binutils-gdb/sim/or1k/mloop.in
Andrew Burgess 1d506c26d9 Update copyright year range in header of all files managed by GDB
This commit is the result of the following actions:

  - Running gdb/copyright.py to update all of the copyright headers to
    include 2024,

  - Manually updating a few files the copyright.py script told me to
    update, these files had copyright headers embedded within the
    file,

  - Regenerating gdbsupport/Makefile.in to refresh it's copyright
    date,

  - Using grep to find other files that still mentioned 2023.  If
    these files were updated last year from 2022 to 2023 then I've
    updated them this year to 2024.

I'm sure I've probably missed some dates.  Feel free to fix them up as
you spot them.
2024-01-12 15:49:57 +00:00

247 lines
5.8 KiB
C

# Simulator main loop for or1k. -*- C -*-
#
# Copyright (C) 2017-2024 Free Software Foundation, Inc.
#
# This file is part of the GNU Simulators.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Syntax:
# /bin/sh mainloop.in command
#
# Command is one of:
#
# init
# support
# extract-{simple,scache,pbb}
# {full,fast}-exec-{simple,scache,pbb}
#
# A target need only provide a "full" version of one of simple,scache,pbb.
# If the target wants it can also provide a fast version of same, or if
# the slow (full featured) version is `simple', then the fast version can be
# one of scache/pbb.
# A target can't provide more than this.
# However for illustration's sake this file provides examples of all.
# ??? After a few more ports are done, revisit.
# Will eventually need to machine generate a lot of this.
case "x$1" in
xsupport)
cat <<EOF
#line $LINENO "$0"
#include <stdlib.h>
static INLINE const IDESC *
extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn,
ARGBUF *abuf, int fast_p)
{
const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
@cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
if (!fast_p)
{
int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
@cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
}
return id;
}
static INLINE SEM_PC
execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
{
SEM_PC vpc = sc;
@cpu@_insn_before (current_cpu, vpc, sc->argbuf.idesc);
if (fast_p)
{
#if ! WITH_SEM_SWITCH_FAST
#if WITH_SCACHE
vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
#else
vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, &sc->argbuf);
#endif
#else
abort ();
#endif /* WITH_SEM_SWITCH_FAST */
}
else
{
#if ! WITH_SEM_SWITCH_FULL
ARGBUF *abuf = &sc->argbuf;
const IDESC *idesc = abuf->idesc;
const CGEN_INSN *idata = idesc->idata;
#if WITH_SCACHE_PBB
int virtual_p = CGEN_INSN_ATTR_VALUE (idata, CGEN_INSN_VIRTUAL);
#else
int virtual_p = 0;
#endif
if (! virtual_p)
{
/* FIXME: call x-before */
if (ARGBUF_PROFILE_P (abuf))
PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
/* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
if (PROFILE_MODEL_P (current_cpu)
&& ARGBUF_PROFILE_P (abuf))
@cpu@_model_insn_before (current_cpu, 1 /*first_p*/);
CGEN_TRACE_INSN_INIT (current_cpu, abuf, 1);
CGEN_TRACE_INSN (current_cpu, idata,
(const struct argbuf *) abuf, abuf->addr);
}
#if WITH_SCACHE
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
#else
vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
#endif
if (! virtual_p)
{
/* FIXME: call x-after */
if (PROFILE_MODEL_P (current_cpu)
&& ARGBUF_PROFILE_P (abuf))
{
int cycles;
cycles = (*idesc->timing->model_fn) (current_cpu, sc);
@cpu@_model_insn_after (current_cpu, 1 /*last_p*/, cycles);
}
CGEN_TRACE_INSN_FINI (current_cpu, abuf, 1);
}
#else
abort ();
#endif /* WITH_SEM_SWITCH_FULL */
}
@cpu@_insn_after (current_cpu, vpc, sc->argbuf.idesc);
return vpc;
}
EOF
;;
xinit)
# Nothing needed.
;;
xextract-simple | xextract-scache)
cat <<EOF
#line $LINENO "$0"
{
USI insn = GETIMEMUSI (current_cpu, pc);
extract (current_cpu, pc, insn, sc, FAST_P);
SEM_SKIP_COMPILE (current_cpu, sc, 1);
}
EOF
;;
xextract-pbb)
# Inputs: current_cpu, pc, sc, max_insns, FAST_P
# Outputs: sc, pc
# sc must be left pointing past the last created entry.
# pc must be left pointing past the last created entry.
# If the pbb is terminated by a cti insn, SET_CTI_VPC(sc) must be called
# to record the vpc of the cti insn.
# SET_INSN_COUNT(n) must be called to record number of real insns.
cat <<EOF
#line $LINENO "$0"
{
const IDESC *idesc;
int icount = 0;
while (max_insns > 0) {
USI insn = GETIMEMUSI (current_cpu, pc);
idesc = extract (current_cpu, pc, insn, &sc->argbuf, FAST_P);
SEM_SKIP_COMPILE (current_cpu, sc, 1);
++sc;
--max_insns;
++icount;
pc += 4;
if (CGEN_ATTR_BOOLS (CGEN_INSN_ATTRS ((idesc)->idata)) & CGEN_ATTR_MASK (CGEN_INSN_FORCED_CTI))
{
SET_CTI_VPC (sc - 1);
break;
}
else if (CGEN_ATTR_BOOLS (CGEN_INSN_ATTRS ((idesc)->idata)) & CGEN_ATTR_MASK (CGEN_INSN_DELAYED_CTI))
{
/* handle delay slot */
SET_CTI_VPC (sc - 1);
insn = GETIMEMUSI (current_cpu, pc);
idesc = extract (current_cpu, pc, insn, &sc->argbuf, FAST_P);
++sc;
--max_insns;
++icount;
pc += 4;
break;
}
}
SET_INSN_COUNT (icount);
}
EOF
;;
xfull-exec-* | xfast-exec-*)
# Inputs: current_cpu, vpc, FAST_P
# Outputs: vpc
# vpc is the virtual program counter.
cat <<EOF
#line $LINENO "$0"
#if (! FAST_P && WITH_SEM_SWITCH_FULL) || (FAST_P && WITH_SEM_SWITCH_FAST)
#define DEFINE_SWITCH
#ifdef WANT_CPU_OR1K32BF
#include "sem-switch.c"
#endif
#else
vpc = execute (current_cpu, vpc, FAST_P);
#endif
EOF
;;
*)
echo "Invalid argument to mainloop.in: $1" >&2
exit 1
;;
esac