mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-01 13:43:32 +08:00
6346d5ca43
Commitec93045b
andcd21f5da
introduced a large number of tic4x and tic54x regressions, due to the new checks being wrong for targets with octets_per_byte != 1. To fix that I introduced a new bfd_get_section_limit_octets and performed the check on octets rather than byte adresses, reducing the number of bfd_octets_per_byte calls. bfd_octets_per_byte is rather expensive.. I then wondered why the same bfd_reloc_outofrange check added to bfd_perform_relocation wasn't also added to bfd_install_relocation. The two functions are virtually identical and ought to remain that way. However, adding the same check to bfd_install_relocation resulted in ld-elf "FAIL Link eh-group.o to eh-group" on many ELF targets, including x64_64-linux. The reason being that eh-group.o has NONE relocs at the end of a section, and most targets give NONE relocs a non-zero size. So if we are to keep the new outofrange check it appears that NONE relocs must have a zero size. * bfd-in.h (bfd_get_section_limit_octets): New define, extracted from.. (bfd_get_section_limit): ..here. * reloc.c (bfd_perform_relocation): Correct bfd_reloc_outofrange check. (bfd_install_relocation, _bfd_final_link_relocate): Add same check here. * elf32-sh.c (sh_elf_reloc): Correct bfd_reloc_outofrange check. * elf32-ppc.c (ppc_elf_addr16_ha_reloc): Remove duplicated bfd_reloc_outofrange check. * bfd-in2.h: Regenerate. * cpu-ns32k.c (_bfd_do_ns32k_reloc_contents): Return bfd_reloc_ok on zero size relocs. * ecoff.c (ecoff_reloc_link_order): Likewise. * elf32-nds32.c (nds32_relocate_contents): Likewise. * elfxx-aarch64.c (_bfd_aarch64_elf_put_addend): Likewise. * reloc.c (_bfd_relocate_contents): Don't bomb on zero size relocs. (_bfd_clear_contents): Likewise. * elfxx-mips.c (mips_elf_obtain_contents): Likewise. (mips_elf_perform_relocation): Likewise. * aoutx.h (aout_link_reloc_link_order): Allow for NULL return from malloc on zero size alloc. * cofflink.c (_bfd_coff_reloc_link_order): Likewise. * elflink.c (elf_reloc_link_order): Likewise. * linker.c (_bfd_generic_reloc_link_order): Likewise. * pdp11.c (aout_link_reloc_link_order): Likewise. * xcofflink.c (xcoff_reloc_link_order): Likewise. * aoutx.h (howto_table_ext): Ensure NONE relocs have size 3, bitsize 0, and complain_overflow_dont. * coff-sparc.c (coff_sparc_howto_table): Likewise. * elf-hppa.h (elf_hppa_howto_table): Likewise. * elf-m10200.c (elf_mn10200_howto_table): Likewise. * elf-m10300.c (elf_mn10300_howto_table): Likewise. * elf32-arc.c (elf_arc_howto_table): Likewise. * elf32-arm.c (elf32_arm_howto_table_1): Likewise. * elf32-avr.c (elf_avr_howto_table): Likewise. * elf32-bfin.c (bfin_howto_table): Likewise. * elf32-cr16.c (cr16_elf_howto_table): Likewise. * elf32-cris.c (cris_elf_howto_table): Likewise. * elf32-crx.c (crx_elf_howto_table): Likewise. * elf32-d10v.c (elf_d10v_howto_table): Likewise. * elf32-d30v.c (elf_d30v_howto_table): Likewise. * elf32-dlx.c (dlx_elf_howto_table): Likewise. * elf32-epiphany.c (epiphany_elf_howto_table): Likewise. * elf32-fr30.c (fr30_elf_howto_table): Likewise. * elf32-frv.c (elf32_frv_howto_table): Likewise. * elf32-h8300.c (h8_elf_howto_table): Likewise. * elf32-i370.c (i370_elf_howto_raw): Likewise. * elf32-i386.c (elf_howto_table): Likewise. * elf32-i860.c (elf32_i860_howto_table): Likewise. * elf32-i960.c (elf32_i960_relocate): Likewise. * elf32-ip2k.c (ip2k_elf_howto_table): Likewise. * elf32-iq2000.c (iq2000_elf_howto_table): Likewise. * elf32-lm32.c (lm32_elf_howto_table): Likewise. * elf32-m32c.c (m32c_elf_howto_table): Likewise. * elf32-m32r.c (m32r_elf_howto_table): Likewise. * elf32-m68hc11.c (elf_m68hc11_howto_table): Likewise. * elf32-m68hc12.c (elf_m68hc11_howto_table): Likewise. * elf32-m68k.c (howto_table): Likewise. * elf32-mcore.c (mcore_elf_howto_raw): Likewise. * elf32-mep.c (mep_elf_howto_table): Likewise. * elf32-metag.c (elf_metag_howto_table): Likewise. * elf32-microblaze.c (microblaze_elf_howto_raw): Likewise. * elf32-mips.c (elf_mips_howto_table_rel): Likewise. * elf32-moxie.c (moxie_elf_howto_table): Likewise. * elf32-msp430.c (elf_msp430_howto_table): Likewise. * elf32-mt.c (mt_elf_howto_table): Likewise. * elf32-nds32.c (nds32_elf_howto_table): Likewise. * elf32-nios2.c (elf_nios2_howto_table_rel): Likewise. * elf32-or1k.c (or1k_elf_howto_table): Likewise. * elf32-pj.c (pj_elf_howto_table): Likewise. * elf32-ppc.c (ppc_elf_howto_raw): Likewise. * elf32-rl78.c (rl78_elf_howto_table): Likewise. * elf32-rx.c (rx_elf_howto_table): Likewise. * elf32-s390.c (elf_howto_table): Likewise. * elf32-score.c (elf32_score_howto_table): Likewise. * elf32-score7.c (elf32_score_howto_table): Likewise. * elf32-sh-relocs.h (R_SH_NONE): Likewise. * elf32-spu.c (elf_howto_table): Likewise. * elf32-tic6x.c (elf32_tic6x_howto_table): Likewise. * elf32-tilepro.c (tilepro_elf_howto_table): Likewise. * elf32-v850.c (v850_elf_howto_table): Likewise. * elf32-vax.c (howto_table): Likewise. * elf32-visium.c (visium_elf_howto_table): Likewise. * elf32-xc16x.c (xc16x_elf_howto_table): Likewise. * elf32-xgate.c (elf_xgate_howto_table): Likewise. * elf32-xstormy16.c (xstormy16_elf_howto_table): Likewise. * elf32-xtensa.c (elf_howto_table): Likewise. * elf64-alpha.c (elf64_alpha_howto_table): Likewise. * elf64-mips.c (mips_elf64_howto_table_rel): Likewise. * elf64-mmix.c (elf_mmix_howto_table): Likewise. * elf64-ppc.c (ppc64_elf_howto_raw): Likewise. * elf64-s390.c (elf_howto_table): Likewise. * elf64-sh64.c (sh_elf64_howto_table): Likewise. * elf64-x86-64.c (x86_64_elf_howto_table): Likewise. * elfn32-mips.c (elf_mips_howto_table_rel): Likewise. * elfnn-aarch64.c (elfNN_aarch64_howto_table): Likewise. (elfNN_aarch64_howto_none): Likewise. * elfxx-ia64.c (ia64_howto_table): Likewise. * elfxx-sparc.c (_bfd_sparc_elf_howto_table): Likewise. * elfxx-tilegx.c (tilegx_elf_howto_table): Likewise. * nlm32-sparc.c (nlm32_sparc_howto_table): Likewise.
811 lines
24 KiB
C
811 lines
24 KiB
C
/* BFD support for the ns32k architecture.
|
|
Copyright (C) 1990-2015 Free Software Foundation, Inc.
|
|
Almost totally rewritten by Ian Dall from initial work
|
|
by Andrew Cagney.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
|
MA 02110-1301, USA. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libbfd.h"
|
|
#include "ns32k.h"
|
|
|
|
#define N(machine, printable, d, next) \
|
|
{ 32, 32, 8, bfd_arch_ns32k, machine, "ns32k",printable,3,d, \
|
|
bfd_default_compatible,bfd_default_scan,bfd_arch_default_fill,next, }
|
|
|
|
static const bfd_arch_info_type arch_info_struct[] =
|
|
{
|
|
N(32532,"ns32k:32532",TRUE, 0), /* The word ns32k will match this too. */
|
|
};
|
|
|
|
const bfd_arch_info_type bfd_ns32k_arch =
|
|
N(32032,"ns32k:32032",FALSE, &arch_info_struct[0]);
|
|
|
|
bfd_vma
|
|
_bfd_ns32k_get_displacement (bfd_byte *buffer, int size)
|
|
{
|
|
bfd_signed_vma value;
|
|
|
|
switch (size)
|
|
{
|
|
case 1:
|
|
value = ((*buffer & 0x7f) ^ 0x40) - 0x40;
|
|
break;
|
|
|
|
case 2:
|
|
value = ((*buffer++ & 0x3f) ^ 0x20) - 0x20;
|
|
value = (value << 8) | (0xff & *buffer);
|
|
break;
|
|
|
|
case 4:
|
|
value = ((*buffer++ & 0x3f) ^ 0x20) - 0x20;
|
|
value = (value << 8) | (0xff & *buffer++);
|
|
value = (value << 8) | (0xff & *buffer++);
|
|
value = (value << 8) | (0xff & *buffer);
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
return 0;
|
|
}
|
|
|
|
return value;
|
|
}
|
|
|
|
void
|
|
_bfd_ns32k_put_displacement (bfd_vma value, bfd_byte *buffer, int size)
|
|
{
|
|
switch (size)
|
|
{
|
|
case 1:
|
|
value &= 0x7f;
|
|
*buffer++ = value;
|
|
break;
|
|
|
|
case 2:
|
|
value &= 0x3fff;
|
|
value |= 0x8000;
|
|
*buffer++ = (value >> 8);
|
|
*buffer++ = value;
|
|
break;
|
|
|
|
case 4:
|
|
value |= (bfd_vma) 0xc0000000;
|
|
*buffer++ = (value >> 24);
|
|
*buffer++ = (value >> 16);
|
|
*buffer++ = (value >> 8);
|
|
*buffer++ = value;
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
bfd_vma
|
|
_bfd_ns32k_get_immediate (bfd_byte *buffer, int size)
|
|
{
|
|
bfd_vma value = 0;
|
|
|
|
switch (size)
|
|
{
|
|
case 4:
|
|
value = (value << 8) | (*buffer++ & 0xff);
|
|
value = (value << 8) | (*buffer++ & 0xff);
|
|
case 2:
|
|
value = (value << 8) | (*buffer++ & 0xff);
|
|
case 1:
|
|
value = (value << 8) | (*buffer++ & 0xff);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
return value;
|
|
}
|
|
|
|
void
|
|
_bfd_ns32k_put_immediate (bfd_vma value, bfd_byte *buffer, int size)
|
|
{
|
|
buffer += size - 1;
|
|
switch (size)
|
|
{
|
|
case 4:
|
|
*buffer-- = (value & 0xff); value >>= 8;
|
|
*buffer-- = (value & 0xff); value >>= 8;
|
|
case 2:
|
|
*buffer-- = (value & 0xff); value >>= 8;
|
|
case 1:
|
|
*buffer-- = (value & 0xff); value >>= 8;
|
|
}
|
|
}
|
|
|
|
/* This is just like the standard perform_relocation except we
|
|
use get_data and put_data which know about the ns32k storage
|
|
methods. This is probably a lot more complicated than it
|
|
needs to be! */
|
|
|
|
static bfd_reloc_status_type
|
|
do_ns32k_reloc (bfd * abfd,
|
|
arelent * reloc_entry,
|
|
struct bfd_symbol * symbol,
|
|
void * data,
|
|
asection * input_section,
|
|
bfd * output_bfd,
|
|
char ** error_message ATTRIBUTE_UNUSED,
|
|
bfd_vma (* get_data) (bfd_byte *, int),
|
|
void (* put_data) (bfd_vma, bfd_byte *, int))
|
|
{
|
|
int overflow = 0;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type flag = bfd_reloc_ok;
|
|
bfd_size_type addr = reloc_entry->address;
|
|
bfd_vma output_base = 0;
|
|
reloc_howto_type *howto = reloc_entry->howto;
|
|
asection *reloc_target_output_section;
|
|
bfd_byte *location;
|
|
|
|
if (bfd_is_abs_section (symbol->section)
|
|
&& output_bfd != (bfd *) NULL)
|
|
{
|
|
reloc_entry->address += input_section->output_offset;
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* If we are not producing relocatable output, return an error if
|
|
the symbol is not defined. An undefined weak symbol is
|
|
considered to have a value of zero (SVR4 ABI, p. 4-27). */
|
|
if (bfd_is_und_section (symbol->section)
|
|
&& (symbol->flags & BSF_WEAK) == 0
|
|
&& output_bfd == (bfd *) NULL)
|
|
flag = bfd_reloc_undefined;
|
|
|
|
/* Is the address of the relocation really within the section? */
|
|
if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
|
|
return bfd_reloc_outofrange;
|
|
|
|
/* Work out which section the relocation is targeted at and the
|
|
initial relocation command value. */
|
|
|
|
/* Get symbol value. (Common symbols are special.) */
|
|
if (bfd_is_com_section (symbol->section))
|
|
relocation = 0;
|
|
else
|
|
relocation = symbol->value;
|
|
|
|
reloc_target_output_section = symbol->section->output_section;
|
|
|
|
/* Convert input-section-relative symbol value to absolute. */
|
|
if (output_bfd != NULL && ! howto->partial_inplace)
|
|
output_base = 0;
|
|
else
|
|
output_base = reloc_target_output_section->vma;
|
|
|
|
relocation += output_base + symbol->section->output_offset;
|
|
|
|
/* Add in supplied addend. */
|
|
relocation += reloc_entry->addend;
|
|
|
|
/* Here the variable relocation holds the final address of the
|
|
symbol we are relocating against, plus any addend. */
|
|
|
|
if (howto->pc_relative)
|
|
{
|
|
/* This is a PC relative relocation. We want to set RELOCATION
|
|
to the distance between the address of the symbol and the
|
|
location. RELOCATION is already the address of the symbol.
|
|
|
|
We start by subtracting the address of the section containing
|
|
the location.
|
|
|
|
If pcrel_offset is set, we must further subtract the position
|
|
of the location within the section. Some targets arrange for
|
|
the addend to be the negative of the position of the location
|
|
within the section; for example, i386-aout does this. For
|
|
i386-aout, pcrel_offset is FALSE. Some other targets do not
|
|
include the position of the location; for example, m88kbcs,
|
|
or ELF. For those targets, pcrel_offset is TRUE.
|
|
|
|
If we are producing relocatable output, then we must ensure
|
|
that this reloc will be correctly computed when the final
|
|
relocation is done. If pcrel_offset is FALSE we want to wind
|
|
up with the negative of the location within the section,
|
|
which means we must adjust the existing addend by the change
|
|
in the location within the section. If pcrel_offset is TRUE
|
|
we do not want to adjust the existing addend at all.
|
|
|
|
FIXME: This seems logical to me, but for the case of
|
|
producing relocatable output it is not what the code
|
|
actually does. I don't want to change it, because it seems
|
|
far too likely that something will break. */
|
|
relocation -=
|
|
input_section->output_section->vma + input_section->output_offset;
|
|
|
|
if (howto->pcrel_offset)
|
|
relocation -= reloc_entry->address;
|
|
}
|
|
|
|
if (output_bfd != (bfd *) NULL)
|
|
{
|
|
if (! howto->partial_inplace)
|
|
{
|
|
/* This is a partial relocation, and we want to apply the relocation
|
|
to the reloc entry rather than the raw data. Modify the reloc
|
|
inplace to reflect what we now know. */
|
|
reloc_entry->addend = relocation;
|
|
reloc_entry->address += input_section->output_offset;
|
|
return flag;
|
|
}
|
|
else
|
|
{
|
|
/* This is a partial relocation, but inplace, so modify the
|
|
reloc record a bit.
|
|
|
|
If we've relocated with a symbol with a section, change
|
|
into a ref to the section belonging to the symbol. */
|
|
|
|
reloc_entry->address += input_section->output_offset;
|
|
|
|
/* WTF?? */
|
|
if (abfd->xvec->flavour == bfd_target_coff_flavour)
|
|
{
|
|
/* For m68k-coff, the addend was being subtracted twice during
|
|
relocation with -r. Removing the line below this comment
|
|
fixes that problem; see PR 2953.
|
|
|
|
However, Ian wrote the following, regarding removing the line
|
|
below, which explains why it is still enabled: --djm
|
|
|
|
If you put a patch like that into BFD you need to check all
|
|
the COFF linkers. I am fairly certain that patch will break
|
|
coff-i386 (e.g., SCO); see coff_i386_reloc in coff-i386.c
|
|
where I worked around the problem in a different way. There
|
|
may very well be a reason that the code works as it does.
|
|
|
|
Hmmm. The first obvious point is that bfd_perform_relocation
|
|
should not have any tests that depend upon the flavour. It's
|
|
seem like entirely the wrong place for such a thing. The
|
|
second obvious point is that the current code ignores the
|
|
reloc addend when producing relocatable output for COFF.
|
|
That's peculiar. In fact, I really have no idea what the
|
|
point of the line you want to remove is.
|
|
|
|
A typical COFF reloc subtracts the old value of the symbol
|
|
and adds in the new value to the location in the object file
|
|
(if it's a pc relative reloc it adds the difference between
|
|
the symbol value and the location). When relocating we need
|
|
to preserve that property.
|
|
|
|
BFD handles this by setting the addend to the negative of the
|
|
old value of the symbol. Unfortunately it handles common
|
|
symbols in a non-standard way (it doesn't subtract the old
|
|
value) but that's a different story (we can't change it
|
|
without losing backward compatibility with old object files)
|
|
(coff-i386 does subtract the old value, to be compatible with
|
|
existing coff-i386 targets, like SCO).
|
|
|
|
So everything works fine when not producing relocatable
|
|
output. When we are producing relocatable output, logically
|
|
we should do exactly what we do when not producing
|
|
relocatable output. Therefore, your patch is correct. In
|
|
fact, it should probably always just set reloc_entry->addend
|
|
to 0 for all cases, since it is, in fact, going to add the
|
|
value into the object file. This won't hurt the COFF code,
|
|
which doesn't use the addend; I'm not sure what it will do
|
|
to other formats (the thing to check for would be whether
|
|
any formats both use the addend and set partial_inplace).
|
|
|
|
When I wanted to make coff-i386 produce relocatable output,
|
|
I ran into the problem that you are running into: I wanted
|
|
to remove that line. Rather than risk it, I made the
|
|
coff-i386 relocs use a special function; it's coff_i386_reloc
|
|
in coff-i386.c. The function specifically adds the addend
|
|
field into the object file, knowing that bfd_perform_relocation
|
|
is not going to. If you remove that line, then coff-i386.c
|
|
will wind up adding the addend field in twice. It's trivial
|
|
to fix; it just needs to be done.
|
|
|
|
The problem with removing the line is just that it may break
|
|
some working code. With BFD it's hard to be sure of anything.
|
|
The right way to deal with this is simply to build and test at
|
|
least all the supported COFF targets. It should be
|
|
straightforward if time and disk space consuming. For each
|
|
target:
|
|
1) build the linker
|
|
2) generate some executable, and link it using -r (I would
|
|
probably use paranoia.o and link against newlib/libc.a,
|
|
which for all the supported targets would be available in
|
|
/usr/cygnus/progressive/H-host/target/lib/libc.a).
|
|
3) make the change to reloc.c
|
|
4) rebuild the linker
|
|
5) repeat step 2
|
|
6) if the resulting object files are the same, you have at
|
|
least made it no worse
|
|
7) if they are different you have to figure out which
|
|
version is right. */
|
|
relocation -= reloc_entry->addend;
|
|
reloc_entry->addend = 0;
|
|
}
|
|
else
|
|
{
|
|
reloc_entry->addend = relocation;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
reloc_entry->addend = 0;
|
|
}
|
|
|
|
/* FIXME: This overflow checking is incomplete, because the value
|
|
might have overflowed before we get here. For a correct check we
|
|
need to compute the value in a size larger than bitsize, but we
|
|
can't reasonably do that for a reloc the same size as a host
|
|
machine word.
|
|
FIXME: We should also do overflow checking on the result after
|
|
adding in the value contained in the object file. */
|
|
if (howto->complain_on_overflow != complain_overflow_dont)
|
|
{
|
|
bfd_vma check;
|
|
|
|
/* Get the value that will be used for the relocation, but
|
|
starting at bit position zero. */
|
|
if (howto->rightshift > howto->bitpos)
|
|
check = relocation >> (howto->rightshift - howto->bitpos);
|
|
else
|
|
check = relocation << (howto->bitpos - howto->rightshift);
|
|
switch (howto->complain_on_overflow)
|
|
{
|
|
case complain_overflow_signed:
|
|
{
|
|
/* Assumes two's complement. */
|
|
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
|
|
bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
|
|
|
|
/* The above right shift is incorrect for a signed value.
|
|
Fix it up by forcing on the upper bits. */
|
|
if (howto->rightshift > howto->bitpos
|
|
&& (bfd_signed_vma) relocation < 0)
|
|
check |= ((bfd_vma) - 1
|
|
& ~((bfd_vma) - 1
|
|
>> (howto->rightshift - howto->bitpos)));
|
|
if ((bfd_signed_vma) check > reloc_signed_max
|
|
|| (bfd_signed_vma) check < reloc_signed_min)
|
|
flag = bfd_reloc_overflow;
|
|
}
|
|
break;
|
|
case complain_overflow_unsigned:
|
|
{
|
|
/* Assumes two's complement. This expression avoids
|
|
overflow if howto->bitsize is the number of bits in
|
|
bfd_vma. */
|
|
bfd_vma reloc_unsigned_max =
|
|
(((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
|
|
|
|
if ((bfd_vma) check > reloc_unsigned_max)
|
|
flag = bfd_reloc_overflow;
|
|
}
|
|
break;
|
|
case complain_overflow_bitfield:
|
|
{
|
|
/* Assumes two's complement. This expression avoids
|
|
overflow if howto->bitsize is the number of bits in
|
|
bfd_vma. */
|
|
bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
|
|
|
|
if (((bfd_vma) check & ~reloc_bits) != 0
|
|
&& (((bfd_vma) check & ~reloc_bits)
|
|
!= (-(bfd_vma) 1 & ~reloc_bits)))
|
|
{
|
|
/* The above right shift is incorrect for a signed
|
|
value. See if turning on the upper bits fixes the
|
|
overflow. */
|
|
if (howto->rightshift > howto->bitpos
|
|
&& (bfd_signed_vma) relocation < 0)
|
|
{
|
|
check |= ((bfd_vma) - 1
|
|
& ~((bfd_vma) - 1
|
|
>> (howto->rightshift - howto->bitpos)));
|
|
if (((bfd_vma) check & ~reloc_bits)
|
|
!= (-(bfd_vma) 1 & ~reloc_bits))
|
|
flag = bfd_reloc_overflow;
|
|
}
|
|
else
|
|
flag = bfd_reloc_overflow;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Either we are relocating all the way, or we don't want to apply
|
|
the relocation to the reloc entry (probably because there isn't
|
|
any room in the output format to describe addends to relocs). */
|
|
|
|
/* The cast to bfd_vma avoids a bug in the Alpha OSF/1 C compiler
|
|
(OSF version 1.3, compiler version 3.11). It miscompiles the
|
|
following program:
|
|
|
|
struct str
|
|
{
|
|
unsigned int i0;
|
|
} s = { 0 };
|
|
|
|
int
|
|
main ()
|
|
{
|
|
unsigned long x;
|
|
|
|
x = 0x100000000;
|
|
x <<= (unsigned long) s.i0;
|
|
if (x == 0)
|
|
printf ("failed\n");
|
|
else
|
|
printf ("succeeded (%lx)\n", x);
|
|
}
|
|
*/
|
|
|
|
relocation >>= (bfd_vma) howto->rightshift;
|
|
|
|
/* Shift everything up to where it's going to be used. */
|
|
relocation <<= (bfd_vma) howto->bitpos;
|
|
|
|
/* Wait for the day when all have the mask in them. */
|
|
|
|
/* What we do:
|
|
i instruction to be left alone
|
|
o offset within instruction
|
|
r relocation offset to apply
|
|
S src mask
|
|
D dst mask
|
|
N ~dst mask
|
|
A part 1
|
|
B part 2
|
|
R result
|
|
|
|
Do this:
|
|
i i i i i o o o o o from bfd_get<size>
|
|
and S S S S S to get the size offset we want
|
|
+ r r r r r r r r r r to get the final value to place
|
|
and D D D D D to chop to right size
|
|
-----------------------
|
|
A A A A A
|
|
And this:
|
|
... i i i i i o o o o o from bfd_get<size>
|
|
and N N N N N get instruction
|
|
-----------------------
|
|
... B B B B B
|
|
|
|
And then:
|
|
B B B B B
|
|
or A A A A A
|
|
-----------------------
|
|
R R R R R R R R R R put into bfd_put<size>. */
|
|
|
|
#define DOIT(x) \
|
|
x = ( (x & ~howto->dst_mask) | (((x & howto->src_mask) + relocation) & howto->dst_mask))
|
|
|
|
location = (bfd_byte *) data + addr;
|
|
switch (howto->size)
|
|
{
|
|
case 0:
|
|
{
|
|
bfd_vma x = get_data (location, 1);
|
|
DOIT (x);
|
|
put_data ((bfd_vma) x, location, 1);
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
if (relocation)
|
|
{
|
|
bfd_vma x = get_data (location, 2);
|
|
DOIT (x);
|
|
put_data ((bfd_vma) x, location, 2);
|
|
}
|
|
break;
|
|
case 2:
|
|
if (relocation)
|
|
{
|
|
bfd_vma x = get_data (location, 4);
|
|
DOIT (x);
|
|
put_data ((bfd_vma) x, location, 4);
|
|
}
|
|
break;
|
|
case -2:
|
|
{
|
|
bfd_vma x = get_data (location, 4);
|
|
relocation = -relocation;
|
|
DOIT(x);
|
|
put_data ((bfd_vma) x, location, 4);
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
/* Do nothing. */
|
|
break;
|
|
|
|
case 4:
|
|
#ifdef BFD64
|
|
if (relocation)
|
|
{
|
|
bfd_vma x = get_data (location, 8);
|
|
DOIT (x);
|
|
put_data (x, location, 8);
|
|
}
|
|
#else
|
|
abort ();
|
|
#endif
|
|
break;
|
|
default:
|
|
return bfd_reloc_other;
|
|
}
|
|
if ((howto->complain_on_overflow != complain_overflow_dont) && overflow)
|
|
return bfd_reloc_overflow;
|
|
|
|
return flag;
|
|
}
|
|
|
|
/* Relocate a given location using a given value and howto. */
|
|
|
|
bfd_reloc_status_type
|
|
_bfd_do_ns32k_reloc_contents (reloc_howto_type *howto,
|
|
bfd *input_bfd ATTRIBUTE_UNUSED,
|
|
bfd_vma relocation,
|
|
bfd_byte *location,
|
|
bfd_vma (*get_data) (bfd_byte *, int),
|
|
void (*put_data) (bfd_vma, bfd_byte *, int))
|
|
{
|
|
int size;
|
|
bfd_vma x;
|
|
bfd_boolean overflow;
|
|
|
|
/* If the size is negative, negate RELOCATION. This isn't very
|
|
general. */
|
|
if (howto->size < 0)
|
|
relocation = -relocation;
|
|
|
|
/* Get the value we are going to relocate. */
|
|
size = bfd_get_reloc_size (howto);
|
|
switch (size)
|
|
{
|
|
default:
|
|
abort ();
|
|
case 0:
|
|
return bfd_reloc_ok;
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
#ifdef BFD64
|
|
case 8:
|
|
#endif
|
|
x = get_data (location, size);
|
|
break;
|
|
}
|
|
|
|
/* Check for overflow. FIXME: We may drop bits during the addition
|
|
which we don't check for. We must either check at every single
|
|
operation, which would be tedious, or we must do the computations
|
|
in a type larger than bfd_vma, which would be inefficient. */
|
|
overflow = FALSE;
|
|
if (howto->complain_on_overflow != complain_overflow_dont)
|
|
{
|
|
bfd_vma check;
|
|
bfd_signed_vma signed_check;
|
|
bfd_vma add;
|
|
bfd_signed_vma signed_add;
|
|
|
|
if (howto->rightshift == 0)
|
|
{
|
|
check = relocation;
|
|
signed_check = (bfd_signed_vma) relocation;
|
|
}
|
|
else
|
|
{
|
|
/* Drop unwanted bits from the value we are relocating to. */
|
|
check = relocation >> howto->rightshift;
|
|
|
|
/* If this is a signed value, the rightshift just dropped
|
|
leading 1 bits (assuming twos complement). */
|
|
if ((bfd_signed_vma) relocation >= 0)
|
|
signed_check = check;
|
|
else
|
|
signed_check = (check
|
|
| ((bfd_vma) - 1
|
|
& ~((bfd_vma) - 1 >> howto->rightshift)));
|
|
}
|
|
|
|
/* Get the value from the object file. */
|
|
add = x & howto->src_mask;
|
|
|
|
/* Get the value from the object file with an appropriate sign.
|
|
The expression involving howto->src_mask isolates the upper
|
|
bit of src_mask. If that bit is set in the value we are
|
|
adding, it is negative, and we subtract out that number times
|
|
two. If src_mask includes the highest possible bit, then we
|
|
can not get the upper bit, but that does not matter since
|
|
signed_add needs no adjustment to become negative in that
|
|
case. */
|
|
signed_add = add;
|
|
if ((add & (((~howto->src_mask) >> 1) & howto->src_mask)) != 0)
|
|
signed_add -= (((~howto->src_mask) >> 1) & howto->src_mask) << 1;
|
|
|
|
/* Add the value from the object file, shifted so that it is a
|
|
straight number. */
|
|
if (howto->bitpos == 0)
|
|
{
|
|
check += add;
|
|
signed_check += signed_add;
|
|
}
|
|
else
|
|
{
|
|
check += add >> howto->bitpos;
|
|
|
|
/* For the signed case we use ADD, rather than SIGNED_ADD,
|
|
to avoid warnings from SVR4 cc. This is OK since we
|
|
explicitly handle the sign bits. */
|
|
if (signed_add >= 0)
|
|
signed_check += add >> howto->bitpos;
|
|
else
|
|
signed_check += ((add >> howto->bitpos)
|
|
| ((bfd_vma) - 1
|
|
& ~((bfd_vma) - 1 >> howto->bitpos)));
|
|
}
|
|
|
|
switch (howto->complain_on_overflow)
|
|
{
|
|
case complain_overflow_signed:
|
|
{
|
|
/* Assumes two's complement. */
|
|
bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
|
|
bfd_signed_vma reloc_signed_min = ~reloc_signed_max;
|
|
|
|
if (signed_check > reloc_signed_max
|
|
|| signed_check < reloc_signed_min)
|
|
overflow = TRUE;
|
|
}
|
|
break;
|
|
case complain_overflow_unsigned:
|
|
{
|
|
/* Assumes two's complement. This expression avoids
|
|
overflow if howto->bitsize is the number of bits in
|
|
bfd_vma. */
|
|
bfd_vma reloc_unsigned_max =
|
|
(((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
|
|
|
|
if (check > reloc_unsigned_max)
|
|
overflow = TRUE;
|
|
}
|
|
break;
|
|
case complain_overflow_bitfield:
|
|
{
|
|
/* Assumes two's complement. This expression avoids
|
|
overflow if howto->bitsize is the number of bits in
|
|
bfd_vma. */
|
|
bfd_vma reloc_bits = (((1 << (howto->bitsize - 1)) - 1) << 1) | 1;
|
|
|
|
if ((check & ~reloc_bits) != 0
|
|
&& (((bfd_vma) signed_check & ~reloc_bits)
|
|
!= (-(bfd_vma) 1 & ~reloc_bits)))
|
|
overflow = TRUE;
|
|
}
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
}
|
|
|
|
/* Put RELOCATION in the right bits. */
|
|
relocation >>= (bfd_vma) howto->rightshift;
|
|
relocation <<= (bfd_vma) howto->bitpos;
|
|
|
|
/* Add RELOCATION to the right bits of X. */
|
|
x = ((x & ~howto->dst_mask)
|
|
| (((x & howto->src_mask) + relocation) & howto->dst_mask));
|
|
|
|
/* Put the relocated value back in the object file. */
|
|
switch (size)
|
|
{
|
|
default:
|
|
case 0:
|
|
abort ();
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
#ifdef BFD64
|
|
case 8:
|
|
#endif
|
|
put_data (x, location, size);
|
|
break;
|
|
}
|
|
|
|
return overflow ? bfd_reloc_overflow : bfd_reloc_ok;
|
|
}
|
|
|
|
bfd_reloc_status_type
|
|
_bfd_ns32k_reloc_disp (bfd *abfd,
|
|
arelent *reloc_entry,
|
|
struct bfd_symbol *symbol,
|
|
void * data,
|
|
asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message)
|
|
{
|
|
return do_ns32k_reloc (abfd, reloc_entry, symbol, data, input_section,
|
|
output_bfd, error_message,
|
|
_bfd_ns32k_get_displacement,
|
|
_bfd_ns32k_put_displacement);
|
|
}
|
|
|
|
bfd_reloc_status_type
|
|
_bfd_ns32k_reloc_imm (bfd *abfd,
|
|
arelent *reloc_entry,
|
|
struct bfd_symbol *symbol,
|
|
void * data,
|
|
asection *input_section,
|
|
bfd *output_bfd,
|
|
char **error_message)
|
|
{
|
|
return do_ns32k_reloc (abfd, reloc_entry, symbol, data, input_section,
|
|
output_bfd, error_message, _bfd_ns32k_get_immediate,
|
|
_bfd_ns32k_put_immediate);
|
|
}
|
|
|
|
bfd_reloc_status_type
|
|
_bfd_ns32k_final_link_relocate (reloc_howto_type *howto,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
bfd_vma address,
|
|
bfd_vma value,
|
|
bfd_vma addend)
|
|
{
|
|
bfd_vma relocation;
|
|
|
|
/* Sanity check the address. */
|
|
if (address > bfd_get_section_limit (input_bfd, input_section))
|
|
return bfd_reloc_outofrange;
|
|
|
|
/* This function assumes that we are dealing with a basic relocation
|
|
against a symbol. We want to compute the value of the symbol to
|
|
relocate to. This is just VALUE, the value of the symbol, plus
|
|
ADDEND, any addend associated with the reloc. */
|
|
relocation = value + addend;
|
|
|
|
/* If the relocation is PC relative, we want to set RELOCATION to
|
|
the distance between the symbol (currently in RELOCATION) and the
|
|
location we are relocating. Some targets (e.g., i386-aout)
|
|
arrange for the contents of the section to be the negative of the
|
|
offset of the location within the section; for such targets
|
|
pcrel_offset is FALSE. Other targets (e.g., m88kbcs or ELF)
|
|
simply leave the contents of the section as zero; for such
|
|
targets pcrel_offset is TRUE. If pcrel_offset is FALSE we do not
|
|
need to subtract out the offset of the location within the
|
|
section (which is just ADDRESS). */
|
|
if (howto->pc_relative)
|
|
{
|
|
relocation -= (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
if (howto->pcrel_offset)
|
|
relocation -= address;
|
|
}
|
|
|
|
return _bfd_ns32k_relocate_contents (howto, input_bfd, relocation,
|
|
contents + address);
|
|
}
|