binutils-gdb/gdb/sparc64-obsd-tdep.c
Andrew Burgess 08106042d9 gdb: move the type cast into gdbarch_tdep
I built GDB for all targets on a x86-64/GNU-Linux system, and
then (accidentally) passed GDB a RISC-V binary, and asked GDB to "run"
the binary on the native target.  I got this error:

  (gdb) show architecture
  The target architecture is set to "auto" (currently "i386").
  (gdb) file /tmp/hello.rv32.exe
  Reading symbols from /tmp/hello.rv32.exe...
  (gdb) show architecture
  The target architecture is set to "auto" (currently "riscv:rv32").
  (gdb) run
  Starting program: /tmp/hello.rv32.exe
  ../../src/gdb/i387-tdep.c:596: internal-error: i387_supply_fxsave: Assertion `tdep->st0_regnum >= I386_ST0_REGNUM' failed.

What's going on here is this; initially the architecture is i386, this
is based on the default architecture, which is set based on the native
target.  After loading the RISC-V executable the architecture of the
current inferior is updated based on the architecture of the
executable.

When we "run", GDB does a fork & exec, with the inferior being
controlled through ptrace.  GDB sees an initial stop from the inferior
as soon as the inferior comes to life.  In response to this stop GDB
ends up calling save_stop_reason (linux-nat.c), which ends up trying
to read register from the inferior, to do this we end up calling
target_ops::fetch_registers, which, for the x86-64 native target,
calls amd64_linux_nat_target::fetch_registers.

After this I eventually end up in i387_supply_fxsave, different x86
based targets will end in different functions to fetch registers, but
it doesn't really matter which function we end up in, the problem is
this line, which is repeated in many places:

  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);

The problem here is that the ARCH in this line comes from the current
inferior, which, as we discussed above, will be a RISC-V gdbarch, the
tdep field will actually be of type riscv_gdbarch_tdep, not
i386_gdbarch_tdep.  After this cast we are relying on undefined
behaviour, in my case I happen to trigger an assert, but this might
not always be the case.

The thing I tried that exposed this problem was of course, trying to
start an executable of the wrong architecture on a native target.  I
don't think that the correct solution for this problem is to detect,
at the point of cast, that the gdbarch_tdep object is of the wrong
type, but, I did wonder, is there a way that we could protect
ourselves from incorrectly casting the gdbarch_tdep object?

I think that there is something we can do here, and this commit is the
first step in that direction, though no actual check is added by this
commit.

This commit can be split into two parts:

 (1) In gdbarch.h and arch-utils.c.  In these files I have modified
 gdbarch_tdep (the function) so that it now takes a template argument,
 like this:

    template<typename TDepType>
    static inline TDepType *
    gdbarch_tdep (struct gdbarch *gdbarch)
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep_1 (gdbarch);
      return static_cast<TDepType *> (tdep);
    }

  After this change we are no better protected, but the cast is now
  done within the gdbarch_tdep function rather than at the call sites,
  this leads to the second, much larger change in this commit,

  (2) Everywhere gdbarch_tdep is called, we make changes like this:

    -  i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
    +  i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);

There should be no functional change after this commit.

In the next commit I will build on this change to add an assertion in
gdbarch_tdep that checks we are casting to the correct type.
2022-07-21 15:19:42 +01:00

459 lines
13 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Target-dependent code for OpenBSD/sparc64.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "osabi.h"
#include "regcache.h"
#include "regset.h"
#include "symtab.h"
#include "objfiles.h"
#include "trad-frame.h"
#include "inferior.h"
#include "obsd-tdep.h"
#include "sparc64-tdep.h"
#include "solib-svr4.h"
#include "bsd-uthread.h"
/* Older OpenBSD versions used the traditional NetBSD core file
format, even for ports that use ELF. These core files don't use
multiple register sets. Instead, the general-purpose and
floating-point registers are lumped together in a single section.
Unlike on NetBSD, OpenBSD uses a different layout for its
general-purpose registers than the layout used for ptrace(2).
Newer OpenBSD versions use ELF core files. Here the register sets
match the ptrace(2) layout. */
/* From <machine/reg.h>. */
const struct sparc_gregmap sparc64obsd_gregmap =
{
0 * 8, /* "tstate" */
1 * 8, /* %pc */
2 * 8, /* %npc */
3 * 8, /* %y */
-1, /* %fprs */
-1,
5 * 8, /* %g1 */
20 * 8, /* %l0 */
4 /* sizeof (%y) */
};
const struct sparc_gregmap sparc64obsd_core_gregmap =
{
0 * 8, /* "tstate" */
1 * 8, /* %pc */
2 * 8, /* %npc */
3 * 8, /* %y */
-1, /* %fprs */
-1,
7 * 8, /* %g1 */
22 * 8, /* %l0 */
4 /* sizeof (%y) */
};
static void
sparc64obsd_supply_gregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs, size_t len)
{
const void *fpregs = (char *)gregs + 288;
if (len < 832)
{
sparc64_supply_gregset (&sparc64obsd_gregmap, regcache, regnum, gregs);
return;
}
sparc64_supply_gregset (&sparc64obsd_core_gregmap, regcache, regnum, gregs);
sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
}
static void
sparc64obsd_supply_fpregset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *fpregs, size_t len)
{
sparc64_supply_fpregset (&sparc64_bsd_fpregmap, regcache, regnum, fpregs);
}
/* Signal trampolines. */
/* Since OpenBSD 3.2, the sigtramp routine is mapped at a random page
in virtual memory. The randomness makes it somewhat tricky to
detect it, but fortunately we can rely on the fact that the start
of the sigtramp routine is page-aligned. We recognize the
trampoline by looking for the code that invokes the sigreturn
system call. The offset where we can find that code varies from
release to release.
By the way, the mapping mentioned above is read-only, so you cannot
place a breakpoint in the signal trampoline. */
/* Default page size. */
static const int sparc64obsd_page_size = 8192;
/* Offset for sigreturn(2). */
static const int sparc64obsd_sigreturn_offset[] = {
0xf0, /* OpenBSD 3.8 */
0xec, /* OpenBSD 3.6 */
0xe8, /* OpenBSD 3.2 */
-1
};
static int
sparc64obsd_pc_in_sigtramp (CORE_ADDR pc, const char *name)
{
CORE_ADDR start_pc = (pc & ~(sparc64obsd_page_size - 1));
unsigned long insn;
const int *offset;
if (name)
return 0;
for (offset = sparc64obsd_sigreturn_offset; *offset != -1; offset++)
{
/* Check for "restore %g0, SYS_sigreturn, %g1". */
insn = sparc_fetch_instruction (start_pc + *offset);
if (insn != 0x83e82067)
continue;
/* Check for "t ST_SYSCALL". */
insn = sparc_fetch_instruction (start_pc + *offset + 8);
if (insn != 0x91d02000)
continue;
return 1;
}
return 0;
}
static struct sparc_frame_cache *
sparc64obsd_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR addr;
if (*this_cache)
return (struct sparc_frame_cache *) *this_cache;
cache = sparc_frame_cache (this_frame, this_cache);
gdb_assert (cache == *this_cache);
/* If we couldn't find the frame's function, we're probably dealing
with an on-stack signal trampoline. */
if (cache->pc == 0)
{
cache->pc = get_frame_pc (this_frame);
cache->pc &= ~(sparc64obsd_page_size - 1);
/* Since we couldn't find the frame's function, the cache was
initialized under the assumption that we're frameless. */
sparc_record_save_insn (cache);
addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
if (addr & 1)
addr += BIAS;
cache->base = addr;
}
/* We find the appropriate instance of `struct sigcontext' at a
fixed offset in the signal frame. */
addr = cache->base + 128 + 16;
cache->saved_regs = sparc64nbsd_sigcontext_saved_regs (addr, this_frame);
return cache;
}
static void
sparc64obsd_frame_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc64obsd_frame_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static struct value *
sparc64obsd_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct sparc_frame_cache *cache =
sparc64obsd_frame_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
static int
sparc64obsd_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
CORE_ADDR pc = get_frame_pc (this_frame);
const char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (sparc64obsd_pc_in_sigtramp (pc, name))
return 1;
return 0;
}
static const struct frame_unwind sparc64obsd_frame_unwind =
{
"sparc64 openbsd sigtramp",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
sparc64obsd_frame_this_id,
sparc64obsd_frame_prev_register,
NULL,
sparc64obsd_sigtramp_frame_sniffer
};
/* Kernel debugging support. */
static struct sparc_frame_cache *
sparc64obsd_trapframe_cache (struct frame_info *this_frame, void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR sp, trapframe_addr;
int regnum;
if (*this_cache)
return (struct sparc_frame_cache *) *this_cache;
cache = sparc_frame_cache (this_frame, this_cache);
gdb_assert (cache == *this_cache);
sp = get_frame_register_unsigned (this_frame, SPARC_SP_REGNUM);
trapframe_addr = sp + BIAS + 176;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
cache->saved_regs[SPARC64_STATE_REGNUM].set_addr (trapframe_addr);
cache->saved_regs[SPARC64_PC_REGNUM].set_addr (trapframe_addr + 8);
cache->saved_regs[SPARC64_NPC_REGNUM].set_addr (trapframe_addr + 16);
for (regnum = SPARC_G0_REGNUM; regnum <= SPARC_I7_REGNUM; regnum++)
cache->saved_regs[regnum].set_addr (trapframe_addr + 48
+ (regnum - SPARC_G0_REGNUM) * 8);
return cache;
}
static void
sparc64obsd_trapframe_this_id (struct frame_info *this_frame,
void **this_cache, struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc64obsd_trapframe_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static struct value *
sparc64obsd_trapframe_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct sparc_frame_cache *cache =
sparc64obsd_trapframe_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
static int
sparc64obsd_trapframe_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
CORE_ADDR pc;
ULONGEST pstate;
const char *name;
/* Check whether we are in privileged mode, and bail out if we're not. */
pstate = get_frame_register_unsigned (this_frame, SPARC64_PSTATE_REGNUM);
if ((pstate & SPARC64_PSTATE_PRIV) == 0)
return 0;
pc = get_frame_address_in_block (this_frame);
find_pc_partial_function (pc, &name, NULL, NULL);
if (name && strcmp (name, "Lslowtrap_reenter") == 0)
return 1;
return 0;
}
static const struct frame_unwind sparc64obsd_trapframe_unwind =
{
"sparc64 openbsd trap",
NORMAL_FRAME,
default_frame_unwind_stop_reason,
sparc64obsd_trapframe_this_id,
sparc64obsd_trapframe_prev_register,
NULL,
sparc64obsd_trapframe_sniffer
};
/* Threads support. */
/* Offset wthin the thread structure where we can find %fp and %i7. */
#define SPARC64OBSD_UTHREAD_FP_OFFSET 232
#define SPARC64OBSD_UTHREAD_PC_OFFSET 240
static void
sparc64obsd_supply_uthread (struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR fp, fp_addr = addr + SPARC64OBSD_UTHREAD_FP_OFFSET;
gdb_byte buf[8];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
fp = read_memory_unsigned_integer (fp_addr, 8, byte_order);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 8, byte_order, fp);
regcache->raw_supply (SPARC_SP_REGNUM, buf);
if (regnum == SPARC_SP_REGNUM)
return;
}
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM
|| regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC64OBSD_UTHREAD_PC_OFFSET;
i7 = read_memory_unsigned_integer (i7_addr, 8, byte_order);
if (regnum == SPARC64_PC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 8, byte_order, i7 + 8);
regcache->raw_supply (SPARC64_PC_REGNUM, buf);
}
if (regnum == SPARC64_NPC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 8, byte_order, i7 + 12);
regcache->raw_supply (SPARC64_NPC_REGNUM, buf);
}
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
return;
}
sparc_supply_rwindow (regcache, fp, regnum);
}
static void
sparc64obsd_collect_uthread(const struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp;
gdb_byte buf[8];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
CORE_ADDR fp_addr = addr + SPARC64OBSD_UTHREAD_FP_OFFSET;
regcache->raw_collect (SPARC_SP_REGNUM, buf);
write_memory (fp_addr,buf, 8);
}
if (regnum == SPARC64_PC_REGNUM || regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC64OBSD_UTHREAD_PC_OFFSET;
regcache->raw_collect (SPARC64_PC_REGNUM, buf);
i7 = extract_unsigned_integer (buf, 8, byte_order) - 8;
write_memory_unsigned_integer (i7_addr, 8, byte_order, i7);
if (regnum == SPARC64_PC_REGNUM)
return;
}
regcache->raw_collect (SPARC_SP_REGNUM, buf);
sp = extract_unsigned_integer (buf, 8, byte_order);
sparc_collect_rwindow (regcache, sp, regnum);
}
static const struct regset sparc64obsd_gregset =
{
NULL, sparc64obsd_supply_gregset, NULL
};
static const struct regset sparc64obsd_fpregset =
{
NULL, sparc64obsd_supply_fpregset, NULL
};
static void
sparc64obsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
sparc_gdbarch_tdep *tdep = gdbarch_tdep<sparc_gdbarch_tdep> (gdbarch);
tdep->gregset = &sparc64obsd_gregset;
tdep->sizeof_gregset = 288;
tdep->fpregset = &sparc64obsd_fpregset;
tdep->sizeof_fpregset = 272;
/* Make sure we can single-step "new" syscalls. */
tdep->step_trap = sparcnbsd_step_trap;
frame_unwind_append_unwinder (gdbarch, &sparc64obsd_frame_unwind);
frame_unwind_append_unwinder (gdbarch, &sparc64obsd_trapframe_unwind);
sparc64_init_abi (info, gdbarch);
obsd_init_abi (info, gdbarch);
/* OpenBSD/sparc64 has SVR4-style shared libraries. */
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_lp64_fetch_link_map_offsets);
set_gdbarch_skip_solib_resolver (gdbarch, obsd_skip_solib_resolver);
/* OpenBSD provides a user-level threads implementation. */
bsd_uthread_set_supply_uthread (gdbarch, sparc64obsd_supply_uthread);
bsd_uthread_set_collect_uthread (gdbarch, sparc64obsd_collect_uthread);
}
void _initialize_sparc64obsd_tdep ();
void
_initialize_sparc64obsd_tdep ()
{
gdbarch_register_osabi (bfd_arch_sparc, bfd_mach_sparc_v9,
GDB_OSABI_OPENBSD, sparc64obsd_init_abi);
}