mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 21:44:19 +08:00
618f726fcb
gdb/ChangeLog: Update year range in copyright notice of all files.
1717 lines
46 KiB
Plaintext
1717 lines
46 KiB
Plaintext
/* YACC parser for D expressions, for GDB.
|
||
|
||
Copyright (C) 2014-2016 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file is derived from c-exp.y, jv-exp.y. */
|
||
|
||
/* Parse a D expression from text in a string,
|
||
and return the result as a struct expression pointer.
|
||
That structure contains arithmetic operations in reverse polish,
|
||
with constants represented by operations that are followed by special data.
|
||
See expression.h for the details of the format.
|
||
What is important here is that it can be built up sequentially
|
||
during the process of parsing; the lower levels of the tree always
|
||
come first in the result.
|
||
|
||
Note that malloc's and realloc's in this file are transformed to
|
||
xmalloc and xrealloc respectively by the same sed command in the
|
||
makefile that remaps any other malloc/realloc inserted by the parser
|
||
generator. Doing this with #defines and trying to control the interaction
|
||
with include files (<malloc.h> and <stdlib.h> for example) just became
|
||
too messy, particularly when such includes can be inserted at random
|
||
times by the parser generator. */
|
||
|
||
%{
|
||
|
||
#include "defs.h"
|
||
#include <ctype.h>
|
||
#include "expression.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "language.h"
|
||
#include "c-lang.h"
|
||
#include "d-lang.h"
|
||
#include "bfd.h" /* Required by objfiles.h. */
|
||
#include "symfile.h" /* Required by objfiles.h. */
|
||
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
|
||
#include "charset.h"
|
||
#include "block.h"
|
||
|
||
#define parse_type(ps) builtin_type (parse_gdbarch (ps))
|
||
#define parse_d_type(ps) builtin_d_type (parse_gdbarch (ps))
|
||
|
||
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc),
|
||
as well as gratuitiously global symbol names, so we can have multiple
|
||
yacc generated parsers in gdb. Note that these are only the variables
|
||
produced by yacc. If other parser generators (bison, byacc, etc) produce
|
||
additional global names that conflict at link time, then those parser
|
||
generators need to be fixed instead of adding those names to this list. */
|
||
|
||
#define yymaxdepth d_maxdepth
|
||
#define yyparse d_parse_internal
|
||
#define yylex d_lex
|
||
#define yyerror d_error
|
||
#define yylval d_lval
|
||
#define yychar d_char
|
||
#define yydebug d_debug
|
||
#define yypact d_pact
|
||
#define yyr1 d_r1
|
||
#define yyr2 d_r2
|
||
#define yydef d_def
|
||
#define yychk d_chk
|
||
#define yypgo d_pgo
|
||
#define yyact d_act
|
||
#define yyexca d_exca
|
||
#define yyerrflag d_errflag
|
||
#define yynerrs d_nerrs
|
||
#define yyps d_ps
|
||
#define yypv d_pv
|
||
#define yys d_s
|
||
#define yy_yys d_yys
|
||
#define yystate d_state
|
||
#define yytmp d_tmp
|
||
#define yyv d_v
|
||
#define yy_yyv d_yyv
|
||
#define yyval d_val
|
||
#define yylloc d_lloc
|
||
#define yyreds d_reds /* With YYDEBUG defined */
|
||
#define yytoks d_toks /* With YYDEBUG defined */
|
||
#define yyname d_name /* With YYDEBUG defined */
|
||
#define yyrule d_rule /* With YYDEBUG defined */
|
||
#define yylhs d_yylhs
|
||
#define yylen d_yylen
|
||
#define yydefre d_yydefred
|
||
#define yydgoto d_yydgoto
|
||
#define yysindex d_yysindex
|
||
#define yyrindex d_yyrindex
|
||
#define yygindex d_yygindex
|
||
#define yytable d_yytable
|
||
#define yycheck d_yycheck
|
||
#define yyss d_yyss
|
||
#define yysslim d_yysslim
|
||
#define yyssp d_yyssp
|
||
#define yystacksize d_yystacksize
|
||
#define yyvs d_yyvs
|
||
#define yyvsp d_yyvsp
|
||
|
||
#ifndef YYDEBUG
|
||
#define YYDEBUG 1 /* Default to yydebug support */
|
||
#endif
|
||
|
||
#define YYFPRINTF parser_fprintf
|
||
|
||
/* The state of the parser, used internally when we are parsing the
|
||
expression. */
|
||
|
||
static struct parser_state *pstate = NULL;
|
||
|
||
int yyparse (void);
|
||
|
||
static int yylex (void);
|
||
|
||
void yyerror (char *);
|
||
|
||
static int type_aggregate_p (struct type *);
|
||
|
||
%}
|
||
|
||
/* Although the yacc "value" of an expression is not used,
|
||
since the result is stored in the structure being created,
|
||
other node types do have values. */
|
||
|
||
%union
|
||
{
|
||
struct {
|
||
LONGEST val;
|
||
struct type *type;
|
||
} typed_val_int;
|
||
struct {
|
||
DOUBLEST dval;
|
||
struct type *type;
|
||
} typed_val_float;
|
||
struct symbol *sym;
|
||
struct type *tval;
|
||
struct typed_stoken tsval;
|
||
struct stoken sval;
|
||
struct ttype tsym;
|
||
struct symtoken ssym;
|
||
int ival;
|
||
int voidval;
|
||
struct block *bval;
|
||
enum exp_opcode opcode;
|
||
struct stoken_vector svec;
|
||
}
|
||
|
||
%{
|
||
/* YYSTYPE gets defined by %union */
|
||
static int parse_number (struct parser_state *, const char *,
|
||
int, int, YYSTYPE *);
|
||
%}
|
||
|
||
%token <sval> IDENTIFIER UNKNOWN_NAME
|
||
%token <tsym> TYPENAME
|
||
%token <voidval> COMPLETE
|
||
|
||
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
|
||
but which would parse as a valid number in the current input radix.
|
||
E.g. "c" when input_radix==16. Depending on the parse, it will be
|
||
turned into a name or into a number. */
|
||
|
||
%token <sval> NAME_OR_INT
|
||
|
||
%token <typed_val_int> INTEGER_LITERAL
|
||
%token <typed_val_float> FLOAT_LITERAL
|
||
%token <tsval> CHARACTER_LITERAL
|
||
%token <tsval> STRING_LITERAL
|
||
|
||
%type <svec> StringExp
|
||
%type <tval> BasicType TypeExp
|
||
%type <sval> IdentifierExp
|
||
%type <ival> ArrayLiteral
|
||
|
||
%token ENTRY
|
||
%token ERROR
|
||
|
||
/* Keywords that have a constant value. */
|
||
%token TRUE_KEYWORD FALSE_KEYWORD NULL_KEYWORD
|
||
/* Class 'super' accessor. */
|
||
%token SUPER_KEYWORD
|
||
/* Properties. */
|
||
%token CAST_KEYWORD SIZEOF_KEYWORD
|
||
%token TYPEOF_KEYWORD TYPEID_KEYWORD
|
||
%token INIT_KEYWORD
|
||
/* Comparison keywords. */
|
||
/* Type storage classes. */
|
||
%token IMMUTABLE_KEYWORD CONST_KEYWORD SHARED_KEYWORD
|
||
/* Non-scalar type keywords. */
|
||
%token STRUCT_KEYWORD UNION_KEYWORD
|
||
%token CLASS_KEYWORD INTERFACE_KEYWORD
|
||
%token ENUM_KEYWORD TEMPLATE_KEYWORD
|
||
%token DELEGATE_KEYWORD FUNCTION_KEYWORD
|
||
|
||
%token <sval> DOLLAR_VARIABLE
|
||
|
||
%token <opcode> ASSIGN_MODIFY
|
||
|
||
%left ','
|
||
%right '=' ASSIGN_MODIFY
|
||
%right '?'
|
||
%left OROR
|
||
%left ANDAND
|
||
%left '|'
|
||
%left '^'
|
||
%left '&'
|
||
%left EQUAL NOTEQUAL '<' '>' LEQ GEQ
|
||
%right LSH RSH
|
||
%left '+' '-'
|
||
%left '*' '/' '%'
|
||
%right HATHAT
|
||
%left IDENTITY NOTIDENTITY
|
||
%right INCREMENT DECREMENT
|
||
%right '.' '[' '('
|
||
%token DOTDOT
|
||
|
||
|
||
%%
|
||
|
||
start :
|
||
Expression
|
||
| TypeExp
|
||
;
|
||
|
||
/* Expressions, including the comma operator. */
|
||
|
||
Expression:
|
||
CommaExpression
|
||
;
|
||
|
||
CommaExpression:
|
||
AssignExpression
|
||
| AssignExpression ',' CommaExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_COMMA); }
|
||
;
|
||
|
||
AssignExpression:
|
||
ConditionalExpression
|
||
| ConditionalExpression '=' AssignExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
|
||
| ConditionalExpression ASSIGN_MODIFY AssignExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
|
||
write_exp_elt_opcode (pstate, $2);
|
||
write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY); }
|
||
;
|
||
|
||
ConditionalExpression:
|
||
OrOrExpression
|
||
| OrOrExpression '?' Expression ':' ConditionalExpression
|
||
{ write_exp_elt_opcode (pstate, TERNOP_COND); }
|
||
;
|
||
|
||
OrOrExpression:
|
||
AndAndExpression
|
||
| OrOrExpression OROR AndAndExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
|
||
;
|
||
|
||
AndAndExpression:
|
||
OrExpression
|
||
| AndAndExpression ANDAND OrExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
|
||
;
|
||
|
||
OrExpression:
|
||
XorExpression
|
||
| OrExpression '|' XorExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
|
||
;
|
||
|
||
XorExpression:
|
||
AndExpression
|
||
| XorExpression '^' AndExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
|
||
;
|
||
|
||
AndExpression:
|
||
CmpExpression
|
||
| AndExpression '&' CmpExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
|
||
;
|
||
|
||
CmpExpression:
|
||
ShiftExpression
|
||
| EqualExpression
|
||
| IdentityExpression
|
||
| RelExpression
|
||
;
|
||
|
||
EqualExpression:
|
||
ShiftExpression EQUAL ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_EQUAL); }
|
||
| ShiftExpression NOTEQUAL ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
|
||
;
|
||
|
||
IdentityExpression:
|
||
ShiftExpression IDENTITY ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_EQUAL); }
|
||
| ShiftExpression NOTIDENTITY ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
|
||
;
|
||
|
||
RelExpression:
|
||
ShiftExpression '<' ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_LESS); }
|
||
| ShiftExpression LEQ ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_LEQ); }
|
||
| ShiftExpression '>' ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_GTR); }
|
||
| ShiftExpression GEQ ShiftExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_GEQ); }
|
||
;
|
||
|
||
ShiftExpression:
|
||
AddExpression
|
||
| ShiftExpression LSH AddExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_LSH); }
|
||
| ShiftExpression RSH AddExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_RSH); }
|
||
;
|
||
|
||
AddExpression:
|
||
MulExpression
|
||
| AddExpression '+' MulExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_ADD); }
|
||
| AddExpression '-' MulExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_SUB); }
|
||
| AddExpression '~' MulExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_CONCAT); }
|
||
;
|
||
|
||
MulExpression:
|
||
UnaryExpression
|
||
| MulExpression '*' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_MUL); }
|
||
| MulExpression '/' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_DIV); }
|
||
| MulExpression '%' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_REM); }
|
||
|
||
UnaryExpression:
|
||
'&' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_ADDR); }
|
||
| INCREMENT UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
|
||
| DECREMENT UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
|
||
| '*' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_IND); }
|
||
| '-' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_NEG); }
|
||
| '+' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_PLUS); }
|
||
| '!' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
|
||
| '~' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
|
||
| TypeExp '.' SIZEOF_KEYWORD
|
||
{ write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
|
||
| CastExpression
|
||
| PowExpression
|
||
;
|
||
|
||
CastExpression:
|
||
CAST_KEYWORD '(' TypeExp ')' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
write_exp_elt_type (pstate, $3);
|
||
write_exp_elt_opcode (pstate, UNOP_CAST); }
|
||
/* C style cast is illegal D, but is still recognised in
|
||
the grammar, so we keep this around for convenience. */
|
||
| '(' TypeExp ')' UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, UNOP_CAST);
|
||
write_exp_elt_type (pstate, $2);
|
||
write_exp_elt_opcode (pstate, UNOP_CAST); }
|
||
;
|
||
|
||
PowExpression:
|
||
PostfixExpression
|
||
| PostfixExpression HATHAT UnaryExpression
|
||
{ write_exp_elt_opcode (pstate, BINOP_EXP); }
|
||
;
|
||
|
||
PostfixExpression:
|
||
PrimaryExpression
|
||
| PostfixExpression '.' COMPLETE
|
||
{ struct stoken s;
|
||
mark_struct_expression (pstate);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
s.ptr = "";
|
||
s.length = 0;
|
||
write_exp_string (pstate, s);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
| PostfixExpression '.' IDENTIFIER
|
||
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $3);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
| PostfixExpression '.' IDENTIFIER COMPLETE
|
||
{ mark_struct_expression (pstate);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
|
||
write_exp_string (pstate, $3);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
|
||
| PostfixExpression '.' SIZEOF_KEYWORD
|
||
{ write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
|
||
| PostfixExpression INCREMENT
|
||
{ write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
|
||
| PostfixExpression DECREMENT
|
||
{ write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
|
||
| CallExpression
|
||
| IndexExpression
|
||
| SliceExpression
|
||
;
|
||
|
||
ArgumentList:
|
||
AssignExpression
|
||
{ arglist_len = 1; }
|
||
| ArgumentList ',' AssignExpression
|
||
{ arglist_len++; }
|
||
;
|
||
|
||
ArgumentList_opt:
|
||
/* EMPTY */
|
||
{ arglist_len = 0; }
|
||
| ArgumentList
|
||
;
|
||
|
||
CallExpression:
|
||
PostfixExpression '('
|
||
{ start_arglist (); }
|
||
ArgumentList_opt ')'
|
||
{ write_exp_elt_opcode (pstate, OP_FUNCALL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) end_arglist ());
|
||
write_exp_elt_opcode (pstate, OP_FUNCALL); }
|
||
;
|
||
|
||
IndexExpression:
|
||
PostfixExpression '[' ArgumentList ']'
|
||
{ if (arglist_len > 0)
|
||
{
|
||
write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
|
||
write_exp_elt_longcst (pstate, (LONGEST) arglist_len);
|
||
write_exp_elt_opcode (pstate, MULTI_SUBSCRIPT);
|
||
}
|
||
else
|
||
write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
|
||
}
|
||
;
|
||
|
||
SliceExpression:
|
||
PostfixExpression '[' ']'
|
||
{ /* Do nothing. */ }
|
||
| PostfixExpression '[' AssignExpression DOTDOT AssignExpression ']'
|
||
{ write_exp_elt_opcode (pstate, TERNOP_SLICE); }
|
||
;
|
||
|
||
PrimaryExpression:
|
||
'(' Expression ')'
|
||
{ /* Do nothing. */ }
|
||
| IdentifierExp
|
||
{ struct bound_minimal_symbol msymbol;
|
||
char *copy = copy_name ($1);
|
||
struct field_of_this_result is_a_field_of_this;
|
||
struct block_symbol sym;
|
||
|
||
/* Handle VAR, which could be local or global. */
|
||
sym = lookup_symbol (copy, expression_context_block, VAR_DOMAIN,
|
||
&is_a_field_of_this);
|
||
if (sym.symbol && SYMBOL_CLASS (sym.symbol) != LOC_TYPEDEF)
|
||
{
|
||
if (symbol_read_needs_frame (sym.symbol))
|
||
{
|
||
if (innermost_block == 0
|
||
|| contained_in (sym.block, innermost_block))
|
||
innermost_block = sym.block;
|
||
}
|
||
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, sym.block);
|
||
write_exp_elt_sym (pstate, sym.symbol);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
}
|
||
else if (is_a_field_of_this.type != NULL)
|
||
{
|
||
/* It hangs off of `this'. Must not inadvertently convert from a
|
||
method call to data ref. */
|
||
if (innermost_block == 0
|
||
|| contained_in (sym.block, innermost_block))
|
||
innermost_block = sym.block;
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
write_exp_elt_opcode (pstate, OP_THIS);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
|
||
write_exp_string (pstate, $1);
|
||
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
|
||
}
|
||
else
|
||
{
|
||
/* Lookup foreign name in global static symbols. */
|
||
msymbol = lookup_bound_minimal_symbol (copy);
|
||
if (msymbol.minsym != NULL)
|
||
write_exp_msymbol (pstate, msymbol);
|
||
else if (!have_full_symbols () && !have_partial_symbols ())
|
||
error (_("No symbol table is loaded. Use the \"file\" command"));
|
||
else
|
||
error (_("No symbol \"%s\" in current context."), copy);
|
||
}
|
||
}
|
||
| TypeExp '.' IdentifierExp
|
||
{ struct type *type = check_typedef ($1);
|
||
|
||
/* Check if the qualified name is in the global
|
||
context. However if the symbol has not already
|
||
been resolved, it's not likely to be found. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_MODULE)
|
||
{
|
||
struct bound_minimal_symbol msymbol;
|
||
struct block_symbol sym;
|
||
const char *type_name = TYPE_SAFE_NAME (type);
|
||
int type_name_len = strlen (type_name);
|
||
char *name;
|
||
|
||
name = xstrprintf ("%.*s.%.*s",
|
||
type_name_len, type_name,
|
||
$3.length, $3.ptr);
|
||
make_cleanup (xfree, name);
|
||
|
||
sym =
|
||
lookup_symbol (name, (const struct block *) NULL,
|
||
VAR_DOMAIN, NULL);
|
||
if (sym.symbol)
|
||
{
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
write_exp_elt_block (pstate, sym.block);
|
||
write_exp_elt_sym (pstate, sym.symbol);
|
||
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
|
||
break;
|
||
}
|
||
|
||
msymbol = lookup_bound_minimal_symbol (name);
|
||
if (msymbol.minsym != NULL)
|
||
write_exp_msymbol (pstate, msymbol);
|
||
else if (!have_full_symbols () && !have_partial_symbols ())
|
||
error (_("No symbol table is loaded. Use the \"file\" command."));
|
||
else
|
||
error (_("No symbol \"%s\" in current context."), name);
|
||
}
|
||
|
||
/* Check if the qualified name resolves as a member
|
||
of an aggregate or an enum type. */
|
||
if (!type_aggregate_p (type))
|
||
error (_("`%s' is not defined as an aggregate type."),
|
||
TYPE_SAFE_NAME (type));
|
||
|
||
write_exp_elt_opcode (pstate, OP_SCOPE);
|
||
write_exp_elt_type (pstate, type);
|
||
write_exp_string (pstate, $3);
|
||
write_exp_elt_opcode (pstate, OP_SCOPE);
|
||
}
|
||
| DOLLAR_VARIABLE
|
||
{ write_dollar_variable (pstate, $1); }
|
||
| NAME_OR_INT
|
||
{ YYSTYPE val;
|
||
parse_number (pstate, $1.ptr, $1.length, 0, &val);
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, val.typed_val_int.type);
|
||
write_exp_elt_longcst (pstate,
|
||
(LONGEST) val.typed_val_int.val);
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
| NULL_KEYWORD
|
||
{ struct type *type = parse_d_type (pstate)->builtin_void;
|
||
type = lookup_pointer_type (type);
|
||
write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, type);
|
||
write_exp_elt_longcst (pstate, (LONGEST) 0);
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
| TRUE_KEYWORD
|
||
{ write_exp_elt_opcode (pstate, OP_BOOL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) 1);
|
||
write_exp_elt_opcode (pstate, OP_BOOL); }
|
||
| FALSE_KEYWORD
|
||
{ write_exp_elt_opcode (pstate, OP_BOOL);
|
||
write_exp_elt_longcst (pstate, (LONGEST) 0);
|
||
write_exp_elt_opcode (pstate, OP_BOOL); }
|
||
| INTEGER_LITERAL
|
||
{ write_exp_elt_opcode (pstate, OP_LONG);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
write_exp_elt_longcst (pstate, (LONGEST)($1.val));
|
||
write_exp_elt_opcode (pstate, OP_LONG); }
|
||
| FLOAT_LITERAL
|
||
{ write_exp_elt_opcode (pstate, OP_DOUBLE);
|
||
write_exp_elt_type (pstate, $1.type);
|
||
write_exp_elt_dblcst (pstate, $1.dval);
|
||
write_exp_elt_opcode (pstate, OP_DOUBLE); }
|
||
| CHARACTER_LITERAL
|
||
{ struct stoken_vector vec;
|
||
vec.len = 1;
|
||
vec.tokens = &$1;
|
||
write_exp_string_vector (pstate, $1.type, &vec); }
|
||
| StringExp
|
||
{ int i;
|
||
write_exp_string_vector (pstate, 0, &$1);
|
||
for (i = 0; i < $1.len; ++i)
|
||
free ($1.tokens[i].ptr);
|
||
free ($1.tokens); }
|
||
| ArrayLiteral
|
||
{ write_exp_elt_opcode (pstate, OP_ARRAY);
|
||
write_exp_elt_longcst (pstate, (LONGEST) 0);
|
||
write_exp_elt_longcst (pstate, (LONGEST) $1 - 1);
|
||
write_exp_elt_opcode (pstate, OP_ARRAY); }
|
||
| TYPEOF_KEYWORD '(' Expression ')'
|
||
{ write_exp_elt_opcode (pstate, OP_TYPEOF); }
|
||
;
|
||
|
||
ArrayLiteral:
|
||
'[' ArgumentList_opt ']'
|
||
{ $$ = arglist_len; }
|
||
;
|
||
|
||
IdentifierExp:
|
||
IDENTIFIER
|
||
;
|
||
|
||
StringExp:
|
||
STRING_LITERAL
|
||
{ /* We copy the string here, and not in the
|
||
lexer, to guarantee that we do not leak a
|
||
string. Note that we follow the
|
||
NUL-termination convention of the
|
||
lexer. */
|
||
struct typed_stoken *vec = XNEW (struct typed_stoken);
|
||
$$.len = 1;
|
||
$$.tokens = vec;
|
||
|
||
vec->type = $1.type;
|
||
vec->length = $1.length;
|
||
vec->ptr = (char *) malloc ($1.length + 1);
|
||
memcpy (vec->ptr, $1.ptr, $1.length + 1);
|
||
}
|
||
| StringExp STRING_LITERAL
|
||
{ /* Note that we NUL-terminate here, but just
|
||
for convenience. */
|
||
char *p;
|
||
++$$.len;
|
||
$$.tokens
|
||
= XRESIZEVEC (struct typed_stoken, $$.tokens, $$.len);
|
||
|
||
p = (char *) malloc ($2.length + 1);
|
||
memcpy (p, $2.ptr, $2.length + 1);
|
||
|
||
$$.tokens[$$.len - 1].type = $2.type;
|
||
$$.tokens[$$.len - 1].length = $2.length;
|
||
$$.tokens[$$.len - 1].ptr = p;
|
||
}
|
||
;
|
||
|
||
TypeExp:
|
||
'(' TypeExp ')'
|
||
{ /* Do nothing. */ }
|
||
| BasicType
|
||
{ write_exp_elt_opcode (pstate, OP_TYPE);
|
||
write_exp_elt_type (pstate, $1);
|
||
write_exp_elt_opcode (pstate, OP_TYPE); }
|
||
| BasicType BasicType2
|
||
{ $$ = follow_types ($1);
|
||
write_exp_elt_opcode (pstate, OP_TYPE);
|
||
write_exp_elt_type (pstate, $$);
|
||
write_exp_elt_opcode (pstate, OP_TYPE);
|
||
}
|
||
;
|
||
|
||
BasicType2:
|
||
'*'
|
||
{ push_type (tp_pointer); }
|
||
| '*' BasicType2
|
||
{ push_type (tp_pointer); }
|
||
| '[' INTEGER_LITERAL ']'
|
||
{ push_type_int ($2.val);
|
||
push_type (tp_array); }
|
||
| '[' INTEGER_LITERAL ']' BasicType2
|
||
{ push_type_int ($2.val);
|
||
push_type (tp_array); }
|
||
;
|
||
|
||
BasicType:
|
||
TYPENAME
|
||
{ $$ = $1.type; }
|
||
;
|
||
|
||
%%
|
||
|
||
/* Return true if the type is aggregate-like. */
|
||
|
||
static int
|
||
type_aggregate_p (struct type *type)
|
||
{
|
||
return (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION
|
||
|| (TYPE_CODE (type) == TYPE_CODE_ENUM
|
||
&& TYPE_DECLARED_CLASS (type)));
|
||
}
|
||
|
||
/* Take care of parsing a number (anything that starts with a digit).
|
||
Set yylval and return the token type; update lexptr.
|
||
LEN is the number of characters in it. */
|
||
|
||
/*** Needs some error checking for the float case ***/
|
||
|
||
static int
|
||
parse_number (struct parser_state *ps, const char *p,
|
||
int len, int parsed_float, YYSTYPE *putithere)
|
||
{
|
||
ULONGEST n = 0;
|
||
ULONGEST prevn = 0;
|
||
ULONGEST un;
|
||
|
||
int i = 0;
|
||
int c;
|
||
int base = input_radix;
|
||
int unsigned_p = 0;
|
||
int long_p = 0;
|
||
|
||
/* We have found a "L" or "U" suffix. */
|
||
int found_suffix = 0;
|
||
|
||
ULONGEST high_bit;
|
||
struct type *signed_type;
|
||
struct type *unsigned_type;
|
||
|
||
if (parsed_float)
|
||
{
|
||
const struct builtin_d_type *builtin_d_types;
|
||
const char *suffix;
|
||
int suffix_len;
|
||
char *s, *sp;
|
||
|
||
/* Strip out all embedded '_' before passing to parse_float. */
|
||
s = (char *) alloca (len + 1);
|
||
sp = s;
|
||
while (len-- > 0)
|
||
{
|
||
if (*p != '_')
|
||
*sp++ = *p;
|
||
p++;
|
||
}
|
||
*sp = '\0';
|
||
len = strlen (s);
|
||
|
||
if (! parse_float (s, len, &putithere->typed_val_float.dval, &suffix))
|
||
return ERROR;
|
||
|
||
suffix_len = s + len - suffix;
|
||
|
||
if (suffix_len == 0)
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_double;
|
||
}
|
||
else if (suffix_len == 1)
|
||
{
|
||
/* Check suffix for `f', `l', or `i' (float, real, or idouble). */
|
||
if (tolower (*suffix) == 'f')
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_float;
|
||
}
|
||
else if (tolower (*suffix) == 'l')
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_real;
|
||
}
|
||
else if (tolower (*suffix) == 'i')
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_idouble;
|
||
}
|
||
else
|
||
return ERROR;
|
||
}
|
||
else if (suffix_len == 2)
|
||
{
|
||
/* Check suffix for `fi' or `li' (ifloat or ireal). */
|
||
if (tolower (suffix[0]) == 'f' && tolower (suffix[1] == 'i'))
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_ifloat;
|
||
}
|
||
else if (tolower (suffix[0]) == 'l' && tolower (suffix[1] == 'i'))
|
||
{
|
||
putithere->typed_val_float.type
|
||
= parse_d_type (ps)->builtin_ireal;
|
||
}
|
||
else
|
||
return ERROR;
|
||
}
|
||
else
|
||
return ERROR;
|
||
|
||
return FLOAT_LITERAL;
|
||
}
|
||
|
||
/* Handle base-switching prefixes 0x, 0b, 0 */
|
||
if (p[0] == '0')
|
||
switch (p[1])
|
||
{
|
||
case 'x':
|
||
case 'X':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 16;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
case 'b':
|
||
case 'B':
|
||
if (len >= 3)
|
||
{
|
||
p += 2;
|
||
base = 2;
|
||
len -= 2;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
base = 8;
|
||
break;
|
||
}
|
||
|
||
while (len-- > 0)
|
||
{
|
||
c = *p++;
|
||
if (c == '_')
|
||
continue; /* Ignore embedded '_'. */
|
||
if (c >= 'A' && c <= 'Z')
|
||
c += 'a' - 'A';
|
||
if (c != 'l' && c != 'u')
|
||
n *= base;
|
||
if (c >= '0' && c <= '9')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - '0';
|
||
}
|
||
else
|
||
{
|
||
if (base > 10 && c >= 'a' && c <= 'f')
|
||
{
|
||
if (found_suffix)
|
||
return ERROR;
|
||
n += i = c - 'a' + 10;
|
||
}
|
||
else if (c == 'l' && long_p == 0)
|
||
{
|
||
long_p = 1;
|
||
found_suffix = 1;
|
||
}
|
||
else if (c == 'u' && unsigned_p == 0)
|
||
{
|
||
unsigned_p = 1;
|
||
found_suffix = 1;
|
||
}
|
||
else
|
||
return ERROR; /* Char not a digit */
|
||
}
|
||
if (i >= base)
|
||
return ERROR; /* Invalid digit in this base. */
|
||
/* Portably test for integer overflow. */
|
||
if (c != 'l' && c != 'u')
|
||
{
|
||
ULONGEST n2 = prevn * base;
|
||
if ((n2 / base != prevn) || (n2 + i < prevn))
|
||
error (_("Numeric constant too large."));
|
||
}
|
||
prevn = n;
|
||
}
|
||
|
||
/* An integer constant is an int or a long. An L suffix forces it to
|
||
be long, and a U suffix forces it to be unsigned. To figure out
|
||
whether it fits, we shift it right and see whether anything remains.
|
||
Note that we can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or
|
||
more in one operation, because many compilers will warn about such a
|
||
shift (which always produces a zero result). To deal with the case
|
||
where it is we just always shift the value more than once, with fewer
|
||
bits each time. */
|
||
un = (ULONGEST) n >> 2;
|
||
if (long_p == 0 && (un >> 30) == 0)
|
||
{
|
||
high_bit = ((ULONGEST) 1) << 31;
|
||
signed_type = parse_d_type (ps)->builtin_int;
|
||
/* For decimal notation, keep the sign of the worked out type. */
|
||
if (base == 10 && !unsigned_p)
|
||
unsigned_type = parse_d_type (ps)->builtin_long;
|
||
else
|
||
unsigned_type = parse_d_type (ps)->builtin_uint;
|
||
}
|
||
else
|
||
{
|
||
int shift;
|
||
if (sizeof (ULONGEST) * HOST_CHAR_BIT < 64)
|
||
/* A long long does not fit in a LONGEST. */
|
||
shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
|
||
else
|
||
shift = 63;
|
||
high_bit = (ULONGEST) 1 << shift;
|
||
signed_type = parse_d_type (ps)->builtin_long;
|
||
unsigned_type = parse_d_type (ps)->builtin_ulong;
|
||
}
|
||
|
||
putithere->typed_val_int.val = n;
|
||
|
||
/* If the high bit of the worked out type is set then this number
|
||
has to be unsigned_type. */
|
||
if (unsigned_p || (n & high_bit))
|
||
putithere->typed_val_int.type = unsigned_type;
|
||
else
|
||
putithere->typed_val_int.type = signed_type;
|
||
|
||
return INTEGER_LITERAL;
|
||
}
|
||
|
||
/* Temporary obstack used for holding strings. */
|
||
static struct obstack tempbuf;
|
||
static int tempbuf_init;
|
||
|
||
/* Parse a string or character literal from TOKPTR. The string or
|
||
character may be wide or unicode. *OUTPTR is set to just after the
|
||
end of the literal in the input string. The resulting token is
|
||
stored in VALUE. This returns a token value, either STRING or
|
||
CHAR, depending on what was parsed. *HOST_CHARS is set to the
|
||
number of host characters in the literal. */
|
||
|
||
static int
|
||
parse_string_or_char (const char *tokptr, const char **outptr,
|
||
struct typed_stoken *value, int *host_chars)
|
||
{
|
||
int quote;
|
||
|
||
/* Build the gdb internal form of the input string in tempbuf. Note
|
||
that the buffer is null byte terminated *only* for the
|
||
convenience of debugging gdb itself and printing the buffer
|
||
contents when the buffer contains no embedded nulls. Gdb does
|
||
not depend upon the buffer being null byte terminated, it uses
|
||
the length string instead. This allows gdb to handle C strings
|
||
(as well as strings in other languages) with embedded null
|
||
bytes */
|
||
|
||
if (!tempbuf_init)
|
||
tempbuf_init = 1;
|
||
else
|
||
obstack_free (&tempbuf, NULL);
|
||
obstack_init (&tempbuf);
|
||
|
||
/* Skip the quote. */
|
||
quote = *tokptr;
|
||
++tokptr;
|
||
|
||
*host_chars = 0;
|
||
|
||
while (*tokptr)
|
||
{
|
||
char c = *tokptr;
|
||
if (c == '\\')
|
||
{
|
||
++tokptr;
|
||
*host_chars += c_parse_escape (&tokptr, &tempbuf);
|
||
}
|
||
else if (c == quote)
|
||
break;
|
||
else
|
||
{
|
||
obstack_1grow (&tempbuf, c);
|
||
++tokptr;
|
||
/* FIXME: this does the wrong thing with multi-byte host
|
||
characters. We could use mbrlen here, but that would
|
||
make "set host-charset" a bit less useful. */
|
||
++*host_chars;
|
||
}
|
||
}
|
||
|
||
if (*tokptr != quote)
|
||
{
|
||
if (quote == '"' || quote == '`')
|
||
error (_("Unterminated string in expression."));
|
||
else
|
||
error (_("Unmatched single quote."));
|
||
}
|
||
++tokptr;
|
||
|
||
/* FIXME: should instead use own language string_type enum
|
||
and handle D-specific string suffixes here. */
|
||
if (quote == '\'')
|
||
value->type = C_CHAR;
|
||
else
|
||
value->type = C_STRING;
|
||
|
||
value->ptr = (char *) obstack_base (&tempbuf);
|
||
value->length = obstack_object_size (&tempbuf);
|
||
|
||
*outptr = tokptr;
|
||
|
||
return quote == '\'' ? CHARACTER_LITERAL : STRING_LITERAL;
|
||
}
|
||
|
||
struct token
|
||
{
|
||
char *oper;
|
||
int token;
|
||
enum exp_opcode opcode;
|
||
};
|
||
|
||
static const struct token tokentab3[] =
|
||
{
|
||
{"^^=", ASSIGN_MODIFY, BINOP_EXP},
|
||
{"<<=", ASSIGN_MODIFY, BINOP_LSH},
|
||
{">>=", ASSIGN_MODIFY, BINOP_RSH},
|
||
};
|
||
|
||
static const struct token tokentab2[] =
|
||
{
|
||
{"+=", ASSIGN_MODIFY, BINOP_ADD},
|
||
{"-=", ASSIGN_MODIFY, BINOP_SUB},
|
||
{"*=", ASSIGN_MODIFY, BINOP_MUL},
|
||
{"/=", ASSIGN_MODIFY, BINOP_DIV},
|
||
{"%=", ASSIGN_MODIFY, BINOP_REM},
|
||
{"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
|
||
{"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
|
||
{"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
|
||
{"++", INCREMENT, BINOP_END},
|
||
{"--", DECREMENT, BINOP_END},
|
||
{"&&", ANDAND, BINOP_END},
|
||
{"||", OROR, BINOP_END},
|
||
{"^^", HATHAT, BINOP_END},
|
||
{"<<", LSH, BINOP_END},
|
||
{">>", RSH, BINOP_END},
|
||
{"==", EQUAL, BINOP_END},
|
||
{"!=", NOTEQUAL, BINOP_END},
|
||
{"<=", LEQ, BINOP_END},
|
||
{">=", GEQ, BINOP_END},
|
||
{"..", DOTDOT, BINOP_END},
|
||
};
|
||
|
||
/* Identifier-like tokens. */
|
||
static const struct token ident_tokens[] =
|
||
{
|
||
{"is", IDENTITY, BINOP_END},
|
||
{"!is", NOTIDENTITY, BINOP_END},
|
||
|
||
{"cast", CAST_KEYWORD, OP_NULL},
|
||
{"const", CONST_KEYWORD, OP_NULL},
|
||
{"immutable", IMMUTABLE_KEYWORD, OP_NULL},
|
||
{"shared", SHARED_KEYWORD, OP_NULL},
|
||
{"super", SUPER_KEYWORD, OP_NULL},
|
||
|
||
{"null", NULL_KEYWORD, OP_NULL},
|
||
{"true", TRUE_KEYWORD, OP_NULL},
|
||
{"false", FALSE_KEYWORD, OP_NULL},
|
||
|
||
{"init", INIT_KEYWORD, OP_NULL},
|
||
{"sizeof", SIZEOF_KEYWORD, OP_NULL},
|
||
{"typeof", TYPEOF_KEYWORD, OP_NULL},
|
||
{"typeid", TYPEID_KEYWORD, OP_NULL},
|
||
|
||
{"delegate", DELEGATE_KEYWORD, OP_NULL},
|
||
{"function", FUNCTION_KEYWORD, OP_NULL},
|
||
{"struct", STRUCT_KEYWORD, OP_NULL},
|
||
{"union", UNION_KEYWORD, OP_NULL},
|
||
{"class", CLASS_KEYWORD, OP_NULL},
|
||
{"interface", INTERFACE_KEYWORD, OP_NULL},
|
||
{"enum", ENUM_KEYWORD, OP_NULL},
|
||
{"template", TEMPLATE_KEYWORD, OP_NULL},
|
||
};
|
||
|
||
/* This is set if a NAME token appeared at the very end of the input
|
||
string, with no whitespace separating the name from the EOF. This
|
||
is used only when parsing to do field name completion. */
|
||
static int saw_name_at_eof;
|
||
|
||
/* This is set if the previously-returned token was a structure operator.
|
||
This is used only when parsing to do field name completion. */
|
||
static int last_was_structop;
|
||
|
||
/* Read one token, getting characters through lexptr. */
|
||
|
||
static int
|
||
lex_one_token (struct parser_state *par_state)
|
||
{
|
||
int c;
|
||
int namelen;
|
||
unsigned int i;
|
||
const char *tokstart;
|
||
int saw_structop = last_was_structop;
|
||
char *copy;
|
||
|
||
last_was_structop = 0;
|
||
|
||
retry:
|
||
|
||
prev_lexptr = lexptr;
|
||
|
||
tokstart = lexptr;
|
||
/* See if it is a special token of length 3. */
|
||
for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
|
||
if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
|
||
{
|
||
lexptr += 3;
|
||
yylval.opcode = tokentab3[i].opcode;
|
||
return tokentab3[i].token;
|
||
}
|
||
|
||
/* See if it is a special token of length 2. */
|
||
for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
|
||
if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
|
||
{
|
||
lexptr += 2;
|
||
yylval.opcode = tokentab2[i].opcode;
|
||
return tokentab2[i].token;
|
||
}
|
||
|
||
switch (c = *tokstart)
|
||
{
|
||
case 0:
|
||
/* If we're parsing for field name completion, and the previous
|
||
token allows such completion, return a COMPLETE token.
|
||
Otherwise, we were already scanning the original text, and
|
||
we're really done. */
|
||
if (saw_name_at_eof)
|
||
{
|
||
saw_name_at_eof = 0;
|
||
return COMPLETE;
|
||
}
|
||
else if (saw_structop)
|
||
return COMPLETE;
|
||
else
|
||
return 0;
|
||
|
||
case ' ':
|
||
case '\t':
|
||
case '\n':
|
||
lexptr++;
|
||
goto retry;
|
||
|
||
case '[':
|
||
case '(':
|
||
paren_depth++;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ']':
|
||
case ')':
|
||
if (paren_depth == 0)
|
||
return 0;
|
||
paren_depth--;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case ',':
|
||
if (comma_terminates && paren_depth == 0)
|
||
return 0;
|
||
lexptr++;
|
||
return c;
|
||
|
||
case '.':
|
||
/* Might be a floating point number. */
|
||
if (lexptr[1] < '0' || lexptr[1] > '9')
|
||
{
|
||
if (parse_completion)
|
||
last_was_structop = 1;
|
||
goto symbol; /* Nope, must be a symbol. */
|
||
}
|
||
/* FALL THRU into number case. */
|
||
|
||
case '0':
|
||
case '1':
|
||
case '2':
|
||
case '3':
|
||
case '4':
|
||
case '5':
|
||
case '6':
|
||
case '7':
|
||
case '8':
|
||
case '9':
|
||
{
|
||
/* It's a number. */
|
||
int got_dot = 0, got_e = 0, toktype;
|
||
const char *p = tokstart;
|
||
int hex = input_radix > 10;
|
||
|
||
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
|
||
{
|
||
p += 2;
|
||
hex = 1;
|
||
}
|
||
|
||
for (;; ++p)
|
||
{
|
||
/* Hex exponents start with 'p', because 'e' is a valid hex
|
||
digit and thus does not indicate a floating point number
|
||
when the radix is hex. */
|
||
if ((!hex && !got_e && tolower (p[0]) == 'e')
|
||
|| (hex && !got_e && tolower (p[0] == 'p')))
|
||
got_dot = got_e = 1;
|
||
/* A '.' always indicates a decimal floating point number
|
||
regardless of the radix. If we have a '..' then its the
|
||
end of the number and the beginning of a slice. */
|
||
else if (!got_dot && (p[0] == '.' && p[1] != '.'))
|
||
got_dot = 1;
|
||
/* This is the sign of the exponent, not the end of the number. */
|
||
else if (got_e && (tolower (p[-1]) == 'e' || tolower (p[-1]) == 'p')
|
||
&& (*p == '-' || *p == '+'))
|
||
continue;
|
||
/* We will take any letters or digits, ignoring any embedded '_'.
|
||
parse_number will complain if past the radix, or if L or U are
|
||
not final. */
|
||
else if ((*p < '0' || *p > '9') && (*p != '_')
|
||
&& ((*p < 'a' || *p > 'z') && (*p < 'A' || *p > 'Z')))
|
||
break;
|
||
}
|
||
|
||
toktype = parse_number (par_state, tokstart, p - tokstart,
|
||
got_dot|got_e, &yylval);
|
||
if (toktype == ERROR)
|
||
{
|
||
char *err_copy = (char *) alloca (p - tokstart + 1);
|
||
|
||
memcpy (err_copy, tokstart, p - tokstart);
|
||
err_copy[p - tokstart] = 0;
|
||
error (_("Invalid number \"%s\"."), err_copy);
|
||
}
|
||
lexptr = p;
|
||
return toktype;
|
||
}
|
||
|
||
case '@':
|
||
{
|
||
const char *p = &tokstart[1];
|
||
size_t len = strlen ("entry");
|
||
|
||
while (isspace (*p))
|
||
p++;
|
||
if (strncmp (p, "entry", len) == 0 && !isalnum (p[len])
|
||
&& p[len] != '_')
|
||
{
|
||
lexptr = &p[len];
|
||
return ENTRY;
|
||
}
|
||
}
|
||
/* FALLTHRU */
|
||
case '+':
|
||
case '-':
|
||
case '*':
|
||
case '/':
|
||
case '%':
|
||
case '|':
|
||
case '&':
|
||
case '^':
|
||
case '~':
|
||
case '!':
|
||
case '<':
|
||
case '>':
|
||
case '?':
|
||
case ':':
|
||
case '=':
|
||
case '{':
|
||
case '}':
|
||
symbol:
|
||
lexptr++;
|
||
return c;
|
||
|
||
case '\'':
|
||
case '"':
|
||
case '`':
|
||
{
|
||
int host_len;
|
||
int result = parse_string_or_char (tokstart, &lexptr, &yylval.tsval,
|
||
&host_len);
|
||
if (result == CHARACTER_LITERAL)
|
||
{
|
||
if (host_len == 0)
|
||
error (_("Empty character constant."));
|
||
else if (host_len > 2 && c == '\'')
|
||
{
|
||
++tokstart;
|
||
namelen = lexptr - tokstart - 1;
|
||
goto tryname;
|
||
}
|
||
else if (host_len > 1)
|
||
error (_("Invalid character constant."));
|
||
}
|
||
return result;
|
||
}
|
||
}
|
||
|
||
if (!(c == '_' || c == '$'
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
|
||
/* We must have come across a bad character (e.g. ';'). */
|
||
error (_("Invalid character '%c' in expression"), c);
|
||
|
||
/* It's a name. See how long it is. */
|
||
namelen = 0;
|
||
for (c = tokstart[namelen];
|
||
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|
||
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));)
|
||
c = tokstart[++namelen];
|
||
|
||
/* The token "if" terminates the expression and is NOT
|
||
removed from the input stream. */
|
||
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
|
||
return 0;
|
||
|
||
/* For the same reason (breakpoint conditions), "thread N"
|
||
terminates the expression. "thread" could be an identifier, but
|
||
an identifier is never followed by a number without intervening
|
||
punctuation. "task" is similar. Handle abbreviations of these,
|
||
similarly to breakpoint.c:find_condition_and_thread. */
|
||
if (namelen >= 1
|
||
&& (strncmp (tokstart, "thread", namelen) == 0
|
||
|| strncmp (tokstart, "task", namelen) == 0)
|
||
&& (tokstart[namelen] == ' ' || tokstart[namelen] == '\t'))
|
||
{
|
||
const char *p = tokstart + namelen + 1;
|
||
|
||
while (*p == ' ' || *p == '\t')
|
||
p++;
|
||
if (*p >= '0' && *p <= '9')
|
||
return 0;
|
||
}
|
||
|
||
lexptr += namelen;
|
||
|
||
tryname:
|
||
|
||
yylval.sval.ptr = tokstart;
|
||
yylval.sval.length = namelen;
|
||
|
||
/* Catch specific keywords. */
|
||
copy = copy_name (yylval.sval);
|
||
for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
|
||
if (strcmp (copy, ident_tokens[i].oper) == 0)
|
||
{
|
||
/* It is ok to always set this, even though we don't always
|
||
strictly need to. */
|
||
yylval.opcode = ident_tokens[i].opcode;
|
||
return ident_tokens[i].token;
|
||
}
|
||
|
||
if (*tokstart == '$')
|
||
return DOLLAR_VARIABLE;
|
||
|
||
yylval.tsym.type
|
||
= language_lookup_primitive_type (parse_language (par_state),
|
||
parse_gdbarch (par_state), copy);
|
||
if (yylval.tsym.type != NULL)
|
||
return TYPENAME;
|
||
|
||
/* Input names that aren't symbols but ARE valid hex numbers,
|
||
when the input radix permits them, can be names or numbers
|
||
depending on the parse. Note we support radixes > 16 here. */
|
||
if ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|
||
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))
|
||
{
|
||
YYSTYPE newlval; /* Its value is ignored. */
|
||
int hextype = parse_number (par_state, tokstart, namelen, 0, &newlval);
|
||
if (hextype == INTEGER_LITERAL)
|
||
return NAME_OR_INT;
|
||
}
|
||
|
||
if (parse_completion && *lexptr == '\0')
|
||
saw_name_at_eof = 1;
|
||
|
||
return IDENTIFIER;
|
||
}
|
||
|
||
/* An object of this type is pushed on a FIFO by the "outer" lexer. */
|
||
typedef struct
|
||
{
|
||
int token;
|
||
YYSTYPE value;
|
||
} token_and_value;
|
||
|
||
DEF_VEC_O (token_and_value);
|
||
|
||
/* A FIFO of tokens that have been read but not yet returned to the
|
||
parser. */
|
||
static VEC (token_and_value) *token_fifo;
|
||
|
||
/* Non-zero if the lexer should return tokens from the FIFO. */
|
||
static int popping;
|
||
|
||
/* Temporary storage for yylex; this holds symbol names as they are
|
||
built up. */
|
||
static struct obstack name_obstack;
|
||
|
||
/* Classify an IDENTIFIER token. The contents of the token are in `yylval'.
|
||
Updates yylval and returns the new token type. BLOCK is the block
|
||
in which lookups start; this can be NULL to mean the global scope. */
|
||
|
||
static int
|
||
classify_name (struct parser_state *par_state, const struct block *block)
|
||
{
|
||
struct block_symbol sym;
|
||
char *copy;
|
||
struct field_of_this_result is_a_field_of_this;
|
||
|
||
copy = copy_name (yylval.sval);
|
||
|
||
sym = lookup_symbol (copy, block, VAR_DOMAIN, &is_a_field_of_this);
|
||
if (sym.symbol && SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF)
|
||
{
|
||
yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
|
||
return TYPENAME;
|
||
}
|
||
else if (sym.symbol == NULL)
|
||
{
|
||
/* Look-up first for a module name, then a type. */
|
||
sym = lookup_symbol (copy, block, MODULE_DOMAIN, NULL);
|
||
if (sym.symbol == NULL)
|
||
sym = lookup_symbol (copy, block, STRUCT_DOMAIN, NULL);
|
||
|
||
if (sym.symbol != NULL)
|
||
{
|
||
yylval.tsym.type = SYMBOL_TYPE (sym.symbol);
|
||
return TYPENAME;
|
||
}
|
||
|
||
return UNKNOWN_NAME;
|
||
}
|
||
|
||
return IDENTIFIER;
|
||
}
|
||
|
||
/* Like classify_name, but used by the inner loop of the lexer, when a
|
||
name might have already been seen. CONTEXT is the context type, or
|
||
NULL if this is the first component of a name. */
|
||
|
||
static int
|
||
classify_inner_name (struct parser_state *par_state,
|
||
const struct block *block, struct type *context)
|
||
{
|
||
struct type *type;
|
||
char *copy;
|
||
|
||
if (context == NULL)
|
||
return classify_name (par_state, block);
|
||
|
||
type = check_typedef (context);
|
||
if (!type_aggregate_p (type))
|
||
return ERROR;
|
||
|
||
copy = copy_name (yylval.ssym.stoken);
|
||
yylval.ssym.sym = d_lookup_nested_symbol (type, copy, block);
|
||
|
||
if (yylval.ssym.sym.symbol == NULL)
|
||
return ERROR;
|
||
|
||
if (SYMBOL_CLASS (yylval.ssym.sym.symbol) == LOC_TYPEDEF)
|
||
{
|
||
yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
|
||
return TYPENAME;
|
||
}
|
||
|
||
return IDENTIFIER;
|
||
}
|
||
|
||
/* The outer level of a two-level lexer. This calls the inner lexer
|
||
to return tokens. It then either returns these tokens, or
|
||
aggregates them into a larger token. This lets us work around a
|
||
problem in our parsing approach, where the parser could not
|
||
distinguish between qualified names and qualified types at the
|
||
right point. */
|
||
|
||
static int
|
||
yylex (void)
|
||
{
|
||
token_and_value current;
|
||
int last_was_dot;
|
||
struct type *context_type = NULL;
|
||
int last_to_examine, next_to_examine, checkpoint;
|
||
const struct block *search_block;
|
||
|
||
if (popping && !VEC_empty (token_and_value, token_fifo))
|
||
goto do_pop;
|
||
popping = 0;
|
||
|
||
/* Read the first token and decide what to do. */
|
||
current.token = lex_one_token (pstate);
|
||
if (current.token != IDENTIFIER && current.token != '.')
|
||
return current.token;
|
||
|
||
/* Read any sequence of alternating "." and identifier tokens into
|
||
the token FIFO. */
|
||
current.value = yylval;
|
||
VEC_safe_push (token_and_value, token_fifo, ¤t);
|
||
last_was_dot = current.token == '.';
|
||
|
||
while (1)
|
||
{
|
||
current.token = lex_one_token (pstate);
|
||
current.value = yylval;
|
||
VEC_safe_push (token_and_value, token_fifo, ¤t);
|
||
|
||
if ((last_was_dot && current.token != IDENTIFIER)
|
||
|| (!last_was_dot && current.token != '.'))
|
||
break;
|
||
|
||
last_was_dot = !last_was_dot;
|
||
}
|
||
popping = 1;
|
||
|
||
/* We always read one extra token, so compute the number of tokens
|
||
to examine accordingly. */
|
||
last_to_examine = VEC_length (token_and_value, token_fifo) - 2;
|
||
next_to_examine = 0;
|
||
|
||
current = *VEC_index (token_and_value, token_fifo, next_to_examine);
|
||
++next_to_examine;
|
||
|
||
/* If we are not dealing with a typename, now is the time to find out. */
|
||
if (current.token == IDENTIFIER)
|
||
{
|
||
yylval = current.value;
|
||
current.token = classify_name (pstate, expression_context_block);
|
||
current.value = yylval;
|
||
}
|
||
|
||
/* If the IDENTIFIER is not known, it could be a package symbol,
|
||
first try building up a name until we find the qualified module. */
|
||
if (current.token == UNKNOWN_NAME)
|
||
{
|
||
obstack_free (&name_obstack, obstack_base (&name_obstack));
|
||
obstack_grow (&name_obstack, current.value.sval.ptr,
|
||
current.value.sval.length);
|
||
|
||
last_was_dot = 0;
|
||
|
||
while (next_to_examine <= last_to_examine)
|
||
{
|
||
token_and_value *next;
|
||
|
||
next = VEC_index (token_and_value, token_fifo, next_to_examine);
|
||
++next_to_examine;
|
||
|
||
if (next->token == IDENTIFIER && last_was_dot)
|
||
{
|
||
/* Update the partial name we are constructing. */
|
||
obstack_grow_str (&name_obstack, ".");
|
||
obstack_grow (&name_obstack, next->value.sval.ptr,
|
||
next->value.sval.length);
|
||
|
||
yylval.sval.ptr = (char *) obstack_base (&name_obstack);
|
||
yylval.sval.length = obstack_object_size (&name_obstack);
|
||
|
||
current.token = classify_name (pstate, expression_context_block);
|
||
current.value = yylval;
|
||
|
||
/* We keep going until we find a TYPENAME. */
|
||
if (current.token == TYPENAME)
|
||
{
|
||
/* Install it as the first token in the FIFO. */
|
||
VEC_replace (token_and_value, token_fifo, 0, ¤t);
|
||
VEC_block_remove (token_and_value, token_fifo, 1,
|
||
next_to_examine - 1);
|
||
break;
|
||
}
|
||
}
|
||
else if (next->token == '.' && !last_was_dot)
|
||
last_was_dot = 1;
|
||
else
|
||
{
|
||
/* We've reached the end of the name. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Reset our current token back to the start, if we found nothing
|
||
this means that we will just jump to do pop. */
|
||
current = *VEC_index (token_and_value, token_fifo, 0);
|
||
next_to_examine = 1;
|
||
}
|
||
if (current.token != TYPENAME && current.token != '.')
|
||
goto do_pop;
|
||
|
||
obstack_free (&name_obstack, obstack_base (&name_obstack));
|
||
checkpoint = 0;
|
||
if (current.token == '.')
|
||
search_block = NULL;
|
||
else
|
||
{
|
||
gdb_assert (current.token == TYPENAME);
|
||
search_block = expression_context_block;
|
||
obstack_grow (&name_obstack, current.value.sval.ptr,
|
||
current.value.sval.length);
|
||
context_type = current.value.tsym.type;
|
||
checkpoint = 1;
|
||
}
|
||
|
||
last_was_dot = current.token == '.';
|
||
|
||
while (next_to_examine <= last_to_examine)
|
||
{
|
||
token_and_value *next;
|
||
|
||
next = VEC_index (token_and_value, token_fifo, next_to_examine);
|
||
++next_to_examine;
|
||
|
||
if (next->token == IDENTIFIER && last_was_dot)
|
||
{
|
||
int classification;
|
||
|
||
yylval = next->value;
|
||
classification = classify_inner_name (pstate, search_block,
|
||
context_type);
|
||
/* We keep going until we either run out of names, or until
|
||
we have a qualified name which is not a type. */
|
||
if (classification != TYPENAME && classification != IDENTIFIER)
|
||
break;
|
||
|
||
/* Accept up to this token. */
|
||
checkpoint = next_to_examine;
|
||
|
||
/* Update the partial name we are constructing. */
|
||
if (context_type != NULL)
|
||
{
|
||
/* We don't want to put a leading "." into the name. */
|
||
obstack_grow_str (&name_obstack, ".");
|
||
}
|
||
obstack_grow (&name_obstack, next->value.sval.ptr,
|
||
next->value.sval.length);
|
||
|
||
yylval.sval.ptr = (char *) obstack_base (&name_obstack);
|
||
yylval.sval.length = obstack_object_size (&name_obstack);
|
||
current.value = yylval;
|
||
current.token = classification;
|
||
|
||
last_was_dot = 0;
|
||
|
||
if (classification == IDENTIFIER)
|
||
break;
|
||
|
||
context_type = yylval.tsym.type;
|
||
}
|
||
else if (next->token == '.' && !last_was_dot)
|
||
last_was_dot = 1;
|
||
else
|
||
{
|
||
/* We've reached the end of the name. */
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we have a replacement token, install it as the first token in
|
||
the FIFO, and delete the other constituent tokens. */
|
||
if (checkpoint > 0)
|
||
{
|
||
VEC_replace (token_and_value, token_fifo, 0, ¤t);
|
||
if (checkpoint > 1)
|
||
VEC_block_remove (token_and_value, token_fifo, 1, checkpoint - 1);
|
||
}
|
||
|
||
do_pop:
|
||
current = *VEC_index (token_and_value, token_fifo, 0);
|
||
VEC_ordered_remove (token_and_value, token_fifo, 0);
|
||
yylval = current.value;
|
||
return current.token;
|
||
}
|
||
|
||
int
|
||
d_parse (struct parser_state *par_state)
|
||
{
|
||
int result;
|
||
struct cleanup *back_to;
|
||
|
||
/* Setting up the parser state. */
|
||
gdb_assert (par_state != NULL);
|
||
pstate = par_state;
|
||
|
||
back_to = make_cleanup (null_cleanup, NULL);
|
||
|
||
make_cleanup_restore_integer (&yydebug);
|
||
make_cleanup_clear_parser_state (&pstate);
|
||
yydebug = parser_debug;
|
||
|
||
/* Initialize some state used by the lexer. */
|
||
last_was_structop = 0;
|
||
saw_name_at_eof = 0;
|
||
|
||
VEC_free (token_and_value, token_fifo);
|
||
popping = 0;
|
||
obstack_init (&name_obstack);
|
||
make_cleanup_obstack_free (&name_obstack);
|
||
|
||
result = yyparse ();
|
||
do_cleanups (back_to);
|
||
return result;
|
||
}
|
||
|
||
void
|
||
yyerror (char *msg)
|
||
{
|
||
if (prev_lexptr)
|
||
lexptr = prev_lexptr;
|
||
|
||
error (_("A %s in expression, near `%s'."), (msg ? msg : "error"), lexptr);
|
||
}
|
||
|