
||
of accessible memory in a case when memory map is not available.
|
||
The above restrictions are fine for this case, but will give
|
||
incorrect results if the memory is 'patchy'. However, supporting
|
||
'patchy' memory would require trying to read every single byte,
|
||
and it seems unacceptable solution. Explicit memory map is
|
||
recommended for this case -- and target_read_memory_robust will
|
||
take care of reading multiple ranges then. */
|
||
|
||
static void
|
||
read_whatever_is_readable (struct target_ops *ops,
|
||
const ULONGEST begin, const ULONGEST end,
|
||
int unit_size,
|
||
std::vector<memory_read_result> *result)
|
||
{
|
||
ULONGEST current_begin = begin;
|
||
ULONGEST current_end = end;
|
||
int forward;
|
||
ULONGEST xfered_len;
|
||
|
||
/* If we previously failed to read 1 byte, nothing can be done here. */
|
||
if (end - begin <= 1)
|
||
return;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
|
||
|
||
/* Check that either first or the last byte is readable, and give up
|
||
if not. This heuristic is meant to permit reading accessible memory
|
||
at the boundary of accessible region. */
|
||
if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 1;
|
||
++current_begin;
|
||
}
|
||
else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (end - begin) - 1, end - 1, 1,
|
||
&xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 0;
|
||
--current_end;
|
||
}
|
||
else
|
||
return;
|
||
|
||
/* Loop invariant is that the [current_begin, current_end) was previously
|
||
found to be not readable as a whole.
|
||
|
||
Note loop condition -- if the range has 1 byte, we can't divide the range
|
||
so there's no point trying further. */
|
||
while (current_end - current_begin > 1)
|
||
{
|
||
ULONGEST first_half_begin, first_half_end;
|
||
ULONGEST second_half_begin, second_half_end;
|
||
LONGEST xfer;
|
||
ULONGEST middle = current_begin + (current_end - current_begin) / 2;
|
||
|
||
if (forward)
|
||
{
|
||
first_half_begin = current_begin;
|
||
first_half_end = middle;
|
||
second_half_begin = middle;
|
||
second_half_end = current_end;
|
||
}
|
||
else
|
||
{
|
||
first_half_begin = middle;
|
||
first_half_end = current_end;
|
||
second_half_begin = current_begin;
|
||
second_half_end = middle;
|
||
}
|
||
|
||
xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (first_half_begin - begin) * unit_size,
|
||
first_half_begin,
|
||
first_half_end - first_half_begin);
|
||
|
||
if (xfer == first_half_end - first_half_begin)
|
||
{
|
||
/* This half reads up fine. So, the error must be in the
|
||
other half. */
|
||
current_begin = second_half_begin;
|
||
current_end = second_half_end;
|
||
}
|
||
else
|
||
{
|
||
/* This half is not readable. Because we've tried one byte, we
|
||
know some part of this half if actually readable. Go to the next
|
||
iteration to divide again and try to read.
|
||
|
||
We don't handle the other half, because this function only tries
|
||
to read a single readable subrange. */
|
||
current_begin = first_half_begin;
|
||
current_end = first_half_end;
|
||
}
|
||
}
|
||
|
||
if (forward)
|
||
{
|
||
/* The [begin, current_begin) range has been read. */
|
||
result->emplace_back (begin, current_end, std::move (buf));
|
||
}
|
||
else
|
||
{
|
||
/* The [current_end, end) range has been read. */
|
||
LONGEST region_len = end - current_end;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> data
|
||
((gdb_byte *) xmalloc (region_len * unit_size));
|
||
memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
|
||
region_len * unit_size);
|
||
result->emplace_back (current_end, end, std::move (data));
|
||
}
|
||
}
|
||
|
||
std::vector<memory_read_result>
|
||
read_memory_robust (struct target_ops *ops,
|
||
const ULONGEST offset, const LONGEST len)
|
||
{
|
||
std::vector<memory_read_result> result;
|
||
int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
LONGEST xfered_total = 0;
|
||
while (xfered_total < len)
|
||
{
|
||
struct mem_region *region = lookup_mem_region (offset + xfered_total);
|
||
LONGEST region_len;
|
||
|
||
/* If there is no explicit region, a fake one should be created. */
|
||
gdb_assert (region);
|
||
|
||
if (region->hi == 0)
|
||
region_len = len - xfered_total;
|
||
else
|
||
region_len = region->hi - offset;
|
||
|
||
if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
|
||
{
|
||
/* Cannot read this region. Note that we can end up here only
|
||
if the region is explicitly marked inaccessible, or
|
||
'inaccessible-by-default' is in effect. */
|
||
xfered_total += region_len;
|
||
}
|
||
else
|
||
{
|
||
LONGEST to_read = std::min (len - xfered_total, region_len);
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buffer
|
||
((gdb_byte *) xmalloc (to_read * unit_size));
|
||
|
||
LONGEST xfered_partial =
|
||
target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
|
||
offset + xfered_total, to_read);
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (xfered_partial <= 0)
|
||
{
|
||
/* Got an error reading full chunk. See if maybe we can read
|
||
some subrange. */
|
||
read_whatever_is_readable (ops, offset + xfered_total,
|
||
offset + xfered_total + to_read,
|
||
unit_size, &result);
|
||
xfered_total += to_read;
|
||
}
|
||
else
|
||
{
|
||
result.emplace_back (offset + xfered_total,
|
||
offset + xfered_total + xfered_partial,
|
||
std::move (buffer));
|
||
xfered_total += xfered_partial;
|
||
}
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* An alternative to target_write with progress callbacks. */
|
||
|
||
LONGEST
|
||
target_write_with_progress (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len,
|
||
void (*progress) (ULONGEST, void *), void *baton)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are writing to a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
/* Give the progress callback a chance to set up. */
|
||
if (progress)
|
||
(*progress) (0, baton);
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_write_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
if (status != TARGET_XFER_OK)
|
||
return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
|
||
|
||
if (progress)
|
||
(*progress) (xfered_partial, baton);
|
||
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* For docs on target_write see target.h. */
|
||
|
||
LONGEST
|
||
target_write (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
return target_write_with_progress (ops, object, annex, buf, offset, len,
|
||
NULL, NULL);
|
||
}
|
||
|
||
/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
|
||
the size of the transferred data. PADDING additional bytes are
|
||
available in *BUF_P. This is a helper function for
|
||
target_read_alloc; see the declaration of that function for more
|
||
information. */
|
||
|
||
static LONGEST
|
||
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte **buf_p, int padding)
|
||
{
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
|
||
/* This function does not have a length parameter; it reads the
|
||
entire OBJECT). Also, it doesn't support objects fetched partly
|
||
from one target and partly from another (in a different stratum,
|
||
e.g. a core file and an executable). Both reasons make it
|
||
unsuitable for reading memory. */
|
||
gdb_assert (object != TARGET_OBJECT_MEMORY);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = (gdb_byte *) xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex, &buf[buf_pos],
|
||
buf_pos, buf_alloc - buf_pos - padding,
|
||
&xfered_len);
|
||
|
||
if (status == TARGET_XFER_EOF)
|
||
{
|
||
/* Read all there was. */
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
else if (status != TARGET_XFER_OK)
|
||
{
|
||
/* An error occurred. */
|
||
xfree (buf);
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
buf_pos += xfered_len;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = (gdb_byte *) xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
|
||
the size of the transferred data. See the declaration in "target.h"
|
||
function for more information about the return value. */
|
||
|
||
LONGEST
|
||
target_read_alloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte **buf_p)
|
||
{
|
||
return target_read_alloc_1 (ops, object, annex, buf_p, 0);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_read_stralloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return NULL;
|
||
|
||
if (transferred == 0)
|
||
return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target object %d, annex %s, "
|
||
"contained unexpected null characters"),
|
||
(int) object, annex ? annex : "(none)");
|
||
break;
|
||
}
|
||
|
||
return gdb::unique_xmalloc_ptr<char> (bufstr);
|
||
}
|
||
|
||
/* Memory transfer methods. */
|
||
|
||
void
|
||
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
|
||
LONGEST len)
|
||
{
|
||
/* This method is used to read from an alternate, non-current
|
||
target. This read must bypass the overlay support (as symbols
|
||
don't match this target), and GDB's internal cache (wrong cache
|
||
for this target). */
|
||
if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
|
||
!= len)
|
||
memory_error (TARGET_XFER_E_IO, addr);
|
||
}
|
||
|
||
ULONGEST
|
||
get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
|
||
int len, enum bfd_endian byte_order)
|
||
{
|
||
gdb_byte buf[sizeof (ULONGEST)];
|
||
|
||
gdb_assert (len <= sizeof (buf));
|
||
get_target_memory (ops, addr, buf, len);
|
||
return extract_unsigned_integer (buf, len, byte_order);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_insert_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not insert breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_target.to_insert_breakpoint (¤t_target,
|
||
gdbarch, bp_tgt);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_remove_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt,
|
||
enum remove_bp_reason reason)
|
||
{
|
||
/* This is kind of a weird case to handle, but the permission might
|
||
have been changed after breakpoints were inserted - in which case
|
||
we should just take the user literally and assume that any
|
||
breakpoints should be left in place. */
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not remove breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_target.to_remove_breakpoint (¤t_target,
|
||
gdbarch, bp_tgt, reason);
|
||
}
|
||
|
||
static void
|
||
info_target_command (const char *args, int from_tty)
|
||
{
|
||
struct target_ops *t;
|
||
int has_all_mem = 0;
|
||
|
||
if (symfile_objfile != NULL)
|
||
printf_unfiltered (_("Symbols from \"%s\".\n"),
|
||
objfile_name (symfile_objfile));
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
if (!(*t->to_has_memory) (t))
|
||
continue;
|
||
|
||
if ((int) (t->to_stratum) <= (int) dummy_stratum)
|
||
continue;
|
||
if (has_all_mem)
|
||
printf_unfiltered (_("\tWhile running this, "
|
||
"GDB does not access memory from...\n"));
|
||
printf_unfiltered ("%s:\n", t->to_longname);
|
||
(t->to_files_info) (t);
|
||
has_all_mem = (*t->to_has_all_memory) (t);
|
||
}
|
||
}
|
||
|
||
/* This function is called before any new inferior is created, e.g.
|
||
by running a program, attaching, or connecting to a target.
|
||
It cleans up any state from previous invocations which might
|
||
change between runs. This is a subset of what target_preopen
|
||
resets (things which might change between targets). */
|
||
|
||
void
|
||
target_pre_inferior (int from_tty)
|
||
{
|
||
/* Clear out solib state. Otherwise the solib state of the previous
|
||
inferior might have survived and is entirely wrong for the new
|
||
target. This has been observed on GNU/Linux using glibc 2.3. How
|
||
to reproduce:
|
||
|
||
bash$ ./foo&
|
||
[1] 4711
|
||
bash$ ./foo&
|
||
[1] 4712
|
||
bash$ gdb ./foo
|
||
[...]
|
||
(gdb) attach 4711
|
||
(gdb) detach
|
||
(gdb) attach 4712
|
||
Cannot access memory at address 0xdeadbeef
|
||
*/
|
||
|
||
/* In some OSs, the shared library list is the same/global/shared
|
||
across inferiors. If code is shared between processes, so are
|
||
memory regions and features. */
|
||
if (!gdbarch_has_global_solist (target_gdbarch ()))
|
||
{
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
invalidate_target_mem_regions ();
|
||
|
||
target_clear_description ();
|
||
}
|
||
|
||
/* attach_flag may be set if the previous process associated with
|
||
the inferior was attached to. */
|
||
current_inferior ()->attach_flag = 0;
|
||
|
||
current_inferior ()->highest_thread_num = 0;
|
||
|
||
agent_capability_invalidate ();
|
||
}
|
||
|
||
/* Callback for iterate_over_inferiors. Gets rid of the given
|
||
inferior. */
|
||
|
||
static int
|
||
dispose_inferior (struct inferior *inf, void *args)
|
||
{
|
||
struct thread_info *thread;
|
||
|
||
thread = any_thread_of_process (inf->pid);
|
||
if (thread)
|
||
{
|
||
switch_to_thread (thread->ptid);
|
||
|
||
/* Core inferiors actually should be detached, not killed. */
|
||
if (target_has_execution)
|
||
target_kill ();
|
||
else
|
||
target_detach (NULL, 0);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This is to be called by the open routine before it does
|
||
anything. */
|
||
|
||
void
|
||
target_preopen (int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (have_inferiors ())
|
||
{
|
||
if (!from_tty
|
||
|| !have_live_inferiors ()
|
||
|| query (_("A program is being debugged already. Kill it? ")))
|
||
iterate_over_inferiors (dispose_inferior, NULL);
|
||
else
|
||
error (_("Program not killed."));
|
||
}
|
||
|
||
/* Calling target_kill may remove the target from the stack. But if
|
||
it doesn't (which seems like a win for UDI), remove it now. */
|
||
/* Leave the exec target, though. The user may be switching from a
|
||
live process to a core of the same program. */
|
||
pop_all_targets_above (file_stratum);
|
||
|
||
target_pre_inferior (from_tty);
|
||
}
|
||
|
||
/* Detach a target after doing deferred register stores. */
|
||
|
||
void
|
||
target_detach (const char *args, int from_tty)
|
||
{
|
||
if (gdbarch_has_global_breakpoints (target_gdbarch ()))
|
||
/* Don't remove global breakpoints here. They're removed on
|
||
disconnection from the target. */
|
||
;
|
||
else
|
||
/* If we're in breakpoints-always-inserted mode, have to remove
|
||
them before detaching. */
|
||
remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
|
||
|
||
prepare_for_detach ();
|
||
|
||
current_target.to_detach (¤t_target, args, from_tty);
|
||
}
|
||
|
||
void
|
||
target_disconnect (const char *args, int from_tty)
|
||
{
|
||
/* If we're in breakpoints-always-inserted mode or if breakpoints
|
||
are global across processes, we have to remove them before
|
||
disconnecting. */
|
||
remove_breakpoints ();
|
||
|
||
current_target.to_disconnect (¤t_target, args, from_tty);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
ptid_t
|
||
target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
|
||
{
|
||
return (current_target.to_wait) (¤t_target, ptid, status, options);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
ptid_t
|
||
default_target_wait (struct target_ops *ops,
|
||
ptid_t ptid, struct target_waitstatus *status,
|
||
int options)
|
||
{
|
||
status->kind = TARGET_WAITKIND_IGNORE;
|
||
return minus_one_ptid;
|
||
}
|
||
|
||
const char *
|
||
target_pid_to_str (ptid_t ptid)
|
||
{
|
||
return (*current_target.to_pid_to_str) (¤t_target, ptid);
|
||
}
|
||
|
||
const char *
|
||
target_thread_name (struct thread_info *info)
|
||
{
|
||
return current_target.to_thread_name (¤t_target, info);
|
||
}
|
||
|
||
struct thread_info *
|
||
target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
|
||
int handle_len,
|
||
struct inferior *inf)
|
||
{
|
||
return current_target.to_thread_handle_to_thread_info
|
||
(¤t_target, thread_handle, handle_len, inf);
|
||
}
|
||
|
||
void
|
||
target_resume (ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
target_dcache_invalidate ();
|
||
|
||
current_target.to_resume (¤t_target, ptid, step, signal);
|
||
|
||
registers_changed_ptid (ptid);
|
||
/* We only set the internal executing state here. The user/frontend
|
||
running state is set at a higher level. */
|
||
set_executing (ptid, 1);
|
||
clear_inline_frame_state (ptid);
|
||
}
|
||
|
||
/* If true, target_commit_resume is a nop. */
|
||
static int defer_target_commit_resume;
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_commit_resume (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
if (defer_target_commit_resume)
|
||
return;
|
||
|
||
current_target.to_commit_resume (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_defer_target_commit_resume ()
|
||
{
|
||
return make_scoped_restore (&defer_target_commit_resume, 1);
|
||
}
|
||
|
||
void
|
||
target_pass_signals (int numsigs, unsigned char *pass_signals)
|
||
{
|
||
(*current_target.to_pass_signals) (¤t_target, numsigs, pass_signals);
|
||
}
|
||
|
||
void
|
||
target_program_signals (int numsigs, unsigned char *program_signals)
|
||
{
|
||
(*current_target.to_program_signals) (¤t_target,
|
||
numsigs, program_signals);
|
||
}
|
||
|
||
static int
|
||
default_follow_fork (struct target_ops *self, int follow_child,
|
||
int detach_fork)
|
||
{
|
||
/* Some target returned a fork event, but did not know how to follow it. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow fork"));
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
follow forks. */
|
||
|
||
int
|
||
target_follow_fork (int follow_child, int detach_fork)
|
||
{
|
||
return current_target.to_follow_fork (¤t_target,
|
||
follow_child, detach_fork);
|
||
}
|
||
|
||
/* Target wrapper for follow exec hook. */
|
||
|
||
void
|
||
target_follow_exec (struct inferior *inf, char *execd_pathname)
|
||
{
|
||
current_target.to_follow_exec (¤t_target, inf, execd_pathname);
|
||
}
|
||
|
||
static void
|
||
default_mourn_inferior (struct target_ops *self)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow mourn inferior"));
|
||
}
|
||
|
||
void
|
||
target_mourn_inferior (ptid_t ptid)
|
||
{
|
||
gdb_assert (ptid_equal (ptid, inferior_ptid));
|
||
current_target.to_mourn_inferior (¤t_target);
|
||
|
||
/* We no longer need to keep handles on any of the object files.
|
||
Make sure to release them to avoid unnecessarily locking any
|
||
of them while we're not actually debugging. */
|
||
bfd_cache_close_all ();
|
||
}
|
||
|
||
/* Look for a target which can describe architectural features, starting
|
||
from TARGET. If we find one, return its description. */
|
||
|
||
const struct target_desc *
|
||
target_read_description (struct target_ops *target)
|
||
{
|
||
return target->to_read_description (target);
|
||
}
|
||
|
||
/* This implements a basic search of memory, reading target memory and
|
||
performing the search here (as opposed to performing the search in on the
|
||
target side with, for example, gdbserver). */
|
||
|
||
int
|
||
simple_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* NOTE: also defined in find.c testcase. */
|
||
#define SEARCH_CHUNK_SIZE 16000
|
||
const unsigned chunk_size = SEARCH_CHUNK_SIZE;
|
||
/* Buffer to hold memory contents for searching. */
|
||
unsigned search_buf_size;
|
||
|
||
search_buf_size = chunk_size + pattern_len - 1;
|
||
|
||
/* No point in trying to allocate a buffer larger than the search space. */
|
||
if (search_space_len < search_buf_size)
|
||
search_buf_size = search_space_len;
|
||
|
||
gdb::byte_vector search_buf (search_buf_size);
|
||
|
||
/* Prime the search buffer. */
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
search_buf.data (), start_addr, search_buf_size)
|
||
!= search_buf_size)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
pulongest (search_buf_size), hex_string (start_addr));
|
||
return -1;
|
||
}
|
||
|
||
/* Perform the search.
|
||
|
||
The loop is kept simple by allocating [N + pattern-length - 1] bytes.
|
||
When we've scanned N bytes we copy the trailing bytes to the start and
|
||
read in another N bytes. */
|
||
|
||
while (search_space_len >= pattern_len)
|
||
{
|
||
gdb_byte *found_ptr;
|
||
unsigned nr_search_bytes
|
||
= std::min (search_space_len, (ULONGEST) search_buf_size);
|
||
|
||
found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
|
||
pattern, pattern_len);
|
||
|
||
if (found_ptr != NULL)
|
||
{
|
||
CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
|
||
|
||
*found_addrp = found_addr;
|
||
return 1;
|
||
}
|
||
|
||
/* Not found in this chunk, skip to next chunk. */
|
||
|
||
/* Don't let search_space_len wrap here, it's unsigned. */
|
||
if (search_space_len >= chunk_size)
|
||
search_space_len -= chunk_size;
|
||
else
|
||
search_space_len = 0;
|
||
|
||
if (search_space_len >= pattern_len)
|
||
{
|
||
unsigned keep_len = search_buf_size - chunk_size;
|
||
CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
|
||
int nr_to_read;
|
||
|
||
/* Copy the trailing part of the previous iteration to the front
|
||
of the buffer for the next iteration. */
|
||
gdb_assert (keep_len == pattern_len - 1);
|
||
memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
|
||
|
||
nr_to_read = std::min (search_space_len - keep_len,
|
||
(ULONGEST) chunk_size);
|
||
|
||
if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
&search_buf[keep_len], read_addr,
|
||
nr_to_read) != nr_to_read)
|
||
{
|
||
warning (_("Unable to access %s bytes of target "
|
||
"memory at %s, halting search."),
|
||
plongest (nr_to_read),
|
||
hex_string (read_addr));
|
||
return -1;
|
||
}
|
||
|
||
start_addr += chunk_size;
|
||
}
|
||
}
|
||
|
||
/* Not found. */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Default implementation of memory-searching. */
|
||
|
||
static int
|
||
default_search_memory (struct target_ops *self,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_search_memory (current_target.beneath,
|
||
start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
|
||
sequence of bytes in PATTERN with length PATTERN_LEN.
|
||
|
||
The result is 1 if found, 0 if not found, and -1 if there was an error
|
||
requiring halting of the search (e.g. memory read error).
|
||
If the pattern is found the address is recorded in FOUND_ADDRP. */
|
||
|
||
int
|
||
target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
return current_target.to_search_memory (¤t_target, start_addr,
|
||
search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Look through the currently pushed targets. If none of them will
|
||
be able to restart the currently running process, issue an error
|
||
message. */
|
||
|
||
void
|
||
target_require_runnable (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
/* If this target knows how to create a new program, then
|
||
assume we will still be able to after killing the current
|
||
one. Either killing and mourning will not pop T, or else
|
||
find_default_run_target will find it again. */
|
||
if (t->to_create_inferior != NULL)
|
||
return;
|
||
|
||
/* Do not worry about targets at certain strata that can not
|
||
create inferiors. Assume they will be pushed again if
|
||
necessary, and continue to the process_stratum. */
|
||
if (t->to_stratum == thread_stratum
|
||
|| t->to_stratum == record_stratum
|
||
|| t->to_stratum == arch_stratum)
|
||
continue;
|
||
|
||
error (_("The \"%s\" target does not support \"run\". "
|
||
"Try \"help target\" or \"continue\"."),
|
||
t->to_shortname);
|
||
}
|
||
|
||
/* This function is only called if the target is running. In that
|
||
case there should have been a process_stratum target and it
|
||
should either know how to create inferiors, or not... */
|
||
internal_error (__FILE__, __LINE__, _("No targets found"));
|
||
}
|
||
|
||
/* Whether GDB is allowed to fall back to the default run target for
|
||
"run", "attach", etc. when no target is connected yet. */
|
||
static int auto_connect_native_target = 1;
|
||
|
||
static void
|
||
show_auto_connect_native_target (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether GDB may automatically connect to the "
|
||
"native target is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
execute a run or attach command without any other data. This is
|
||
used to locate the default process stratum.
|
||
|
||
If DO_MESG is not NULL, the result is always valid (error() is
|
||
called for errors); else, return NULL on error. */
|
||
|
||
static struct target_ops *
|
||
find_default_run_target (const char *do_mesg)
|
||
{
|
||
struct target_ops *runable = NULL;
|
||
|
||
if (auto_connect_native_target)
|
||
{
|
||
struct target_ops *t;
|
||
int count = 0;
|
||
int i;
|
||
|
||
for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
|
||
{
|
||
if (t->to_can_run != delegate_can_run && target_can_run (t))
|
||
{
|
||
runable = t;
|
||
++count;
|
||
}
|
||
}
|
||
|
||
if (count != 1)
|
||
runable = NULL;
|
||
}
|
||
|
||
if (runable == NULL)
|
||
{
|
||
if (do_mesg)
|
||
error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
return runable;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_attach_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_attach != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, use the default run target for attaching. */
|
||
if (t == NULL)
|
||
t = find_default_run_target ("attach");
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_run_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_create_inferior != NULL)
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, use the default run target. */
|
||
if (t == NULL)
|
||
t = find_default_run_target ("run");
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Implement the "info proc" command. */
|
||
|
||
int
|
||
target_info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
t = current_target.beneath;
|
||
else
|
||
t = find_default_run_target (NULL);
|
||
|
||
for (; t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_info_proc != NULL)
|
||
{
|
||
t->to_info_proc (t, args, what);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_info_proc (\"%s\", %d)\n", args, what);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
find_default_supports_disable_randomization (struct target_ops *self)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
t = find_default_run_target (NULL);
|
||
if (t && t->to_supports_disable_randomization)
|
||
return (t->to_supports_disable_randomization) (t);
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_supports_disable_randomization (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = ¤t_target; t != NULL; t = t->beneath)
|
||
if (t->to_supports_disable_randomization)
|
||
return t->to_supports_disable_randomization (t);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_supports_multi_process (void)
|
||
{
|
||
return (*current_target.to_supports_multi_process) (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_get_osdata (const char *type)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
t = current_target.beneath;
|
||
else
|
||
t = find_default_run_target ("get OS data");
|
||
|
||
if (!t)
|
||
return NULL;
|
||
|
||
return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
|
||
}
|
||
|
||
static struct address_space *
|
||
default_thread_address_space (struct target_ops *self, ptid_t ptid)
|
||
{
|
||
struct inferior *inf;
|
||
|
||
/* Fall-back to the "main" address space of the inferior. */
|
||
inf = find_inferior_ptid (ptid);
|
||
|
||
if (inf == NULL || inf->aspace == NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Can't determine the current "
|
||
"address space of thread %s\n"),
|
||
target_pid_to_str (ptid));
|
||
|
||
return inf->aspace;
|
||
}
|
||
|
||
/* Determine the current address space of thread PTID. */
|
||
|
||
struct address_space *
|
||
target_thread_address_space (ptid_t ptid)
|
||
{
|
||
struct address_space *aspace;
|
||
|
||
aspace = current_target.to_thread_address_space (¤t_target, ptid);
|
||
gdb_assert (aspace != NULL);
|
||
|
||
return aspace;
|
||
}
|
||
|
||
|
||
/* Target file operations. */
|
||
|
||
static struct target_ops *
|
||
default_fileio_target (void)
|
||
{
|
||
/* If we're already connected to something that can perform
|
||
file I/O, use it. Otherwise, try using the native target. */
|
||
if (current_target.to_stratum >= process_stratum)
|
||
return current_target.beneath;
|
||
else
|
||
return find_default_run_target ("file I/O");
|
||
}
|
||
|
||
/* File handle for target file operations. */
|
||
|
||
typedef struct
|
||
{
|
||
/* The target on which this file is open. */
|
||
struct target_ops *t;
|
||
|
||
/* The file descriptor on the target. */
|
||
int fd;
|
||
} fileio_fh_t;
|
||
|
||
DEF_VEC_O (fileio_fh_t);
|
||
|
||
/* Vector of currently open file handles. The value returned by
|
||
target_fileio_open and passed as the FD argument to other
|
||
target_fileio_* functions is an index into this vector. This
|
||
vector's entries are never freed; instead, files are marked as
|
||
closed, and the handle becomes available for reuse. */
|
||
static VEC (fileio_fh_t) *fileio_fhandles;
|
||
|
||
/* Macro to check whether a fileio_fh_t represents a closed file. */
|
||
#define is_closed_fileio_fh(fd) ((fd) < 0)
|
||
|
||
/* Index into fileio_fhandles of the lowest handle that might be
|
||
closed. This permits handle reuse without searching the whole
|
||
list each time a new file is opened. */
|
||
static int lowest_closed_fd;
|
||
|
||
/* Acquire a target fileio file descriptor. */
|
||
|
||
static int
|
||
acquire_fileio_fd (struct target_ops *t, int fd)
|
||
{
|
||
fileio_fh_t *fh;
|
||
|
||
gdb_assert (!is_closed_fileio_fh (fd));
|
||
|
||
/* Search for closed handles to reuse. */
|
||
for (;
|
||
VEC_iterate (fileio_fh_t, fileio_fhandles,
|
||
lowest_closed_fd, fh);
|
||
lowest_closed_fd++)
|
||
if (is_closed_fileio_fh (fh->fd))
|
||
break;
|
||
|
||
/* Push a new handle if no closed handles were found. */
|
||
if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
|
||
fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
|
||
|
||
/* Fill in the handle. */
|
||
fh->t = t;
|
||
fh->fd = fd;
|
||
|
||
/* Return its index, and start the next lookup at
|
||
the next index. */
|
||
return lowest_closed_fd++;
|
||
}
|
||
|
||
/* Release a target fileio file descriptor. */
|
||
|
||
static void
|
||
release_fileio_fd (int fd, fileio_fh_t *fh)
|
||
{
|
||
fh->fd = -1;
|
||
lowest_closed_fd = std::min (lowest_closed_fd, fd);
|
||
}
|
||
|
||
/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
|
||
|
||
#define fileio_fd_to_fh(fd) \
|
||
VEC_index (fileio_fh_t, fileio_fhandles, (fd))
|
||
|
||
/* Helper for target_fileio_open and
|
||
target_fileio_open_warn_if_slow. */
|
||
|
||
static int
|
||
target_fileio_open_1 (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int warn_if_slow,
|
||
int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_open != NULL)
|
||
{
|
||
int fd = t->to_fileio_open (t, inf, filename, flags, mode,
|
||
warn_if_slow, target_errno);
|
||
|
||
if (fd < 0)
|
||
fd = -1;
|
||
else
|
||
fd = acquire_fileio_fd (t, fd);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_open (%d,%s,0x%x,0%o,%d)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, flags, mode,
|
||
warn_if_slow, fd,
|
||
fd != -1 ? 0 : *target_errno);
|
||
return fd;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_open (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int *target_errno)
|
||
{
|
||
return target_fileio_open_1 (inf, filename, flags, mode, 0,
|
||
target_errno);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_open_warn_if_slow (struct inferior *inf,
|
||
const char *filename,
|
||
int flags, int mode, int *target_errno)
|
||
{
|
||
return target_fileio_open_1 (inf, filename, flags, mode, 1,
|
||
target_errno);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (is_closed_fileio_fh (fh->fd))
|
||
*target_errno = EBADF;
|
||
else
|
||
ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pwrite (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (is_closed_fileio_fh (fh->fd))
|
||
*target_errno = EBADF;
|
||
else
|
||
ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pread (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (is_closed_fileio_fh (fh->fd))
|
||
*target_errno = EBADF;
|
||
else
|
||
ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_fstat (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_close (int fd, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (is_closed_fileio_fh (fh->fd))
|
||
*target_errno = EBADF;
|
||
else
|
||
{
|
||
ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
|
||
release_fileio_fd (fd, fh);
|
||
}
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_close (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_unlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_unlink != NULL)
|
||
{
|
||
int ret = t->to_fileio_unlink (t, inf, filename,
|
||
target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_unlink (%d,%s)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num, filename,
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
char *
|
||
target_fileio_readlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = default_fileio_target (); t != NULL; t = t->beneath)
|
||
{
|
||
if (t->to_fileio_readlink != NULL)
|
||
{
|
||
char *ret = t->to_fileio_readlink (t, inf, filename,
|
||
target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_readlink (%d,%s)"
|
||
" = %s (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, ret? ret : "(nil)",
|
||
ret? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
target_fileio_close_cleanup (void *opaque)
|
||
{
|
||
int fd = *(int *) opaque;
|
||
int target_errno;
|
||
|
||
target_fileio_close (fd, &target_errno);
|
||
}
|
||
|
||
/* Read target file FILENAME, in the filesystem as seen by INF. If
|
||
INF is NULL, use the filesystem seen by the debugger (GDB or, for
|
||
remote targets, the remote stub). Store the result in *BUF_P and
|
||
return the size of the transferred data. PADDING additional bytes
|
||
are available in *BUF_P. This is a helper function for
|
||
target_fileio_read_alloc; see the declaration of that function for
|
||
more information. */
|
||
|
||
static LONGEST
|
||
target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p, int padding)
|
||
{
|
||
struct cleanup *close_cleanup;
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
LONGEST n;
|
||
int fd;
|
||
int target_errno;
|
||
|
||
fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
|
||
&target_errno);
|
||
if (fd == -1)
|
||
return -1;
|
||
|
||
close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = (gdb_byte *) xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
n = target_fileio_pread (fd, &buf[buf_pos],
|
||
buf_alloc - buf_pos - padding, buf_pos,
|
||
&target_errno);
|
||
if (n < 0)
|
||
{
|
||
/* An error occurred. */
|
||
do_cleanups (close_cleanup);
|
||
xfree (buf);
|
||
return -1;
|
||
}
|
||
else if (n == 0)
|
||
{
|
||
/* Read all there was. */
|
||
do_cleanups (close_cleanup);
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
|
||
buf_pos += n;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = (gdb_byte *) xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
LONGEST
|
||
target_fileio_read_alloc (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p)
|
||
{
|
||
return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_fileio_read_stralloc (struct inferior *inf, const char *filename)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return gdb::unique_xmalloc_ptr<char> (nullptr);
|
||
|
||
if (transferred == 0)
|
||
return gdb::unique_xmalloc_ptr<char> (xstrdup (""));
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target file %s "
|
||
"contained unexpected null characters"),
|
||
filename);
|
||
break;
|
||
}
|
||
|
||
return gdb::unique_xmalloc_ptr<char> (bufstr);
|
||
}
|
||
|
||
|
||
static int
|
||
default_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len)
|
||
{
|
||
return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
static int
|
||
default_watchpoint_addr_within_range (struct target_ops *target,
|
||
CORE_ADDR addr,
|
||
CORE_ADDR start, int length)
|
||
{
|
||
return addr >= start && addr < start + length;
|
||
}
|
||
|
||
static struct gdbarch *
|
||
default_thread_architecture (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
inferior *inf = find_inferior_ptid (ptid);
|
||
gdb_assert (inf != NULL);
|
||
return inf->gdbarch;
|
||
}
|
||
|
||
static int
|
||
return_zero (struct target_ops *ignore)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Find the next target down the stack from the specified target.
|
||
*/
|
||
|
||
struct target_ops *
|
||
find_target_beneath (struct target_ops *t)
|
||
{
|
||
return t->beneath;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_target_at (enum strata stratum)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_stratum == stratum)
|
||
return t;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
|
||
/* See target.h */
|
||
|
||
void
|
||
target_announce_detach (int from_tty)
|
||
{
|
||
pid_t pid;
|
||
const char *exec_file;
|
||
|
||
if (!from_tty)
|
||
return;
|
||
|
||
exec_file = get_exec_file (0);
|
||
if (exec_file == NULL)
|
||
exec_file = "";
|
||
|
||
pid = ptid_get_pid (inferior_ptid);
|
||
printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (pid_to_ptid (pid)));
|
||
gdb_flush (gdb_stdout);
|
||
}
|
||
|
||
/* The inferior process has died. Long live the inferior! */
|
||
|
||
void
|
||
generic_mourn_inferior (void)
|
||
{
|
||
ptid_t ptid;
|
||
|
||
ptid = inferior_ptid;
|
||
inferior_ptid = null_ptid;
|
||
|
||
/* Mark breakpoints uninserted in case something tries to delete a
|
||
breakpoint while we delete the inferior's threads (which would
|
||
fail, since the inferior is long gone). */
|
||
mark_breakpoints_out ();
|
||
|
||
if (!ptid_equal (ptid, null_ptid))
|
||
{
|
||
int pid = ptid_get_pid (ptid);
|
||
exit_inferior (pid);
|
||
}
|
||
|
||
/* Note this wipes step-resume breakpoints, so needs to be done
|
||
after exit_inferior, which ends up referencing the step-resume
|
||
breakpoints through clear_thread_inferior_resources. */
|
||
breakpoint_init_inferior (inf_exited);
|
||
|
||
registers_changed ();
|
||
|
||
reopen_exec_file ();
|
||
reinit_frame_cache ();
|
||
|
||
if (deprecated_detach_hook)
|
||
deprecated_detach_hook ();
|
||
}
|
||
|
||
/* Convert a normal process ID to a string. Returns the string in a
|
||
static buffer. */
|
||
|
||
const char *
|
||
normal_pid_to_str (ptid_t ptid)
|
||
{
|
||
static char buf[32];
|
||
|
||
xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
|
||
return buf;
|
||
}
|
||
|
||
static const char *
|
||
default_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
/* Error-catcher for target_find_memory_regions. */
|
||
static int
|
||
dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1, void *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return 0;
|
||
}
|
||
|
||
/* Error-catcher for target_make_corefile_notes. */
|
||
static char *
|
||
dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return NULL;
|
||
}
|
||
|
||
/* Set up the handful of non-empty slots needed by the dummy target
|
||
vector. */
|
||
|
||
static void
|
||
init_dummy_target (void)
|
||
{
|
||
dummy_target.to_shortname = "None";
|
||
dummy_target.to_longname = "None";
|
||
dummy_target.to_doc = "";
|
||
dummy_target.to_supports_disable_randomization
|
||
= find_default_supports_disable_randomization;
|
||
dummy_target.to_stratum = dummy_stratum;
|
||
dummy_target.to_has_all_memory = return_zero;
|
||
dummy_target.to_has_memory = return_zero;
|
||
dummy_target.to_has_stack = return_zero;
|
||
dummy_target.to_has_registers = return_zero;
|
||
dummy_target.to_has_execution = return_zero_has_execution;
|
||
dummy_target.to_magic = OPS_MAGIC;
|
||
|
||
install_dummy_methods (&dummy_target);
|
||
}
|
||
|
||
|
||
void
|
||
target_close (struct target_ops *targ)
|
||
{
|
||
gdb_assert (!target_is_pushed (targ));
|
||
|
||
if (targ->to_xclose != NULL)
|
||
targ->to_xclose (targ);
|
||
else if (targ->to_close != NULL)
|
||
targ->to_close (targ);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
|
||
}
|
||
|
||
int
|
||
target_thread_alive (ptid_t ptid)
|
||
{
|
||
return current_target.to_thread_alive (¤t_target, ptid);
|
||
}
|
||
|
||
void
|
||
target_update_thread_list (void)
|
||
{
|
||
current_target.to_update_thread_list (¤t_target);
|
||
}
|
||
|
||
void
|
||
target_stop (ptid_t ptid)
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
(*current_target.to_stop) (¤t_target, ptid);
|
||
}
|
||
|
||
void
|
||
target_interrupt (ptid_t ptid)
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
(*current_target.to_interrupt) (¤t_target, ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_pass_ctrlc (void)
|
||
{
|
||
(*current_target.to_pass_ctrlc) (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
default_target_pass_ctrlc (struct target_ops *ops)
|
||
{
|
||
target_interrupt (inferior_ptid);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_stop_and_wait (ptid_t ptid)
|
||
{
|
||
struct target_waitstatus status;
|
||
int was_non_stop = non_stop;
|
||
|
||
non_stop = 1;
|
||
target_stop (ptid);
|
||
|
||
memset (&status, 0, sizeof (status));
|
||
target_wait (ptid, &status, 0);
|
||
|
||
non_stop = was_non_stop;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue_no_signal (ptid_t ptid)
|
||
{
|
||
target_resume (ptid, 0, GDB_SIGNAL_0);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue (ptid_t ptid, enum gdb_signal signal)
|
||
{
|
||
target_resume (ptid, 0, signal);
|
||
}
|
||
|
||
/* Concatenate ELEM to LIST, a comma separate list, and return the
|
||
result. The LIST incoming argument is released. */
|
||
|
||
static char *
|
||
str_comma_list_concat_elem (char *list, const char *elem)
|
||
{
|
||
if (list == NULL)
|
||
return xstrdup (elem);
|
||
else
|
||
return reconcat (list, list, ", ", elem, (char *) NULL);
|
||
}
|
||
|
||
/* Helper for target_options_to_string. If OPT is present in
|
||
TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
|
||
Returns the new resulting string. OPT is removed from
|
||
TARGET_OPTIONS. */
|
||
|
||
static char *
|
||
do_option (int *target_options, char *ret,
|
||
int opt, const char *opt_str)
|
||
{
|
||
if ((*target_options & opt) != 0)
|
||
{
|
||
ret = str_comma_list_concat_elem (ret, opt_str);
|
||
*target_options &= ~opt;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
char *
|
||
target_options_to_string (int target_options)
|
||
{
|
||
char *ret = NULL;
|
||
|
||
#define DO_TARG_OPTION(OPT) \
|
||
ret = do_option (&target_options, ret, OPT, #OPT)
|
||
|
||
DO_TARG_OPTION (TARGET_WNOHANG);
|
||
|
||
if (target_options != 0)
|
||
ret = str_comma_list_concat_elem (ret, "unknown???");
|
||
|
||
if (ret == NULL)
|
||
ret = xstrdup ("");
|
||
return ret;
|
||
}
|
||
|
||
void
|
||
target_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
current_target.to_fetch_registers (¤t_target, regcache, regno);
|
||
if (targetdebug)
|
||
regcache->debug_print_register ("target_fetch_registers", regno);
|
||
}
|
||
|
||
void
|
||
target_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
if (!may_write_registers)
|
||
error (_("Writing to registers is not allowed (regno %d)"), regno);
|
||
|
||
current_target.to_store_registers (¤t_target, regcache, regno);
|
||
if (targetdebug)
|
||
{
|
||
regcache->debug_print_register ("target_store_registers", regno);
|
||
}
|
||
}
|
||
|
||
int
|
||
target_core_of_thread (ptid_t ptid)
|
||
{
|
||
return current_target.to_core_of_thread (¤t_target, ptid);
|
||
}
|
||
|
||
int
|
||
simple_verify_memory (struct target_ops *ops,
|
||
const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
|
||
{
|
||
LONGEST total_xfered = 0;
|
||
|
||
while (total_xfered < size)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
gdb_byte buf[1024];
|
||
ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
|
||
|
||
status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf, NULL, lma + total_xfered, howmuch,
|
||
&xfered_len);
|
||
if (status == TARGET_XFER_OK
|
||
&& memcmp (data + total_xfered, buf, xfered_len) == 0)
|
||
{
|
||
total_xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Default implementation of memory verification. */
|
||
|
||
static int
|
||
default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_verify_memory (current_target.beneath,
|
||
data, memaddr, size);
|
||
}
|
||
|
||
int
|
||
target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
return current_target.to_verify_memory (¤t_target,
|
||
data, memaddr, size);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_target.to_insert_mask_watchpoint (¤t_target,
|
||
addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_target.to_remove_mask_watchpoint (¤t_target,
|
||
addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
|
||
{
|
||
return current_target.to_masked_watch_num_registers (¤t_target,
|
||
addr, mask);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_ranged_break_num_registers (void)
|
||
{
|
||
return current_target.to_ranged_break_num_registers (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_btrace (enum btrace_format format)
|
||
{
|
||
return current_target.to_supports_btrace (¤t_target, format);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct btrace_target_info *
|
||
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
|
||
{
|
||
return current_target.to_enable_btrace (¤t_target, ptid, conf);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_disable_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_target.to_disable_btrace (¤t_target, btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_teardown_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_target.to_teardown_btrace (¤t_target, btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum btrace_error
|
||
target_read_btrace (struct btrace_data *btrace,
|
||
struct btrace_target_info *btinfo,
|
||
enum btrace_read_type type)
|
||
{
|
||
return current_target.to_read_btrace (¤t_target, btrace, btinfo, type);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct btrace_config *
|
||
target_btrace_conf (const struct btrace_target_info *btinfo)
|
||
{
|
||
return current_target.to_btrace_conf (¤t_target, btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stop_recording (void)
|
||
{
|
||
current_target.to_stop_recording (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_save_record (const char *filename)
|
||
{
|
||
current_target.to_save_record (¤t_target, filename);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_delete_record (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
for (t = current_target.beneath; t != NULL; t = t->beneath)
|
||
if (t->to_delete_record != delegate_delete_record
|
||
&& t->to_delete_record != tdefault_delete_record)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_delete_record (void)
|
||
{
|
||
current_target.to_delete_record (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum record_method
|
||
target_record_method (ptid_t ptid)
|
||
{
|
||
return current_target.to_record_method (¤t_target, ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_is_replaying (ptid_t ptid)
|
||
{
|
||
return current_target.to_record_is_replaying (¤t_target, ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_will_replay (ptid_t ptid, int dir)
|
||
{
|
||
return current_target.to_record_will_replay (¤t_target, ptid, dir);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_record_stop_replaying (void)
|
||
{
|
||
current_target.to_record_stop_replaying (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_begin (void)
|
||
{
|
||
current_target.to_goto_record_begin (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_end (void)
|
||
{
|
||
current_target.to_goto_record_end (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record (ULONGEST insn)
|
||
{
|
||
current_target.to_goto_record (¤t_target, insn);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history (int size, gdb_disassembly_flags flags)
|
||
{
|
||
current_target.to_insn_history (¤t_target, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_from (ULONGEST from, int size,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_target.to_insn_history_from (¤t_target, from, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_range (ULONGEST begin, ULONGEST end,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_target.to_insn_history_range (¤t_target, begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history (int size, int flags)
|
||
{
|
||
current_target.to_call_history (¤t_target, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_from (ULONGEST begin, int size, int flags)
|
||
{
|
||
current_target.to_call_history_from (¤t_target, begin, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
|
||
{
|
||
current_target.to_call_history_range (¤t_target, begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_unwinder (void)
|
||
{
|
||
return current_target.to_get_unwinder (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_tailcall_unwinder (void)
|
||
{
|
||
return current_target.to_get_tailcall_unwinder (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_prepare_to_generate_core (void)
|
||
{
|
||
current_target.to_prepare_to_generate_core (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_done_generating_core (void)
|
||
{
|
||
current_target.to_done_generating_core (¤t_target);
|
||
}
|
||
|
||
static void
|
||
setup_target_debug (void)
|
||
{
|
||
memcpy (&debug_target, ¤t_target, sizeof debug_target);
|
||
|
||
init_debug_target (¤t_target);
|
||
}
|
||
|
||
|
||
static char targ_desc[] =
|
||
"Names of targets and files being debugged.\nShows the entire \
|
||
stack of targets currently in use (including the exec-file,\n\
|
||
core-file, and process, if any), as well as the symbol file name.";
|
||
|
||
static void
|
||
default_rcmd (struct target_ops *self, const char *command,
|
||
struct ui_file *output)
|
||
{
|
||
error (_("\"monitor\" command not supported by this target."));
|
||
}
|
||
|
||
static void
|
||
do_monitor_command (const char *cmd, int from_tty)
|
||
{
|
||
target_rcmd (cmd, gdb_stdtarg);
|
||
}
|
||
|
||
/* Erases all the memory regions marked as flash. CMD and FROM_TTY are
|
||
ignored. */
|
||
|
||
void
|
||
flash_erase_command (const char *cmd, int from_tty)
|
||
{
|
||
/* Used to communicate termination of flash operations to the target. */
|
||
bool found_flash_region = false;
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
std::vector<mem_region> mem_regions = target_memory_map ();
|
||
|
||
/* Iterate over all memory regions. */
|
||
for (const mem_region &m : mem_regions)
|
||
{
|
||
/* Is this a flash memory region? */
|
||
if (m.attrib.mode == MEM_FLASH)
|
||
{
|
||
found_flash_region = true;
|
||
target_flash_erase (m.lo, m.hi - m.lo);
|
||
|
||
ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
|
||
|
||
current_uiout->message (_("Erasing flash memory region at address "));
|
||
current_uiout->field_fmt ("address", "%s", paddress (gdbarch, m.lo));
|
||
current_uiout->message (", size = ");
|
||
current_uiout->field_fmt ("size", "%s", hex_string (m.hi - m.lo));
|
||
current_uiout->message ("\n");
|
||
}
|
||
}
|
||
|
||
/* Did we do any flash operations? If so, we need to finalize them. */
|
||
if (found_flash_region)
|
||
target_flash_done ();
|
||
else
|
||
current_uiout->message (_("No flash memory regions found.\n"));
|
||
}
|
||
|
||
/* Print the name of each layers of our target stack. */
|
||
|
||
static void
|
||
maintenance_print_target_stack (const char *cmd, int from_tty)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
printf_filtered (_("The current target stack is:\n"));
|
||
|
||
for (t = target_stack; t != NULL; t = t->beneath)
|
||
{
|
||
printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_async (int enable)
|
||
{
|
||
infrun_async (enable);
|
||
current_target.to_async (¤t_target, enable);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_thread_events (int enable)
|
||
{
|
||
current_target.to_thread_events (¤t_target, enable);
|
||
}
|
||
|
||
/* Controls if targets can report that they can/are async. This is
|
||
just for maintainers to use when debugging gdb. */
|
||
int target_async_permitted = 1;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_async_permitted is *not* updated. */
|
||
static int target_async_permitted_1 = 1;
|
||
|
||
static void
|
||
maint_set_target_async_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_async_permitted_1 = target_async_permitted;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_async_permitted = target_async_permitted_1;
|
||
}
|
||
|
||
static void
|
||
maint_show_target_async_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Controlling the inferior in "
|
||
"asynchronous mode is %s.\n"), value);
|
||
}
|
||
|
||
/* Return true if the target operates in non-stop mode even with "set
|
||
non-stop off". */
|
||
|
||
static int
|
||
target_always_non_stop_p (void)
|
||
{
|
||
return current_target.to_always_non_stop_p (¤t_target);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_is_non_stop_p (void)
|
||
{
|
||
return (non_stop
|
||
|| target_non_stop_enabled == AUTO_BOOLEAN_TRUE
|
||
|| (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
|
||
&& target_always_non_stop_p ()));
|
||
}
|
||
|
||
/* Controls if targets can report that they always run in non-stop
|
||
mode. This is just for maintainers to use when debugging gdb. */
|
||
enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_non_stop_enabled is *not* updated. */
|
||
static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* Implementation of "maint set target-non-stop". */
|
||
|
||
static void
|
||
maint_set_target_non_stop_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_non_stop_enabled_1 = target_non_stop_enabled;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_non_stop_enabled = target_non_stop_enabled_1;
|
||
}
|
||
|
||
/* Implementation of "maint show target-non-stop". */
|
||
|
||
static void
|
||
maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s (currently %s).\n"), value,
|
||
target_always_non_stop_p () ? "on" : "off");
|
||
else
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s.\n"), value);
|
||
}
|
||
|
||
/* Temporary copies of permission settings. */
|
||
|
||
static int may_write_registers_1 = 1;
|
||
static int may_write_memory_1 = 1;
|
||
static int may_insert_breakpoints_1 = 1;
|
||
static int may_insert_tracepoints_1 = 1;
|
||
static int may_insert_fast_tracepoints_1 = 1;
|
||
static int may_stop_1 = 1;
|
||
|
||
/* Make the user-set values match the real values again. */
|
||
|
||
void
|
||
update_target_permissions (void)
|
||
{
|
||
may_write_registers_1 = may_write_registers;
|
||
may_write_memory_1 = may_write_memory;
|
||
may_insert_breakpoints_1 = may_insert_breakpoints;
|
||
may_insert_tracepoints_1 = may_insert_tracepoints;
|
||
may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
|
||
may_stop_1 = may_stop;
|
||
}
|
||
|
||
/* The one function handles (most of) the permission flags in the same
|
||
way. */
|
||
|
||
static void
|
||
set_target_permissions (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (target_has_execution)
|
||
{
|
||
update_target_permissions ();
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_registers = may_write_registers_1;
|
||
may_insert_breakpoints = may_insert_breakpoints_1;
|
||
may_insert_tracepoints = may_insert_tracepoints_1;
|
||
may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
|
||
may_stop = may_stop_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
/* Set memory write permission independently of observer mode. */
|
||
|
||
static void
|
||
set_write_memory_permission (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_memory = may_write_memory_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
|
||
void
|
||
initialize_targets (void)
|
||
{
|
||
init_dummy_target ();
|
||
push_target (&dummy_target);
|
||
|
||
add_info ("target", info_target_command, targ_desc);
|
||
add_info ("files", info_target_command, targ_desc);
|
||
|
||
add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
|
||
Set target debugging."), _("\
|
||
Show target debugging."), _("\
|
||
When non-zero, target debugging is enabled. Higher numbers are more\n\
|
||
verbose."),
|
||
set_targetdebug,
|
||
show_targetdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
|
||
&trust_readonly, _("\
|
||
Set mode for reading from readonly sections."), _("\
|
||
Show mode for reading from readonly sections."), _("\
|
||
When this mode is on, memory reads from readonly sections (such as .text)\n\
|
||
will be read from the object file instead of from the target. This will\n\
|
||
result in significant performance improvement for remote targets."),
|
||
NULL,
|
||
show_trust_readonly,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("monitor", class_obscure, do_monitor_command,
|
||
_("Send a command to the remote monitor (remote targets only)."));
|
||
|
||
add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
|
||
_("Print the name of each layer of the internal target stack."),
|
||
&maintenanceprintlist);
|
||
|
||
add_setshow_boolean_cmd ("target-async", no_class,
|
||
&target_async_permitted_1, _("\
|
||
Set whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Show whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Tells gdb whether to control the inferior in asynchronous mode."),
|
||
maint_set_target_async_command,
|
||
maint_show_target_async_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
|
||
&target_non_stop_enabled_1, _("\
|
||
Set whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Show whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Tells gdb whether to control the inferior in non-stop mode."),
|
||
maint_set_target_non_stop_command,
|
||
maint_show_target_non_stop_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-registers", class_support,
|
||
&may_write_registers_1, _("\
|
||
Set permission to write into registers."), _("\
|
||
Show permission to write into registers."), _("\
|
||
When this permission is on, GDB may write into the target's registers.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-memory", class_support,
|
||
&may_write_memory_1, _("\
|
||
Set permission to write into target memory."), _("\
|
||
Show permission to write into target memory."), _("\
|
||
When this permission is on, GDB may write into the target's memory.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_write_memory_permission, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
|
||
&may_insert_breakpoints_1, _("\
|
||
Set permission to insert breakpoints in the target."), _("\
|
||
Show permission to insert breakpoints in the target."), _("\
|
||
When this permission is on, GDB may insert breakpoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
|
||
&may_insert_tracepoints_1, _("\
|
||
Set permission to insert tracepoints in the target."), _("\
|
||
Show permission to insert tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert tracepoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
|
||
&may_insert_fast_tracepoints_1, _("\
|
||
Set permission to insert fast tracepoints in the target."), _("\
|
||
Show permission to insert fast tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert fast tracepoints.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-interrupt", class_support,
|
||
&may_stop_1, _("\
|
||
Set permission to interrupt or signal the target."), _("\
|
||
Show permission to interrupt or signal the target."), _("\
|
||
When this permission is on, GDB may interrupt/stop the target's execution.\n\
|
||
Otherwise, any attempt to interrupt or stop will be ignored."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("flash-erase", no_class, flash_erase_command,
|
||
_("Erase all flash memory regions."));
|
||
|
||
add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
|
||
&auto_connect_native_target, _("\
|
||
Set whether GDB may automatically connect to the native target."), _("\
|
||
Show whether GDB may automatically connect to the native target."), _("\
|
||
When on, and GDB is not connected to a target yet, GDB\n\
|
||
attempts \"run\" and other commands with the native target."),
|
||
NULL, show_auto_connect_native_target,
|
||
&setlist, &showlist);
|
||
}
|