mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 10:03:47 +08:00
a9791f1438
Use gdb::waitpid instead of plain waitpid, making sure that EINTR is handled. Tested on x86_64-linux.
1071 lines
28 KiB
C
1071 lines
28 KiB
C
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "bfd.h"
|
||
#include "gdb-stabs.h"
|
||
#include "regcache.h"
|
||
#include "arch-utils.h"
|
||
#include "inf-child.h"
|
||
#include "inf-ptrace.h"
|
||
#include "ppc-tdep.h"
|
||
#include "rs6000-aix-tdep.h"
|
||
#include "exec.h"
|
||
#include "observable.h"
|
||
#include "xcoffread.h"
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <sys/reg.h>
|
||
|
||
#include <sys/dir.h>
|
||
#include <sys/user.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
#include <fcntl.h>
|
||
#include "gdbsupport/eintr.h"
|
||
|
||
#include <a.out.h>
|
||
#include <sys/file.h>
|
||
#include <sys/stat.h>
|
||
#include "gdb_bfd.h"
|
||
#include <sys/core.h>
|
||
#define __LDINFO_PTRACE32__ /* for __ld_info32 */
|
||
#define __LDINFO_PTRACE64__ /* for __ld_info64 */
|
||
#include <sys/ldr.h>
|
||
#include <sys/systemcfg.h>
|
||
|
||
/* Header files for getting ppid in AIX of a child process. */
|
||
#include <procinfo.h>
|
||
#include <sys/types.h>
|
||
|
||
/* Header files for alti-vec reg. */
|
||
#include <sys/context.h>
|
||
|
||
/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
|
||
debugging 32-bit and 64-bit processes. Define a typedef and macros for
|
||
accessing fields in the appropriate structures. */
|
||
|
||
/* In 32-bit compilation mode (which is the only mode from which ptrace()
|
||
works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
|
||
|
||
#if defined (__ld_info32) || defined (__ld_info64)
|
||
# define ARCH3264
|
||
#endif
|
||
|
||
/* Return whether the current architecture is 64-bit. */
|
||
|
||
#ifndef ARCH3264
|
||
# define ARCH64() 0
|
||
#else
|
||
# define ARCH64() (register_size (current_inferior ()->arch (), 0) == 8)
|
||
#endif
|
||
|
||
class rs6000_nat_target final : public inf_ptrace_target
|
||
{
|
||
public:
|
||
void fetch_registers (struct regcache *, int) override;
|
||
void store_registers (struct regcache *, int) override;
|
||
|
||
enum target_xfer_status xfer_partial (enum target_object object,
|
||
const char *annex,
|
||
gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len) override;
|
||
|
||
void create_inferior (const char *, const std::string &,
|
||
char **, int) override;
|
||
|
||
ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
|
||
|
||
/* Fork detection related functions, For adding multi process debugging
|
||
support. */
|
||
void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
|
||
|
||
const struct target_desc *read_description () override;
|
||
|
||
int insert_fork_catchpoint (int) override;
|
||
int remove_fork_catchpoint (int) override;
|
||
|
||
protected:
|
||
|
||
void post_startup_inferior (ptid_t ptid) override;
|
||
|
||
private:
|
||
enum target_xfer_status
|
||
xfer_shared_libraries (enum target_object object,
|
||
const char *annex, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len);
|
||
};
|
||
|
||
static rs6000_nat_target the_rs6000_nat_target;
|
||
|
||
/* The below declaration is to track number of times, parent has
|
||
reported fork event before its children. */
|
||
|
||
static std::list<pid_t> aix_pending_parent;
|
||
|
||
/* The below declaration is for a child process event that
|
||
is reported before its corresponding parent process in
|
||
the event of a fork (). */
|
||
|
||
static std::list<pid_t> aix_pending_children;
|
||
|
||
static void
|
||
aix_remember_child (pid_t pid)
|
||
{
|
||
aix_pending_children.push_front (pid);
|
||
}
|
||
|
||
static void
|
||
aix_remember_parent (pid_t pid)
|
||
{
|
||
aix_pending_parent.push_front (pid);
|
||
}
|
||
|
||
/* This function returns a parent of a child process. */
|
||
|
||
static pid_t
|
||
find_my_aix_parent (pid_t child_pid)
|
||
{
|
||
struct procsinfo ProcessBuffer1;
|
||
|
||
if (getprocs (&ProcessBuffer1, sizeof (ProcessBuffer1),
|
||
NULL, 0, &child_pid, 1) != 1)
|
||
return 0;
|
||
else
|
||
return ProcessBuffer1.pi_ppid;
|
||
}
|
||
|
||
/* In the below function we check if there was any child
|
||
process pending. If it exists we return it from the
|
||
list, otherwise we return a null. */
|
||
|
||
static pid_t
|
||
has_my_aix_child_reported (pid_t parent_pid)
|
||
{
|
||
pid_t child = 0;
|
||
auto it = std::find_if (aix_pending_children.begin (),
|
||
aix_pending_children.end (),
|
||
[=] (pid_t child_pid)
|
||
{
|
||
return find_my_aix_parent (child_pid) == parent_pid;
|
||
});
|
||
if (it != aix_pending_children.end ())
|
||
{
|
||
child = *it;
|
||
aix_pending_children.erase (it);
|
||
}
|
||
return child;
|
||
}
|
||
|
||
/* In the below function we check if there was any parent
|
||
process pending. If it exists we return it from the
|
||
list, otherwise we return a null. */
|
||
|
||
static pid_t
|
||
has_my_aix_parent_reported (pid_t child_pid)
|
||
{
|
||
pid_t my_parent = find_my_aix_parent (child_pid);
|
||
auto it = std::find (aix_pending_parent.begin (),
|
||
aix_pending_parent.end (),
|
||
my_parent);
|
||
if (it != aix_pending_parent.end ())
|
||
{
|
||
aix_pending_parent.erase (it);
|
||
return my_parent;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Given REGNO, a gdb register number, return the corresponding
|
||
number suitable for use as a ptrace() parameter. Return -1 if
|
||
there's no suitable mapping. Also, set the int pointed to by
|
||
ISFLOAT to indicate whether REGNO is a floating point register. */
|
||
|
||
static int
|
||
regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
|
||
{
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
|
||
*isfloat = 0;
|
||
if (tdep->ppc_gp0_regnum <= regno
|
||
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||
return regno;
|
||
else if (tdep->ppc_fp0_regnum >= 0
|
||
&& tdep->ppc_fp0_regnum <= regno
|
||
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
||
{
|
||
*isfloat = 1;
|
||
return regno - tdep->ppc_fp0_regnum + FPR0;
|
||
}
|
||
else if (regno == gdbarch_pc_regnum (gdbarch))
|
||
return IAR;
|
||
else if (regno == tdep->ppc_ps_regnum)
|
||
return MSR;
|
||
else if (regno == tdep->ppc_cr_regnum)
|
||
return CR;
|
||
else if (regno == tdep->ppc_lr_regnum)
|
||
return LR;
|
||
else if (regno == tdep->ppc_ctr_regnum)
|
||
return CTR;
|
||
else if (regno == tdep->ppc_xer_regnum)
|
||
return XER;
|
||
else if (tdep->ppc_fpscr_regnum >= 0
|
||
&& regno == tdep->ppc_fpscr_regnum)
|
||
return FPSCR;
|
||
else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
|
||
return MQ;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
|
||
|
||
static int
|
||
rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
|
||
{
|
||
#ifdef HAVE_PTRACE64
|
||
int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
|
||
#else
|
||
int ret = ptrace (req, id, (int *)addr, data, buf);
|
||
#endif
|
||
#if 0
|
||
printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
|
||
req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
|
||
#endif
|
||
return ret;
|
||
}
|
||
|
||
/* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
|
||
|
||
static int
|
||
rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
|
||
{
|
||
#ifdef ARCH3264
|
||
# ifdef HAVE_PTRACE64
|
||
int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
|
||
# else
|
||
int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
|
||
# endif
|
||
#else
|
||
int ret = 0;
|
||
#endif
|
||
#if 0
|
||
printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
|
||
req, id, hex_string (addr), data, (unsigned int)buf, ret);
|
||
#endif
|
||
return ret;
|
||
}
|
||
|
||
/* Store the vsx registers. */
|
||
|
||
static void
|
||
store_vsx_register_aix (struct regcache *regcache, int regno)
|
||
{
|
||
int ret;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
struct thrdentry64 thrdentry;
|
||
__vsx_context_t vsx;
|
||
pid_t pid = inferior_ptid.pid ();
|
||
tid64_t thrd_i = 0;
|
||
|
||
if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
|
||
&thrd_i, 1) == 1)
|
||
thrd_i = thrdentry.ti_tid;
|
||
|
||
memset(&vsx, 0, sizeof(__vsx_context_t));
|
||
if (__power_vsx() && thrd_i > 0)
|
||
{
|
||
if (ARCH64 ())
|
||
ret = rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0);
|
||
else
|
||
ret = rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *)&vsx, 0, 0);
|
||
if (ret < 0)
|
||
return;
|
||
|
||
regcache->raw_collect (regno, &(vsx.__vsr_dw1[0])+
|
||
regno - tdep->ppc_vsr0_upper_regnum);
|
||
|
||
if (ARCH64 ())
|
||
ret = rs6000_ptrace64 (PTT_WRITE_VSX, thrd_i, (long long) &vsx, 0, 0);
|
||
else
|
||
ret = rs6000_ptrace32 (PTT_WRITE_VSX, thrd_i, (int *) &vsx, 0, 0);
|
||
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to write VSX registers after reading it"));
|
||
}
|
||
}
|
||
|
||
/* Store Altivec registers. */
|
||
|
||
static void
|
||
store_altivec_register_aix (struct regcache *regcache, int regno)
|
||
{
|
||
int ret;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
struct thrdentry64 thrdentry;
|
||
__vmx_context_t vmx;
|
||
pid_t pid = inferior_ptid.pid ();
|
||
tid64_t thrd_i = 0;
|
||
|
||
if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
|
||
&thrd_i, 1) == 1)
|
||
thrd_i = thrdentry.ti_tid;
|
||
|
||
memset(&vmx, 0, sizeof(__vmx_context_t));
|
||
if (__power_vmx() && thrd_i > 0)
|
||
{
|
||
if (ARCH64 ())
|
||
ret = rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0);
|
||
else
|
||
ret = rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0);
|
||
if (ret < 0)
|
||
return;
|
||
|
||
regcache->raw_collect (regno, &(vmx.__vr[0]) + regno
|
||
- tdep->ppc_vr0_regnum);
|
||
|
||
if (ARCH64 ())
|
||
ret = rs6000_ptrace64 (PTT_WRITE_VEC, thrd_i, (long long) &vmx, 0, 0);
|
||
else
|
||
ret = rs6000_ptrace32 (PTT_WRITE_VEC, thrd_i, (int *) &vmx, 0, 0);
|
||
if (ret < 0)
|
||
perror_with_name (_("Unable to store AltiVec register after reading it"));
|
||
}
|
||
}
|
||
|
||
/* Supply altivec registers. */
|
||
|
||
static void
|
||
supply_vrregset_aix (struct regcache *regcache, __vmx_context_t *vmx)
|
||
{
|
||
int i;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
||
|
||
for (i = 0; i < num_of_vrregs; i++)
|
||
regcache->raw_supply (tdep->ppc_vr0_regnum + i,
|
||
&(vmx->__vr[i]));
|
||
regcache->raw_supply (tdep->ppc_vrsave_regnum, &(vmx->__vrsave));
|
||
regcache->raw_supply (tdep->ppc_vrsave_regnum - 1, &(vmx->__vscr));
|
||
}
|
||
|
||
/* Fetch altivec register. */
|
||
|
||
static void
|
||
fetch_altivec_registers_aix (struct regcache *regcache)
|
||
{
|
||
struct thrdentry64 thrdentry;
|
||
__vmx_context_t vmx;
|
||
pid_t pid = current_inferior ()->pid;
|
||
tid64_t thrd_i = 0;
|
||
|
||
if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
|
||
&thrd_i, 1) == 1)
|
||
thrd_i = thrdentry.ti_tid;
|
||
|
||
memset(&vmx, 0, sizeof(__vmx_context_t));
|
||
if (__power_vmx() && thrd_i > 0)
|
||
{
|
||
if (ARCH64 ())
|
||
rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0);
|
||
else
|
||
rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0);
|
||
supply_vrregset_aix (regcache, &vmx);
|
||
}
|
||
}
|
||
|
||
/* supply vsx register. */
|
||
|
||
static void
|
||
supply_vsxregset_aix (struct regcache *regcache, __vsx_context_t *vsx)
|
||
{
|
||
int i;
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
|
||
for (i = 0; i < ppc_num_vshrs; i++)
|
||
regcache->raw_supply (tdep->ppc_vsr0_upper_regnum + i,
|
||
&(vsx->__vsr_dw1[i]));
|
||
}
|
||
|
||
/* Fetch vsx registers. */
|
||
static void
|
||
fetch_vsx_registers_aix (struct regcache *regcache)
|
||
{
|
||
struct thrdentry64 thrdentry;
|
||
__vsx_context_t vsx;
|
||
pid_t pid = current_inferior ()->pid;
|
||
tid64_t thrd_i = 0;
|
||
|
||
if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
|
||
&thrd_i, 1) == 1)
|
||
thrd_i = thrdentry.ti_tid;
|
||
|
||
memset(&vsx, 0, sizeof(__vsx_context_t));
|
||
if (__power_vsx() && thrd_i > 0)
|
||
{
|
||
if (ARCH64 ())
|
||
rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0);
|
||
else
|
||
rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *) &vsx, 0, 0);
|
||
supply_vsxregset_aix (regcache, &vsx);
|
||
}
|
||
}
|
||
|
||
void rs6000_nat_target::post_startup_inferior (ptid_t ptid)
|
||
{
|
||
|
||
/* In AIX to turn on multi process debugging in ptrace
|
||
PT_MULTI is the option to be passed,
|
||
with the process ID which can fork () and
|
||
the data parameter [fourth parameter] must be 1. */
|
||
|
||
if (!ARCH64 ())
|
||
rs6000_ptrace32 (PT_MULTI, ptid.pid(), 0, 1, 0);
|
||
else
|
||
rs6000_ptrace64 (PT_MULTI, ptid.pid(), 0, 1, 0);
|
||
}
|
||
|
||
void
|
||
rs6000_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
|
||
target_waitkind fork_kind, bool follow_child,
|
||
bool detach_fork)
|
||
{
|
||
|
||
/* Once the fork event is detected the infrun.c code
|
||
calls the target_follow_fork to take care of
|
||
follow child and detach the child activity which is
|
||
done using the function below. */
|
||
|
||
inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
|
||
follow_child, detach_fork);
|
||
|
||
/* If we detach fork and follow child we do not want the child
|
||
process to generate events that ptrace can trace. Hence we
|
||
detach it. */
|
||
|
||
if (detach_fork && !follow_child)
|
||
{
|
||
if (ARCH64 ())
|
||
rs6000_ptrace64 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
|
||
else
|
||
rs6000_ptrace32 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
|
||
}
|
||
}
|
||
|
||
/* Functions for catchpoint in AIX. */
|
||
int
|
||
rs6000_nat_target::insert_fork_catchpoint (int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
rs6000_nat_target::remove_fork_catchpoint (int pid)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Fetch register REGNO from the inferior. */
|
||
|
||
static void
|
||
fetch_register (struct regcache *regcache, int regno)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
int addr[PPC_MAX_REGISTER_SIZE];
|
||
int nr, isfloat;
|
||
pid_t pid = regcache->ptid ().pid ();
|
||
|
||
/* Retrieved values may be -1, so infer errors from errno. */
|
||
errno = 0;
|
||
|
||
/* Alti-vec register. */
|
||
if (altivec_register_p (gdbarch, regno))
|
||
{
|
||
fetch_altivec_registers_aix (regcache);
|
||
return;
|
||
}
|
||
|
||
/* VSX register. */
|
||
if (vsx_register_p (gdbarch, regno))
|
||
{
|
||
fetch_vsx_registers_aix (regcache);
|
||
return;
|
||
}
|
||
|
||
nr = regmap (gdbarch, regno, &isfloat);
|
||
|
||
/* Floating-point registers. */
|
||
if (isfloat)
|
||
rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0);
|
||
|
||
/* Bogus register number. */
|
||
else if (nr < 0)
|
||
{
|
||
if (regno >= gdbarch_num_regs (gdbarch))
|
||
gdb_printf (gdb_stderr,
|
||
"gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
return;
|
||
}
|
||
|
||
/* Fixed-point registers. */
|
||
else
|
||
{
|
||
if (!ARCH64 ())
|
||
*addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0);
|
||
else
|
||
{
|
||
/* PT_READ_GPR requires the buffer parameter to point to long long,
|
||
even if the register is really only 32 bits. */
|
||
long long buf;
|
||
rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf);
|
||
if (register_size (gdbarch, regno) == 8)
|
||
memcpy (addr, &buf, 8);
|
||
else
|
||
*addr = buf;
|
||
}
|
||
}
|
||
|
||
if (!errno)
|
||
regcache->raw_supply (regno, (char *) addr);
|
||
else
|
||
{
|
||
#if 0
|
||
/* FIXME: this happens 3 times at the start of each 64-bit program. */
|
||
perror (_("ptrace read"));
|
||
#endif
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* Store register REGNO back into the inferior. */
|
||
|
||
static void
|
||
store_register (struct regcache *regcache, int regno)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
int addr[PPC_MAX_REGISTER_SIZE];
|
||
int nr, isfloat;
|
||
pid_t pid = regcache->ptid ().pid ();
|
||
|
||
/* Fetch the register's value from the register cache. */
|
||
regcache->raw_collect (regno, addr);
|
||
|
||
/* -1 can be a successful return value, so infer errors from errno. */
|
||
errno = 0;
|
||
|
||
if (altivec_register_p (gdbarch, regno))
|
||
{
|
||
store_altivec_register_aix (regcache, regno);
|
||
return;
|
||
}
|
||
|
||
if (vsx_register_p (gdbarch, regno))
|
||
{
|
||
store_vsx_register_aix (regcache, regno);
|
||
return;
|
||
}
|
||
|
||
nr = regmap (gdbarch, regno, &isfloat);
|
||
|
||
/* Floating-point registers. */
|
||
if (isfloat)
|
||
rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0);
|
||
|
||
/* Bogus register number. */
|
||
else if (nr < 0)
|
||
{
|
||
if (regno >= gdbarch_num_regs (gdbarch))
|
||
gdb_printf (gdb_stderr,
|
||
"gdb error: register no %d not implemented.\n",
|
||
regno);
|
||
}
|
||
|
||
/* Fixed-point registers. */
|
||
else
|
||
{
|
||
/* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
|
||
the register's value is passed by value, but for 64-bit inferiors,
|
||
the address of a buffer containing the value is passed. */
|
||
if (!ARCH64 ())
|
||
rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0);
|
||
else
|
||
{
|
||
/* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
|
||
area, even if the register is really only 32 bits. */
|
||
long long buf;
|
||
if (register_size (gdbarch, regno) == 8)
|
||
memcpy (&buf, addr, 8);
|
||
else
|
||
buf = *addr;
|
||
rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf);
|
||
}
|
||
}
|
||
|
||
if (errno)
|
||
{
|
||
perror (_("ptrace write"));
|
||
errno = 0;
|
||
}
|
||
}
|
||
|
||
/* Read from the inferior all registers if REGNO == -1 and just register
|
||
REGNO otherwise. */
|
||
|
||
void
|
||
rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
if (regno != -1)
|
||
fetch_register (regcache, regno);
|
||
|
||
else
|
||
{
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
|
||
/* Read 32 general purpose registers. */
|
||
for (regno = tdep->ppc_gp0_regnum;
|
||
regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
regno++)
|
||
{
|
||
fetch_register (regcache, regno);
|
||
}
|
||
|
||
/* Read general purpose floating point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regno = 0; regno < ppc_num_fprs; regno++)
|
||
fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
|
||
|
||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||
fetch_altivec_registers_aix (regcache);
|
||
|
||
if (tdep->ppc_vsr0_upper_regnum != -1)
|
||
fetch_vsx_registers_aix (regcache);
|
||
|
||
/* Read special registers. */
|
||
fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
|
||
fetch_register (regcache, tdep->ppc_ps_regnum);
|
||
fetch_register (regcache, tdep->ppc_cr_regnum);
|
||
fetch_register (regcache, tdep->ppc_lr_regnum);
|
||
fetch_register (regcache, tdep->ppc_ctr_regnum);
|
||
fetch_register (regcache, tdep->ppc_xer_regnum);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
fetch_register (regcache, tdep->ppc_fpscr_regnum);
|
||
if (tdep->ppc_mq_regnum >= 0)
|
||
fetch_register (regcache, tdep->ppc_mq_regnum);
|
||
}
|
||
}
|
||
|
||
const struct target_desc *
|
||
rs6000_nat_target::read_description ()
|
||
{
|
||
if (ARCH64())
|
||
{
|
||
if (__power_vsx ())
|
||
return tdesc_powerpc_vsx64;
|
||
else if (__power_vmx ())
|
||
return tdesc_powerpc_altivec64;
|
||
}
|
||
else
|
||
{
|
||
if (__power_vsx ())
|
||
return tdesc_powerpc_vsx32;
|
||
else if (__power_vmx ())
|
||
return tdesc_powerpc_altivec32;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
rs6000_nat_target::store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
if (regno != -1)
|
||
store_register (regcache, regno);
|
||
|
||
else
|
||
{
|
||
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
||
|
||
/* Write general purpose registers first. */
|
||
for (regno = tdep->ppc_gp0_regnum;
|
||
regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
regno++)
|
||
{
|
||
store_register (regcache, regno);
|
||
}
|
||
|
||
/* Write floating point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (regno = 0; regno < ppc_num_fprs; regno++)
|
||
store_register (regcache, tdep->ppc_fp0_regnum + regno);
|
||
|
||
/* Write special registers. */
|
||
store_register (regcache, gdbarch_pc_regnum (gdbarch));
|
||
store_register (regcache, tdep->ppc_ps_regnum);
|
||
store_register (regcache, tdep->ppc_cr_regnum);
|
||
store_register (regcache, tdep->ppc_lr_regnum);
|
||
store_register (regcache, tdep->ppc_ctr_regnum);
|
||
store_register (regcache, tdep->ppc_xer_regnum);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
store_register (regcache, tdep->ppc_fpscr_regnum);
|
||
if (tdep->ppc_mq_regnum >= 0)
|
||
store_register (regcache, tdep->ppc_mq_regnum);
|
||
}
|
||
}
|
||
|
||
/* Implement the to_xfer_partial target_ops method. */
|
||
|
||
enum target_xfer_status
|
||
rs6000_nat_target::xfer_partial (enum target_object object,
|
||
const char *annex, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
pid_t pid = inferior_ptid.pid ();
|
||
int arch64 = ARCH64 ();
|
||
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_LIBRARIES_AIX:
|
||
return xfer_shared_libraries (object, annex,
|
||
readbuf, writebuf,
|
||
offset, len, xfered_len);
|
||
case TARGET_OBJECT_MEMORY:
|
||
{
|
||
union
|
||
{
|
||
PTRACE_TYPE_RET word;
|
||
gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
|
||
} buffer;
|
||
ULONGEST rounded_offset;
|
||
LONGEST partial_len;
|
||
|
||
/* Round the start offset down to the next long word
|
||
boundary. */
|
||
rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
|
||
|
||
/* Since ptrace will transfer a single word starting at that
|
||
rounded_offset the partial_len needs to be adjusted down to
|
||
that (remember this function only does a single transfer).
|
||
Should the required length be even less, adjust it down
|
||
again. */
|
||
partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
|
||
if (partial_len > len)
|
||
partial_len = len;
|
||
|
||
if (writebuf)
|
||
{
|
||
/* If OFFSET:PARTIAL_LEN is smaller than
|
||
ROUNDED_OFFSET:WORDSIZE then a read/modify write will
|
||
be needed. Read in the entire word. */
|
||
if (rounded_offset < offset
|
||
|| (offset + partial_len
|
||
< rounded_offset + sizeof (PTRACE_TYPE_RET)))
|
||
{
|
||
/* Need part of initial word -- fetch it. */
|
||
if (arch64)
|
||
buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
|
||
rounded_offset, 0, NULL);
|
||
else
|
||
buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
|
||
(int *) (uintptr_t)
|
||
rounded_offset,
|
||
0, NULL);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of
|
||
buffer. */
|
||
memcpy (buffer.byte + (offset - rounded_offset),
|
||
writebuf, partial_len);
|
||
|
||
errno = 0;
|
||
if (arch64)
|
||
rs6000_ptrace64 (PT_WRITE_D, pid,
|
||
rounded_offset, buffer.word, NULL);
|
||
else
|
||
rs6000_ptrace32 (PT_WRITE_D, pid,
|
||
(int *) (uintptr_t) rounded_offset,
|
||
buffer.word, NULL);
|
||
if (errno)
|
||
return TARGET_XFER_EOF;
|
||
}
|
||
|
||
if (readbuf)
|
||
{
|
||
errno = 0;
|
||
if (arch64)
|
||
buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
|
||
rounded_offset, 0, NULL);
|
||
else
|
||
buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
|
||
(int *)(uintptr_t)rounded_offset,
|
||
0, NULL);
|
||
if (errno)
|
||
return TARGET_XFER_EOF;
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (readbuf, buffer.byte + (offset - rounded_offset),
|
||
partial_len);
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) partial_len;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
|
||
default:
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
}
|
||
|
||
/* Wait for the child specified by PTID to do something. Return the
|
||
process ID of the child, or MINUS_ONE_PTID in case of error; store
|
||
the status in *OURSTATUS. */
|
||
|
||
ptid_t
|
||
rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
|
||
target_wait_flags options)
|
||
{
|
||
pid_t pid;
|
||
int status, save_errno;
|
||
|
||
while (1)
|
||
{
|
||
set_sigint_trap ();
|
||
|
||
pid = gdb::waitpid (ptid.pid (), &status, 0);
|
||
save_errno = errno;
|
||
|
||
clear_sigint_trap ();
|
||
|
||
if (pid == -1)
|
||
{
|
||
gdb_printf (gdb_stderr,
|
||
_("Child process unexpectedly missing: %s.\n"),
|
||
safe_strerror (save_errno));
|
||
|
||
ourstatus->set_ignore ();
|
||
return minus_one_ptid;
|
||
}
|
||
|
||
/* Ignore terminated detached child processes. */
|
||
if (!WIFSTOPPED (status) && find_inferior_pid (this, pid) == nullptr)
|
||
continue;
|
||
|
||
/* Check for a fork () event. */
|
||
if ((status & 0xff) == W_SFWTED)
|
||
{
|
||
/* Checking whether it is a parent or a child event. */
|
||
|
||
/* If the event is a child we check if there was a parent
|
||
event recorded before. If yes we got the parent child
|
||
relationship. If not we push this child and wait for
|
||
the next fork () event. */
|
||
if (find_inferior_pid (this, pid) == nullptr)
|
||
{
|
||
pid_t parent_pid = has_my_aix_parent_reported (pid);
|
||
if (parent_pid > 0)
|
||
{
|
||
ourstatus->set_forked (ptid_t (pid));
|
||
return ptid_t (parent_pid);
|
||
}
|
||
aix_remember_child (pid);
|
||
}
|
||
|
||
/* If the event is a parent we check if there was a child
|
||
event recorded before. If yes we got the parent child
|
||
relationship. If not we push this parent and wait for
|
||
the next fork () event. */
|
||
else
|
||
{
|
||
pid_t child_pid = has_my_aix_child_reported (pid);
|
||
if (child_pid > 0)
|
||
{
|
||
ourstatus->set_forked (ptid_t (child_pid));
|
||
return ptid_t (pid);
|
||
}
|
||
aix_remember_parent (pid);
|
||
}
|
||
continue;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* AIX has a couple of strange returns from wait(). */
|
||
|
||
/* stop after load" status. */
|
||
if (status == 0x57c)
|
||
ourstatus->set_loaded ();
|
||
/* 0x7f is signal 0. */
|
||
else if (status == 0x7f)
|
||
ourstatus->set_spurious ();
|
||
/* A normal waitstatus. Let the usual macros deal with it. */
|
||
else
|
||
*ourstatus = host_status_to_waitstatus (status);
|
||
|
||
return ptid_t (pid);
|
||
}
|
||
|
||
|
||
/* Set the current architecture from the host running GDB. Called when
|
||
starting a child process. */
|
||
|
||
void
|
||
rs6000_nat_target::create_inferior (const char *exec_file,
|
||
const std::string &allargs,
|
||
char **env, int from_tty)
|
||
{
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
|
||
inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
|
||
|
||
if (__power_rs ())
|
||
{
|
||
arch = bfd_arch_rs6000;
|
||
mach = bfd_mach_rs6k;
|
||
}
|
||
else
|
||
{
|
||
arch = bfd_arch_powerpc;
|
||
mach = bfd_mach_ppc;
|
||
}
|
||
|
||
/* FIXME: schauer/2002-02-25:
|
||
We don't know if we are executing a 32 or 64 bit executable,
|
||
and have no way to pass the proper word size to rs6000_gdbarch_init.
|
||
So we have to avoid switching to a new architecture, if the architecture
|
||
matches already.
|
||
Blindly calling rs6000_gdbarch_init used to work in older versions of
|
||
GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
|
||
determine the wordsize. */
|
||
if (current_program_space->exec_bfd ())
|
||
{
|
||
const struct bfd_arch_info *exec_bfd_arch_info;
|
||
|
||
exec_bfd_arch_info
|
||
= bfd_get_arch_info (current_program_space->exec_bfd ());
|
||
if (arch == exec_bfd_arch_info->arch)
|
||
return;
|
||
}
|
||
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
|
||
gdbarch_info info;
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
info.abfd = current_program_space->exec_bfd ();
|
||
|
||
if (!gdbarch_update_p (current_inferior (), info))
|
||
internal_error (_("rs6000_create_inferior: failed "
|
||
"to select architecture"));
|
||
}
|
||
|
||
|
||
/* Shared Object support. */
|
||
|
||
/* Return the LdInfo data for the given process. Raises an error
|
||
if the data could not be obtained. */
|
||
|
||
static gdb::byte_vector
|
||
rs6000_ptrace_ldinfo (ptid_t ptid)
|
||
{
|
||
const int pid = ptid.pid ();
|
||
gdb::byte_vector ldi (1024);
|
||
int rc = -1;
|
||
|
||
while (1)
|
||
{
|
||
if (ARCH64 ())
|
||
rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (),
|
||
ldi.size (), NULL);
|
||
else
|
||
rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (),
|
||
ldi.size (), NULL);
|
||
|
||
if (rc != -1)
|
||
break; /* Success, we got the entire ld_info data. */
|
||
|
||
if (errno != ENOMEM)
|
||
perror_with_name (_("ptrace ldinfo"));
|
||
|
||
/* ldi is not big enough. Double it and try again. */
|
||
ldi.resize (ldi.size () * 2);
|
||
}
|
||
|
||
return ldi;
|
||
}
|
||
|
||
/* Implement the to_xfer_partial target_ops method for
|
||
TARGET_OBJECT_LIBRARIES_AIX objects. */
|
||
|
||
enum target_xfer_status
|
||
rs6000_nat_target::xfer_shared_libraries
|
||
(enum target_object object,
|
||
const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
ULONGEST result;
|
||
|
||
/* This function assumes that it is being run with a live process.
|
||
Core files are handled via gdbarch. */
|
||
gdb_assert (target_has_execution ());
|
||
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
|
||
result = rs6000_aix_ld_info_to_xml (current_inferior ()->arch (),
|
||
ldi_buf.data (),
|
||
readbuf, offset, len, 1);
|
||
|
||
if (result == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
{
|
||
*xfered_len = result;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
|
||
void _initialize_rs6000_nat ();
|
||
void
|
||
_initialize_rs6000_nat ()
|
||
{
|
||
add_inf_child_target (&the_rs6000_nat_target);
|
||
}
|