binutils-gdb/gdb/s390-linux-nat.c
Simon Marchi f486487f55 Mostly trivial enum fixes
This is a patch I extracted from Pedro's C++ branch.  It contains the
most trivial enum fixes, where an integer type/value was used instead
of the appropriate enum type/value.  It fixes many C++ errors, since
in C++ you can't mix integers and enums implicitely.

Regardless of the C++ conversion, I think this is a good cleanup to make
use of the appropriate enum types.

Regression-tested on native x86_64.

gdb/ChangeLog:

	* aarch64-linux-nat.c (aarch64_linux_can_use_hw_breakpoint): Use enum
	type or value instead of integer.
	(aarch64_linux_insert_watchpoint): Likewise.
	(aarch64_linux_remove_watchpoint): Likewise.
	* ada-lang.c (ada_op_print_tab): Likewise.
	* amd64-linux-tdep.c (amd64_canonicalize_syscall): Likewise.
	(amd64_linux_syscall_record_common): Likewise.
	* arch-utils.c (target_byte_order_user): Likewise.
	(default_byte_order): Likewise.
	* arm-linux-nat.c (arm_linux_can_use_hw_breakpoint): Likewise.
	(arm_linux_get_hwbp_type): Likewise.
	(arm_linux_hw_watchpoint_initialize): Likewise.
	(arm_linux_insert_watchpoint): Likewise.
	* arm-linux-tdep.c (arm_canonicalize_syscall): Likewise.
	(arm_linux_syscall_record): Likewise.
	* breakpoint.c (update_watchpoint): Likewise.
	(breakpoint_here_p): Likewise.
	(bpstat_print): Likewise.
	(enable_breakpoint_disp): Likewise.
	* c-lang.c (c_op_print_tab): Likewise.
	* cli/cli-decode.c (add_info_alias): Likewise.
	* d-lang.c (d_op_print_tab): Likewise.
	* eval.c (evaluate_subexp_standard): Likewise.
	* f-exp.y (dot_ops): Likewise.
	(f77_keywords): Likewise.
	* f-lang.c (f_op_print_tab): Likewise.
	* go-lang.c (go_op_print_tab): Likewise.
	* guile/scm-breakpoint.c (gdbscm_make_breakpoint): Likewise.
	* guile/scm-cmd.c (gdbscm_make_command): Likewise.
	* guile/scm-param.c (gdbscm_make_parameter): Likewise.
	* guile/scm-pretty-print.c (gdbscm_apply_val_pretty_printer): Likewise.
	* guile/scm-string.c (struct scm_to_stringn_data): Likewise.
	(struct scm_from_stringn_data): Likewise.
	* i386-linux-tdep.c (i386_canonicalize_syscall): Likewise.
	* ia64-linux-nat.c (ia64_linux_insert_watchpoint): Likewise.
	(ia64_linux_remove_watchpoint): Likewise.
	(ia64_linux_can_use_hw_breakpoint): Likewise.
	* infrun.c (print_stop_event): Likewise.
	* jv-lang.c (java_op_print_tab): Likewise.
	* linux-nat.c (linux_proc_xfer_partial): Likewise.
	* linux-nat.h (struct lwp_info): Likewise.
	* linux-thread-db.c (enable_thread_event): Likewise.
	* m2-lang.c (m2_op_print_tab): Likewise.
	* mi/mi-cmd-stack.c (mi_cmd_stack_list_locals): Likewise.
	(mi_cmd_stack_list_variables): Likewise.
	* mi/mi-main.c (mi_cmd_trace_frame_collected): Likewise.
	* mi/mi-out.c (mi_table_begin): Likewise.
	(mi_table_header): Likewise.
	* mips-linux-nat.c (mips_linux_can_use_hw_breakpoint): Likewise.
	(mips_linux_insert_watchpoint): Likewise.
	(mips_linux_remove_watchpoint): Likewise.
	* nat/mips-linux-watch.c (mips_linux_watch_type_to_irw): Likewise.
	* nat/mips-linux-watch.h (struct mips_watchpoint): Likewise.
	(mips_linux_watch_type_to_irw): Likewise.
	* nto-procfs.c (procfs_can_use_hw_breakpoint): Likewise.
	(procfs_insert_hw_watchpoint): Likewise.
	(procfs_remove_hw_watchpoint): Likewise.
	(procfs_hw_watchpoint): Likewise.
	(procfs_can_use_hw_breakpoint): Likewise.
	(procfs_remove_hw_watchpoint): Likewise.
	(procfs_insert_hw_watchpoint): Likewise.
	* p-lang.c (pascal_op_print_tab): Likewise.
	* ppc-linux-nat.c (ppc_linux_can_use_hw_breakpoint): Likewise.
	* ppc-linux-tdep.c (ppu2spu_unwind_register): Likewise.
	* ppc-sysv-tdep.c (get_decimal_float_return_value): Likewise.
	* procfs.c (procfs_can_use_hw_breakpoint): Likewise.
	(procfs_insert_watchpoint): Likewise.
	(procfs_remove_watchpoint): Likewise.
	* psymtab.c (recursively_search_psymtabs): Likewise.
	* remote-m32r-sdi.c (m32r_can_use_hw_watchpoint): Likewise.
	(m32r_insert_watchpoint): Likewise.
	* remote-mips.c (mips_can_use_watchpoint): Likewise.
	(mips_insert_watchpoint): Likewise.
	(mips_remove_watchpoint): Likewise.
	* remote.c (watchpoint_to_Z_packet): Likewise.
	(remote_insert_watchpoint): Likewise.
	(remote_remove_watchpoint): Likewise.
	(remote_check_watch_resources): Likewise.
	* s390-linux-nat.c (s390_insert_watchpoint): Likewise.
	(s390_remove_watchpoint): Likewise.
	(s390_can_use_hw_breakpoint): Likewise.
	* s390-linux-tdep.c (s390_gdbarch_init): Likewise.
	* spu-linux-nat.c (spu_can_use_hw_breakpoint): Likewise.
	* target.h (struct target_ops): Likewise.
	* tilegx-tdep.c (tilegx_analyze_prologue): Likewise.
	* ui-out.c (struct ui_out_hdr): Likewise.
	(append_header_to_list): Likewise.
	(get_next_header): Likewise.
	(verify_field): Likewise.
	(ui_out_begin): Likewise.
	(ui_out_field_int): Likewise.
	(ui_out_field_fmt_int): Likewise.
	(ui_out_field_skip): Likewise.
	(ui_out_field_string): Likewise.
	(ui_out_field_fmt): Likewise.
	* varobj.c (new_variable): Likewise.
	* x86-nat.c (x86_insert_watchpoint): Likewise.
	(x86_remove_watchpoint): Likewise.
	(x86_can_use_hw_breakpoint): Likewise.
	* xtensa-tdep.h (struct gdbarch_tdep): Likewise.
	* inflow.c (enum gdb_has_a_terminal_flag_enum): Add name to
	previously anonymous enumeration type..
	* linux-record.h (enum gdb_syscall): Add gdb_sys_no_syscall
	value.
	* target-debug.h (target_debug_print_enum_target_hw_bp_type): New.
	(target_debug_print_enum_bptype): New.
	* target-delegates.c: Regenerate.
2015-07-31 13:19:53 -04:00

748 lines
22 KiB
C

/* S390 native-dependent code for GDB, the GNU debugger.
Copyright (C) 2001-2015 Free Software Foundation, Inc.
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "regcache.h"
#include "inferior.h"
#include "target.h"
#include "linux-nat.h"
#include "auxv.h"
#include "gregset.h"
#include "regset.h"
#include "nat/linux-ptrace.h"
#include "s390-linux-tdep.h"
#include "elf/common.h"
#include <asm/ptrace.h>
#include "nat/gdb_ptrace.h"
#include <asm/types.h>
#include <sys/procfs.h>
#include <sys/ucontext.h>
#include <elf.h>
/* Per-thread arch-specific data. */
struct arch_lwp_info
{
/* Non-zero if the thread's PER info must be re-written. */
int per_info_changed;
};
static int have_regset_last_break = 0;
static int have_regset_system_call = 0;
static int have_regset_tdb = 0;
static int have_regset_vxrs = 0;
/* Register map for 32-bit executables running under a 64-bit
kernel. */
#ifdef __s390x__
static const struct regcache_map_entry s390_64_regmap_gregset[] =
{
/* Skip PSWM and PSWA, since they must be handled specially. */
{ 2, REGCACHE_MAP_SKIP, 8 },
{ 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 },
{ 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 },
{ 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 },
{ 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 },
{ 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 },
{ 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 },
{ 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 },
{ 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 },
{ 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 },
{ 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 },
{ 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 },
{ 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 },
{ 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 },
{ 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 },
{ 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 },
{ 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 },
{ 16, S390_A0_REGNUM, 4 },
{ 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 },
{ 0 }
};
static const struct regset s390_64_gregset =
{
s390_64_regmap_gregset,
regcache_supply_regset,
regcache_collect_regset
};
#define S390_PSWM_OFFSET 0
#define S390_PSWA_OFFSET 8
#endif
/* Fill GDB's register array with the general-purpose register values
in *REGP.
When debugging a 32-bit executable running under a 64-bit kernel,
we have to fix up the 64-bit registers we get from the kernel to
make them look like 32-bit registers. */
void
supply_gregset (struct regcache *regcache, const gregset_t *regp)
{
#ifdef __s390x__
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_ptr_bit (gdbarch) == 32)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswm, pswa;
gdb_byte buf[4];
regcache_supply_regset (&s390_64_gregset, regcache, -1,
regp, sizeof (gregset_t));
pswm = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWM_OFFSET, 8, byte_order);
pswa = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWA_OFFSET, 8, byte_order);
store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000);
regcache_raw_supply (regcache, S390_PSWM_REGNUM, buf);
store_unsigned_integer (buf, 4, byte_order,
(pswa & 0x7fffffff) | (pswm & 0x80000000));
regcache_raw_supply (regcache, S390_PSWA_REGNUM, buf);
return;
}
#endif
regcache_supply_regset (&s390_gregset, regcache, -1, regp,
sizeof (gregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno)
{
#ifdef __s390x__
struct gdbarch *gdbarch = get_regcache_arch (regcache);
if (gdbarch_ptr_bit (gdbarch) == 32)
{
regcache_collect_regset (&s390_64_gregset, regcache, regno,
regp, sizeof (gregset_t));
if (regno == -1
|| regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswa, pswm;
gdb_byte buf[4];
gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET;
gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET;
pswm = extract_unsigned_integer (pswm_p, 8, byte_order);
if (regno == -1 || regno == S390_PSWM_REGNUM)
{
pswm &= 0x80000000;
regcache_raw_collect (regcache, S390_PSWM_REGNUM, buf);
pswm |= (extract_unsigned_integer (buf, 4, byte_order)
& 0xfff7ffff) << 32;
}
if (regno == -1 || regno == S390_PSWA_REGNUM)
{
regcache_raw_collect (regcache, S390_PSWA_REGNUM, buf);
pswa = extract_unsigned_integer (buf, 4, byte_order);
pswm ^= (pswm ^ pswa) & 0x80000000;
pswa &= 0x7fffffff;
store_unsigned_integer (pswa_p, 8, byte_order, pswa);
}
store_unsigned_integer (pswm_p, 8, byte_order, pswm);
}
return;
}
#endif
regcache_collect_regset (&s390_gregset, regcache, regno, regp,
sizeof (gregset_t));
}
/* Fill GDB's register array with the floating-point register values
in *REGP. */
void
supply_fpregset (struct regcache *regcache, const fpregset_t *regp)
{
regcache_supply_regset (&s390_fpregset, regcache, -1, regp,
sizeof (fpregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno)
{
regcache_collect_regset (&s390_fpregset, regcache, regno, regp,
sizeof (fpregset_t));
}
/* Find the TID for the current inferior thread to use with ptrace. */
static int
s390_inferior_tid (void)
{
/* GNU/Linux LWP ID's are process ID's. */
int tid = ptid_get_lwp (inferior_ptid);
if (tid == 0)
tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */
return tid;
}
/* Fetch all general-purpose registers from process/thread TID and
store their values in GDB's register cache. */
static void
fetch_regs (struct regcache *regcache, int tid)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
supply_gregset (regcache, (const gregset_t *) &regs);
}
/* Store all valid general-purpose registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_regs (const struct regcache *regcache, int tid, int regnum)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
fill_gregset (regcache, &regs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write registers"));
}
/* Fetch all floating-point registers from process/thread TID and store
their values in GDB's register cache. */
static void
fetch_fpregs (struct regcache *regcache, int tid)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
supply_fpregset (regcache, (const fpregset_t *) &fpregs);
}
/* Store all valid floating-point registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_fpregs (const struct regcache *regcache, int tid, int regnum)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
fill_fpregset (regcache, &fpregs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write floating point status"));
}
/* Fetch all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from process/thread TID and store their values in GDB's
register cache. */
static void
fetch_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
gdb_byte *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
{
if (errno == ENODATA)
regcache_supply_regset (regset, regcache, -1, NULL, regsize);
else
perror_with_name (_("Couldn't get register set"));
}
else
regcache_supply_regset (regset, regcache, -1, buf, regsize);
}
/* Store all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from GDB's register cache back to process/thread TID. */
static void
store_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
gdb_byte *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't get register set"));
regcache_collect_regset (regset, regcache, -1, buf, regsize);
if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't set register set"));
}
/* Check whether the kernel provides a register set with number REGSET
of size REGSIZE for process/thread TID. */
static int
check_regset (int tid, int regset, int regsize)
{
gdb_byte *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0
|| errno == ENODATA)
return 1;
return 0;
}
/* Fetch register REGNUM from the child process. If REGNUM is -1, do
this for all registers. */
static void
s390_linux_fetch_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
int tid = s390_inferior_tid ();
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
fetch_regs (regcache, tid);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
fetch_fpregs (regcache, tid);
if (have_regset_last_break)
if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM)
fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8,
(gdbarch_ptr_bit (get_regcache_arch (regcache)) == 32
? &s390_last_break_regset : &s390x_last_break_regset));
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_tdb)
if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum))
fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset,
&s390_tdb_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
}
/* Store register REGNUM back into the child process. If REGNUM is
-1, do this for all registers. */
static void
s390_linux_store_inferior_registers (struct target_ops *ops,
struct regcache *regcache, int regnum)
{
int tid = s390_inferior_tid ();
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
store_regs (regcache, tid, regnum);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
store_fpregs (regcache, tid, regnum);
/* S390_LAST_BREAK_REGNUM is read-only. */
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
}
/* Hardware-assisted watchpoint handling. */
/* We maintain a list of all currently active watchpoints in order
to properly handle watchpoint removal.
The only thing we actually need is the total address space area
spanned by the watchpoints. */
struct watch_area
{
struct watch_area *next;
CORE_ADDR lo_addr;
CORE_ADDR hi_addr;
};
static struct watch_area *watch_base = NULL;
static int
s390_stopped_by_watchpoint (struct target_ops *ops)
{
per_lowcore_bits per_lowcore;
ptrace_area parea;
int result;
/* Speed up common case. */
if (!watch_base)
return 0;
parea.len = sizeof (per_lowcore);
parea.process_addr = (addr_t) & per_lowcore;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore);
if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve watchpoint status"));
result = (per_lowcore.perc_storage_alteration == 1
&& per_lowcore.perc_store_real_address == 0);
if (result)
{
/* Do not report this watchpoint again. */
memset (&per_lowcore, 0, sizeof (per_lowcore));
if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't clear watchpoint status"));
}
return result;
}
/* Each time before resuming a thread, update its PER info. */
static void
s390_prepare_to_resume (struct lwp_info *lp)
{
int tid;
per_struct per_info;
ptrace_area parea;
CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0;
struct watch_area *area;
if (lp->arch_private == NULL
|| !lp->arch_private->per_info_changed)
return;
lp->arch_private->per_info_changed = 0;
tid = ptid_get_lwp (lp->ptid);
if (tid == 0)
tid = ptid_get_pid (lp->ptid);
for (area = watch_base; area; area = area->next)
{
watch_lo_addr = min (watch_lo_addr, area->lo_addr);
watch_hi_addr = max (watch_hi_addr, area->hi_addr);
}
parea.len = sizeof (per_info);
parea.process_addr = (addr_t) & per_info;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve watchpoint status"));
if (watch_base)
{
per_info.control_regs.bits.em_storage_alteration = 1;
per_info.control_regs.bits.storage_alt_space_ctl = 1;
}
else
{
per_info.control_regs.bits.em_storage_alteration = 0;
per_info.control_regs.bits.storage_alt_space_ctl = 0;
}
per_info.starting_addr = watch_lo_addr;
per_info.ending_addr = watch_hi_addr;
if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't modify watchpoint status"));
}
/* Make sure that LP is stopped and mark its PER info as changed, so
the next resume will update it. */
static void
s390_refresh_per_info (struct lwp_info *lp)
{
if (lp->arch_private == NULL)
lp->arch_private = XCNEW (struct arch_lwp_info);
lp->arch_private->per_info_changed = 1;
if (!lp->stopped)
linux_stop_lwp (lp);
}
/* When attaching to a new thread, mark its PER info as changed. */
static void
s390_new_thread (struct lwp_info *lp)
{
lp->arch_private = XCNEW (struct arch_lwp_info);
lp->arch_private->per_info_changed = 1;
}
static int
s390_insert_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len, enum target_hw_bp_type type,
struct expression *cond)
{
struct lwp_info *lp;
struct watch_area *area = xmalloc (sizeof (struct watch_area));
if (!area)
return -1;
area->lo_addr = addr;
area->hi_addr = addr + len - 1;
area->next = watch_base;
watch_base = area;
ALL_LWPS (lp)
s390_refresh_per_info (lp);
return 0;
}
static int
s390_remove_watchpoint (struct target_ops *self,
CORE_ADDR addr, int len, enum target_hw_bp_type type,
struct expression *cond)
{
struct lwp_info *lp;
struct watch_area *area, **parea;
for (parea = &watch_base; *parea; parea = &(*parea)->next)
if ((*parea)->lo_addr == addr
&& (*parea)->hi_addr == addr + len - 1)
break;
if (!*parea)
{
fprintf_unfiltered (gdb_stderr,
"Attempt to remove nonexistent watchpoint.\n");
return -1;
}
area = *parea;
*parea = area->next;
xfree (area);
ALL_LWPS (lp)
s390_refresh_per_info (lp);
return 0;
}
static int
s390_can_use_hw_breakpoint (struct target_ops *self,
enum bptype type, int cnt, int othertype)
{
return type == bp_hardware_watchpoint;
}
static int
s390_region_ok_for_hw_watchpoint (struct target_ops *self,
CORE_ADDR addr, int cnt)
{
return 1;
}
static int
s390_target_wordsize (void)
{
int wordsize = 4;
/* Check for 64-bit inferior process. This is the case when the host is
64-bit, and in addition bit 32 of the PSW mask is set. */
#ifdef __s390x__
long pswm;
errno = 0;
pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0);
if (errno == 0 && (pswm & 0x100000000ul) != 0)
wordsize = 8;
#endif
return wordsize;
}
static int
s390_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
{
int sizeof_auxv_field = s390_target_wordsize ();
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
gdb_byte *ptr = *readptr;
if (endptr == ptr)
return 0;
if (endptr - ptr < sizeof_auxv_field * 2)
return -1;
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*readptr = ptr;
return 1;
}
static const struct target_desc *
s390_read_description (struct target_ops *ops)
{
int tid = s390_inferior_tid ();
have_regset_last_break
= check_regset (tid, NT_S390_LAST_BREAK, 8);
have_regset_system_call
= check_regset (tid, NT_S390_SYSTEM_CALL, 4);
/* If GDB itself is compiled as 64-bit, we are running on a machine in
z/Architecture mode. If the target is running in 64-bit addressing
mode, report s390x architecture. If the target is running in 31-bit
addressing mode, but the kernel supports using 64-bit registers in
that mode, report s390 architecture with 64-bit GPRs. */
#ifdef __s390x__
{
CORE_ADDR hwcap = 0;
target_auxv_search (&current_target, AT_HWCAP, &hwcap);
have_regset_tdb = (hwcap & HWCAP_S390_TE)
&& check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset);
have_regset_vxrs = (hwcap & HWCAP_S390_VX)
&& check_regset (tid, NT_S390_VXRS_LOW, 16 * 8)
&& check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16);
if (s390_target_wordsize () == 8)
return (have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390x_tevx_linux64 :
tdesc_s390x_vx_linux64) :
have_regset_tdb ? tdesc_s390x_te_linux64 :
have_regset_system_call ? tdesc_s390x_linux64v2 :
have_regset_last_break ? tdesc_s390x_linux64v1 :
tdesc_s390x_linux64);
if (hwcap & HWCAP_S390_HIGH_GPRS)
return (have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390_tevx_linux64 :
tdesc_s390_vx_linux64) :
have_regset_tdb ? tdesc_s390_te_linux64 :
have_regset_system_call ? tdesc_s390_linux64v2 :
have_regset_last_break ? tdesc_s390_linux64v1 :
tdesc_s390_linux64);
}
#endif
/* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior
on a 64-bit kernel that does not support using 64-bit registers in 31-bit
mode, report s390 architecture with 32-bit GPRs. */
return (have_regset_system_call? tdesc_s390_linux32v2 :
have_regset_last_break? tdesc_s390_linux32v1 :
tdesc_s390_linux32);
}
void _initialize_s390_nat (void);
void
_initialize_s390_nat (void)
{
struct target_ops *t;
/* Fill in the generic GNU/Linux methods. */
t = linux_target ();
/* Add our register access methods. */
t->to_fetch_registers = s390_linux_fetch_inferior_registers;
t->to_store_registers = s390_linux_store_inferior_registers;
/* Add our watchpoint methods. */
t->to_can_use_hw_breakpoint = s390_can_use_hw_breakpoint;
t->to_region_ok_for_hw_watchpoint = s390_region_ok_for_hw_watchpoint;
t->to_have_continuable_watchpoint = 1;
t->to_stopped_by_watchpoint = s390_stopped_by_watchpoint;
t->to_insert_watchpoint = s390_insert_watchpoint;
t->to_remove_watchpoint = s390_remove_watchpoint;
/* Detect target architecture. */
t->to_read_description = s390_read_description;
t->to_auxv_parse = s390_auxv_parse;
/* Register the target. */
linux_nat_add_target (t);
linux_nat_set_new_thread (t, s390_new_thread);
linux_nat_set_prepare_to_resume (t, s390_prepare_to_resume);
}