mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 18:14:13 +08:00
0aa45facd7
sections before NOBITS sections.
4273 lines
118 KiB
C++
4273 lines
118 KiB
C++
// script-sections.cc -- linker script SECTIONS for gold
|
|
|
|
// Copyright 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
// Written by Ian Lance Taylor <iant@google.com>.
|
|
|
|
// This file is part of gold.
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
// MA 02110-1301, USA.
|
|
|
|
#include "gold.h"
|
|
|
|
#include <cstring>
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <fnmatch.h>
|
|
|
|
#include "parameters.h"
|
|
#include "object.h"
|
|
#include "layout.h"
|
|
#include "output.h"
|
|
#include "script-c.h"
|
|
#include "script.h"
|
|
#include "script-sections.h"
|
|
|
|
// Support for the SECTIONS clause in linker scripts.
|
|
|
|
namespace gold
|
|
{
|
|
|
|
// A region of memory.
|
|
class Memory_region
|
|
{
|
|
public:
|
|
Memory_region(const char* name, size_t namelen, unsigned int attributes,
|
|
Expression* start, Expression* length)
|
|
: name_(name, namelen),
|
|
attributes_(attributes),
|
|
start_(start),
|
|
length_(length),
|
|
current_offset_(0),
|
|
vma_sections_(),
|
|
lma_sections_(),
|
|
last_section_(NULL)
|
|
{ }
|
|
|
|
// Return the name of this region.
|
|
const std::string&
|
|
name() const
|
|
{ return this->name_; }
|
|
|
|
// Return the start address of this region.
|
|
Expression*
|
|
start_address() const
|
|
{ return this->start_; }
|
|
|
|
// Return the length of this region.
|
|
Expression*
|
|
length() const
|
|
{ return this->length_; }
|
|
|
|
// Print the region (when debugging).
|
|
void
|
|
print(FILE*) const;
|
|
|
|
// Return true if <name,namelen> matches this region.
|
|
bool
|
|
name_match(const char* name, size_t namelen)
|
|
{
|
|
return (this->name_.length() == namelen
|
|
&& strncmp(this->name_.c_str(), name, namelen) == 0);
|
|
}
|
|
|
|
Expression*
|
|
get_current_address() const
|
|
{
|
|
return
|
|
script_exp_binary_add(this->start_,
|
|
script_exp_integer(this->current_offset_));
|
|
}
|
|
|
|
void
|
|
increment_offset(std::string section_name, uint64_t amount,
|
|
const Symbol_table* symtab, const Layout* layout)
|
|
{
|
|
this->current_offset_ += amount;
|
|
|
|
if (this->current_offset_
|
|
> this->length_->eval(symtab, layout, false))
|
|
gold_error(_("section %s overflows end of region %s"),
|
|
section_name.c_str(), this->name_.c_str());
|
|
}
|
|
|
|
// Returns true iff there is room left in this region
|
|
// for AMOUNT more bytes of data.
|
|
bool
|
|
has_room_for(const Symbol_table* symtab, const Layout* layout,
|
|
uint64_t amount) const
|
|
{
|
|
return (this->current_offset_ + amount
|
|
< this->length_->eval(symtab, layout, false));
|
|
}
|
|
|
|
// Return true if the provided section flags
|
|
// are compatible with this region's attributes.
|
|
bool
|
|
attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
|
|
|
|
void
|
|
add_section(Output_section_definition* sec, bool vma)
|
|
{
|
|
if (vma)
|
|
this->vma_sections_.push_back(sec);
|
|
else
|
|
this->lma_sections_.push_back(sec);
|
|
}
|
|
|
|
typedef std::vector<Output_section_definition*> Section_list;
|
|
|
|
// Return the start of the list of sections
|
|
// whose VMAs are taken from this region.
|
|
Section_list::const_iterator
|
|
get_vma_section_list_start() const
|
|
{ return this->vma_sections_.begin(); }
|
|
|
|
// Return the start of the list of sections
|
|
// whose LMAs are taken from this region.
|
|
Section_list::const_iterator
|
|
get_lma_section_list_start() const
|
|
{ return this->lma_sections_.begin(); }
|
|
|
|
// Return the end of the list of sections
|
|
// whose VMAs are taken from this region.
|
|
Section_list::const_iterator
|
|
get_vma_section_list_end() const
|
|
{ return this->vma_sections_.end(); }
|
|
|
|
// Return the end of the list of sections
|
|
// whose LMAs are taken from this region.
|
|
Section_list::const_iterator
|
|
get_lma_section_list_end() const
|
|
{ return this->lma_sections_.end(); }
|
|
|
|
Output_section_definition*
|
|
get_last_section() const
|
|
{ return this->last_section_; }
|
|
|
|
void
|
|
set_last_section(Output_section_definition* sec)
|
|
{ this->last_section_ = sec; }
|
|
|
|
private:
|
|
|
|
std::string name_;
|
|
unsigned int attributes_;
|
|
Expression* start_;
|
|
Expression* length_;
|
|
// The offset to the next free byte in the region.
|
|
// Note - for compatibility with GNU LD we only maintain one offset
|
|
// regardless of whether the region is being used for VMA values,
|
|
// LMA values, or both.
|
|
uint64_t current_offset_;
|
|
// A list of sections whose VMAs are set inside this region.
|
|
Section_list vma_sections_;
|
|
// A list of sections whose LMAs are set inside this region.
|
|
Section_list lma_sections_;
|
|
// The latest section to make use of this region.
|
|
Output_section_definition* last_section_;
|
|
};
|
|
|
|
// Return true if the provided section flags
|
|
// are compatible with this region's attributes.
|
|
|
|
bool
|
|
Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
|
|
elfcpp::Elf_Xword type) const
|
|
{
|
|
unsigned int attrs = this->attributes_;
|
|
|
|
// No attributes means that this region is not compatible with anything.
|
|
if (attrs == 0)
|
|
return false;
|
|
|
|
bool match = true;
|
|
do
|
|
{
|
|
switch (attrs & - attrs)
|
|
{
|
|
case MEM_EXECUTABLE:
|
|
if ((flags & elfcpp::SHF_EXECINSTR) == 0)
|
|
match = false;
|
|
break;
|
|
|
|
case MEM_WRITEABLE:
|
|
if ((flags & elfcpp::SHF_WRITE) == 0)
|
|
match = false;
|
|
break;
|
|
|
|
case MEM_READABLE:
|
|
// All sections are presumed readable.
|
|
break;
|
|
|
|
case MEM_ALLOCATABLE:
|
|
if ((flags & elfcpp::SHF_ALLOC) == 0)
|
|
match = false;
|
|
break;
|
|
|
|
case MEM_INITIALIZED:
|
|
if ((type & elfcpp::SHT_NOBITS) != 0)
|
|
match = false;
|
|
break;
|
|
}
|
|
attrs &= ~ (attrs & - attrs);
|
|
}
|
|
while (attrs != 0);
|
|
|
|
return match;
|
|
}
|
|
|
|
// Print a memory region.
|
|
|
|
void
|
|
Memory_region::print(FILE* f) const
|
|
{
|
|
fprintf(f, " %s", this->name_.c_str());
|
|
|
|
unsigned int attrs = this->attributes_;
|
|
if (attrs != 0)
|
|
{
|
|
fprintf(f, " (");
|
|
do
|
|
{
|
|
switch (attrs & - attrs)
|
|
{
|
|
case MEM_EXECUTABLE: fputc('x', f); break;
|
|
case MEM_WRITEABLE: fputc('w', f); break;
|
|
case MEM_READABLE: fputc('r', f); break;
|
|
case MEM_ALLOCATABLE: fputc('a', f); break;
|
|
case MEM_INITIALIZED: fputc('i', f); break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
attrs &= ~ (attrs & - attrs);
|
|
}
|
|
while (attrs != 0);
|
|
fputc(')', f);
|
|
}
|
|
|
|
fprintf(f, " : origin = ");
|
|
this->start_->print(f);
|
|
fprintf(f, ", length = ");
|
|
this->length_->print(f);
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
// Manage orphan sections. This is intended to be largely compatible
|
|
// with the GNU linker. The Linux kernel implicitly relies on
|
|
// something similar to the GNU linker's orphan placement. We
|
|
// originally used a simpler scheme here, but it caused the kernel
|
|
// build to fail, and was also rather inefficient.
|
|
|
|
class Orphan_section_placement
|
|
{
|
|
private:
|
|
typedef Script_sections::Elements_iterator Elements_iterator;
|
|
|
|
public:
|
|
Orphan_section_placement();
|
|
|
|
// Handle an output section during initialization of this mapping.
|
|
void
|
|
output_section_init(const std::string& name, Output_section*,
|
|
Elements_iterator location);
|
|
|
|
// Initialize the last location.
|
|
void
|
|
last_init(Elements_iterator location);
|
|
|
|
// Set *PWHERE to the address of an iterator pointing to the
|
|
// location to use for an orphan section. Return true if the
|
|
// iterator has a value, false otherwise.
|
|
bool
|
|
find_place(Output_section*, Elements_iterator** pwhere);
|
|
|
|
// Return the iterator being used for sections at the very end of
|
|
// the linker script.
|
|
Elements_iterator
|
|
last_place() const;
|
|
|
|
private:
|
|
// The places that we specifically recognize. This list is copied
|
|
// from the GNU linker.
|
|
enum Place_index
|
|
{
|
|
PLACE_TEXT,
|
|
PLACE_RODATA,
|
|
PLACE_DATA,
|
|
PLACE_TLS,
|
|
PLACE_TLS_BSS,
|
|
PLACE_BSS,
|
|
PLACE_REL,
|
|
PLACE_INTERP,
|
|
PLACE_NONALLOC,
|
|
PLACE_LAST,
|
|
PLACE_MAX
|
|
};
|
|
|
|
// The information we keep for a specific place.
|
|
struct Place
|
|
{
|
|
// The name of sections for this place.
|
|
const char* name;
|
|
// Whether we have a location for this place.
|
|
bool have_location;
|
|
// The iterator for this place.
|
|
Elements_iterator location;
|
|
};
|
|
|
|
// Initialize one place element.
|
|
void
|
|
initialize_place(Place_index, const char*);
|
|
|
|
// The places.
|
|
Place places_[PLACE_MAX];
|
|
// True if this is the first call to output_section_init.
|
|
bool first_init_;
|
|
};
|
|
|
|
// Initialize Orphan_section_placement.
|
|
|
|
Orphan_section_placement::Orphan_section_placement()
|
|
: first_init_(true)
|
|
{
|
|
this->initialize_place(PLACE_TEXT, ".text");
|
|
this->initialize_place(PLACE_RODATA, ".rodata");
|
|
this->initialize_place(PLACE_DATA, ".data");
|
|
this->initialize_place(PLACE_TLS, NULL);
|
|
this->initialize_place(PLACE_TLS_BSS, NULL);
|
|
this->initialize_place(PLACE_BSS, ".bss");
|
|
this->initialize_place(PLACE_REL, NULL);
|
|
this->initialize_place(PLACE_INTERP, ".interp");
|
|
this->initialize_place(PLACE_NONALLOC, NULL);
|
|
this->initialize_place(PLACE_LAST, NULL);
|
|
}
|
|
|
|
// Initialize one place element.
|
|
|
|
void
|
|
Orphan_section_placement::initialize_place(Place_index index, const char* name)
|
|
{
|
|
this->places_[index].name = name;
|
|
this->places_[index].have_location = false;
|
|
}
|
|
|
|
// While initializing the Orphan_section_placement information, this
|
|
// is called once for each output section named in the linker script.
|
|
// If we found an output section during the link, it will be passed in
|
|
// OS.
|
|
|
|
void
|
|
Orphan_section_placement::output_section_init(const std::string& name,
|
|
Output_section* os,
|
|
Elements_iterator location)
|
|
{
|
|
bool first_init = this->first_init_;
|
|
this->first_init_ = false;
|
|
|
|
for (int i = 0; i < PLACE_MAX; ++i)
|
|
{
|
|
if (this->places_[i].name != NULL && this->places_[i].name == name)
|
|
{
|
|
if (this->places_[i].have_location)
|
|
{
|
|
// We have already seen a section with this name.
|
|
return;
|
|
}
|
|
|
|
this->places_[i].location = location;
|
|
this->places_[i].have_location = true;
|
|
|
|
// If we just found the .bss section, restart the search for
|
|
// an unallocated section. This follows the GNU linker's
|
|
// behaviour.
|
|
if (i == PLACE_BSS)
|
|
this->places_[PLACE_NONALLOC].have_location = false;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Relocation sections.
|
|
if (!this->places_[PLACE_REL].have_location
|
|
&& os != NULL
|
|
&& (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
|
|
&& (os->flags() & elfcpp::SHF_ALLOC) != 0)
|
|
{
|
|
this->places_[PLACE_REL].location = location;
|
|
this->places_[PLACE_REL].have_location = true;
|
|
}
|
|
|
|
// We find the location for unallocated sections by finding the
|
|
// first debugging or comment section after the BSS section (if
|
|
// there is one).
|
|
if (!this->places_[PLACE_NONALLOC].have_location
|
|
&& (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
|
|
{
|
|
// We add orphan sections after the location in PLACES_. We
|
|
// want to store unallocated sections before LOCATION. If this
|
|
// is the very first section, we can't use it.
|
|
if (!first_init)
|
|
{
|
|
--location;
|
|
this->places_[PLACE_NONALLOC].location = location;
|
|
this->places_[PLACE_NONALLOC].have_location = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Initialize the last location.
|
|
|
|
void
|
|
Orphan_section_placement::last_init(Elements_iterator location)
|
|
{
|
|
this->places_[PLACE_LAST].location = location;
|
|
this->places_[PLACE_LAST].have_location = true;
|
|
}
|
|
|
|
// Set *PWHERE to the address of an iterator pointing to the location
|
|
// to use for an orphan section. Return true if the iterator has a
|
|
// value, false otherwise.
|
|
|
|
bool
|
|
Orphan_section_placement::find_place(Output_section* os,
|
|
Elements_iterator** pwhere)
|
|
{
|
|
// Figure out where OS should go. This is based on the GNU linker
|
|
// code. FIXME: The GNU linker handles small data sections
|
|
// specially, but we don't.
|
|
elfcpp::Elf_Word type = os->type();
|
|
elfcpp::Elf_Xword flags = os->flags();
|
|
Place_index index;
|
|
if ((flags & elfcpp::SHF_ALLOC) == 0
|
|
&& !Layout::is_debug_info_section(os->name()))
|
|
index = PLACE_NONALLOC;
|
|
else if ((flags & elfcpp::SHF_ALLOC) == 0)
|
|
index = PLACE_LAST;
|
|
else if (type == elfcpp::SHT_NOTE)
|
|
index = PLACE_INTERP;
|
|
else if ((flags & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
if (type == elfcpp::SHT_NOBITS)
|
|
index = PLACE_TLS_BSS;
|
|
else
|
|
index = PLACE_TLS;
|
|
}
|
|
else if (type == elfcpp::SHT_NOBITS)
|
|
index = PLACE_BSS;
|
|
else if ((flags & elfcpp::SHF_WRITE) != 0)
|
|
index = PLACE_DATA;
|
|
else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
|
|
index = PLACE_REL;
|
|
else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
|
|
index = PLACE_RODATA;
|
|
else
|
|
index = PLACE_TEXT;
|
|
|
|
// If we don't have a location yet, try to find one based on a
|
|
// plausible ordering of sections.
|
|
if (!this->places_[index].have_location)
|
|
{
|
|
Place_index follow;
|
|
switch (index)
|
|
{
|
|
default:
|
|
follow = PLACE_MAX;
|
|
break;
|
|
case PLACE_RODATA:
|
|
follow = PLACE_TEXT;
|
|
break;
|
|
case PLACE_BSS:
|
|
follow = PLACE_DATA;
|
|
break;
|
|
case PLACE_REL:
|
|
follow = PLACE_TEXT;
|
|
break;
|
|
case PLACE_INTERP:
|
|
follow = PLACE_TEXT;
|
|
break;
|
|
case PLACE_TLS:
|
|
follow = PLACE_DATA;
|
|
break;
|
|
case PLACE_TLS_BSS:
|
|
follow = PLACE_TLS;
|
|
if (!this->places_[PLACE_TLS].have_location)
|
|
follow = PLACE_DATA;
|
|
break;
|
|
}
|
|
if (follow != PLACE_MAX && this->places_[follow].have_location)
|
|
{
|
|
// Set the location of INDEX to the location of FOLLOW. The
|
|
// location of INDEX will then be incremented by the caller,
|
|
// so anything in INDEX will continue to be after anything
|
|
// in FOLLOW.
|
|
this->places_[index].location = this->places_[follow].location;
|
|
this->places_[index].have_location = true;
|
|
}
|
|
}
|
|
|
|
*pwhere = &this->places_[index].location;
|
|
bool ret = this->places_[index].have_location;
|
|
|
|
// The caller will set the location.
|
|
this->places_[index].have_location = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Return the iterator being used for sections at the very end of the
|
|
// linker script.
|
|
|
|
Orphan_section_placement::Elements_iterator
|
|
Orphan_section_placement::last_place() const
|
|
{
|
|
gold_assert(this->places_[PLACE_LAST].have_location);
|
|
return this->places_[PLACE_LAST].location;
|
|
}
|
|
|
|
// An element in a SECTIONS clause.
|
|
|
|
class Sections_element
|
|
{
|
|
public:
|
|
Sections_element()
|
|
{ }
|
|
|
|
virtual ~Sections_element()
|
|
{ }
|
|
|
|
// Return whether an output section is relro.
|
|
virtual bool
|
|
is_relro() const
|
|
{ return false; }
|
|
|
|
// Record that an output section is relro.
|
|
virtual void
|
|
set_is_relro()
|
|
{ }
|
|
|
|
// Create any required output sections. The only real
|
|
// implementation is in Output_section_definition.
|
|
virtual void
|
|
create_sections(Layout*)
|
|
{ }
|
|
|
|
// Add any symbol being defined to the symbol table.
|
|
virtual void
|
|
add_symbols_to_table(Symbol_table*)
|
|
{ }
|
|
|
|
// Finalize symbols and check assertions.
|
|
virtual void
|
|
finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
|
|
{ }
|
|
|
|
// Return the output section name to use for an input file name and
|
|
// section name. This only real implementation is in
|
|
// Output_section_definition.
|
|
virtual const char*
|
|
output_section_name(const char*, const char*, Output_section***,
|
|
Script_sections::Section_type*)
|
|
{ return NULL; }
|
|
|
|
// Initialize OSP with an output section.
|
|
virtual void
|
|
orphan_section_init(Orphan_section_placement*,
|
|
Script_sections::Elements_iterator)
|
|
{ }
|
|
|
|
// Set section addresses. This includes applying assignments if the
|
|
// expression is an absolute value.
|
|
virtual void
|
|
set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
|
|
uint64_t*)
|
|
{ }
|
|
|
|
// Check a constraint (ONLY_IF_RO, etc.) on an output section. If
|
|
// this section is constrained, and the input sections do not match,
|
|
// return the constraint, and set *POSD.
|
|
virtual Section_constraint
|
|
check_constraint(Output_section_definition**)
|
|
{ return CONSTRAINT_NONE; }
|
|
|
|
// See if this is the alternate output section for a constrained
|
|
// output section. If it is, transfer the Output_section and return
|
|
// true. Otherwise return false.
|
|
virtual bool
|
|
alternate_constraint(Output_section_definition*, Section_constraint)
|
|
{ return false; }
|
|
|
|
// Get the list of segments to use for an allocated section when
|
|
// using a PHDRS clause. If this is an allocated section, return
|
|
// the Output_section, and set *PHDRS_LIST (the first parameter) to
|
|
// the list of PHDRS to which it should be attached. If the PHDRS
|
|
// were not specified, don't change *PHDRS_LIST. When not returning
|
|
// NULL, set *ORPHAN (the second parameter) according to whether
|
|
// this is an orphan section--one that is not mentioned in the
|
|
// linker script.
|
|
virtual Output_section*
|
|
allocate_to_segment(String_list**, bool*)
|
|
{ return NULL; }
|
|
|
|
// Look for an output section by name and return the address, the
|
|
// load address, the alignment, and the size. This is used when an
|
|
// expression refers to an output section which was not actually
|
|
// created. This returns true if the section was found, false
|
|
// otherwise. The only real definition is for
|
|
// Output_section_definition.
|
|
virtual bool
|
|
get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
|
|
uint64_t*) const
|
|
{ return false; }
|
|
|
|
// Return the associated Output_section if there is one.
|
|
virtual Output_section*
|
|
get_output_section() const
|
|
{ return NULL; }
|
|
|
|
// Set the section's memory regions.
|
|
virtual void
|
|
set_memory_region(Memory_region*, bool)
|
|
{ gold_error(_("Attempt to set a memory region for a non-output section")); }
|
|
|
|
// Print the element for debugging purposes.
|
|
virtual void
|
|
print(FILE* f) const = 0;
|
|
};
|
|
|
|
// An assignment in a SECTIONS clause outside of an output section.
|
|
|
|
class Sections_element_assignment : public Sections_element
|
|
{
|
|
public:
|
|
Sections_element_assignment(const char* name, size_t namelen,
|
|
Expression* val, bool provide, bool hidden)
|
|
: assignment_(name, namelen, false, val, provide, hidden)
|
|
{ }
|
|
|
|
// Add the symbol to the symbol table.
|
|
void
|
|
add_symbols_to_table(Symbol_table* symtab)
|
|
{ this->assignment_.add_to_table(symtab); }
|
|
|
|
// Finalize the symbol.
|
|
void
|
|
finalize_symbols(Symbol_table* symtab, const Layout* layout,
|
|
uint64_t* dot_value)
|
|
{
|
|
this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
|
|
}
|
|
|
|
// Set the section address. There is no section here, but if the
|
|
// value is absolute, we set the symbol. This permits us to use
|
|
// absolute symbols when setting dot.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout,
|
|
uint64_t* dot_value, uint64_t*, uint64_t*)
|
|
{
|
|
this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
|
|
}
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " ");
|
|
this->assignment_.print(f);
|
|
}
|
|
|
|
private:
|
|
Symbol_assignment assignment_;
|
|
};
|
|
|
|
// An assignment to the dot symbol in a SECTIONS clause outside of an
|
|
// output section.
|
|
|
|
class Sections_element_dot_assignment : public Sections_element
|
|
{
|
|
public:
|
|
Sections_element_dot_assignment(Expression* val)
|
|
: val_(val)
|
|
{ }
|
|
|
|
// Finalize the symbol.
|
|
void
|
|
finalize_symbols(Symbol_table* symtab, const Layout* layout,
|
|
uint64_t* dot_value)
|
|
{
|
|
// We ignore the section of the result because outside of an
|
|
// output section definition the dot symbol is always considered
|
|
// to be absolute.
|
|
*dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
|
|
NULL, NULL, NULL);
|
|
}
|
|
|
|
// Update the dot symbol while setting section addresses.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout,
|
|
uint64_t* dot_value, uint64_t* dot_alignment,
|
|
uint64_t* load_address)
|
|
{
|
|
*dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
|
|
NULL, NULL, dot_alignment);
|
|
*load_address = *dot_value;
|
|
}
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " . = ");
|
|
this->val_->print(f);
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
private:
|
|
Expression* val_;
|
|
};
|
|
|
|
// An assertion in a SECTIONS clause outside of an output section.
|
|
|
|
class Sections_element_assertion : public Sections_element
|
|
{
|
|
public:
|
|
Sections_element_assertion(Expression* check, const char* message,
|
|
size_t messagelen)
|
|
: assertion_(check, message, messagelen)
|
|
{ }
|
|
|
|
// Check the assertion.
|
|
void
|
|
finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
|
|
{ this->assertion_.check(symtab, layout); }
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " ");
|
|
this->assertion_.print(f);
|
|
}
|
|
|
|
private:
|
|
Script_assertion assertion_;
|
|
};
|
|
|
|
// An element in an output section in a SECTIONS clause.
|
|
|
|
class Output_section_element
|
|
{
|
|
public:
|
|
// A list of input sections.
|
|
typedef std::list<Output_section::Input_section> Input_section_list;
|
|
|
|
Output_section_element()
|
|
{ }
|
|
|
|
virtual ~Output_section_element()
|
|
{ }
|
|
|
|
// Return whether this element requires an output section to exist.
|
|
virtual bool
|
|
needs_output_section() const
|
|
{ return false; }
|
|
|
|
// Add any symbol being defined to the symbol table.
|
|
virtual void
|
|
add_symbols_to_table(Symbol_table*)
|
|
{ }
|
|
|
|
// Finalize symbols and check assertions.
|
|
virtual void
|
|
finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
|
|
{ }
|
|
|
|
// Return whether this element matches FILE_NAME and SECTION_NAME.
|
|
// The only real implementation is in Output_section_element_input.
|
|
virtual bool
|
|
match_name(const char*, const char*) const
|
|
{ return false; }
|
|
|
|
// Set section addresses. This includes applying assignments if the
|
|
// expression is an absolute value.
|
|
virtual void
|
|
set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
|
|
uint64_t*, uint64_t*, Output_section**, std::string*,
|
|
Input_section_list*)
|
|
{ }
|
|
|
|
// Print the element for debugging purposes.
|
|
virtual void
|
|
print(FILE* f) const = 0;
|
|
|
|
protected:
|
|
// Return a fill string that is LENGTH bytes long, filling it with
|
|
// FILL.
|
|
std::string
|
|
get_fill_string(const std::string* fill, section_size_type length) const;
|
|
};
|
|
|
|
std::string
|
|
Output_section_element::get_fill_string(const std::string* fill,
|
|
section_size_type length) const
|
|
{
|
|
std::string this_fill;
|
|
this_fill.reserve(length);
|
|
while (this_fill.length() + fill->length() <= length)
|
|
this_fill += *fill;
|
|
if (this_fill.length() < length)
|
|
this_fill.append(*fill, 0, length - this_fill.length());
|
|
return this_fill;
|
|
}
|
|
|
|
// A symbol assignment in an output section.
|
|
|
|
class Output_section_element_assignment : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_assignment(const char* name, size_t namelen,
|
|
Expression* val, bool provide,
|
|
bool hidden)
|
|
: assignment_(name, namelen, false, val, provide, hidden)
|
|
{ }
|
|
|
|
// Add the symbol to the symbol table.
|
|
void
|
|
add_symbols_to_table(Symbol_table* symtab)
|
|
{ this->assignment_.add_to_table(symtab); }
|
|
|
|
// Finalize the symbol.
|
|
void
|
|
finalize_symbols(Symbol_table* symtab, const Layout* layout,
|
|
uint64_t* dot_value, Output_section** dot_section)
|
|
{
|
|
this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
|
|
*dot_section);
|
|
}
|
|
|
|
// Set the section address. There is no section here, but if the
|
|
// value is absolute, we set the symbol. This permits us to use
|
|
// absolute symbols when setting dot.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
|
|
uint64_t, uint64_t* dot_value, uint64_t*,
|
|
Output_section**, std::string*, Input_section_list*)
|
|
{
|
|
this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
|
|
}
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " ");
|
|
this->assignment_.print(f);
|
|
}
|
|
|
|
private:
|
|
Symbol_assignment assignment_;
|
|
};
|
|
|
|
// An assignment to the dot symbol in an output section.
|
|
|
|
class Output_section_element_dot_assignment : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_dot_assignment(Expression* val)
|
|
: val_(val)
|
|
{ }
|
|
|
|
// Finalize the symbol.
|
|
void
|
|
finalize_symbols(Symbol_table* symtab, const Layout* layout,
|
|
uint64_t* dot_value, Output_section** dot_section)
|
|
{
|
|
*dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
|
|
*dot_section, dot_section, NULL);
|
|
}
|
|
|
|
// Update the dot symbol while setting section addresses.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
|
|
uint64_t, uint64_t* dot_value, uint64_t*,
|
|
Output_section**, std::string*, Input_section_list*);
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " . = ");
|
|
this->val_->print(f);
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
private:
|
|
Expression* val_;
|
|
};
|
|
|
|
// Update the dot symbol while setting section addresses.
|
|
|
|
void
|
|
Output_section_element_dot_assignment::set_section_addresses(
|
|
Symbol_table* symtab,
|
|
Layout* layout,
|
|
Output_section* output_section,
|
|
uint64_t,
|
|
uint64_t* dot_value,
|
|
uint64_t* dot_alignment,
|
|
Output_section** dot_section,
|
|
std::string* fill,
|
|
Input_section_list*)
|
|
{
|
|
uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
|
|
*dot_value, *dot_section,
|
|
dot_section, dot_alignment);
|
|
if (next_dot < *dot_value)
|
|
gold_error(_("dot may not move backward"));
|
|
if (next_dot > *dot_value && output_section != NULL)
|
|
{
|
|
section_size_type length = convert_to_section_size_type(next_dot
|
|
- *dot_value);
|
|
Output_section_data* posd;
|
|
if (fill->empty())
|
|
posd = new Output_data_zero_fill(length, 0);
|
|
else
|
|
{
|
|
std::string this_fill = this->get_fill_string(fill, length);
|
|
posd = new Output_data_const(this_fill, 0);
|
|
}
|
|
output_section->add_output_section_data(posd);
|
|
layout->new_output_section_data_from_script(posd);
|
|
}
|
|
*dot_value = next_dot;
|
|
}
|
|
|
|
// An assertion in an output section.
|
|
|
|
class Output_section_element_assertion : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_assertion(Expression* check, const char* message,
|
|
size_t messagelen)
|
|
: assertion_(check, message, messagelen)
|
|
{ }
|
|
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " ");
|
|
this->assertion_.print(f);
|
|
}
|
|
|
|
private:
|
|
Script_assertion assertion_;
|
|
};
|
|
|
|
// We use a special instance of Output_section_data to handle BYTE,
|
|
// SHORT, etc. This permits forward references to symbols in the
|
|
// expressions.
|
|
|
|
class Output_data_expression : public Output_section_data
|
|
{
|
|
public:
|
|
Output_data_expression(int size, bool is_signed, Expression* val,
|
|
const Symbol_table* symtab, const Layout* layout,
|
|
uint64_t dot_value, Output_section* dot_section)
|
|
: Output_section_data(size, 0, true),
|
|
is_signed_(is_signed), val_(val), symtab_(symtab),
|
|
layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
|
|
{ }
|
|
|
|
protected:
|
|
// Write the data to the output file.
|
|
void
|
|
do_write(Output_file*);
|
|
|
|
// Write the data to a buffer.
|
|
void
|
|
do_write_to_buffer(unsigned char*);
|
|
|
|
// Write to a map file.
|
|
void
|
|
do_print_to_mapfile(Mapfile* mapfile) const
|
|
{ mapfile->print_output_data(this, _("** expression")); }
|
|
|
|
private:
|
|
template<bool big_endian>
|
|
void
|
|
endian_write_to_buffer(uint64_t, unsigned char*);
|
|
|
|
bool is_signed_;
|
|
Expression* val_;
|
|
const Symbol_table* symtab_;
|
|
const Layout* layout_;
|
|
uint64_t dot_value_;
|
|
Output_section* dot_section_;
|
|
};
|
|
|
|
// Write the data element to the output file.
|
|
|
|
void
|
|
Output_data_expression::do_write(Output_file* of)
|
|
{
|
|
unsigned char* view = of->get_output_view(this->offset(), this->data_size());
|
|
this->write_to_buffer(view);
|
|
of->write_output_view(this->offset(), this->data_size(), view);
|
|
}
|
|
|
|
// Write the data element to a buffer.
|
|
|
|
void
|
|
Output_data_expression::do_write_to_buffer(unsigned char* buf)
|
|
{
|
|
uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
|
|
true, this->dot_value_,
|
|
this->dot_section_, NULL, NULL);
|
|
|
|
if (parameters->target().is_big_endian())
|
|
this->endian_write_to_buffer<true>(val, buf);
|
|
else
|
|
this->endian_write_to_buffer<false>(val, buf);
|
|
}
|
|
|
|
template<bool big_endian>
|
|
void
|
|
Output_data_expression::endian_write_to_buffer(uint64_t val,
|
|
unsigned char* buf)
|
|
{
|
|
switch (this->data_size())
|
|
{
|
|
case 1:
|
|
elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
|
|
break;
|
|
case 2:
|
|
elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
|
|
break;
|
|
case 4:
|
|
elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
|
|
break;
|
|
case 8:
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
val &= 0xffffffff;
|
|
if (this->is_signed_ && (val & 0x80000000) != 0)
|
|
val |= 0xffffffff00000000LL;
|
|
}
|
|
elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// A data item in an output section.
|
|
|
|
class Output_section_element_data : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_data(int size, bool is_signed, Expression* val)
|
|
: size_(size), is_signed_(is_signed), val_(val)
|
|
{ }
|
|
|
|
// If there is a data item, then we must create an output section.
|
|
bool
|
|
needs_output_section() const
|
|
{ return true; }
|
|
|
|
// Finalize symbols--we just need to update dot.
|
|
void
|
|
finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
|
|
Output_section**)
|
|
{ *dot_value += this->size_; }
|
|
|
|
// Store the value in the section.
|
|
void
|
|
set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
|
|
uint64_t* dot_value, uint64_t*, Output_section**,
|
|
std::string*, Input_section_list*);
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE*) const;
|
|
|
|
private:
|
|
// The size in bytes.
|
|
int size_;
|
|
// Whether the value is signed.
|
|
bool is_signed_;
|
|
// The value.
|
|
Expression* val_;
|
|
};
|
|
|
|
// Store the value in the section.
|
|
|
|
void
|
|
Output_section_element_data::set_section_addresses(
|
|
Symbol_table* symtab,
|
|
Layout* layout,
|
|
Output_section* os,
|
|
uint64_t,
|
|
uint64_t* dot_value,
|
|
uint64_t*,
|
|
Output_section** dot_section,
|
|
std::string*,
|
|
Input_section_list*)
|
|
{
|
|
gold_assert(os != NULL);
|
|
Output_data_expression* expression =
|
|
new Output_data_expression(this->size_, this->is_signed_, this->val_,
|
|
symtab, layout, *dot_value, *dot_section);
|
|
os->add_output_section_data(expression);
|
|
layout->new_output_section_data_from_script(expression);
|
|
*dot_value += this->size_;
|
|
}
|
|
|
|
// Print for debugging.
|
|
|
|
void
|
|
Output_section_element_data::print(FILE* f) const
|
|
{
|
|
const char* s;
|
|
switch (this->size_)
|
|
{
|
|
case 1:
|
|
s = "BYTE";
|
|
break;
|
|
case 2:
|
|
s = "SHORT";
|
|
break;
|
|
case 4:
|
|
s = "LONG";
|
|
break;
|
|
case 8:
|
|
if (this->is_signed_)
|
|
s = "SQUAD";
|
|
else
|
|
s = "QUAD";
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
fprintf(f, " %s(", s);
|
|
this->val_->print(f);
|
|
fprintf(f, ")\n");
|
|
}
|
|
|
|
// A fill value setting in an output section.
|
|
|
|
class Output_section_element_fill : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_fill(Expression* val)
|
|
: val_(val)
|
|
{ }
|
|
|
|
// Update the fill value while setting section addresses.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
|
|
uint64_t, uint64_t* dot_value, uint64_t*,
|
|
Output_section** dot_section,
|
|
std::string* fill, Input_section_list*)
|
|
{
|
|
Output_section* fill_section;
|
|
uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
|
|
*dot_value, *dot_section,
|
|
&fill_section, NULL);
|
|
if (fill_section != NULL)
|
|
gold_warning(_("fill value is not absolute"));
|
|
// FIXME: The GNU linker supports fill values of arbitrary length.
|
|
unsigned char fill_buff[4];
|
|
elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
|
|
fill->assign(reinterpret_cast<char*>(fill_buff), 4);
|
|
}
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " FILL(");
|
|
this->val_->print(f);
|
|
fprintf(f, ")\n");
|
|
}
|
|
|
|
private:
|
|
// The new fill value.
|
|
Expression* val_;
|
|
};
|
|
|
|
// An input section specification in an output section
|
|
|
|
class Output_section_element_input : public Output_section_element
|
|
{
|
|
public:
|
|
Output_section_element_input(const Input_section_spec* spec, bool keep);
|
|
|
|
// Finalize symbols--just update the value of the dot symbol.
|
|
void
|
|
finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
|
|
Output_section** dot_section)
|
|
{
|
|
*dot_value = this->final_dot_value_;
|
|
*dot_section = this->final_dot_section_;
|
|
}
|
|
|
|
// See whether we match FILE_NAME and SECTION_NAME as an input
|
|
// section.
|
|
bool
|
|
match_name(const char* file_name, const char* section_name) const;
|
|
|
|
// Set the section address.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
|
|
uint64_t subalign, uint64_t* dot_value, uint64_t*,
|
|
Output_section**, std::string* fill,
|
|
Input_section_list*);
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const;
|
|
|
|
private:
|
|
// An input section pattern.
|
|
struct Input_section_pattern
|
|
{
|
|
std::string pattern;
|
|
bool pattern_is_wildcard;
|
|
Sort_wildcard sort;
|
|
|
|
Input_section_pattern(const char* patterna, size_t patternlena,
|
|
Sort_wildcard sorta)
|
|
: pattern(patterna, patternlena),
|
|
pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
|
|
sort(sorta)
|
|
{ }
|
|
};
|
|
|
|
typedef std::vector<Input_section_pattern> Input_section_patterns;
|
|
|
|
// Filename_exclusions is a pair of filename pattern and a bool
|
|
// indicating whether the filename is a wildcard.
|
|
typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
|
|
|
|
// Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
|
|
// indicates whether this is a wildcard pattern.
|
|
static inline bool
|
|
match(const char* string, const char* pattern, bool is_wildcard_pattern)
|
|
{
|
|
return (is_wildcard_pattern
|
|
? fnmatch(pattern, string, 0) == 0
|
|
: strcmp(string, pattern) == 0);
|
|
}
|
|
|
|
// See if we match a file name.
|
|
bool
|
|
match_file_name(const char* file_name) const;
|
|
|
|
// The file name pattern. If this is the empty string, we match all
|
|
// files.
|
|
std::string filename_pattern_;
|
|
// Whether the file name pattern is a wildcard.
|
|
bool filename_is_wildcard_;
|
|
// How the file names should be sorted. This may only be
|
|
// SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
|
|
Sort_wildcard filename_sort_;
|
|
// The list of file names to exclude.
|
|
Filename_exclusions filename_exclusions_;
|
|
// The list of input section patterns.
|
|
Input_section_patterns input_section_patterns_;
|
|
// Whether to keep this section when garbage collecting.
|
|
bool keep_;
|
|
// The value of dot after including all matching sections.
|
|
uint64_t final_dot_value_;
|
|
// The section where dot is defined after including all matching
|
|
// sections.
|
|
Output_section* final_dot_section_;
|
|
};
|
|
|
|
// Construct Output_section_element_input. The parser records strings
|
|
// as pointers into a copy of the script file, which will go away when
|
|
// parsing is complete. We make sure they are in std::string objects.
|
|
|
|
Output_section_element_input::Output_section_element_input(
|
|
const Input_section_spec* spec,
|
|
bool keep)
|
|
: filename_pattern_(),
|
|
filename_is_wildcard_(false),
|
|
filename_sort_(spec->file.sort),
|
|
filename_exclusions_(),
|
|
input_section_patterns_(),
|
|
keep_(keep),
|
|
final_dot_value_(0),
|
|
final_dot_section_(NULL)
|
|
{
|
|
// The filename pattern "*" is common, and matches all files. Turn
|
|
// it into the empty string.
|
|
if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
|
|
this->filename_pattern_.assign(spec->file.name.value,
|
|
spec->file.name.length);
|
|
this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
|
|
|
|
if (spec->input_sections.exclude != NULL)
|
|
{
|
|
for (String_list::const_iterator p =
|
|
spec->input_sections.exclude->begin();
|
|
p != spec->input_sections.exclude->end();
|
|
++p)
|
|
{
|
|
bool is_wildcard = is_wildcard_string((*p).c_str());
|
|
this->filename_exclusions_.push_back(std::make_pair(*p,
|
|
is_wildcard));
|
|
}
|
|
}
|
|
|
|
if (spec->input_sections.sections != NULL)
|
|
{
|
|
Input_section_patterns& isp(this->input_section_patterns_);
|
|
for (String_sort_list::const_iterator p =
|
|
spec->input_sections.sections->begin();
|
|
p != spec->input_sections.sections->end();
|
|
++p)
|
|
isp.push_back(Input_section_pattern(p->name.value, p->name.length,
|
|
p->sort));
|
|
}
|
|
}
|
|
|
|
// See whether we match FILE_NAME.
|
|
|
|
bool
|
|
Output_section_element_input::match_file_name(const char* file_name) const
|
|
{
|
|
if (!this->filename_pattern_.empty())
|
|
{
|
|
// If we were called with no filename, we refuse to match a
|
|
// pattern which requires a file name.
|
|
if (file_name == NULL)
|
|
return false;
|
|
|
|
if (!match(file_name, this->filename_pattern_.c_str(),
|
|
this->filename_is_wildcard_))
|
|
return false;
|
|
}
|
|
|
|
if (file_name != NULL)
|
|
{
|
|
// Now we have to see whether FILE_NAME matches one of the
|
|
// exclusion patterns, if any.
|
|
for (Filename_exclusions::const_iterator p =
|
|
this->filename_exclusions_.begin();
|
|
p != this->filename_exclusions_.end();
|
|
++p)
|
|
{
|
|
if (match(file_name, p->first.c_str(), p->second))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// See whether we match FILE_NAME and SECTION_NAME.
|
|
|
|
bool
|
|
Output_section_element_input::match_name(const char* file_name,
|
|
const char* section_name) const
|
|
{
|
|
if (!this->match_file_name(file_name))
|
|
return false;
|
|
|
|
// If there are no section name patterns, then we match.
|
|
if (this->input_section_patterns_.empty())
|
|
return true;
|
|
|
|
// See whether we match the section name patterns.
|
|
for (Input_section_patterns::const_iterator p =
|
|
this->input_section_patterns_.begin();
|
|
p != this->input_section_patterns_.end();
|
|
++p)
|
|
{
|
|
if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
|
|
return true;
|
|
}
|
|
|
|
// We didn't match any section names, so we didn't match.
|
|
return false;
|
|
}
|
|
|
|
// Information we use to sort the input sections.
|
|
|
|
class Input_section_info
|
|
{
|
|
public:
|
|
Input_section_info(const Output_section::Input_section& input_section)
|
|
: input_section_(input_section), section_name_(),
|
|
size_(0), addralign_(1)
|
|
{ }
|
|
|
|
// Return the simple input section.
|
|
const Output_section::Input_section&
|
|
input_section() const
|
|
{ return this->input_section_; }
|
|
|
|
// Return the object.
|
|
Relobj*
|
|
relobj() const
|
|
{ return this->input_section_.relobj(); }
|
|
|
|
// Return the section index.
|
|
unsigned int
|
|
shndx()
|
|
{ return this->input_section_.shndx(); }
|
|
|
|
// Return the section name.
|
|
const std::string&
|
|
section_name() const
|
|
{ return this->section_name_; }
|
|
|
|
// Set the section name.
|
|
void
|
|
set_section_name(const std::string name)
|
|
{ this->section_name_ = name; }
|
|
|
|
// Return the section size.
|
|
uint64_t
|
|
size() const
|
|
{ return this->size_; }
|
|
|
|
// Set the section size.
|
|
void
|
|
set_size(uint64_t size)
|
|
{ this->size_ = size; }
|
|
|
|
// Return the address alignment.
|
|
uint64_t
|
|
addralign() const
|
|
{ return this->addralign_; }
|
|
|
|
// Set the address alignment.
|
|
void
|
|
set_addralign(uint64_t addralign)
|
|
{ this->addralign_ = addralign; }
|
|
|
|
private:
|
|
// Input section, can be a relaxed section.
|
|
Output_section::Input_section input_section_;
|
|
// Name of the section.
|
|
std::string section_name_;
|
|
// Section size.
|
|
uint64_t size_;
|
|
// Address alignment.
|
|
uint64_t addralign_;
|
|
};
|
|
|
|
// A class to sort the input sections.
|
|
|
|
class Input_section_sorter
|
|
{
|
|
public:
|
|
Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
|
|
: filename_sort_(filename_sort), section_sort_(section_sort)
|
|
{ }
|
|
|
|
bool
|
|
operator()(const Input_section_info&, const Input_section_info&) const;
|
|
|
|
private:
|
|
Sort_wildcard filename_sort_;
|
|
Sort_wildcard section_sort_;
|
|
};
|
|
|
|
bool
|
|
Input_section_sorter::operator()(const Input_section_info& isi1,
|
|
const Input_section_info& isi2) const
|
|
{
|
|
if (this->section_sort_ == SORT_WILDCARD_BY_NAME
|
|
|| this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
|
|
|| (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
|
|
&& isi1.addralign() == isi2.addralign()))
|
|
{
|
|
if (isi1.section_name() != isi2.section_name())
|
|
return isi1.section_name() < isi2.section_name();
|
|
}
|
|
if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
|
|
|| this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
|
|
|| this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
|
|
{
|
|
if (isi1.addralign() != isi2.addralign())
|
|
return isi1.addralign() < isi2.addralign();
|
|
}
|
|
if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
|
|
{
|
|
if (isi1.relobj()->name() != isi2.relobj()->name())
|
|
return (isi1.relobj()->name() < isi2.relobj()->name());
|
|
}
|
|
|
|
// Otherwise we leave them in the same order.
|
|
return false;
|
|
}
|
|
|
|
// Set the section address. Look in INPUT_SECTIONS for sections which
|
|
// match this spec, sort them as specified, and add them to the output
|
|
// section.
|
|
|
|
void
|
|
Output_section_element_input::set_section_addresses(
|
|
Symbol_table*,
|
|
Layout* layout,
|
|
Output_section* output_section,
|
|
uint64_t subalign,
|
|
uint64_t* dot_value,
|
|
uint64_t*,
|
|
Output_section** dot_section,
|
|
std::string* fill,
|
|
Input_section_list* input_sections)
|
|
{
|
|
// We build a list of sections which match each
|
|
// Input_section_pattern.
|
|
|
|
typedef std::vector<std::vector<Input_section_info> > Matching_sections;
|
|
size_t input_pattern_count = this->input_section_patterns_.size();
|
|
if (input_pattern_count == 0)
|
|
input_pattern_count = 1;
|
|
Matching_sections matching_sections(input_pattern_count);
|
|
|
|
// Look through the list of sections for this output section. Add
|
|
// each one which matches to one of the elements of
|
|
// MATCHING_SECTIONS.
|
|
|
|
Input_section_list::iterator p = input_sections->begin();
|
|
while (p != input_sections->end())
|
|
{
|
|
Relobj* relobj = p->relobj();
|
|
unsigned int shndx = p->shndx();
|
|
Input_section_info isi(*p);
|
|
|
|
// Calling section_name and section_addralign is not very
|
|
// efficient.
|
|
|
|
// Lock the object so that we can get information about the
|
|
// section. This is OK since we know we are single-threaded
|
|
// here.
|
|
{
|
|
const Task* task = reinterpret_cast<const Task*>(-1);
|
|
Task_lock_obj<Object> tl(task, relobj);
|
|
|
|
isi.set_section_name(relobj->section_name(shndx));
|
|
if (p->is_relaxed_input_section())
|
|
{
|
|
// We use current data size because relaxed section sizes may not
|
|
// have finalized yet.
|
|
isi.set_size(p->relaxed_input_section()->current_data_size());
|
|
isi.set_addralign(p->relaxed_input_section()->addralign());
|
|
}
|
|
else
|
|
{
|
|
isi.set_size(relobj->section_size(shndx));
|
|
isi.set_addralign(relobj->section_addralign(shndx));
|
|
}
|
|
}
|
|
|
|
if (!this->match_file_name(relobj->name().c_str()))
|
|
++p;
|
|
else if (this->input_section_patterns_.empty())
|
|
{
|
|
matching_sections[0].push_back(isi);
|
|
p = input_sections->erase(p);
|
|
}
|
|
else
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < input_pattern_count; ++i)
|
|
{
|
|
const Input_section_pattern&
|
|
isp(this->input_section_patterns_[i]);
|
|
if (match(isi.section_name().c_str(), isp.pattern.c_str(),
|
|
isp.pattern_is_wildcard))
|
|
break;
|
|
}
|
|
|
|
if (i >= this->input_section_patterns_.size())
|
|
++p;
|
|
else
|
|
{
|
|
matching_sections[i].push_back(isi);
|
|
p = input_sections->erase(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look through MATCHING_SECTIONS. Sort each one as specified,
|
|
// using a stable sort so that we get the default order when
|
|
// sections are otherwise equal. Add each input section to the
|
|
// output section.
|
|
|
|
uint64_t dot = *dot_value;
|
|
for (size_t i = 0; i < input_pattern_count; ++i)
|
|
{
|
|
if (matching_sections[i].empty())
|
|
continue;
|
|
|
|
gold_assert(output_section != NULL);
|
|
|
|
const Input_section_pattern& isp(this->input_section_patterns_[i]);
|
|
if (isp.sort != SORT_WILDCARD_NONE
|
|
|| this->filename_sort_ != SORT_WILDCARD_NONE)
|
|
std::stable_sort(matching_sections[i].begin(),
|
|
matching_sections[i].end(),
|
|
Input_section_sorter(this->filename_sort_,
|
|
isp.sort));
|
|
|
|
for (std::vector<Input_section_info>::const_iterator p =
|
|
matching_sections[i].begin();
|
|
p != matching_sections[i].end();
|
|
++p)
|
|
{
|
|
// Override the original address alignment if SUBALIGN is specified
|
|
// and is greater than the original alignment. We need to make a
|
|
// copy of the input section to modify the alignment.
|
|
Output_section::Input_section sis(p->input_section());
|
|
|
|
uint64_t this_subalign = sis.addralign();
|
|
if (!sis.is_input_section())
|
|
sis.output_section_data()->finalize_data_size();
|
|
uint64_t data_size = sis.data_size();
|
|
if (this_subalign < subalign)
|
|
{
|
|
this_subalign = subalign;
|
|
sis.set_addralign(subalign);
|
|
}
|
|
|
|
uint64_t address = align_address(dot, this_subalign);
|
|
|
|
if (address > dot && !fill->empty())
|
|
{
|
|
section_size_type length =
|
|
convert_to_section_size_type(address - dot);
|
|
std::string this_fill = this->get_fill_string(fill, length);
|
|
Output_section_data* posd = new Output_data_const(this_fill, 0);
|
|
output_section->add_output_section_data(posd);
|
|
layout->new_output_section_data_from_script(posd);
|
|
}
|
|
|
|
output_section->add_script_input_section(sis);
|
|
dot = address + data_size;
|
|
}
|
|
}
|
|
|
|
// An SHF_TLS/SHT_NOBITS section does not take up any
|
|
// address space.
|
|
if (output_section == NULL
|
|
|| (output_section->flags() & elfcpp::SHF_TLS) == 0
|
|
|| output_section->type() != elfcpp::SHT_NOBITS)
|
|
*dot_value = dot;
|
|
|
|
this->final_dot_value_ = *dot_value;
|
|
this->final_dot_section_ = *dot_section;
|
|
}
|
|
|
|
// Print for debugging.
|
|
|
|
void
|
|
Output_section_element_input::print(FILE* f) const
|
|
{
|
|
fprintf(f, " ");
|
|
|
|
if (this->keep_)
|
|
fprintf(f, "KEEP(");
|
|
|
|
if (!this->filename_pattern_.empty())
|
|
{
|
|
bool need_close_paren = false;
|
|
switch (this->filename_sort_)
|
|
{
|
|
case SORT_WILDCARD_NONE:
|
|
break;
|
|
case SORT_WILDCARD_BY_NAME:
|
|
fprintf(f, "SORT_BY_NAME(");
|
|
need_close_paren = true;
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
fprintf(f, "%s", this->filename_pattern_.c_str());
|
|
|
|
if (need_close_paren)
|
|
fprintf(f, ")");
|
|
}
|
|
|
|
if (!this->input_section_patterns_.empty()
|
|
|| !this->filename_exclusions_.empty())
|
|
{
|
|
fprintf(f, "(");
|
|
|
|
bool need_space = false;
|
|
if (!this->filename_exclusions_.empty())
|
|
{
|
|
fprintf(f, "EXCLUDE_FILE(");
|
|
bool need_comma = false;
|
|
for (Filename_exclusions::const_iterator p =
|
|
this->filename_exclusions_.begin();
|
|
p != this->filename_exclusions_.end();
|
|
++p)
|
|
{
|
|
if (need_comma)
|
|
fprintf(f, ", ");
|
|
fprintf(f, "%s", p->first.c_str());
|
|
need_comma = true;
|
|
}
|
|
fprintf(f, ")");
|
|
need_space = true;
|
|
}
|
|
|
|
for (Input_section_patterns::const_iterator p =
|
|
this->input_section_patterns_.begin();
|
|
p != this->input_section_patterns_.end();
|
|
++p)
|
|
{
|
|
if (need_space)
|
|
fprintf(f, " ");
|
|
|
|
int close_parens = 0;
|
|
switch (p->sort)
|
|
{
|
|
case SORT_WILDCARD_NONE:
|
|
break;
|
|
case SORT_WILDCARD_BY_NAME:
|
|
fprintf(f, "SORT_BY_NAME(");
|
|
close_parens = 1;
|
|
break;
|
|
case SORT_WILDCARD_BY_ALIGNMENT:
|
|
fprintf(f, "SORT_BY_ALIGNMENT(");
|
|
close_parens = 1;
|
|
break;
|
|
case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
|
|
fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
|
|
close_parens = 2;
|
|
break;
|
|
case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
|
|
fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
|
|
close_parens = 2;
|
|
break;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
fprintf(f, "%s", p->pattern.c_str());
|
|
|
|
for (int i = 0; i < close_parens; ++i)
|
|
fprintf(f, ")");
|
|
|
|
need_space = true;
|
|
}
|
|
|
|
fprintf(f, ")");
|
|
}
|
|
|
|
if (this->keep_)
|
|
fprintf(f, ")");
|
|
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
// An output section.
|
|
|
|
class Output_section_definition : public Sections_element
|
|
{
|
|
public:
|
|
typedef Output_section_element::Input_section_list Input_section_list;
|
|
|
|
Output_section_definition(const char* name, size_t namelen,
|
|
const Parser_output_section_header* header);
|
|
|
|
// Finish the output section with the information in the trailer.
|
|
void
|
|
finish(const Parser_output_section_trailer* trailer);
|
|
|
|
// Add a symbol to be defined.
|
|
void
|
|
add_symbol_assignment(const char* name, size_t length, Expression* value,
|
|
bool provide, bool hidden);
|
|
|
|
// Add an assignment to the special dot symbol.
|
|
void
|
|
add_dot_assignment(Expression* value);
|
|
|
|
// Add an assertion.
|
|
void
|
|
add_assertion(Expression* check, const char* message, size_t messagelen);
|
|
|
|
// Add a data item to the current output section.
|
|
void
|
|
add_data(int size, bool is_signed, Expression* val);
|
|
|
|
// Add a setting for the fill value.
|
|
void
|
|
add_fill(Expression* val);
|
|
|
|
// Add an input section specification.
|
|
void
|
|
add_input_section(const Input_section_spec* spec, bool keep);
|
|
|
|
// Return whether the output section is relro.
|
|
bool
|
|
is_relro() const
|
|
{ return this->is_relro_; }
|
|
|
|
// Record that the output section is relro.
|
|
void
|
|
set_is_relro()
|
|
{ this->is_relro_ = true; }
|
|
|
|
// Create any required output sections.
|
|
void
|
|
create_sections(Layout*);
|
|
|
|
// Add any symbols being defined to the symbol table.
|
|
void
|
|
add_symbols_to_table(Symbol_table* symtab);
|
|
|
|
// Finalize symbols and check assertions.
|
|
void
|
|
finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
|
|
|
|
// Return the output section name to use for an input file name and
|
|
// section name.
|
|
const char*
|
|
output_section_name(const char* file_name, const char* section_name,
|
|
Output_section***, Script_sections::Section_type*);
|
|
|
|
// Initialize OSP with an output section.
|
|
void
|
|
orphan_section_init(Orphan_section_placement* osp,
|
|
Script_sections::Elements_iterator p)
|
|
{ osp->output_section_init(this->name_, this->output_section_, p); }
|
|
|
|
// Set the section address.
|
|
void
|
|
set_section_addresses(Symbol_table* symtab, Layout* layout,
|
|
uint64_t* dot_value, uint64_t*,
|
|
uint64_t* load_address);
|
|
|
|
// Check a constraint (ONLY_IF_RO, etc.) on an output section. If
|
|
// this section is constrained, and the input sections do not match,
|
|
// return the constraint, and set *POSD.
|
|
Section_constraint
|
|
check_constraint(Output_section_definition** posd);
|
|
|
|
// See if this is the alternate output section for a constrained
|
|
// output section. If it is, transfer the Output_section and return
|
|
// true. Otherwise return false.
|
|
bool
|
|
alternate_constraint(Output_section_definition*, Section_constraint);
|
|
|
|
// Get the list of segments to use for an allocated section when
|
|
// using a PHDRS clause.
|
|
Output_section*
|
|
allocate_to_segment(String_list** phdrs_list, bool* orphan);
|
|
|
|
// Look for an output section by name and return the address, the
|
|
// load address, the alignment, and the size. This is used when an
|
|
// expression refers to an output section which was not actually
|
|
// created. This returns true if the section was found, false
|
|
// otherwise.
|
|
bool
|
|
get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
|
|
uint64_t*) const;
|
|
|
|
// Return the associated Output_section if there is one.
|
|
Output_section*
|
|
get_output_section() const
|
|
{ return this->output_section_; }
|
|
|
|
// Print the contents to the FILE. This is for debugging.
|
|
void
|
|
print(FILE*) const;
|
|
|
|
// Return the output section type if specified or Script_sections::ST_NONE.
|
|
Script_sections::Section_type
|
|
section_type() const;
|
|
|
|
// Store the memory region to use.
|
|
void
|
|
set_memory_region(Memory_region*, bool set_vma);
|
|
|
|
void
|
|
set_section_vma(Expression* address)
|
|
{ this->address_ = address; }
|
|
|
|
void
|
|
set_section_lma(Expression* address)
|
|
{ this->load_address_ = address; }
|
|
|
|
const std::string&
|
|
get_section_name() const
|
|
{ return this->name_; }
|
|
|
|
private:
|
|
static const char*
|
|
script_section_type_name(Script_section_type);
|
|
|
|
typedef std::vector<Output_section_element*> Output_section_elements;
|
|
|
|
// The output section name.
|
|
std::string name_;
|
|
// The address. This may be NULL.
|
|
Expression* address_;
|
|
// The load address. This may be NULL.
|
|
Expression* load_address_;
|
|
// The alignment. This may be NULL.
|
|
Expression* align_;
|
|
// The input section alignment. This may be NULL.
|
|
Expression* subalign_;
|
|
// The constraint, if any.
|
|
Section_constraint constraint_;
|
|
// The fill value. This may be NULL.
|
|
Expression* fill_;
|
|
// The list of segments this section should go into. This may be
|
|
// NULL.
|
|
String_list* phdrs_;
|
|
// The list of elements defining the section.
|
|
Output_section_elements elements_;
|
|
// The Output_section created for this definition. This will be
|
|
// NULL if none was created.
|
|
Output_section* output_section_;
|
|
// The address after it has been evaluated.
|
|
uint64_t evaluated_address_;
|
|
// The load address after it has been evaluated.
|
|
uint64_t evaluated_load_address_;
|
|
// The alignment after it has been evaluated.
|
|
uint64_t evaluated_addralign_;
|
|
// The output section is relro.
|
|
bool is_relro_;
|
|
// The output section type if specified.
|
|
enum Script_section_type script_section_type_;
|
|
};
|
|
|
|
// Constructor.
|
|
|
|
Output_section_definition::Output_section_definition(
|
|
const char* name,
|
|
size_t namelen,
|
|
const Parser_output_section_header* header)
|
|
: name_(name, namelen),
|
|
address_(header->address),
|
|
load_address_(header->load_address),
|
|
align_(header->align),
|
|
subalign_(header->subalign),
|
|
constraint_(header->constraint),
|
|
fill_(NULL),
|
|
phdrs_(NULL),
|
|
elements_(),
|
|
output_section_(NULL),
|
|
evaluated_address_(0),
|
|
evaluated_load_address_(0),
|
|
evaluated_addralign_(0),
|
|
is_relro_(false),
|
|
script_section_type_(header->section_type)
|
|
{
|
|
}
|
|
|
|
// Finish an output section.
|
|
|
|
void
|
|
Output_section_definition::finish(const Parser_output_section_trailer* trailer)
|
|
{
|
|
this->fill_ = trailer->fill;
|
|
this->phdrs_ = trailer->phdrs;
|
|
}
|
|
|
|
// Add a symbol to be defined.
|
|
|
|
void
|
|
Output_section_definition::add_symbol_assignment(const char* name,
|
|
size_t length,
|
|
Expression* value,
|
|
bool provide,
|
|
bool hidden)
|
|
{
|
|
Output_section_element* p = new Output_section_element_assignment(name,
|
|
length,
|
|
value,
|
|
provide,
|
|
hidden);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Add an assignment to the special dot symbol.
|
|
|
|
void
|
|
Output_section_definition::add_dot_assignment(Expression* value)
|
|
{
|
|
Output_section_element* p = new Output_section_element_dot_assignment(value);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Add an assertion.
|
|
|
|
void
|
|
Output_section_definition::add_assertion(Expression* check,
|
|
const char* message,
|
|
size_t messagelen)
|
|
{
|
|
Output_section_element* p = new Output_section_element_assertion(check,
|
|
message,
|
|
messagelen);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Add a data item to the current output section.
|
|
|
|
void
|
|
Output_section_definition::add_data(int size, bool is_signed, Expression* val)
|
|
{
|
|
Output_section_element* p = new Output_section_element_data(size, is_signed,
|
|
val);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Add a setting for the fill value.
|
|
|
|
void
|
|
Output_section_definition::add_fill(Expression* val)
|
|
{
|
|
Output_section_element* p = new Output_section_element_fill(val);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Add an input section specification.
|
|
|
|
void
|
|
Output_section_definition::add_input_section(const Input_section_spec* spec,
|
|
bool keep)
|
|
{
|
|
Output_section_element* p = new Output_section_element_input(spec, keep);
|
|
this->elements_.push_back(p);
|
|
}
|
|
|
|
// Create any required output sections. We need an output section if
|
|
// there is a data statement here.
|
|
|
|
void
|
|
Output_section_definition::create_sections(Layout* layout)
|
|
{
|
|
if (this->output_section_ != NULL)
|
|
return;
|
|
for (Output_section_elements::const_iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
{
|
|
if ((*p)->needs_output_section())
|
|
{
|
|
const char* name = this->name_.c_str();
|
|
this->output_section_ =
|
|
layout->make_output_section_for_script(name, this->section_type());
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add any symbols being defined to the symbol table.
|
|
|
|
void
|
|
Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
|
|
{
|
|
for (Output_section_elements::iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
(*p)->add_symbols_to_table(symtab);
|
|
}
|
|
|
|
// Finalize symbols and check assertions.
|
|
|
|
void
|
|
Output_section_definition::finalize_symbols(Symbol_table* symtab,
|
|
const Layout* layout,
|
|
uint64_t* dot_value)
|
|
{
|
|
if (this->output_section_ != NULL)
|
|
*dot_value = this->output_section_->address();
|
|
else
|
|
{
|
|
uint64_t address = *dot_value;
|
|
if (this->address_ != NULL)
|
|
{
|
|
address = this->address_->eval_with_dot(symtab, layout, true,
|
|
*dot_value, NULL,
|
|
NULL, NULL);
|
|
}
|
|
if (this->align_ != NULL)
|
|
{
|
|
uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
|
|
*dot_value, NULL,
|
|
NULL, NULL);
|
|
address = align_address(address, align);
|
|
}
|
|
*dot_value = address;
|
|
}
|
|
|
|
Output_section* dot_section = this->output_section_;
|
|
for (Output_section_elements::iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
(*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
|
|
}
|
|
|
|
// Return the output section name to use for an input section name.
|
|
|
|
const char*
|
|
Output_section_definition::output_section_name(
|
|
const char* file_name,
|
|
const char* section_name,
|
|
Output_section*** slot,
|
|
Script_sections::Section_type* psection_type)
|
|
{
|
|
// Ask each element whether it matches NAME.
|
|
for (Output_section_elements::const_iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
{
|
|
if ((*p)->match_name(file_name, section_name))
|
|
{
|
|
// We found a match for NAME, which means that it should go
|
|
// into this output section.
|
|
*slot = &this->output_section_;
|
|
*psection_type = this->section_type();
|
|
return this->name_.c_str();
|
|
}
|
|
}
|
|
|
|
// We don't know about this section name.
|
|
return NULL;
|
|
}
|
|
|
|
// Return true if memory from START to START + LENGTH is contained
|
|
// within a memory region.
|
|
|
|
bool
|
|
Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
|
|
uint64_t start, uint64_t length) const
|
|
{
|
|
if (this->memory_regions_ == NULL)
|
|
return false;
|
|
|
|
for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
|
|
mr != this->memory_regions_->end();
|
|
++mr)
|
|
{
|
|
uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
|
|
uint64_t l = (*mr)->length()->eval(symtab, layout, false);
|
|
|
|
if (s <= start
|
|
&& (s + l) >= (start + length))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Find a memory region that should be used by a given output SECTION.
|
|
// If provided set PREVIOUS_SECTION_RETURN to point to the last section
|
|
// that used the return memory region.
|
|
|
|
Memory_region*
|
|
Script_sections::find_memory_region(
|
|
Output_section_definition* section,
|
|
bool find_vma_region,
|
|
Output_section_definition** previous_section_return)
|
|
{
|
|
if (previous_section_return != NULL)
|
|
* previous_section_return = NULL;
|
|
|
|
// Walk the memory regions specified in this script, if any.
|
|
if (this->memory_regions_ == NULL)
|
|
return NULL;
|
|
|
|
// The /DISCARD/ section never gets assigned to any region.
|
|
if (section->get_section_name() == "/DISCARD/")
|
|
return NULL;
|
|
|
|
Memory_region* first_match = NULL;
|
|
|
|
// First check to see if a region has been assigned to this section.
|
|
for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
|
|
mr != this->memory_regions_->end();
|
|
++mr)
|
|
{
|
|
if (find_vma_region)
|
|
{
|
|
for (Memory_region::Section_list::const_iterator s =
|
|
(*mr)->get_vma_section_list_start();
|
|
s != (*mr)->get_vma_section_list_end();
|
|
++s)
|
|
if ((*s) == section)
|
|
{
|
|
(*mr)->set_last_section(section);
|
|
return *mr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (Memory_region::Section_list::const_iterator s =
|
|
(*mr)->get_lma_section_list_start();
|
|
s != (*mr)->get_lma_section_list_end();
|
|
++s)
|
|
if ((*s) == section)
|
|
{
|
|
(*mr)->set_last_section(section);
|
|
return *mr;
|
|
}
|
|
}
|
|
|
|
// Make a note of the first memory region whose attributes
|
|
// are compatible with the section. If we do not find an
|
|
// explicit region assignment, then we will return this region.
|
|
Output_section* out_sec = section->get_output_section();
|
|
if (first_match == NULL
|
|
&& out_sec != NULL
|
|
&& (*mr)->attributes_compatible(out_sec->flags(),
|
|
out_sec->type()))
|
|
first_match = *mr;
|
|
}
|
|
|
|
// With LMA computations, if an explicit region has not been specified then
|
|
// we will want to set the difference between the VMA and the LMA of the
|
|
// section were searching for to be the same as the difference between the
|
|
// VMA and LMA of the last section to be added to first matched region.
|
|
// Hence, if it was asked for, we return a pointer to the last section
|
|
// known to be used by the first matched region.
|
|
if (first_match != NULL
|
|
&& previous_section_return != NULL)
|
|
*previous_section_return = first_match->get_last_section();
|
|
|
|
return first_match;
|
|
}
|
|
|
|
// Set the section address. Note that the OUTPUT_SECTION_ field will
|
|
// be NULL if no input sections were mapped to this output section.
|
|
// We still have to adjust dot and process symbol assignments.
|
|
|
|
void
|
|
Output_section_definition::set_section_addresses(Symbol_table* symtab,
|
|
Layout* layout,
|
|
uint64_t* dot_value,
|
|
uint64_t* dot_alignment,
|
|
uint64_t* load_address)
|
|
{
|
|
Memory_region* vma_region = NULL;
|
|
Memory_region* lma_region = NULL;
|
|
Script_sections* script_sections =
|
|
layout->script_options()->script_sections();
|
|
uint64_t address;
|
|
uint64_t old_dot_value = *dot_value;
|
|
uint64_t old_load_address = *load_address;
|
|
|
|
// Decide the start address for the section. The algorithm is:
|
|
// 1) If an address has been specified in a linker script, use that.
|
|
// 2) Otherwise if a memory region has been specified for the section,
|
|
// use the next free address in the region.
|
|
// 3) Otherwise if memory regions have been specified find the first
|
|
// region whose attributes are compatible with this section and
|
|
// install it into that region.
|
|
// 4) Otherwise use the current location counter.
|
|
|
|
if (this->output_section_ != NULL
|
|
// Check for --section-start.
|
|
&& parameters->options().section_start(this->output_section_->name(),
|
|
&address))
|
|
;
|
|
else if (this->address_ == NULL)
|
|
{
|
|
vma_region = script_sections->find_memory_region(this, true, NULL);
|
|
|
|
if (vma_region != NULL)
|
|
address = vma_region->get_current_address()->eval(symtab, layout,
|
|
false);
|
|
else
|
|
address = *dot_value;
|
|
}
|
|
else
|
|
address = this->address_->eval_with_dot(symtab, layout, true,
|
|
*dot_value, NULL, NULL,
|
|
dot_alignment);
|
|
uint64_t align;
|
|
if (this->align_ == NULL)
|
|
{
|
|
if (this->output_section_ == NULL)
|
|
align = 0;
|
|
else
|
|
align = this->output_section_->addralign();
|
|
}
|
|
else
|
|
{
|
|
Output_section* align_section;
|
|
align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
|
|
NULL, &align_section, NULL);
|
|
if (align_section != NULL)
|
|
gold_warning(_("alignment of section %s is not absolute"),
|
|
this->name_.c_str());
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->set_addralign(align);
|
|
}
|
|
|
|
address = align_address(address, align);
|
|
|
|
uint64_t start_address = address;
|
|
|
|
*dot_value = address;
|
|
|
|
// Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
|
|
// forced to zero, regardless of what the linker script wants.
|
|
if (this->output_section_ != NULL
|
|
&& ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
|
|
|| this->output_section_->is_noload()))
|
|
this->output_section_->set_address(address);
|
|
|
|
this->evaluated_address_ = address;
|
|
this->evaluated_addralign_ = align;
|
|
|
|
uint64_t laddr;
|
|
|
|
if (this->load_address_ == NULL)
|
|
{
|
|
Output_section_definition* previous_section;
|
|
|
|
// Determine if an LMA region has been set for this section.
|
|
lma_region = script_sections->find_memory_region(this, false,
|
|
&previous_section);
|
|
|
|
if (lma_region != NULL)
|
|
{
|
|
if (previous_section == NULL)
|
|
// The LMA address was explicitly set to the given region.
|
|
laddr = lma_region->get_current_address()->eval(symtab, layout,
|
|
false);
|
|
else
|
|
{
|
|
// We are not going to use the discovered lma_region, so
|
|
// make sure that we do not update it in the code below.
|
|
lma_region = NULL;
|
|
|
|
if (this->address_ != NULL || previous_section == this)
|
|
{
|
|
// Either an explicit VMA address has been set, or an
|
|
// explicit VMA region has been set, so set the LMA equal to
|
|
// the VMA.
|
|
laddr = address;
|
|
}
|
|
else
|
|
{
|
|
// The LMA address was not explicitly or implicitly set.
|
|
//
|
|
// We have been given the first memory region that is
|
|
// compatible with the current section and a pointer to the
|
|
// last section to use this region. Set the LMA of this
|
|
// section so that the difference between its' VMA and LMA
|
|
// is the same as the difference between the VMA and LMA of
|
|
// the last section in the given region.
|
|
laddr = address + (previous_section->evaluated_load_address_
|
|
- previous_section->evaluated_address_);
|
|
}
|
|
}
|
|
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->set_load_address(laddr);
|
|
}
|
|
else
|
|
{
|
|
// Do not set the load address of the output section, if one exists.
|
|
// This allows future sections to determine what the load address
|
|
// should be. If none is ever set, it will default to being the
|
|
// same as the vma address.
|
|
laddr = address;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
laddr = this->load_address_->eval_with_dot(symtab, layout, true,
|
|
*dot_value,
|
|
this->output_section_,
|
|
NULL, NULL);
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->set_load_address(laddr);
|
|
}
|
|
|
|
this->evaluated_load_address_ = laddr;
|
|
|
|
uint64_t subalign;
|
|
if (this->subalign_ == NULL)
|
|
subalign = 0;
|
|
else
|
|
{
|
|
Output_section* subalign_section;
|
|
subalign = this->subalign_->eval_with_dot(symtab, layout, true,
|
|
*dot_value, NULL,
|
|
&subalign_section, NULL);
|
|
if (subalign_section != NULL)
|
|
gold_warning(_("subalign of section %s is not absolute"),
|
|
this->name_.c_str());
|
|
}
|
|
|
|
std::string fill;
|
|
if (this->fill_ != NULL)
|
|
{
|
|
// FIXME: The GNU linker supports fill values of arbitrary
|
|
// length.
|
|
Output_section* fill_section;
|
|
uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
|
|
*dot_value,
|
|
NULL, &fill_section,
|
|
NULL);
|
|
if (fill_section != NULL)
|
|
gold_warning(_("fill of section %s is not absolute"),
|
|
this->name_.c_str());
|
|
unsigned char fill_buff[4];
|
|
elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
|
|
fill.assign(reinterpret_cast<char*>(fill_buff), 4);
|
|
}
|
|
|
|
Input_section_list input_sections;
|
|
if (this->output_section_ != NULL)
|
|
{
|
|
// Get the list of input sections attached to this output
|
|
// section. This will leave the output section with only
|
|
// Output_section_data entries.
|
|
address += this->output_section_->get_input_sections(address,
|
|
fill,
|
|
&input_sections);
|
|
*dot_value = address;
|
|
}
|
|
|
|
Output_section* dot_section = this->output_section_;
|
|
for (Output_section_elements::iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
(*p)->set_section_addresses(symtab, layout, this->output_section_,
|
|
subalign, dot_value, dot_alignment,
|
|
&dot_section, &fill, &input_sections);
|
|
|
|
gold_assert(input_sections.empty());
|
|
|
|
if (vma_region != NULL)
|
|
{
|
|
// Update the VMA region being used by the section now that we know how
|
|
// big it is. Use the current address in the region, rather than
|
|
// start_address because that might have been aligned upwards and we
|
|
// need to allow for the padding.
|
|
Expression* addr = vma_region->get_current_address();
|
|
uint64_t size = *dot_value - addr->eval(symtab, layout, false);
|
|
|
|
vma_region->increment_offset(this->get_section_name(), size,
|
|
symtab, layout);
|
|
}
|
|
|
|
// If the LMA region is different from the VMA region, then increment the
|
|
// offset there as well. Note that we use the same "dot_value -
|
|
// start_address" formula that is used in the load_address assignment below.
|
|
if (lma_region != NULL && lma_region != vma_region)
|
|
lma_region->increment_offset(this->get_section_name(),
|
|
*dot_value - start_address,
|
|
symtab, layout);
|
|
|
|
// Compute the load address for the following section.
|
|
if (this->output_section_ == NULL)
|
|
*load_address = *dot_value;
|
|
else if (this->load_address_ == NULL)
|
|
{
|
|
if (lma_region == NULL)
|
|
*load_address = *dot_value;
|
|
else
|
|
*load_address =
|
|
lma_region->get_current_address()->eval(symtab, layout, false);
|
|
}
|
|
else
|
|
*load_address = (this->output_section_->load_address()
|
|
+ (*dot_value - start_address));
|
|
|
|
if (this->output_section_ != NULL)
|
|
{
|
|
if (this->is_relro_)
|
|
this->output_section_->set_is_relro();
|
|
else
|
|
this->output_section_->clear_is_relro();
|
|
|
|
// If this is a NOLOAD section, keep dot and load address unchanged.
|
|
if (this->output_section_->is_noload())
|
|
{
|
|
*dot_value = old_dot_value;
|
|
*load_address = old_load_address;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check a constraint (ONLY_IF_RO, etc.) on an output section. If
|
|
// this section is constrained, and the input sections do not match,
|
|
// return the constraint, and set *POSD.
|
|
|
|
Section_constraint
|
|
Output_section_definition::check_constraint(Output_section_definition** posd)
|
|
{
|
|
switch (this->constraint_)
|
|
{
|
|
case CONSTRAINT_NONE:
|
|
return CONSTRAINT_NONE;
|
|
|
|
case CONSTRAINT_ONLY_IF_RO:
|
|
if (this->output_section_ != NULL
|
|
&& (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
|
|
{
|
|
*posd = this;
|
|
return CONSTRAINT_ONLY_IF_RO;
|
|
}
|
|
return CONSTRAINT_NONE;
|
|
|
|
case CONSTRAINT_ONLY_IF_RW:
|
|
if (this->output_section_ != NULL
|
|
&& (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
|
|
{
|
|
*posd = this;
|
|
return CONSTRAINT_ONLY_IF_RW;
|
|
}
|
|
return CONSTRAINT_NONE;
|
|
|
|
case CONSTRAINT_SPECIAL:
|
|
if (this->output_section_ != NULL)
|
|
gold_error(_("SPECIAL constraints are not implemented"));
|
|
return CONSTRAINT_NONE;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// See if this is the alternate output section for a constrained
|
|
// output section. If it is, transfer the Output_section and return
|
|
// true. Otherwise return false.
|
|
|
|
bool
|
|
Output_section_definition::alternate_constraint(
|
|
Output_section_definition* posd,
|
|
Section_constraint constraint)
|
|
{
|
|
if (this->name_ != posd->name_)
|
|
return false;
|
|
|
|
switch (constraint)
|
|
{
|
|
case CONSTRAINT_ONLY_IF_RO:
|
|
if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
|
|
return false;
|
|
break;
|
|
|
|
case CONSTRAINT_ONLY_IF_RW:
|
|
if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
|
|
// We have found the alternate constraint. We just need to move
|
|
// over the Output_section. When constraints are used properly,
|
|
// THIS should not have an output_section pointer, as all the input
|
|
// sections should have matched the other definition.
|
|
|
|
if (this->output_section_ != NULL)
|
|
gold_error(_("mismatched definition for constrained sections"));
|
|
|
|
this->output_section_ = posd->output_section_;
|
|
posd->output_section_ = NULL;
|
|
|
|
if (this->is_relro_)
|
|
this->output_section_->set_is_relro();
|
|
else
|
|
this->output_section_->clear_is_relro();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the list of segments to use for an allocated section when using
|
|
// a PHDRS clause.
|
|
|
|
Output_section*
|
|
Output_section_definition::allocate_to_segment(String_list** phdrs_list,
|
|
bool* orphan)
|
|
{
|
|
// Update phdrs_list even if we don't have an output section. It
|
|
// might be used by the following sections.
|
|
if (this->phdrs_ != NULL)
|
|
*phdrs_list = this->phdrs_;
|
|
|
|
if (this->output_section_ == NULL)
|
|
return NULL;
|
|
if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
|
|
return NULL;
|
|
*orphan = false;
|
|
return this->output_section_;
|
|
}
|
|
|
|
// Look for an output section by name and return the address, the load
|
|
// address, the alignment, and the size. This is used when an
|
|
// expression refers to an output section which was not actually
|
|
// created. This returns true if the section was found, false
|
|
// otherwise.
|
|
|
|
bool
|
|
Output_section_definition::get_output_section_info(const char* name,
|
|
uint64_t* address,
|
|
uint64_t* load_address,
|
|
uint64_t* addralign,
|
|
uint64_t* size) const
|
|
{
|
|
if (this->name_ != name)
|
|
return false;
|
|
|
|
if (this->output_section_ != NULL)
|
|
{
|
|
*address = this->output_section_->address();
|
|
if (this->output_section_->has_load_address())
|
|
*load_address = this->output_section_->load_address();
|
|
else
|
|
*load_address = *address;
|
|
*addralign = this->output_section_->addralign();
|
|
*size = this->output_section_->current_data_size();
|
|
}
|
|
else
|
|
{
|
|
*address = this->evaluated_address_;
|
|
*load_address = this->evaluated_load_address_;
|
|
*addralign = this->evaluated_addralign_;
|
|
*size = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Print for debugging.
|
|
|
|
void
|
|
Output_section_definition::print(FILE* f) const
|
|
{
|
|
fprintf(f, " %s ", this->name_.c_str());
|
|
|
|
if (this->address_ != NULL)
|
|
{
|
|
this->address_->print(f);
|
|
fprintf(f, " ");
|
|
}
|
|
|
|
if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
|
|
fprintf(f, "(%s) ",
|
|
this->script_section_type_name(this->script_section_type_));
|
|
|
|
fprintf(f, ": ");
|
|
|
|
if (this->load_address_ != NULL)
|
|
{
|
|
fprintf(f, "AT(");
|
|
this->load_address_->print(f);
|
|
fprintf(f, ") ");
|
|
}
|
|
|
|
if (this->align_ != NULL)
|
|
{
|
|
fprintf(f, "ALIGN(");
|
|
this->align_->print(f);
|
|
fprintf(f, ") ");
|
|
}
|
|
|
|
if (this->subalign_ != NULL)
|
|
{
|
|
fprintf(f, "SUBALIGN(");
|
|
this->subalign_->print(f);
|
|
fprintf(f, ") ");
|
|
}
|
|
|
|
fprintf(f, "{\n");
|
|
|
|
for (Output_section_elements::const_iterator p = this->elements_.begin();
|
|
p != this->elements_.end();
|
|
++p)
|
|
(*p)->print(f);
|
|
|
|
fprintf(f, " }");
|
|
|
|
if (this->fill_ != NULL)
|
|
{
|
|
fprintf(f, " = ");
|
|
this->fill_->print(f);
|
|
}
|
|
|
|
if (this->phdrs_ != NULL)
|
|
{
|
|
for (String_list::const_iterator p = this->phdrs_->begin();
|
|
p != this->phdrs_->end();
|
|
++p)
|
|
fprintf(f, " :%s", p->c_str());
|
|
}
|
|
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
Script_sections::Section_type
|
|
Output_section_definition::section_type() const
|
|
{
|
|
switch (this->script_section_type_)
|
|
{
|
|
case SCRIPT_SECTION_TYPE_NONE:
|
|
return Script_sections::ST_NONE;
|
|
case SCRIPT_SECTION_TYPE_NOLOAD:
|
|
return Script_sections::ST_NOLOAD;
|
|
case SCRIPT_SECTION_TYPE_COPY:
|
|
case SCRIPT_SECTION_TYPE_DSECT:
|
|
case SCRIPT_SECTION_TYPE_INFO:
|
|
case SCRIPT_SECTION_TYPE_OVERLAY:
|
|
// There are not really support so we treat them as ST_NONE. The
|
|
// parse should have issued errors for them already.
|
|
return Script_sections::ST_NONE;
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
// Return the name of a script section type.
|
|
|
|
const char*
|
|
Output_section_definition::script_section_type_name(
|
|
Script_section_type script_section_type)
|
|
{
|
|
switch (script_section_type)
|
|
{
|
|
case SCRIPT_SECTION_TYPE_NONE:
|
|
return "NONE";
|
|
case SCRIPT_SECTION_TYPE_NOLOAD:
|
|
return "NOLOAD";
|
|
case SCRIPT_SECTION_TYPE_DSECT:
|
|
return "DSECT";
|
|
case SCRIPT_SECTION_TYPE_COPY:
|
|
return "COPY";
|
|
case SCRIPT_SECTION_TYPE_INFO:
|
|
return "INFO";
|
|
case SCRIPT_SECTION_TYPE_OVERLAY:
|
|
return "OVERLAY";
|
|
default:
|
|
gold_unreachable();
|
|
}
|
|
}
|
|
|
|
void
|
|
Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
|
|
{
|
|
gold_assert(mr != NULL);
|
|
// Add the current section to the specified region's list.
|
|
mr->add_section(this, set_vma);
|
|
}
|
|
|
|
// An output section created to hold orphaned input sections. These
|
|
// do not actually appear in linker scripts. However, for convenience
|
|
// when setting the output section addresses, we put a marker to these
|
|
// sections in the appropriate place in the list of SECTIONS elements.
|
|
|
|
class Orphan_output_section : public Sections_element
|
|
{
|
|
public:
|
|
Orphan_output_section(Output_section* os)
|
|
: os_(os)
|
|
{ }
|
|
|
|
// Return whether the orphan output section is relro. We can just
|
|
// check the output section because we always set the flag, if
|
|
// needed, just after we create the Orphan_output_section.
|
|
bool
|
|
is_relro() const
|
|
{ return this->os_->is_relro(); }
|
|
|
|
// Initialize OSP with an output section. This should have been
|
|
// done already.
|
|
void
|
|
orphan_section_init(Orphan_section_placement*,
|
|
Script_sections::Elements_iterator)
|
|
{ gold_unreachable(); }
|
|
|
|
// Set section addresses.
|
|
void
|
|
set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
|
|
uint64_t*);
|
|
|
|
// Get the list of segments to use for an allocated section when
|
|
// using a PHDRS clause.
|
|
Output_section*
|
|
allocate_to_segment(String_list**, bool*);
|
|
|
|
// Return the associated Output_section.
|
|
Output_section*
|
|
get_output_section() const
|
|
{ return this->os_; }
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE* f) const
|
|
{
|
|
fprintf(f, " marker for orphaned output section %s\n",
|
|
this->os_->name());
|
|
}
|
|
|
|
private:
|
|
Output_section* os_;
|
|
};
|
|
|
|
// Set section addresses.
|
|
|
|
void
|
|
Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
|
|
uint64_t* dot_value,
|
|
uint64_t*,
|
|
uint64_t* load_address)
|
|
{
|
|
typedef std::list<Output_section::Input_section> Input_section_list;
|
|
|
|
bool have_load_address = *load_address != *dot_value;
|
|
|
|
uint64_t address = *dot_value;
|
|
address = align_address(address, this->os_->addralign());
|
|
|
|
if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
|
|
{
|
|
this->os_->set_address(address);
|
|
if (have_load_address)
|
|
this->os_->set_load_address(align_address(*load_address,
|
|
this->os_->addralign()));
|
|
}
|
|
|
|
Input_section_list input_sections;
|
|
address += this->os_->get_input_sections(address, "", &input_sections);
|
|
|
|
for (Input_section_list::iterator p = input_sections.begin();
|
|
p != input_sections.end();
|
|
++p)
|
|
{
|
|
uint64_t addralign = p->addralign();
|
|
if (!p->is_input_section())
|
|
p->output_section_data()->finalize_data_size();
|
|
uint64_t size = p->data_size();
|
|
address = align_address(address, addralign);
|
|
this->os_->add_script_input_section(*p);
|
|
address += size;
|
|
}
|
|
|
|
// An SHF_TLS/SHT_NOBITS section does not take up any address space.
|
|
if (this->os_ == NULL
|
|
|| (this->os_->flags() & elfcpp::SHF_TLS) == 0
|
|
|| this->os_->type() != elfcpp::SHT_NOBITS)
|
|
{
|
|
if (!have_load_address)
|
|
*load_address = address;
|
|
else
|
|
*load_address += address - *dot_value;
|
|
|
|
*dot_value = address;
|
|
}
|
|
}
|
|
|
|
// Get the list of segments to use for an allocated section when using
|
|
// a PHDRS clause. If this is an allocated section, return the
|
|
// Output_section. We don't change the list of segments.
|
|
|
|
Output_section*
|
|
Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
|
|
{
|
|
if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
|
|
return NULL;
|
|
*orphan = true;
|
|
return this->os_;
|
|
}
|
|
|
|
// Class Phdrs_element. A program header from a PHDRS clause.
|
|
|
|
class Phdrs_element
|
|
{
|
|
public:
|
|
Phdrs_element(const char* name, size_t namelen, unsigned int type,
|
|
bool includes_filehdr, bool includes_phdrs,
|
|
bool is_flags_valid, unsigned int flags,
|
|
Expression* load_address)
|
|
: name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
|
|
includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
|
|
flags_(flags), load_address_(load_address), load_address_value_(0),
|
|
segment_(NULL)
|
|
{ }
|
|
|
|
// Return the name of this segment.
|
|
const std::string&
|
|
name() const
|
|
{ return this->name_; }
|
|
|
|
// Return the type of the segment.
|
|
unsigned int
|
|
type() const
|
|
{ return this->type_; }
|
|
|
|
// Whether to include the file header.
|
|
bool
|
|
includes_filehdr() const
|
|
{ return this->includes_filehdr_; }
|
|
|
|
// Whether to include the program headers.
|
|
bool
|
|
includes_phdrs() const
|
|
{ return this->includes_phdrs_; }
|
|
|
|
// Return whether there is a load address.
|
|
bool
|
|
has_load_address() const
|
|
{ return this->load_address_ != NULL; }
|
|
|
|
// Evaluate the load address expression if there is one.
|
|
void
|
|
eval_load_address(Symbol_table* symtab, Layout* layout)
|
|
{
|
|
if (this->load_address_ != NULL)
|
|
this->load_address_value_ = this->load_address_->eval(symtab, layout,
|
|
true);
|
|
}
|
|
|
|
// Return the load address.
|
|
uint64_t
|
|
load_address() const
|
|
{
|
|
gold_assert(this->load_address_ != NULL);
|
|
return this->load_address_value_;
|
|
}
|
|
|
|
// Create the segment.
|
|
Output_segment*
|
|
create_segment(Layout* layout)
|
|
{
|
|
this->segment_ = layout->make_output_segment(this->type_, this->flags_);
|
|
return this->segment_;
|
|
}
|
|
|
|
// Return the segment.
|
|
Output_segment*
|
|
segment()
|
|
{ return this->segment_; }
|
|
|
|
// Release the segment.
|
|
void
|
|
release_segment()
|
|
{ this->segment_ = NULL; }
|
|
|
|
// Set the segment flags if appropriate.
|
|
void
|
|
set_flags_if_valid()
|
|
{
|
|
if (this->is_flags_valid_)
|
|
this->segment_->set_flags(this->flags_);
|
|
}
|
|
|
|
// Print for debugging.
|
|
void
|
|
print(FILE*) const;
|
|
|
|
private:
|
|
// The name used in the script.
|
|
std::string name_;
|
|
// The type of the segment (PT_LOAD, etc.).
|
|
unsigned int type_;
|
|
// Whether this segment includes the file header.
|
|
bool includes_filehdr_;
|
|
// Whether this segment includes the section headers.
|
|
bool includes_phdrs_;
|
|
// Whether the flags were explicitly specified.
|
|
bool is_flags_valid_;
|
|
// The flags for this segment (PF_R, etc.) if specified.
|
|
unsigned int flags_;
|
|
// The expression for the load address for this segment. This may
|
|
// be NULL.
|
|
Expression* load_address_;
|
|
// The actual load address from evaluating the expression.
|
|
uint64_t load_address_value_;
|
|
// The segment itself.
|
|
Output_segment* segment_;
|
|
};
|
|
|
|
// Print for debugging.
|
|
|
|
void
|
|
Phdrs_element::print(FILE* f) const
|
|
{
|
|
fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
|
|
if (this->includes_filehdr_)
|
|
fprintf(f, " FILEHDR");
|
|
if (this->includes_phdrs_)
|
|
fprintf(f, " PHDRS");
|
|
if (this->is_flags_valid_)
|
|
fprintf(f, " FLAGS(%u)", this->flags_);
|
|
if (this->load_address_ != NULL)
|
|
{
|
|
fprintf(f, " AT(");
|
|
this->load_address_->print(f);
|
|
fprintf(f, ")");
|
|
}
|
|
fprintf(f, ";\n");
|
|
}
|
|
|
|
// Add a memory region.
|
|
|
|
void
|
|
Script_sections::add_memory_region(const char* name, size_t namelen,
|
|
unsigned int attributes,
|
|
Expression* start, Expression* length)
|
|
{
|
|
if (this->memory_regions_ == NULL)
|
|
this->memory_regions_ = new Memory_regions();
|
|
else if (this->find_memory_region(name, namelen))
|
|
{
|
|
gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
|
|
name);
|
|
// FIXME: Add a GOLD extension to allow multiple regions with the same
|
|
// name. This would amount to a single region covering disjoint blocks
|
|
// of memory, which is useful for embedded devices.
|
|
}
|
|
|
|
// FIXME: Check the length and start values. Currently we allow
|
|
// non-constant expressions for these values, whereas LD does not.
|
|
|
|
// FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
|
|
// describe a region that packs from the end address going down, rather
|
|
// than the start address going up. This would be useful for embedded
|
|
// devices.
|
|
|
|
this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
|
|
start, length));
|
|
}
|
|
|
|
// Find a memory region.
|
|
|
|
Memory_region*
|
|
Script_sections::find_memory_region(const char* name, size_t namelen)
|
|
{
|
|
if (this->memory_regions_ == NULL)
|
|
return NULL;
|
|
|
|
for (Memory_regions::const_iterator m = this->memory_regions_->begin();
|
|
m != this->memory_regions_->end();
|
|
++m)
|
|
if ((*m)->name_match(name, namelen))
|
|
return *m;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
// Find a memory region's origin.
|
|
|
|
Expression*
|
|
Script_sections::find_memory_region_origin(const char* name, size_t namelen)
|
|
{
|
|
Memory_region* mr = find_memory_region(name, namelen);
|
|
if (mr == NULL)
|
|
return NULL;
|
|
|
|
return mr->start_address();
|
|
}
|
|
|
|
// Find a memory region's length.
|
|
|
|
Expression*
|
|
Script_sections::find_memory_region_length(const char* name, size_t namelen)
|
|
{
|
|
Memory_region* mr = find_memory_region(name, namelen);
|
|
if (mr == NULL)
|
|
return NULL;
|
|
|
|
return mr->length();
|
|
}
|
|
|
|
// Set the memory region to use for the current section.
|
|
|
|
void
|
|
Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
|
|
{
|
|
gold_assert(!this->sections_elements_->empty());
|
|
this->sections_elements_->back()->set_memory_region(mr, set_vma);
|
|
}
|
|
|
|
// Class Script_sections.
|
|
|
|
Script_sections::Script_sections()
|
|
: saw_sections_clause_(false),
|
|
in_sections_clause_(false),
|
|
sections_elements_(NULL),
|
|
output_section_(NULL),
|
|
memory_regions_(NULL),
|
|
phdrs_elements_(NULL),
|
|
orphan_section_placement_(NULL),
|
|
data_segment_align_start_(),
|
|
saw_data_segment_align_(false),
|
|
saw_relro_end_(false),
|
|
saw_segment_start_expression_(false)
|
|
{
|
|
}
|
|
|
|
// Start a SECTIONS clause.
|
|
|
|
void
|
|
Script_sections::start_sections()
|
|
{
|
|
gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
|
|
this->saw_sections_clause_ = true;
|
|
this->in_sections_clause_ = true;
|
|
if (this->sections_elements_ == NULL)
|
|
this->sections_elements_ = new Sections_elements;
|
|
}
|
|
|
|
// Finish a SECTIONS clause.
|
|
|
|
void
|
|
Script_sections::finish_sections()
|
|
{
|
|
gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
|
|
this->in_sections_clause_ = false;
|
|
}
|
|
|
|
// Add a symbol to be defined.
|
|
|
|
void
|
|
Script_sections::add_symbol_assignment(const char* name, size_t length,
|
|
Expression* val, bool provide,
|
|
bool hidden)
|
|
{
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->add_symbol_assignment(name, length, val,
|
|
provide, hidden);
|
|
else
|
|
{
|
|
Sections_element* p = new Sections_element_assignment(name, length,
|
|
val, provide,
|
|
hidden);
|
|
this->sections_elements_->push_back(p);
|
|
}
|
|
}
|
|
|
|
// Add an assignment to the special dot symbol.
|
|
|
|
void
|
|
Script_sections::add_dot_assignment(Expression* val)
|
|
{
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->add_dot_assignment(val);
|
|
else
|
|
{
|
|
// The GNU linker permits assignments to . to appears outside of
|
|
// a SECTIONS clause, and treats it as appearing inside, so
|
|
// sections_elements_ may be NULL here.
|
|
if (this->sections_elements_ == NULL)
|
|
{
|
|
this->sections_elements_ = new Sections_elements;
|
|
this->saw_sections_clause_ = true;
|
|
}
|
|
|
|
Sections_element* p = new Sections_element_dot_assignment(val);
|
|
this->sections_elements_->push_back(p);
|
|
}
|
|
}
|
|
|
|
// Add an assertion.
|
|
|
|
void
|
|
Script_sections::add_assertion(Expression* check, const char* message,
|
|
size_t messagelen)
|
|
{
|
|
if (this->output_section_ != NULL)
|
|
this->output_section_->add_assertion(check, message, messagelen);
|
|
else
|
|
{
|
|
Sections_element* p = new Sections_element_assertion(check, message,
|
|
messagelen);
|
|
this->sections_elements_->push_back(p);
|
|
}
|
|
}
|
|
|
|
// Start processing entries for an output section.
|
|
|
|
void
|
|
Script_sections::start_output_section(
|
|
const char* name,
|
|
size_t namelen,
|
|
const Parser_output_section_header* header)
|
|
{
|
|
Output_section_definition* posd = new Output_section_definition(name,
|
|
namelen,
|
|
header);
|
|
this->sections_elements_->push_back(posd);
|
|
gold_assert(this->output_section_ == NULL);
|
|
this->output_section_ = posd;
|
|
}
|
|
|
|
// Stop processing entries for an output section.
|
|
|
|
void
|
|
Script_sections::finish_output_section(
|
|
const Parser_output_section_trailer* trailer)
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
this->output_section_->finish(trailer);
|
|
this->output_section_ = NULL;
|
|
}
|
|
|
|
// Add a data item to the current output section.
|
|
|
|
void
|
|
Script_sections::add_data(int size, bool is_signed, Expression* val)
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
this->output_section_->add_data(size, is_signed, val);
|
|
}
|
|
|
|
// Add a fill value setting to the current output section.
|
|
|
|
void
|
|
Script_sections::add_fill(Expression* val)
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
this->output_section_->add_fill(val);
|
|
}
|
|
|
|
// Add an input section specification to the current output section.
|
|
|
|
void
|
|
Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
|
|
{
|
|
gold_assert(this->output_section_ != NULL);
|
|
this->output_section_->add_input_section(spec, keep);
|
|
}
|
|
|
|
// This is called when we see DATA_SEGMENT_ALIGN. It means that any
|
|
// subsequent output sections may be relro.
|
|
|
|
void
|
|
Script_sections::data_segment_align()
|
|
{
|
|
if (this->saw_data_segment_align_)
|
|
gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
|
|
gold_assert(!this->sections_elements_->empty());
|
|
Sections_elements::iterator p = this->sections_elements_->end();
|
|
--p;
|
|
this->data_segment_align_start_ = p;
|
|
this->saw_data_segment_align_ = true;
|
|
}
|
|
|
|
// This is called when we see DATA_SEGMENT_RELRO_END. It means that
|
|
// any output sections seen since DATA_SEGMENT_ALIGN are relro.
|
|
|
|
void
|
|
Script_sections::data_segment_relro_end()
|
|
{
|
|
if (this->saw_relro_end_)
|
|
gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
|
|
"in a linker script"));
|
|
this->saw_relro_end_ = true;
|
|
|
|
if (!this->saw_data_segment_align_)
|
|
gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
|
|
else
|
|
{
|
|
Sections_elements::iterator p = this->data_segment_align_start_;
|
|
for (++p; p != this->sections_elements_->end(); ++p)
|
|
(*p)->set_is_relro();
|
|
}
|
|
}
|
|
|
|
// Create any required sections.
|
|
|
|
void
|
|
Script_sections::create_sections(Layout* layout)
|
|
{
|
|
if (!this->saw_sections_clause_)
|
|
return;
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
(*p)->create_sections(layout);
|
|
}
|
|
|
|
// Add any symbols we are defining to the symbol table.
|
|
|
|
void
|
|
Script_sections::add_symbols_to_table(Symbol_table* symtab)
|
|
{
|
|
if (!this->saw_sections_clause_)
|
|
return;
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
(*p)->add_symbols_to_table(symtab);
|
|
}
|
|
|
|
// Finalize symbols and check assertions.
|
|
|
|
void
|
|
Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
|
|
{
|
|
if (!this->saw_sections_clause_)
|
|
return;
|
|
uint64_t dot_value = 0;
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
(*p)->finalize_symbols(symtab, layout, &dot_value);
|
|
}
|
|
|
|
// Return the name of the output section to use for an input file name
|
|
// and section name.
|
|
|
|
const char*
|
|
Script_sections::output_section_name(
|
|
const char* file_name,
|
|
const char* section_name,
|
|
Output_section*** output_section_slot,
|
|
Script_sections::Section_type* psection_type)
|
|
{
|
|
for (Sections_elements::const_iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
{
|
|
const char* ret = (*p)->output_section_name(file_name, section_name,
|
|
output_section_slot,
|
|
psection_type);
|
|
|
|
if (ret != NULL)
|
|
{
|
|
// The special name /DISCARD/ means that the input section
|
|
// should be discarded.
|
|
if (strcmp(ret, "/DISCARD/") == 0)
|
|
{
|
|
*output_section_slot = NULL;
|
|
*psection_type = Script_sections::ST_NONE;
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
// If we couldn't find a mapping for the name, the output section
|
|
// gets the name of the input section.
|
|
|
|
*output_section_slot = NULL;
|
|
*psection_type = Script_sections::ST_NONE;
|
|
|
|
return section_name;
|
|
}
|
|
|
|
// Place a marker for an orphan output section into the SECTIONS
|
|
// clause.
|
|
|
|
void
|
|
Script_sections::place_orphan(Output_section* os)
|
|
{
|
|
Orphan_section_placement* osp = this->orphan_section_placement_;
|
|
if (osp == NULL)
|
|
{
|
|
// Initialize the Orphan_section_placement structure.
|
|
osp = new Orphan_section_placement();
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
(*p)->orphan_section_init(osp, p);
|
|
gold_assert(!this->sections_elements_->empty());
|
|
Sections_elements::iterator last = this->sections_elements_->end();
|
|
--last;
|
|
osp->last_init(last);
|
|
this->orphan_section_placement_ = osp;
|
|
}
|
|
|
|
Orphan_output_section* orphan = new Orphan_output_section(os);
|
|
|
|
// Look for where to put ORPHAN.
|
|
Sections_elements::iterator* where;
|
|
if (osp->find_place(os, &where))
|
|
{
|
|
if ((**where)->is_relro())
|
|
os->set_is_relro();
|
|
else
|
|
os->clear_is_relro();
|
|
|
|
// We want to insert ORPHAN after *WHERE, and then update *WHERE
|
|
// so that the next one goes after this one.
|
|
Sections_elements::iterator p = *where;
|
|
gold_assert(p != this->sections_elements_->end());
|
|
++p;
|
|
*where = this->sections_elements_->insert(p, orphan);
|
|
}
|
|
else
|
|
{
|
|
os->clear_is_relro();
|
|
// We don't have a place to put this orphan section. Put it,
|
|
// and all other sections like it, at the end, but before the
|
|
// sections which always come at the end.
|
|
Sections_elements::iterator last = osp->last_place();
|
|
*where = this->sections_elements_->insert(last, orphan);
|
|
}
|
|
}
|
|
|
|
// Set the addresses of all the output sections. Walk through all the
|
|
// elements, tracking the dot symbol. Apply assignments which set
|
|
// absolute symbol values, in case they are used when setting dot.
|
|
// Fill in data statement values. As we find output sections, set the
|
|
// address, set the address of all associated input sections, and
|
|
// update dot. Return the segment which should hold the file header
|
|
// and segment headers, if any.
|
|
|
|
Output_segment*
|
|
Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
|
|
{
|
|
gold_assert(this->saw_sections_clause_);
|
|
|
|
// Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
|
|
// for our representation.
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
{
|
|
Output_section_definition* posd;
|
|
Section_constraint failed_constraint = (*p)->check_constraint(&posd);
|
|
if (failed_constraint != CONSTRAINT_NONE)
|
|
{
|
|
Sections_elements::iterator q;
|
|
for (q = this->sections_elements_->begin();
|
|
q != this->sections_elements_->end();
|
|
++q)
|
|
{
|
|
if (q != p)
|
|
{
|
|
if ((*q)->alternate_constraint(posd, failed_constraint))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (q == this->sections_elements_->end())
|
|
gold_error(_("no matching section constraint"));
|
|
}
|
|
}
|
|
|
|
// Force the alignment of the first TLS section to be the maximum
|
|
// alignment of all TLS sections.
|
|
Output_section* first_tls = NULL;
|
|
uint64_t tls_align = 0;
|
|
for (Sections_elements::const_iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
{
|
|
Output_section* os = (*p)->get_output_section();
|
|
if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
if (first_tls == NULL)
|
|
first_tls = os;
|
|
if (os->addralign() > tls_align)
|
|
tls_align = os->addralign();
|
|
}
|
|
}
|
|
if (first_tls != NULL)
|
|
first_tls->set_addralign(tls_align);
|
|
|
|
// For a relocatable link, we implicitly set dot to zero.
|
|
uint64_t dot_value = 0;
|
|
uint64_t dot_alignment = 0;
|
|
uint64_t load_address = 0;
|
|
|
|
// Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
|
|
// to set section addresses. If the script has any SEGMENT_START
|
|
// expression, we do not set the section addresses.
|
|
bool use_tsection_options =
|
|
(!this->saw_segment_start_expression_
|
|
&& (parameters->options().user_set_Ttext()
|
|
|| parameters->options().user_set_Tdata()
|
|
|| parameters->options().user_set_Tbss()));
|
|
|
|
for (Sections_elements::iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
{
|
|
Output_section* os = (*p)->get_output_section();
|
|
|
|
// Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
|
|
// the special sections by names and doing dot assignments.
|
|
if (use_tsection_options
|
|
&& os != NULL
|
|
&& (os->flags() & elfcpp::SHF_ALLOC) != 0)
|
|
{
|
|
uint64_t new_dot_value = dot_value;
|
|
|
|
if (parameters->options().user_set_Ttext()
|
|
&& strcmp(os->name(), ".text") == 0)
|
|
new_dot_value = parameters->options().Ttext();
|
|
else if (parameters->options().user_set_Tdata()
|
|
&& strcmp(os->name(), ".data") == 0)
|
|
new_dot_value = parameters->options().Tdata();
|
|
else if (parameters->options().user_set_Tbss()
|
|
&& strcmp(os->name(), ".bss") == 0)
|
|
new_dot_value = parameters->options().Tbss();
|
|
|
|
// Update dot and load address if necessary.
|
|
if (new_dot_value < dot_value)
|
|
gold_error(_("dot may not move backward"));
|
|
else if (new_dot_value != dot_value)
|
|
{
|
|
dot_value = new_dot_value;
|
|
load_address = new_dot_value;
|
|
}
|
|
}
|
|
|
|
(*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
|
|
&load_address);
|
|
}
|
|
|
|
if (this->phdrs_elements_ != NULL)
|
|
{
|
|
for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
(*p)->eval_load_address(symtab, layout);
|
|
}
|
|
|
|
return this->create_segments(layout, dot_alignment);
|
|
}
|
|
|
|
// Sort the sections in order to put them into segments.
|
|
|
|
class Sort_output_sections
|
|
{
|
|
public:
|
|
Sort_output_sections(const Script_sections::Sections_elements* elements)
|
|
: elements_(elements)
|
|
{ }
|
|
|
|
bool
|
|
operator()(const Output_section* os1, const Output_section* os2) const;
|
|
|
|
private:
|
|
bool
|
|
is_before(const Output_section* os1, const Output_section* os2) const;
|
|
|
|
private:
|
|
const Script_sections::Sections_elements* elements_;
|
|
};
|
|
|
|
bool
|
|
Sort_output_sections::operator()(const Output_section* os1,
|
|
const Output_section* os2) const
|
|
{
|
|
// Sort first by the load address.
|
|
uint64_t lma1 = (os1->has_load_address()
|
|
? os1->load_address()
|
|
: os1->address());
|
|
uint64_t lma2 = (os2->has_load_address()
|
|
? os2->load_address()
|
|
: os2->address());
|
|
if (lma1 != lma2)
|
|
return lma1 < lma2;
|
|
|
|
// Then sort by the virtual address.
|
|
if (os1->address() != os2->address())
|
|
return os1->address() < os2->address();
|
|
|
|
// Sort PROGBITS before NOBITS.
|
|
bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
|
|
bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
|
|
if (nobits1 != nobits2)
|
|
return nobits2;
|
|
|
|
// Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
|
|
// beginning.
|
|
bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
|
|
bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
|
|
if (tls1 != tls2)
|
|
return nobits1 ? tls1 : tls2;
|
|
|
|
// Sort non-NOLOAD before NOLOAD.
|
|
if (os1->is_noload() && !os2->is_noload())
|
|
return true;
|
|
if (!os1->is_noload() && os2->is_noload())
|
|
return true;
|
|
|
|
// The sections have the same address. Check the section positions
|
|
// in accordance with the linker script.
|
|
return this->is_before(os1, os2);
|
|
}
|
|
|
|
// Return true if OS1 comes before OS2 in ELEMENTS_. This ensures
|
|
// that we keep empty sections in the order in which they appear in a
|
|
// linker script.
|
|
|
|
bool
|
|
Sort_output_sections::is_before(const Output_section* os1,
|
|
const Output_section* os2) const
|
|
{
|
|
if (this->elements_ == NULL)
|
|
return false;
|
|
|
|
for (Script_sections::Sections_elements::const_iterator
|
|
p = this->elements_->begin();
|
|
p != this->elements_->end();
|
|
++p)
|
|
{
|
|
if (os1 == (*p)->get_output_section())
|
|
{
|
|
for (++p; p != this->elements_->end(); ++p)
|
|
if (os2 == (*p)->get_output_section())
|
|
return true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return whether OS is a BSS section. This is a SHT_NOBITS section.
|
|
// We treat a section with the SHF_TLS flag set as taking up space
|
|
// even if it is SHT_NOBITS (this is true of .tbss), as we allocate
|
|
// space for them in the file.
|
|
|
|
bool
|
|
Script_sections::is_bss_section(const Output_section* os)
|
|
{
|
|
return (os->type() == elfcpp::SHT_NOBITS
|
|
&& (os->flags() & elfcpp::SHF_TLS) == 0);
|
|
}
|
|
|
|
// Return the size taken by the file header and the program headers.
|
|
|
|
size_t
|
|
Script_sections::total_header_size(Layout* layout) const
|
|
{
|
|
size_t segment_count = layout->segment_count();
|
|
size_t file_header_size;
|
|
size_t segment_headers_size;
|
|
if (parameters->target().get_size() == 32)
|
|
{
|
|
file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
|
|
segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
|
|
}
|
|
else if (parameters->target().get_size() == 64)
|
|
{
|
|
file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
|
|
segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
|
|
}
|
|
else
|
|
gold_unreachable();
|
|
|
|
return file_header_size + segment_headers_size;
|
|
}
|
|
|
|
// Return the amount we have to subtract from the LMA to accommodate
|
|
// headers of the given size. The complication is that the file
|
|
// header have to be at the start of a page, as otherwise it will not
|
|
// be at the start of the file.
|
|
|
|
uint64_t
|
|
Script_sections::header_size_adjustment(uint64_t lma,
|
|
size_t sizeof_headers) const
|
|
{
|
|
const uint64_t abi_pagesize = parameters->target().abi_pagesize();
|
|
uint64_t hdr_lma = lma - sizeof_headers;
|
|
hdr_lma &= ~(abi_pagesize - 1);
|
|
return lma - hdr_lma;
|
|
}
|
|
|
|
// Create the PT_LOAD segments when using a SECTIONS clause. Returns
|
|
// the segment which should hold the file header and segment headers,
|
|
// if any.
|
|
|
|
Output_segment*
|
|
Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
|
|
{
|
|
gold_assert(this->saw_sections_clause_);
|
|
|
|
if (parameters->options().relocatable())
|
|
return NULL;
|
|
|
|
if (this->saw_phdrs_clause())
|
|
return create_segments_from_phdrs_clause(layout, dot_alignment);
|
|
|
|
Layout::Section_list sections;
|
|
layout->get_allocated_sections(§ions);
|
|
|
|
// Sort the sections by address.
|
|
std::stable_sort(sections.begin(), sections.end(),
|
|
Sort_output_sections(this->sections_elements_));
|
|
|
|
this->create_note_and_tls_segments(layout, §ions);
|
|
|
|
// Walk through the sections adding them to PT_LOAD segments.
|
|
const uint64_t abi_pagesize = parameters->target().abi_pagesize();
|
|
Output_segment* first_seg = NULL;
|
|
Output_segment* current_seg = NULL;
|
|
bool is_current_seg_readonly = true;
|
|
Layout::Section_list::iterator plast = sections.end();
|
|
uint64_t last_vma = 0;
|
|
uint64_t last_lma = 0;
|
|
uint64_t last_size = 0;
|
|
for (Layout::Section_list::iterator p = sections.begin();
|
|
p != sections.end();
|
|
++p)
|
|
{
|
|
const uint64_t vma = (*p)->address();
|
|
const uint64_t lma = ((*p)->has_load_address()
|
|
? (*p)->load_address()
|
|
: vma);
|
|
const uint64_t size = (*p)->current_data_size();
|
|
|
|
bool need_new_segment;
|
|
if (current_seg == NULL)
|
|
need_new_segment = true;
|
|
else if (lma - vma != last_lma - last_vma)
|
|
{
|
|
// This section has a different LMA relationship than the
|
|
// last one; we need a new segment.
|
|
need_new_segment = true;
|
|
}
|
|
else if (align_address(last_lma + last_size, abi_pagesize)
|
|
< align_address(lma, abi_pagesize))
|
|
{
|
|
// Putting this section in the segment would require
|
|
// skipping a page.
|
|
need_new_segment = true;
|
|
}
|
|
else if (is_bss_section(*plast) && !is_bss_section(*p))
|
|
{
|
|
// A non-BSS section can not follow a BSS section in the
|
|
// same segment.
|
|
need_new_segment = true;
|
|
}
|
|
else if (is_current_seg_readonly
|
|
&& ((*p)->flags() & elfcpp::SHF_WRITE) != 0
|
|
&& !parameters->options().omagic())
|
|
{
|
|
// Don't put a writable section in the same segment as a
|
|
// non-writable section.
|
|
need_new_segment = true;
|
|
}
|
|
else
|
|
{
|
|
// Otherwise, reuse the existing segment.
|
|
need_new_segment = false;
|
|
}
|
|
|
|
elfcpp::Elf_Word seg_flags =
|
|
Layout::section_flags_to_segment((*p)->flags());
|
|
|
|
if (need_new_segment)
|
|
{
|
|
current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
|
|
seg_flags);
|
|
current_seg->set_addresses(vma, lma);
|
|
current_seg->set_minimum_p_align(dot_alignment);
|
|
if (first_seg == NULL)
|
|
first_seg = current_seg;
|
|
is_current_seg_readonly = true;
|
|
}
|
|
|
|
current_seg->add_output_section_to_load(layout, *p, seg_flags);
|
|
|
|
if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
|
|
is_current_seg_readonly = false;
|
|
|
|
plast = p;
|
|
last_vma = vma;
|
|
last_lma = lma;
|
|
last_size = size;
|
|
}
|
|
|
|
// An ELF program should work even if the program headers are not in
|
|
// a PT_LOAD segment. However, it appears that the Linux kernel
|
|
// does not set the AT_PHDR auxiliary entry in that case. It sets
|
|
// the load address to p_vaddr - p_offset of the first PT_LOAD
|
|
// segment. It then sets AT_PHDR to the load address plus the
|
|
// offset to the program headers, e_phoff in the file header. This
|
|
// fails when the program headers appear in the file before the
|
|
// first PT_LOAD segment. Therefore, we always create a PT_LOAD
|
|
// segment to hold the file header and the program headers. This is
|
|
// effectively what the GNU linker does, and it is slightly more
|
|
// efficient in any case. We try to use the first PT_LOAD segment
|
|
// if we can, otherwise we make a new one.
|
|
|
|
if (first_seg == NULL)
|
|
return NULL;
|
|
|
|
// -n or -N mean that the program is not demand paged and there is
|
|
// no need to put the program headers in a PT_LOAD segment.
|
|
if (parameters->options().nmagic() || parameters->options().omagic())
|
|
return NULL;
|
|
|
|
size_t sizeof_headers = this->total_header_size(layout);
|
|
|
|
uint64_t vma = first_seg->vaddr();
|
|
uint64_t lma = first_seg->paddr();
|
|
|
|
uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
|
|
|
|
if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
|
|
{
|
|
first_seg->set_addresses(vma - subtract, lma - subtract);
|
|
return first_seg;
|
|
}
|
|
|
|
// If there is no room to squeeze in the headers, then punt. The
|
|
// resulting executable probably won't run on GNU/Linux, but we
|
|
// trust that the user knows what they are doing.
|
|
if (lma < subtract || vma < subtract)
|
|
return NULL;
|
|
|
|
// If memory regions have been specified and the address range
|
|
// we are about to use is not contained within any region then
|
|
// issue a warning message about the segment we are going to
|
|
// create. It will be outside of any region and so possibly
|
|
// using non-existent or protected memory. We test LMA rather
|
|
// than VMA since we assume that the headers will never be
|
|
// relocated.
|
|
if (this->memory_regions_ != NULL
|
|
&& !this->block_in_region (NULL, layout, lma - subtract, subtract))
|
|
gold_warning(_("creating a segment to contain the file and program"
|
|
" headers outside of any MEMORY region"));
|
|
|
|
Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
|
|
elfcpp::PF_R);
|
|
load_seg->set_addresses(vma - subtract, lma - subtract);
|
|
|
|
return load_seg;
|
|
}
|
|
|
|
// Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
|
|
// segment if there are any SHT_TLS sections.
|
|
|
|
void
|
|
Script_sections::create_note_and_tls_segments(
|
|
Layout* layout,
|
|
const Layout::Section_list* sections)
|
|
{
|
|
gold_assert(!this->saw_phdrs_clause());
|
|
|
|
bool saw_tls = false;
|
|
for (Layout::Section_list::const_iterator p = sections->begin();
|
|
p != sections->end();
|
|
++p)
|
|
{
|
|
if ((*p)->type() == elfcpp::SHT_NOTE)
|
|
{
|
|
elfcpp::Elf_Word seg_flags =
|
|
Layout::section_flags_to_segment((*p)->flags());
|
|
Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
|
|
seg_flags);
|
|
oseg->add_output_section_to_nonload(*p, seg_flags);
|
|
|
|
// Incorporate any subsequent SHT_NOTE sections, in the
|
|
// hopes that the script is sensible.
|
|
Layout::Section_list::const_iterator pnext = p + 1;
|
|
while (pnext != sections->end()
|
|
&& (*pnext)->type() == elfcpp::SHT_NOTE)
|
|
{
|
|
seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
|
|
oseg->add_output_section_to_nonload(*pnext, seg_flags);
|
|
p = pnext;
|
|
++pnext;
|
|
}
|
|
}
|
|
|
|
if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
if (saw_tls)
|
|
gold_error(_("TLS sections are not adjacent"));
|
|
|
|
elfcpp::Elf_Word seg_flags =
|
|
Layout::section_flags_to_segment((*p)->flags());
|
|
Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
|
|
seg_flags);
|
|
oseg->add_output_section_to_nonload(*p, seg_flags);
|
|
|
|
Layout::Section_list::const_iterator pnext = p + 1;
|
|
while (pnext != sections->end()
|
|
&& ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
|
|
oseg->add_output_section_to_nonload(*pnext, seg_flags);
|
|
p = pnext;
|
|
++pnext;
|
|
}
|
|
|
|
saw_tls = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add a program header. The PHDRS clause is syntactically distinct
|
|
// from the SECTIONS clause, but we implement it with the SECTIONS
|
|
// support because PHDRS is useless if there is no SECTIONS clause.
|
|
|
|
void
|
|
Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
|
|
bool includes_filehdr, bool includes_phdrs,
|
|
bool is_flags_valid, unsigned int flags,
|
|
Expression* load_address)
|
|
{
|
|
if (this->phdrs_elements_ == NULL)
|
|
this->phdrs_elements_ = new Phdrs_elements();
|
|
this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
|
|
includes_filehdr,
|
|
includes_phdrs,
|
|
is_flags_valid, flags,
|
|
load_address));
|
|
}
|
|
|
|
// Return the number of segments we expect to create based on the
|
|
// SECTIONS clause. This is used to implement SIZEOF_HEADERS.
|
|
|
|
size_t
|
|
Script_sections::expected_segment_count(const Layout* layout) const
|
|
{
|
|
if (this->saw_phdrs_clause())
|
|
return this->phdrs_elements_->size();
|
|
|
|
Layout::Section_list sections;
|
|
layout->get_allocated_sections(§ions);
|
|
|
|
// We assume that we will need two PT_LOAD segments.
|
|
size_t ret = 2;
|
|
|
|
bool saw_note = false;
|
|
bool saw_tls = false;
|
|
for (Layout::Section_list::const_iterator p = sections.begin();
|
|
p != sections.end();
|
|
++p)
|
|
{
|
|
if ((*p)->type() == elfcpp::SHT_NOTE)
|
|
{
|
|
// Assume that all note sections will fit into a single
|
|
// PT_NOTE segment.
|
|
if (!saw_note)
|
|
{
|
|
++ret;
|
|
saw_note = true;
|
|
}
|
|
}
|
|
else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
|
|
{
|
|
// There can only be one PT_TLS segment.
|
|
if (!saw_tls)
|
|
{
|
|
++ret;
|
|
saw_tls = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Create the segments from a PHDRS clause. Return the segment which
|
|
// should hold the file header and program headers, if any.
|
|
|
|
Output_segment*
|
|
Script_sections::create_segments_from_phdrs_clause(Layout* layout,
|
|
uint64_t dot_alignment)
|
|
{
|
|
this->attach_sections_using_phdrs_clause(layout);
|
|
return this->set_phdrs_clause_addresses(layout, dot_alignment);
|
|
}
|
|
|
|
// Create the segments from the PHDRS clause, and put the output
|
|
// sections in them.
|
|
|
|
void
|
|
Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
|
|
{
|
|
typedef std::map<std::string, Output_segment*> Name_to_segment;
|
|
Name_to_segment name_to_segment;
|
|
for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
|
|
|
|
// Walk through the output sections and attach them to segments.
|
|
// Output sections in the script which do not list segments are
|
|
// attached to the same set of segments as the immediately preceding
|
|
// output section.
|
|
|
|
String_list* phdr_names = NULL;
|
|
bool load_segments_only = false;
|
|
for (Sections_elements::const_iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
{
|
|
bool orphan;
|
|
String_list* old_phdr_names = phdr_names;
|
|
Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
|
|
if (os == NULL)
|
|
continue;
|
|
|
|
if (phdr_names == NULL)
|
|
{
|
|
gold_error(_("allocated section not in any segment"));
|
|
continue;
|
|
}
|
|
|
|
// We see a list of segments names. Disable PT_LOAD segment only
|
|
// filtering.
|
|
if (old_phdr_names != phdr_names)
|
|
load_segments_only = false;
|
|
|
|
// If this is an orphan section--one that was not explicitly
|
|
// mentioned in the linker script--then it should not inherit
|
|
// any segment type other than PT_LOAD. Otherwise, e.g., the
|
|
// PT_INTERP segment will pick up following orphan sections,
|
|
// which does not make sense. If this is not an orphan section,
|
|
// we trust the linker script.
|
|
if (orphan)
|
|
{
|
|
// Enable PT_LOAD segments only filtering until we see another
|
|
// list of segment names.
|
|
load_segments_only = true;
|
|
}
|
|
|
|
bool in_load_segment = false;
|
|
for (String_list::const_iterator q = phdr_names->begin();
|
|
q != phdr_names->end();
|
|
++q)
|
|
{
|
|
Name_to_segment::const_iterator r = name_to_segment.find(*q);
|
|
if (r == name_to_segment.end())
|
|
gold_error(_("no segment %s"), q->c_str());
|
|
else
|
|
{
|
|
if (load_segments_only
|
|
&& r->second->type() != elfcpp::PT_LOAD)
|
|
continue;
|
|
|
|
elfcpp::Elf_Word seg_flags =
|
|
Layout::section_flags_to_segment(os->flags());
|
|
|
|
if (r->second->type() != elfcpp::PT_LOAD)
|
|
r->second->add_output_section_to_nonload(os, seg_flags);
|
|
else
|
|
{
|
|
r->second->add_output_section_to_load(layout, os, seg_flags);
|
|
if (in_load_segment)
|
|
gold_error(_("section in two PT_LOAD segments"));
|
|
in_load_segment = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!in_load_segment)
|
|
gold_error(_("allocated section not in any PT_LOAD segment"));
|
|
}
|
|
}
|
|
|
|
// Set the addresses for segments created from a PHDRS clause. Return
|
|
// the segment which should hold the file header and program headers,
|
|
// if any.
|
|
|
|
Output_segment*
|
|
Script_sections::set_phdrs_clause_addresses(Layout* layout,
|
|
uint64_t dot_alignment)
|
|
{
|
|
Output_segment* load_seg = NULL;
|
|
for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
{
|
|
// Note that we have to set the flags after adding the output
|
|
// sections to the segment, as adding an output segment can
|
|
// change the flags.
|
|
(*p)->set_flags_if_valid();
|
|
|
|
Output_segment* oseg = (*p)->segment();
|
|
|
|
if (oseg->type() != elfcpp::PT_LOAD)
|
|
{
|
|
// The addresses of non-PT_LOAD segments are set from the
|
|
// PT_LOAD segments.
|
|
if ((*p)->has_load_address())
|
|
gold_error(_("may only specify load address for PT_LOAD segment"));
|
|
continue;
|
|
}
|
|
|
|
oseg->set_minimum_p_align(dot_alignment);
|
|
|
|
// The output sections should have addresses from the SECTIONS
|
|
// clause. The addresses don't have to be in order, so find the
|
|
// one with the lowest load address. Use that to set the
|
|
// address of the segment.
|
|
|
|
Output_section* osec = oseg->section_with_lowest_load_address();
|
|
if (osec == NULL)
|
|
{
|
|
oseg->set_addresses(0, 0);
|
|
continue;
|
|
}
|
|
|
|
uint64_t vma = osec->address();
|
|
uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
|
|
|
|
// Override the load address of the section with the load
|
|
// address specified for the segment.
|
|
if ((*p)->has_load_address())
|
|
{
|
|
if (osec->has_load_address())
|
|
gold_warning(_("PHDRS load address overrides "
|
|
"section %s load address"),
|
|
osec->name());
|
|
|
|
lma = (*p)->load_address();
|
|
}
|
|
|
|
bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
|
|
if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
|
|
{
|
|
// We could support this if we wanted to.
|
|
gold_error(_("using only one of FILEHDR and PHDRS is "
|
|
"not currently supported"));
|
|
}
|
|
if (headers)
|
|
{
|
|
size_t sizeof_headers = this->total_header_size(layout);
|
|
uint64_t subtract = this->header_size_adjustment(lma,
|
|
sizeof_headers);
|
|
if (lma >= subtract && vma >= subtract)
|
|
{
|
|
lma -= subtract;
|
|
vma -= subtract;
|
|
}
|
|
else
|
|
{
|
|
gold_error(_("sections loaded on first page without room "
|
|
"for file and program headers "
|
|
"are not supported"));
|
|
}
|
|
|
|
if (load_seg != NULL)
|
|
gold_error(_("using FILEHDR and PHDRS on more than one "
|
|
"PT_LOAD segment is not currently supported"));
|
|
load_seg = oseg;
|
|
}
|
|
|
|
oseg->set_addresses(vma, lma);
|
|
}
|
|
|
|
return load_seg;
|
|
}
|
|
|
|
// Add the file header and segment headers to non-load segments
|
|
// specified in the PHDRS clause.
|
|
|
|
void
|
|
Script_sections::put_headers_in_phdrs(Output_data* file_header,
|
|
Output_data* segment_headers)
|
|
{
|
|
gold_assert(this->saw_phdrs_clause());
|
|
for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
{
|
|
if ((*p)->type() != elfcpp::PT_LOAD)
|
|
{
|
|
if ((*p)->includes_phdrs())
|
|
(*p)->segment()->add_initial_output_data(segment_headers);
|
|
if ((*p)->includes_filehdr())
|
|
(*p)->segment()->add_initial_output_data(file_header);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for an output section by name and return the address, the load
|
|
// address, the alignment, and the size. This is used when an
|
|
// expression refers to an output section which was not actually
|
|
// created. This returns true if the section was found, false
|
|
// otherwise.
|
|
|
|
bool
|
|
Script_sections::get_output_section_info(const char* name, uint64_t* address,
|
|
uint64_t* load_address,
|
|
uint64_t* addralign,
|
|
uint64_t* size) const
|
|
{
|
|
if (!this->saw_sections_clause_)
|
|
return false;
|
|
for (Sections_elements::const_iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
if ((*p)->get_output_section_info(name, address, load_address, addralign,
|
|
size))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Release all Output_segments. This remove all pointers to all
|
|
// Output_segments.
|
|
|
|
void
|
|
Script_sections::release_segments()
|
|
{
|
|
if (this->saw_phdrs_clause())
|
|
{
|
|
for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
(*p)->release_segment();
|
|
}
|
|
}
|
|
|
|
// Print the SECTIONS clause to F for debugging.
|
|
|
|
void
|
|
Script_sections::print(FILE* f) const
|
|
{
|
|
if (this->phdrs_elements_ != NULL)
|
|
{
|
|
fprintf(f, "PHDRS {\n");
|
|
for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
|
|
p != this->phdrs_elements_->end();
|
|
++p)
|
|
(*p)->print(f);
|
|
fprintf(f, "}\n");
|
|
}
|
|
|
|
if (this->memory_regions_ != NULL)
|
|
{
|
|
fprintf(f, "MEMORY {\n");
|
|
for (Memory_regions::const_iterator m = this->memory_regions_->begin();
|
|
m != this->memory_regions_->end();
|
|
++m)
|
|
(*m)->print(f);
|
|
fprintf(f, "}\n");
|
|
}
|
|
|
|
if (!this->saw_sections_clause_)
|
|
return;
|
|
|
|
fprintf(f, "SECTIONS {\n");
|
|
|
|
for (Sections_elements::const_iterator p = this->sections_elements_->begin();
|
|
p != this->sections_elements_->end();
|
|
++p)
|
|
(*p)->print(f);
|
|
|
|
fprintf(f, "}\n");
|
|
}
|
|
|
|
} // End namespace gold.
|