mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 02:24:46 +08:00
1051 lines
29 KiB
C
1051 lines
29 KiB
C
/* This must come before any other includes. */
|
|
#include "defs.h"
|
|
|
|
#include "sim-main.h"
|
|
#include "sim-options.h"
|
|
#include "sim-hw.h"
|
|
|
|
#include "bfd.h"
|
|
#include "sim-assert.h"
|
|
#include "sim-fpu.h"
|
|
#include "sim-signal.h"
|
|
|
|
#include "mn10300-sim.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
|
|
struct _state State;
|
|
|
|
|
|
/* simulation target board. NULL=default configuration */
|
|
static char* board = NULL;
|
|
|
|
static DECLARE_OPTION_HANDLER (mn10300_option_handler);
|
|
|
|
enum {
|
|
OPTION_BOARD = OPTION_START,
|
|
};
|
|
|
|
static SIM_RC
|
|
mn10300_option_handler (SIM_DESC sd,
|
|
sim_cpu *cpu,
|
|
int opt,
|
|
char *arg,
|
|
int is_command)
|
|
{
|
|
switch (opt)
|
|
{
|
|
case OPTION_BOARD:
|
|
{
|
|
if (arg)
|
|
{
|
|
board = zalloc(strlen(arg) + 1);
|
|
strcpy(board, arg);
|
|
}
|
|
return SIM_RC_OK;
|
|
}
|
|
}
|
|
|
|
return SIM_RC_OK;
|
|
}
|
|
|
|
static const OPTION mn10300_options[] =
|
|
{
|
|
#define BOARD_AM32 "stdeval1"
|
|
{ {"board", required_argument, NULL, OPTION_BOARD},
|
|
'\0', "none" /* rely on compile-time string concatenation for other options */
|
|
"|" BOARD_AM32
|
|
, "Customize simulation for a particular board.", mn10300_option_handler },
|
|
|
|
{ {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
|
|
};
|
|
|
|
/* For compatibility */
|
|
SIM_DESC simulator;
|
|
|
|
static sim_cia
|
|
mn10300_pc_get (sim_cpu *cpu)
|
|
{
|
|
return PC;
|
|
}
|
|
|
|
static void
|
|
mn10300_pc_set (sim_cpu *cpu, sim_cia pc)
|
|
{
|
|
PC = pc;
|
|
}
|
|
|
|
static int mn10300_reg_fetch (SIM_CPU *, int, void *, int);
|
|
static int mn10300_reg_store (SIM_CPU *, int, const void *, int);
|
|
|
|
/* These default values correspond to expected usage for the chip. */
|
|
|
|
SIM_DESC
|
|
sim_open (SIM_OPEN_KIND kind,
|
|
host_callback *cb,
|
|
struct bfd *abfd,
|
|
char * const *argv)
|
|
{
|
|
int i;
|
|
SIM_DESC sd = sim_state_alloc (kind, cb);
|
|
|
|
SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
|
|
|
|
/* Set default options before parsing user options. */
|
|
current_target_byte_order = BFD_ENDIAN_LITTLE;
|
|
|
|
/* The cpu data is kept in a separately allocated chunk of memory. */
|
|
if (sim_cpu_alloc_all (sd, 0) != SIM_RC_OK)
|
|
return 0;
|
|
|
|
/* for compatibility */
|
|
simulator = sd;
|
|
|
|
/* FIXME: should be better way of setting up interrupts. For
|
|
moment, only support watchpoints causing a breakpoint (gdb
|
|
halt). */
|
|
STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
|
|
STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
|
|
|
|
if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
|
|
return 0;
|
|
sim_add_option_table (sd, NULL, mn10300_options);
|
|
|
|
/* Allocate core managed memory */
|
|
sim_do_command (sd, "memory region 0,0x100000");
|
|
sim_do_command (sd, "memory region 0x40000000,0x200000");
|
|
|
|
/* The parser will print an error message for us, so we silently return. */
|
|
if (sim_parse_args (sd, argv) != SIM_RC_OK)
|
|
{
|
|
/* Uninstall the modules to avoid memory leaks,
|
|
file descriptor leaks, etc. */
|
|
sim_module_uninstall (sd);
|
|
return 0;
|
|
}
|
|
|
|
if ( NULL != board
|
|
&& (strcmp(board, BOARD_AM32) == 0 ) )
|
|
{
|
|
/* environment */
|
|
STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
|
|
|
|
sim_do_command (sd, "memory region 0x44000000,0x40000");
|
|
sim_do_command (sd, "memory region 0x48000000,0x400000");
|
|
|
|
/* device support for mn1030002 */
|
|
/* interrupt controller */
|
|
|
|
sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
|
|
|
|
/* DEBUG: NMI input's */
|
|
sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
|
|
sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
|
|
|
|
/* DEBUG: ACK input */
|
|
sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
|
|
sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
|
|
|
|
/* DEBUG: LEVEL output */
|
|
sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
|
|
sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
|
|
sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
|
|
|
|
/* DEBUG: A bunch of interrupt inputs */
|
|
sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
|
|
sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
|
|
|
|
/* processor interrupt device */
|
|
|
|
/* the device */
|
|
sim_hw_parse (sd, "/mn103cpu@0x20000000");
|
|
sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
|
|
|
|
/* DEBUG: ACK output wired upto a glue device */
|
|
sim_hw_parse (sd, "/glue@0x20002000");
|
|
sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
|
|
sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
|
|
|
|
/* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
|
|
sim_hw_parse (sd, "/glue@0x20004000");
|
|
sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
|
|
sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
|
|
sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
|
|
sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
|
|
|
|
/* REAL: The processor wired up to the real interrupt controller */
|
|
sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
|
|
sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
|
|
sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
|
|
|
|
|
|
/* PAL */
|
|
|
|
/* the device */
|
|
sim_hw_parse (sd, "/pal@0x31000000");
|
|
sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
|
|
sim_hw_parse (sd, "/pal@0x31000000/poll? true");
|
|
|
|
/* DEBUG: PAL wired up to a glue device */
|
|
sim_hw_parse (sd, "/glue@0x31002000");
|
|
sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
|
|
sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
|
|
sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
|
|
sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
|
|
sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
|
|
sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
|
|
sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
|
|
|
|
/* REAL: The PAL wired up to the real interrupt controller */
|
|
sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
|
|
sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
|
|
sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
|
|
|
|
/* 8 and 16 bit timers */
|
|
sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
|
|
|
|
/* Hook timer interrupts up to interrupt controller */
|
|
sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
|
|
sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
|
|
|
|
|
|
/* Serial devices 0,1,2 */
|
|
sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
|
|
sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
|
|
|
|
/* Hook serial interrupts up to interrupt controller */
|
|
sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
|
|
sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
|
|
sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
|
|
sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
|
|
sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
|
|
sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
|
|
|
|
sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
|
|
|
|
/* Memory control registers */
|
|
sim_do_command (sd, "memory region 0x32000020,0x30");
|
|
/* Cache control register */
|
|
sim_do_command (sd, "memory region 0x20000070,0x4");
|
|
/* Cache purge regions */
|
|
sim_do_command (sd, "memory region 0x28400000,0x800");
|
|
sim_do_command (sd, "memory region 0x28401000,0x800");
|
|
/* DMA registers */
|
|
sim_do_command (sd, "memory region 0x32000100,0xF");
|
|
sim_do_command (sd, "memory region 0x32000200,0xF");
|
|
sim_do_command (sd, "memory region 0x32000400,0xF");
|
|
sim_do_command (sd, "memory region 0x32000800,0xF");
|
|
}
|
|
else
|
|
{
|
|
if (board != NULL)
|
|
{
|
|
sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/* check for/establish the a reference program image */
|
|
if (sim_analyze_program (sd, STATE_PROG_FILE (sd), abfd) != SIM_RC_OK)
|
|
{
|
|
sim_module_uninstall (sd);
|
|
return 0;
|
|
}
|
|
|
|
/* establish any remaining configuration options */
|
|
if (sim_config (sd) != SIM_RC_OK)
|
|
{
|
|
sim_module_uninstall (sd);
|
|
return 0;
|
|
}
|
|
|
|
if (sim_post_argv_init (sd) != SIM_RC_OK)
|
|
{
|
|
/* Uninstall the modules to avoid memory leaks,
|
|
file descriptor leaks, etc. */
|
|
sim_module_uninstall (sd);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* set machine specific configuration */
|
|
/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
|
|
/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
|
|
|
|
/* CPU specific initialization. */
|
|
for (i = 0; i < MAX_NR_PROCESSORS; ++i)
|
|
{
|
|
SIM_CPU *cpu = STATE_CPU (sd, i);
|
|
|
|
CPU_REG_FETCH (cpu) = mn10300_reg_fetch;
|
|
CPU_REG_STORE (cpu) = mn10300_reg_store;
|
|
CPU_PC_FETCH (cpu) = mn10300_pc_get;
|
|
CPU_PC_STORE (cpu) = mn10300_pc_set;
|
|
}
|
|
|
|
return sd;
|
|
}
|
|
|
|
SIM_RC
|
|
sim_create_inferior (SIM_DESC sd,
|
|
struct bfd *prog_bfd,
|
|
char * const *argv,
|
|
char * const *env)
|
|
{
|
|
memset (&State, 0, sizeof (State));
|
|
if (prog_bfd != NULL) {
|
|
PC = bfd_get_start_address (prog_bfd);
|
|
} else {
|
|
PC = 0;
|
|
}
|
|
CPU_PC_SET (STATE_CPU (sd, 0), (uint64_t) PC);
|
|
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_am33_2)
|
|
PSW |= PSW_FE;
|
|
|
|
return SIM_RC_OK;
|
|
}
|
|
|
|
/* FIXME These would more efficient to use than load_mem/store_mem,
|
|
but need to be changed to use the memory map. */
|
|
|
|
static int
|
|
mn10300_reg_fetch (SIM_CPU *cpu, int rn, void *memory, int length)
|
|
{
|
|
reg_t reg = State.regs[rn];
|
|
uint8_t *a = memory;
|
|
a[0] = reg;
|
|
a[1] = reg >> 8;
|
|
a[2] = reg >> 16;
|
|
a[3] = reg >> 24;
|
|
return length;
|
|
}
|
|
|
|
static int
|
|
mn10300_reg_store (SIM_CPU *cpu, int rn, const void *memory, int length)
|
|
{
|
|
const uint8_t *a = memory;
|
|
State.regs[rn] = (a[3] << 24) + (a[2] << 16) + (a[1] << 8) + a[0];
|
|
return length;
|
|
}
|
|
|
|
void
|
|
mn10300_core_signal (SIM_DESC sd,
|
|
sim_cpu *cpu,
|
|
sim_cia cia,
|
|
unsigned map,
|
|
int nr_bytes,
|
|
address_word addr,
|
|
transfer_type transfer,
|
|
sim_core_signals sig)
|
|
{
|
|
const char *copy = (transfer == read_transfer ? "read" : "write");
|
|
address_word ip = CIA_ADDR (cia);
|
|
|
|
switch (sig)
|
|
{
|
|
case sim_core_unmapped_signal:
|
|
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
|
|
nr_bytes, copy,
|
|
(unsigned long) addr, (unsigned long) ip);
|
|
program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
|
|
break;
|
|
|
|
case sim_core_unaligned_signal:
|
|
sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
|
|
nr_bytes, copy,
|
|
(unsigned long) addr, (unsigned long) ip);
|
|
program_interrupt(sd, cpu, cia, SIM_SIGBUS);
|
|
break;
|
|
|
|
default:
|
|
sim_engine_abort (sd, cpu, cia,
|
|
"mn10300_core_signal - internal error - bad switch");
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
program_interrupt (SIM_DESC sd,
|
|
sim_cpu *cpu,
|
|
sim_cia cia,
|
|
SIM_SIGNAL sig)
|
|
{
|
|
static int in_interrupt = 0;
|
|
|
|
#ifdef SIM_CPU_EXCEPTION_TRIGGER
|
|
SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
|
|
#endif
|
|
|
|
/* avoid infinite recursion */
|
|
if (in_interrupt)
|
|
sim_io_printf (sd, "ERROR: recursion in program_interrupt during software exception dispatch.");
|
|
else
|
|
{
|
|
in_interrupt = 1;
|
|
/* copy NMI handler code from dv-mn103cpu.c */
|
|
store_word (SP - 4, CPU_PC_GET (cpu));
|
|
store_half (SP - 8, PSW);
|
|
|
|
/* Set the SYSEF flag in NMICR by backdoor method. See
|
|
dv-mn103int.c:write_icr(). This is necessary because
|
|
software exceptions are not modelled by actually talking to
|
|
the interrupt controller, so it cannot set its own SYSEF
|
|
flag. */
|
|
if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
|
|
store_byte (0x34000103, 0x04);
|
|
}
|
|
|
|
PSW &= ~PSW_IE;
|
|
SP = SP - 8;
|
|
CPU_PC_SET (cpu, 0x40000008);
|
|
|
|
in_interrupt = 0;
|
|
sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
|
|
}
|
|
|
|
|
|
void
|
|
mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
|
|
{
|
|
ASSERT(cpu != NULL);
|
|
|
|
if(State.exc_suspended > 0)
|
|
sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
|
|
|
|
CPU_PC_SET (cpu, cia);
|
|
memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
|
|
State.exc_suspended = 0;
|
|
}
|
|
|
|
void
|
|
mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
|
|
{
|
|
ASSERT(cpu != NULL);
|
|
|
|
if(State.exc_suspended > 0)
|
|
sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
|
|
State.exc_suspended, exception);
|
|
|
|
memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
|
|
memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
|
|
CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
|
|
State.exc_suspended = exception;
|
|
}
|
|
|
|
void
|
|
mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
|
|
{
|
|
ASSERT(cpu != NULL);
|
|
|
|
if(exception == 0 && State.exc_suspended > 0)
|
|
{
|
|
#ifndef SIGTRAP
|
|
# define SIGTRAP 5
|
|
#endif
|
|
if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
|
|
sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
|
|
State.exc_suspended);
|
|
}
|
|
else if(exception != 0 && State.exc_suspended > 0)
|
|
{
|
|
if(exception != State.exc_suspended)
|
|
sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
|
|
State.exc_suspended, exception);
|
|
|
|
memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
|
|
CPU_PC_SET (cpu, PC); /* copy PC back from new State.regs */
|
|
}
|
|
else if(exception != 0 && State.exc_suspended == 0)
|
|
{
|
|
sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
|
|
}
|
|
State.exc_suspended = 0;
|
|
}
|
|
|
|
/* This is called when an FP instruction is issued when the FP unit is
|
|
disabled, i.e., the FE bit of PSW is zero. It raises interrupt
|
|
code 0x1c0. */
|
|
void
|
|
fpu_disabled_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
|
|
{
|
|
sim_io_eprintf(sd, "FPU disabled exception\n");
|
|
program_interrupt (sd, cpu, cia, SIM_SIGFPE);
|
|
}
|
|
|
|
/* This is called when the FP unit is enabled but one of the
|
|
unimplemented insns is issued. It raises interrupt code 0x1c8. */
|
|
void
|
|
fpu_unimp_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
|
|
{
|
|
sim_io_eprintf(sd, "Unimplemented FPU instruction exception\n");
|
|
program_interrupt (sd, cpu, cia, SIM_SIGFPE);
|
|
}
|
|
|
|
/* This is called at the end of any FP insns that may have triggered
|
|
FP exceptions. If no exception is enabled, it returns immediately.
|
|
Otherwise, it raises an exception code 0x1d0. */
|
|
void
|
|
fpu_check_signal_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
|
|
{
|
|
if ((FPCR & EC_MASK) == 0)
|
|
return;
|
|
|
|
sim_io_eprintf(sd, "FPU %s%s%s%s%s exception\n",
|
|
(FPCR & EC_V) ? "V" : "",
|
|
(FPCR & EC_Z) ? "Z" : "",
|
|
(FPCR & EC_O) ? "O" : "",
|
|
(FPCR & EC_U) ? "U" : "",
|
|
(FPCR & EC_I) ? "I" : "");
|
|
program_interrupt (sd, cpu, cia, SIM_SIGFPE);
|
|
}
|
|
|
|
/* Convert a 32-bit single-precision FP value in the target platform
|
|
format to a sim_fpu value. */
|
|
static void
|
|
reg2val_32 (const void *reg, sim_fpu *val)
|
|
{
|
|
FS2FPU (*(reg_t *)reg, *val);
|
|
}
|
|
|
|
/* Round the given sim_fpu value to single precision, following the
|
|
target platform rounding and denormalization conventions. On
|
|
AM33/2.0, round_near is the only rounding mode. */
|
|
static int
|
|
round_32 (sim_fpu *val)
|
|
{
|
|
return sim_fpu_round_32 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
|
|
}
|
|
|
|
/* Convert a sim_fpu value to the 32-bit single-precision target
|
|
representation. */
|
|
static void
|
|
val2reg_32 (const sim_fpu *val, void *reg)
|
|
{
|
|
FPU2FS (*val, *(reg_t *)reg);
|
|
}
|
|
|
|
/* Define the 32-bit single-precision conversion and rounding uniform
|
|
interface. */
|
|
const struct fp_prec_t
|
|
fp_single_prec = {
|
|
reg2val_32, round_32, val2reg_32
|
|
};
|
|
|
|
/* Convert a 64-bit double-precision FP value in the target platform
|
|
format to a sim_fpu value. */
|
|
static void
|
|
reg2val_64 (const void *reg, sim_fpu *val)
|
|
{
|
|
FD2FPU (*(dword *)reg, *val);
|
|
}
|
|
|
|
/* Round the given sim_fpu value to double precision, following the
|
|
target platform rounding and denormalization conventions. On
|
|
AM33/2.0, round_near is the only rounding mode. */
|
|
static int
|
|
round_64 (sim_fpu *val)
|
|
{
|
|
return sim_fpu_round_64 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
|
|
}
|
|
|
|
/* Convert a sim_fpu value to the 64-bit double-precision target
|
|
representation. */
|
|
static void
|
|
val2reg_64 (const sim_fpu *val, void *reg)
|
|
{
|
|
FPU2FD (*val, *(dword *)reg);
|
|
}
|
|
|
|
/* Define the 64-bit single-precision conversion and rounding uniform
|
|
interface. */
|
|
const struct fp_prec_t
|
|
fp_double_prec = {
|
|
reg2val_64, round_64, val2reg_64
|
|
};
|
|
|
|
/* Define shortcuts to the uniform interface operations. */
|
|
#define REG2VAL(reg,val) (*ops->reg2val) (reg,val)
|
|
#define ROUND(val) (*ops->round) (val)
|
|
#define VAL2REG(val,reg) (*ops->val2reg) (val,reg)
|
|
|
|
/* Check whether overflow, underflow or inexact exceptions should be
|
|
raised. */
|
|
static int
|
|
fpu_status_ok (sim_fpu_status stat)
|
|
{
|
|
if ((stat & sim_fpu_status_overflow)
|
|
&& (FPCR & EE_O))
|
|
FPCR |= EC_O;
|
|
else if ((stat & (sim_fpu_status_underflow | sim_fpu_status_denorm))
|
|
&& (FPCR & EE_U))
|
|
FPCR |= EC_U;
|
|
else if ((stat & (sim_fpu_status_inexact | sim_fpu_status_rounded))
|
|
&& (FPCR & EE_I))
|
|
FPCR |= EC_I;
|
|
else if (stat & ~ (sim_fpu_status_overflow
|
|
| sim_fpu_status_underflow
|
|
| sim_fpu_status_denorm
|
|
| sim_fpu_status_inexact
|
|
| sim_fpu_status_rounded))
|
|
abort ();
|
|
else
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Implement a 32/64 bit reciprocal square root, signaling FP
|
|
exceptions when appropriate. */
|
|
void
|
|
fpu_rsqrt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in, void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu in, med, out;
|
|
|
|
REG2VAL (reg_in, &in);
|
|
ROUND (&in);
|
|
FPCR &= ~ EC_MASK;
|
|
switch (sim_fpu_is (&in))
|
|
{
|
|
case SIM_FPU_IS_SNAN:
|
|
case SIM_FPU_IS_NNUMBER:
|
|
case SIM_FPU_IS_NINF:
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
break;
|
|
|
|
case SIM_FPU_IS_QNAN:
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
break;
|
|
|
|
case SIM_FPU_IS_PINF:
|
|
VAL2REG (&sim_fpu_zero, reg_out);
|
|
break;
|
|
|
|
case SIM_FPU_IS_PNUMBER:
|
|
{
|
|
/* Since we don't have a function to compute rsqrt directly,
|
|
use sqrt and inv. */
|
|
sim_fpu_status stat = 0;
|
|
stat |= sim_fpu_sqrt (&med, &in);
|
|
stat |= sim_fpu_inv (&out, &med);
|
|
stat |= ROUND (&out);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&out, reg_out);
|
|
}
|
|
break;
|
|
|
|
case SIM_FPU_IS_NZERO:
|
|
case SIM_FPU_IS_PZERO:
|
|
if (FPCR & EE_Z)
|
|
FPCR |= EC_Z;
|
|
else
|
|
{
|
|
/* Generate an INF with the same sign. */
|
|
sim_fpu_inv (&out, &in);
|
|
VAL2REG (&out, reg_out);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
static inline reg_t
|
|
cmp2fcc (int res)
|
|
{
|
|
switch (res)
|
|
{
|
|
case SIM_FPU_IS_SNAN:
|
|
case SIM_FPU_IS_QNAN:
|
|
return FCC_U;
|
|
|
|
case SIM_FPU_IS_NINF:
|
|
case SIM_FPU_IS_NNUMBER:
|
|
case SIM_FPU_IS_NDENORM:
|
|
return FCC_L;
|
|
|
|
case SIM_FPU_IS_PINF:
|
|
case SIM_FPU_IS_PNUMBER:
|
|
case SIM_FPU_IS_PDENORM:
|
|
return FCC_G;
|
|
|
|
case SIM_FPU_IS_NZERO:
|
|
case SIM_FPU_IS_PZERO:
|
|
return FCC_E;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP compare, setting the FPCR status and/or
|
|
exception bits as specified. */
|
|
void
|
|
fpu_cmp (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2,
|
|
const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m, n;
|
|
|
|
REG2VAL (reg_in1, &m);
|
|
REG2VAL (reg_in2, &n);
|
|
FPCR &= ~ EC_MASK;
|
|
FPCR &= ~ FCC_MASK;
|
|
ROUND (&m);
|
|
ROUND (&n);
|
|
if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n))
|
|
{
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
FPCR |= FCC_U;
|
|
}
|
|
else
|
|
FPCR |= cmp2fcc (sim_fpu_cmp (&m, &n));
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP add, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_add (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m);
|
|
REG2VAL (reg_in2, &n);
|
|
ROUND (&m);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is (&m) == SIM_FPU_IS_PINF
|
|
&& sim_fpu_is (&n) == SIM_FPU_IS_NINF)
|
|
|| (sim_fpu_is (&m) == SIM_FPU_IS_NINF
|
|
&& sim_fpu_is (&n) == SIM_FPU_IS_PINF))
|
|
{
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_add (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP sub, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_sub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m);
|
|
REG2VAL (reg_in2, &n);
|
|
ROUND (&m);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is (&m) == SIM_FPU_IS_PINF
|
|
&& sim_fpu_is (&n) == SIM_FPU_IS_PINF)
|
|
|| (sim_fpu_is (&m) == SIM_FPU_IS_NINF
|
|
&& sim_fpu_is (&n) == SIM_FPU_IS_NINF))
|
|
{
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_sub (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP mul, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_mul (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m);
|
|
REG2VAL (reg_in2, &n);
|
|
ROUND (&m);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m) && sim_fpu_is_zero (&n))
|
|
|| (sim_fpu_is_zero (&m) && sim_fpu_is_infinity (&n)))
|
|
{
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_mul (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP div, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_div (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m);
|
|
REG2VAL (reg_in2, &n);
|
|
ROUND (&m);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n))
|
|
|| (sim_fpu_is_zero (&m) && sim_fpu_is_zero (&n)))
|
|
{
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else if (sim_fpu_is_number (&m) && sim_fpu_is_zero (&n)
|
|
&& (FPCR & EE_Z))
|
|
FPCR |= EC_Z;
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_div (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP madd, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_fmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2, const void *reg_in3,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m1, m2, m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m1);
|
|
REG2VAL (reg_in2, &m2);
|
|
REG2VAL (reg_in3, &n);
|
|
ROUND (&m1);
|
|
ROUND (&m2);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
|
|
|| (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
|
|
{
|
|
invalid_operands:
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
|
|
|
|
if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
|
|
&& sim_fpu_sign (&m) != sim_fpu_sign (&n))
|
|
goto invalid_operands;
|
|
|
|
stat |= sim_fpu_add (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP msub, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_fmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2, const void *reg_in3,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m1, m2, m, n, r;
|
|
|
|
REG2VAL (reg_in1, &m1);
|
|
REG2VAL (reg_in2, &m2);
|
|
REG2VAL (reg_in3, &n);
|
|
ROUND (&m1);
|
|
ROUND (&m2);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
|
|
|| (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
|
|
{
|
|
invalid_operands:
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
|
|
|
|
if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
|
|
&& sim_fpu_sign (&m) == sim_fpu_sign (&n))
|
|
goto invalid_operands;
|
|
|
|
stat |= sim_fpu_sub (&r, &m, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP nmadd, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_fnmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2, const void *reg_in3,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m1, m2, m, mm, n, r;
|
|
|
|
REG2VAL (reg_in1, &m1);
|
|
REG2VAL (reg_in2, &m2);
|
|
REG2VAL (reg_in3, &n);
|
|
ROUND (&m1);
|
|
ROUND (&m2);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
|
|
|| (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
|
|
{
|
|
invalid_operands:
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
|
|
|
|
if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
|
|
&& sim_fpu_sign (&m) == sim_fpu_sign (&n))
|
|
goto invalid_operands;
|
|
|
|
stat |= sim_fpu_neg (&mm, &m);
|
|
stat |= sim_fpu_add (&r, &mm, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|
|
|
|
/* Implement a 32/64 bit FP nmsub, setting FP exception bits when
|
|
appropriate. */
|
|
void
|
|
fpu_fnmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
|
|
const void *reg_in1, const void *reg_in2, const void *reg_in3,
|
|
void *reg_out, const struct fp_prec_t *ops)
|
|
{
|
|
sim_fpu m1, m2, m, mm, n, r;
|
|
|
|
REG2VAL (reg_in1, &m1);
|
|
REG2VAL (reg_in2, &m2);
|
|
REG2VAL (reg_in3, &n);
|
|
ROUND (&m1);
|
|
ROUND (&m2);
|
|
ROUND (&n);
|
|
FPCR &= ~ EC_MASK;
|
|
if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
|
|
|| (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
|
|
|| (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
|
|
{
|
|
invalid_operands:
|
|
if (FPCR & EE_V)
|
|
FPCR |= EC_V;
|
|
else
|
|
VAL2REG (&sim_fpu_qnan, reg_out);
|
|
}
|
|
else
|
|
{
|
|
sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
|
|
|
|
if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
|
|
&& sim_fpu_sign (&m) != sim_fpu_sign (&n))
|
|
goto invalid_operands;
|
|
|
|
stat |= sim_fpu_neg (&mm, &m);
|
|
stat |= sim_fpu_sub (&r, &mm, &n);
|
|
stat |= ROUND (&r);
|
|
if (fpu_status_ok (stat))
|
|
VAL2REG (&r, reg_out);
|
|
}
|
|
|
|
fpu_check_signal_exception (sd, cpu, cia);
|
|
}
|