mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-26 03:24:41 +08:00
93fe88b24c
gdbserver/ChangeLog: 2020-02-20 Tankut Baris Aktemur <tankut.baris.aktemur@intel.com> Turn process_stratum_target's {supports_}stopped_by_hw_breakpoint ops into methods of process_target. * target.h (struct process_stratum_target): Remove the target ops. (class process_target): Add the target ops. (target_stopped_by_hw_breakpoint): Update the macro. (target_supports_stopped_by_hw_breakpoint): Update the macro. * target.cc (process_target::stopped_by_hw_breakpoint): Define. (process_target::supports_stopped_by_hw_breakpoint): Define. Update the derived classes and callers below. * linux-low.cc (linux_target_ops): Update. (linux_stopped_by_hw_breakpoint): Turn into ... (linux_process_target::stopped_by_hw_breakpoint): ... this. (linux_supports_stopped_by_hw_breakpoint): Turn into ... (linux_process_target::supports_stopped_by_hw_breakpoint): ... this. * linux-low.h (class linux_process_target): Update. * lynx-low.cc (lynx_target_ops): Update. * nto-low.cc (nto_target_ops): Update. * win32-low.cc (win32_target_ops): Update.
728 lines
26 KiB
C++
728 lines
26 KiB
C++
/* Target operations for the remote server for GDB.
|
|
Copyright (C) 2002-2020 Free Software Foundation, Inc.
|
|
|
|
Contributed by MontaVista Software.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#ifndef GDBSERVER_TARGET_H
|
|
#define GDBSERVER_TARGET_H
|
|
|
|
#include <sys/types.h> /* for mode_t */
|
|
#include "target/target.h"
|
|
#include "target/resume.h"
|
|
#include "target/wait.h"
|
|
#include "target/waitstatus.h"
|
|
#include "mem-break.h"
|
|
#include "gdbsupport/btrace-common.h"
|
|
#include <vector>
|
|
|
|
struct emit_ops;
|
|
struct buffer;
|
|
struct process_info;
|
|
|
|
/* This structure describes how to resume a particular thread (or all
|
|
threads) based on the client's request. If thread is -1, then this
|
|
entry applies to all threads. These are passed around as an
|
|
array. */
|
|
|
|
struct thread_resume
|
|
{
|
|
ptid_t thread;
|
|
|
|
/* How to "resume". */
|
|
enum resume_kind kind;
|
|
|
|
/* If non-zero, send this signal when we resume, or to stop the
|
|
thread. If stopping a thread, and this is 0, the target should
|
|
stop the thread however it best decides to (e.g., SIGSTOP on
|
|
linux; SuspendThread on win32). This is a host signal value (not
|
|
enum gdb_signal). */
|
|
int sig;
|
|
|
|
/* Range to single step within. Valid only iff KIND is resume_step.
|
|
|
|
Single-step once, and then continuing stepping as long as the
|
|
thread stops in this range. (If the range is empty
|
|
[STEP_RANGE_START == STEP_RANGE_END], then this is a single-step
|
|
request.) */
|
|
CORE_ADDR step_range_start; /* Inclusive */
|
|
CORE_ADDR step_range_end; /* Exclusive */
|
|
};
|
|
|
|
class process_target;
|
|
|
|
/* GDBserver doesn't have a concept of strata like GDB, but we call
|
|
its target vector "process_stratum" anyway for the benefit of
|
|
shared code. */
|
|
struct process_stratum_target
|
|
{
|
|
/* Returns true if the target can do hardware single step. */
|
|
int (*supports_hardware_single_step) (void);
|
|
|
|
/* Returns 1 if target was stopped due to a watchpoint hit, 0 otherwise. */
|
|
|
|
int (*stopped_by_watchpoint) (void);
|
|
|
|
/* Returns the address associated with the watchpoint that hit, if any;
|
|
returns 0 otherwise. */
|
|
|
|
CORE_ADDR (*stopped_data_address) (void);
|
|
|
|
/* Reports the text, data offsets of the executable. This is
|
|
needed for uclinux where the executable is relocated during load
|
|
time. */
|
|
|
|
int (*read_offsets) (CORE_ADDR *text, CORE_ADDR *data);
|
|
|
|
/* Fetch the address associated with a specific thread local storage
|
|
area, determined by the specified THREAD, OFFSET, and LOAD_MODULE.
|
|
Stores it in *ADDRESS and returns zero on success; otherwise returns
|
|
an error code. A return value of -1 means this system does not
|
|
support the operation. */
|
|
|
|
int (*get_tls_address) (struct thread_info *thread, CORE_ADDR offset,
|
|
CORE_ADDR load_module, CORE_ADDR *address);
|
|
|
|
/* Fill BUF with an hostio error packet representing the last hostio
|
|
error. */
|
|
void (*hostio_last_error) (char *buf);
|
|
|
|
/* Read/Write OS data using qXfer packets. */
|
|
int (*qxfer_osdata) (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf, CORE_ADDR offset,
|
|
int len);
|
|
|
|
/* Read/Write extra signal info. */
|
|
int (*qxfer_siginfo) (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len);
|
|
|
|
int (*supports_non_stop) (void);
|
|
|
|
/* Enables async target events. Returns the previous enable
|
|
state. */
|
|
int (*async) (int enable);
|
|
|
|
/* Switch to non-stop (1) or all-stop (0) mode. Return 0 on
|
|
success, -1 otherwise. */
|
|
int (*start_non_stop) (int);
|
|
|
|
/* Returns true if the target supports multi-process debugging. */
|
|
int (*supports_multi_process) (void);
|
|
|
|
/* Returns true if fork events are supported. */
|
|
int (*supports_fork_events) (void);
|
|
|
|
/* Returns true if vfork events are supported. */
|
|
int (*supports_vfork_events) (void);
|
|
|
|
/* Returns true if exec events are supported. */
|
|
int (*supports_exec_events) (void);
|
|
|
|
/* Allows target to re-initialize connection-specific settings. */
|
|
void (*handle_new_gdb_connection) (void);
|
|
|
|
/* If not NULL, target-specific routine to process monitor command.
|
|
Returns 1 if handled, or 0 to perform default processing. */
|
|
int (*handle_monitor_command) (char *);
|
|
|
|
/* Returns the core given a thread, or -1 if not known. */
|
|
int (*core_of_thread) (ptid_t);
|
|
|
|
/* Read loadmaps. Read LEN bytes at OFFSET into a buffer at MYADDR. */
|
|
int (*read_loadmap) (const char *annex, CORE_ADDR offset,
|
|
unsigned char *myaddr, unsigned int len);
|
|
|
|
/* Target specific qSupported support. FEATURES is an array of
|
|
features with COUNT elements. */
|
|
void (*process_qsupported) (char **features, int count);
|
|
|
|
/* Return 1 if the target supports tracepoints, 0 (or leave the
|
|
callback NULL) otherwise. */
|
|
int (*supports_tracepoints) (void);
|
|
|
|
/* Read PC from REGCACHE. */
|
|
CORE_ADDR (*read_pc) (struct regcache *regcache);
|
|
|
|
/* Write PC to REGCACHE. */
|
|
void (*write_pc) (struct regcache *regcache, CORE_ADDR pc);
|
|
|
|
/* Return true if THREAD is known to be stopped now. */
|
|
int (*thread_stopped) (struct thread_info *thread);
|
|
|
|
/* Read Thread Information Block address. */
|
|
int (*get_tib_address) (ptid_t ptid, CORE_ADDR *address);
|
|
|
|
/* Pause all threads. If FREEZE, arrange for any resume attempt to
|
|
be ignored until an unpause_all call unfreezes threads again.
|
|
There can be nested calls to pause_all, so a freeze counter
|
|
should be maintained. */
|
|
void (*pause_all) (int freeze);
|
|
|
|
/* Unpause all threads. Threads that hadn't been resumed by the
|
|
client should be left stopped. Basically a pause/unpause call
|
|
pair should not end up resuming threads that were stopped before
|
|
the pause call. */
|
|
void (*unpause_all) (int unfreeze);
|
|
|
|
/* Stabilize all threads. That is, force them out of jump pads. */
|
|
void (*stabilize_threads) (void);
|
|
|
|
/* Install a fast tracepoint jump pad. TPOINT is the address of the
|
|
tracepoint internal object as used by the IPA agent. TPADDR is
|
|
the address of tracepoint. COLLECTOR is address of the function
|
|
the jump pad redirects to. LOCKADDR is the address of the jump
|
|
pad lock object. ORIG_SIZE is the size in bytes of the
|
|
instruction at TPADDR. JUMP_ENTRY points to the address of the
|
|
jump pad entry, and on return holds the address past the end of
|
|
the created jump pad. If a trampoline is created by the function,
|
|
then TRAMPOLINE and TRAMPOLINE_SIZE return the address and size of
|
|
the trampoline, else they remain unchanged. JJUMP_PAD_INSN is a
|
|
buffer containing a copy of the instruction at TPADDR.
|
|
ADJUST_INSN_ADDR and ADJUST_INSN_ADDR_END are output parameters that
|
|
return the address range where the instruction at TPADDR was relocated
|
|
to. If an error occurs, the ERR may be used to pass on an error
|
|
message. */
|
|
int (*install_fast_tracepoint_jump_pad) (CORE_ADDR tpoint, CORE_ADDR tpaddr,
|
|
CORE_ADDR collector,
|
|
CORE_ADDR lockaddr,
|
|
ULONGEST orig_size,
|
|
CORE_ADDR *jump_entry,
|
|
CORE_ADDR *trampoline,
|
|
ULONGEST *trampoline_size,
|
|
unsigned char *jjump_pad_insn,
|
|
ULONGEST *jjump_pad_insn_size,
|
|
CORE_ADDR *adjusted_insn_addr,
|
|
CORE_ADDR *adjusted_insn_addr_end,
|
|
char *err);
|
|
|
|
/* Return the bytecode operations vector for the current inferior.
|
|
Returns NULL if bytecode compilation is not supported. */
|
|
struct emit_ops *(*emit_ops) (void);
|
|
|
|
/* Returns true if the target supports disabling randomization. */
|
|
int (*supports_disable_randomization) (void);
|
|
|
|
/* Return the minimum length of an instruction that can be safely overwritten
|
|
for use as a fast tracepoint. */
|
|
int (*get_min_fast_tracepoint_insn_len) (void);
|
|
|
|
/* Read solib info on SVR4 platforms. */
|
|
int (*qxfer_libraries_svr4) (const char *annex, unsigned char *readbuf,
|
|
unsigned const char *writebuf,
|
|
CORE_ADDR offset, int len);
|
|
|
|
/* Return true if target supports debugging agent. */
|
|
int (*supports_agent) (void);
|
|
|
|
/* Enable branch tracing for PTID based on CONF and allocate a branch trace
|
|
target information struct for reading and for disabling branch trace. */
|
|
struct btrace_target_info *(*enable_btrace)
|
|
(ptid_t ptid, const struct btrace_config *conf);
|
|
|
|
/* Disable branch tracing.
|
|
Returns zero on success, non-zero otherwise. */
|
|
int (*disable_btrace) (struct btrace_target_info *tinfo);
|
|
|
|
/* Read branch trace data into buffer.
|
|
Return 0 on success; print an error message into BUFFER and return -1,
|
|
otherwise. */
|
|
int (*read_btrace) (struct btrace_target_info *, struct buffer *,
|
|
enum btrace_read_type type);
|
|
|
|
/* Read the branch trace configuration into BUFFER.
|
|
Return 0 on success; print an error message into BUFFER and return -1
|
|
otherwise. */
|
|
int (*read_btrace_conf) (const struct btrace_target_info *, struct buffer *);
|
|
|
|
/* Return true if target supports range stepping. */
|
|
int (*supports_range_stepping) (void);
|
|
|
|
/* Return the full absolute name of the executable file that was
|
|
run to create the process PID. If the executable file cannot
|
|
be determined, NULL is returned. Otherwise, a pointer to a
|
|
character string containing the pathname is returned. This
|
|
string should be copied into a buffer by the client if the string
|
|
will not be immediately used, or if it must persist. */
|
|
char *(*pid_to_exec_file) (int pid);
|
|
|
|
/* Multiple-filesystem-aware open. Like open(2), but operating in
|
|
the filesystem as it appears to process PID. Systems where all
|
|
processes share a common filesystem should set this to NULL.
|
|
If NULL, the caller should fall back to open(2). */
|
|
int (*multifs_open) (int pid, const char *filename,
|
|
int flags, mode_t mode);
|
|
|
|
/* Multiple-filesystem-aware unlink. Like unlink(2), but operates
|
|
in the filesystem as it appears to process PID. Systems where
|
|
all processes share a common filesystem should set this to NULL.
|
|
If NULL, the caller should fall back to unlink(2). */
|
|
int (*multifs_unlink) (int pid, const char *filename);
|
|
|
|
/* Multiple-filesystem-aware readlink. Like readlink(2), but
|
|
operating in the filesystem as it appears to process PID.
|
|
Systems where all processes share a common filesystem should
|
|
set this to NULL. If NULL, the caller should fall back to
|
|
readlink(2). */
|
|
ssize_t (*multifs_readlink) (int pid, const char *filename,
|
|
char *buf, size_t bufsiz);
|
|
|
|
/* Return the breakpoint kind for this target based on PC. The PCPTR is
|
|
adjusted to the real memory location in case a flag (e.g., the Thumb bit on
|
|
ARM) was present in the PC. */
|
|
int (*breakpoint_kind_from_pc) (CORE_ADDR *pcptr);
|
|
|
|
/* Return the software breakpoint from KIND. KIND can have target
|
|
specific meaning like the Z0 kind parameter.
|
|
SIZE is set to the software breakpoint's length in memory. */
|
|
const gdb_byte *(*sw_breakpoint_from_kind) (int kind, int *size);
|
|
|
|
/* Return the thread's name, or NULL if the target is unable to determine it.
|
|
The returned value must not be freed by the caller. */
|
|
const char *(*thread_name) (ptid_t thread);
|
|
|
|
/* Return the breakpoint kind for this target based on the current
|
|
processor state (e.g. the current instruction mode on ARM) and the
|
|
PC. The PCPTR is adjusted to the real memory location in case a flag
|
|
(e.g., the Thumb bit on ARM) is present in the PC. */
|
|
int (*breakpoint_kind_from_current_state) (CORE_ADDR *pcptr);
|
|
|
|
/* Returns true if the target can software single step. */
|
|
int (*supports_software_single_step) (void);
|
|
|
|
/* Return 1 if the target supports catch syscall, 0 (or leave the
|
|
callback NULL) otherwise. */
|
|
int (*supports_catch_syscall) (void);
|
|
|
|
/* Return tdesc index for IPA. */
|
|
int (*get_ipa_tdesc_idx) (void);
|
|
|
|
/* Thread ID to (numeric) thread handle: Return true on success and
|
|
false for failure. Return pointer to thread handle via HANDLE
|
|
and the handle's length via HANDLE_LEN. */
|
|
bool (*thread_handle) (ptid_t ptid, gdb_byte **handle, int *handle_len);
|
|
|
|
/* The object that will gradually replace this struct. */
|
|
process_target *pt;
|
|
};
|
|
|
|
class process_target
|
|
{
|
|
public:
|
|
|
|
virtual ~process_target () = default;
|
|
|
|
/* Start a new process.
|
|
|
|
PROGRAM is a path to the program to execute.
|
|
PROGRAM_ARGS is a standard NULL-terminated array of arguments,
|
|
to be passed to the inferior as ``argv'' (along with PROGRAM).
|
|
|
|
Returns the new PID on success, -1 on failure. Registers the new
|
|
process with the process list. */
|
|
virtual int create_inferior (const char *program,
|
|
const std::vector<char *> &program_args) = 0;
|
|
|
|
/* Do additional setup after a new process is created, including
|
|
exec-wrapper completion. */
|
|
virtual void post_create_inferior ();
|
|
|
|
/* Attach to a running process.
|
|
|
|
PID is the process ID to attach to, specified by the user
|
|
or a higher layer.
|
|
|
|
Returns -1 if attaching is unsupported, 0 on success, and calls
|
|
error() otherwise. */
|
|
virtual int attach (unsigned long pid) = 0;
|
|
|
|
/* Kill process PROC. Return -1 on failure, and 0 on success. */
|
|
virtual int kill (process_info *proc) = 0;
|
|
|
|
/* Detach from process PROC. Return -1 on failure, and 0 on
|
|
success. */
|
|
virtual int detach (process_info *proc) = 0;
|
|
|
|
/* The inferior process has died. Do what is right. */
|
|
virtual void mourn (process_info *proc) = 0;
|
|
|
|
/* Wait for process PID to exit. */
|
|
virtual void join (int pid) = 0;
|
|
|
|
/* Return true iff the thread with process ID PID is alive. */
|
|
virtual bool thread_alive (ptid_t pid) = 0;
|
|
|
|
/* Resume the inferior process. */
|
|
virtual void resume (thread_resume *resume_info, size_t n) = 0;
|
|
|
|
/* Wait for the inferior process or thread to change state. Store
|
|
status through argument pointer STATUS.
|
|
|
|
PTID = -1 to wait for any pid to do something, PTID(pid,0,0) to
|
|
wait for any thread of process pid to do something. Return ptid
|
|
of child, or -1 in case of error; store status through argument
|
|
pointer STATUS. OPTIONS is a bit set of options defined as
|
|
TARGET_W* above. If options contains TARGET_WNOHANG and there's
|
|
no child stop to report, return is
|
|
null_ptid/TARGET_WAITKIND_IGNORE. */
|
|
virtual ptid_t wait (ptid_t ptid, target_waitstatus *status,
|
|
int options) = 0;
|
|
|
|
/* Fetch registers from the inferior process.
|
|
|
|
If REGNO is -1, fetch all registers; otherwise, fetch at least REGNO. */
|
|
virtual void fetch_registers (regcache *regcache, int regno) = 0;
|
|
|
|
/* Store registers to the inferior process.
|
|
|
|
If REGNO is -1, store all registers; otherwise, store at least REGNO. */
|
|
virtual void store_registers (regcache *regcache, int regno) = 0;
|
|
|
|
/* Prepare to read or write memory from the inferior process.
|
|
Targets use this to do what is necessary to get the state of the
|
|
inferior such that it is possible to access memory.
|
|
|
|
This should generally only be called from client facing routines,
|
|
such as gdb_read_memory/gdb_write_memory, or the GDB breakpoint
|
|
insertion routine.
|
|
|
|
Like `read_memory' and `write_memory' below, returns 0 on success
|
|
and errno on failure. */
|
|
virtual int prepare_to_access_memory ();
|
|
|
|
/* Undo the effects of prepare_to_access_memory. */
|
|
virtual void done_accessing_memory ();
|
|
|
|
/* Read memory from the inferior process. This should generally be
|
|
called through read_inferior_memory, which handles breakpoint shadowing.
|
|
|
|
Read LEN bytes at MEMADDR into a buffer at MYADDR.
|
|
|
|
Returns 0 on success and errno on failure. */
|
|
virtual int read_memory (CORE_ADDR memaddr, unsigned char *myaddr,
|
|
int len) = 0;
|
|
|
|
/* Write memory to the inferior process. This should generally be
|
|
called through target_write_memory, which handles breakpoint shadowing.
|
|
|
|
Write LEN bytes from the buffer at MYADDR to MEMADDR.
|
|
|
|
Returns 0 on success and errno on failure. */
|
|
virtual int write_memory (CORE_ADDR memaddr, const unsigned char *myaddr,
|
|
int len) = 0;
|
|
|
|
/* Query GDB for the values of any symbols we're interested in.
|
|
This function is called whenever we receive a "qSymbols::"
|
|
query, which corresponds to every time more symbols (might)
|
|
become available. */
|
|
virtual void look_up_symbols ();
|
|
|
|
/* Send an interrupt request to the inferior process,
|
|
however is appropriate. */
|
|
virtual void request_interrupt () = 0;
|
|
|
|
/* Return true if the read_auxv target op is supported. */
|
|
virtual bool supports_read_auxv ();
|
|
|
|
/* Read auxiliary vector data from the inferior process.
|
|
|
|
Read LEN bytes at OFFSET into a buffer at MYADDR. */
|
|
virtual int read_auxv (CORE_ADDR offset, unsigned char *myaddr,
|
|
unsigned int len);
|
|
|
|
/* Returns true if GDB Z breakpoint type TYPE is supported, false
|
|
otherwise. The type is coded as follows:
|
|
'0' - software-breakpoint
|
|
'1' - hardware-breakpoint
|
|
'2' - write watchpoint
|
|
'3' - read watchpoint
|
|
'4' - access watchpoint
|
|
*/
|
|
virtual bool supports_z_point_type (char z_type);
|
|
|
|
/* Insert and remove a break or watchpoint.
|
|
Returns 0 on success, -1 on failure and 1 on unsupported. */
|
|
virtual int insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, raw_breakpoint *bp);
|
|
|
|
virtual int remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
|
|
int size, raw_breakpoint *bp);
|
|
|
|
/* Returns true if the target stopped because it executed a software
|
|
breakpoint instruction, false otherwise. */
|
|
virtual bool stopped_by_sw_breakpoint ();
|
|
|
|
/* Returns true if the target knows whether a trap was caused by a
|
|
SW breakpoint triggering. */
|
|
virtual bool supports_stopped_by_sw_breakpoint ();
|
|
|
|
/* Returns true if the target stopped for a hardware breakpoint. */
|
|
virtual bool stopped_by_hw_breakpoint ();
|
|
|
|
/* Returns true if the target knows whether a trap was caused by a
|
|
HW breakpoint triggering. */
|
|
virtual bool supports_stopped_by_hw_breakpoint ();
|
|
};
|
|
|
|
extern process_stratum_target *the_target;
|
|
|
|
void set_target_ops (process_stratum_target *);
|
|
|
|
#define target_create_inferior(program, program_args) \
|
|
the_target->pt->create_inferior (program, program_args)
|
|
|
|
#define target_post_create_inferior() \
|
|
the_target->pt->post_create_inferior ()
|
|
|
|
#define myattach(pid) \
|
|
the_target->pt->attach (pid)
|
|
|
|
int kill_inferior (process_info *proc);
|
|
|
|
#define target_supports_fork_events() \
|
|
(the_target->supports_fork_events ? \
|
|
(*the_target->supports_fork_events) () : 0)
|
|
|
|
#define target_supports_vfork_events() \
|
|
(the_target->supports_vfork_events ? \
|
|
(*the_target->supports_vfork_events) () : 0)
|
|
|
|
#define target_supports_exec_events() \
|
|
(the_target->supports_exec_events ? \
|
|
(*the_target->supports_exec_events) () : 0)
|
|
|
|
#define target_handle_new_gdb_connection() \
|
|
do \
|
|
{ \
|
|
if (the_target->handle_new_gdb_connection != NULL) \
|
|
(*the_target->handle_new_gdb_connection) (); \
|
|
} while (0)
|
|
|
|
#define detach_inferior(proc) \
|
|
the_target->pt->detach (proc)
|
|
|
|
#define mythread_alive(pid) \
|
|
the_target->pt->thread_alive (pid)
|
|
|
|
#define fetch_inferior_registers(regcache, regno) \
|
|
the_target->pt->fetch_registers (regcache, regno)
|
|
|
|
#define store_inferior_registers(regcache, regno) \
|
|
the_target->pt->store_registers (regcache, regno)
|
|
|
|
#define join_inferior(pid) \
|
|
the_target->pt->join (pid)
|
|
|
|
#define target_supports_non_stop() \
|
|
(the_target->supports_non_stop ? (*the_target->supports_non_stop ) () : 0)
|
|
|
|
#define target_async(enable) \
|
|
(the_target->async ? (*the_target->async) (enable) : 0)
|
|
|
|
#define target_process_qsupported(features, count) \
|
|
do \
|
|
{ \
|
|
if (the_target->process_qsupported) \
|
|
the_target->process_qsupported (features, count); \
|
|
} while (0)
|
|
|
|
#define target_supports_catch_syscall() \
|
|
(the_target->supports_catch_syscall ? \
|
|
(*the_target->supports_catch_syscall) () : 0)
|
|
|
|
#define target_get_ipa_tdesc_idx() \
|
|
(the_target->get_ipa_tdesc_idx \
|
|
? (*the_target->get_ipa_tdesc_idx) () : 0)
|
|
|
|
#define target_supports_tracepoints() \
|
|
(the_target->supports_tracepoints \
|
|
? (*the_target->supports_tracepoints) () : 0)
|
|
|
|
#define target_supports_fast_tracepoints() \
|
|
(the_target->install_fast_tracepoint_jump_pad != NULL)
|
|
|
|
#define target_get_min_fast_tracepoint_insn_len() \
|
|
(the_target->get_min_fast_tracepoint_insn_len \
|
|
? (*the_target->get_min_fast_tracepoint_insn_len) () : 0)
|
|
|
|
#define thread_stopped(thread) \
|
|
(*the_target->thread_stopped) (thread)
|
|
|
|
#define pause_all(freeze) \
|
|
do \
|
|
{ \
|
|
if (the_target->pause_all) \
|
|
(*the_target->pause_all) (freeze); \
|
|
} while (0)
|
|
|
|
#define unpause_all(unfreeze) \
|
|
do \
|
|
{ \
|
|
if (the_target->unpause_all) \
|
|
(*the_target->unpause_all) (unfreeze); \
|
|
} while (0)
|
|
|
|
#define stabilize_threads() \
|
|
do \
|
|
{ \
|
|
if (the_target->stabilize_threads) \
|
|
(*the_target->stabilize_threads) (); \
|
|
} while (0)
|
|
|
|
#define install_fast_tracepoint_jump_pad(tpoint, tpaddr, \
|
|
collector, lockaddr, \
|
|
orig_size, \
|
|
jump_entry, \
|
|
trampoline, trampoline_size, \
|
|
jjump_pad_insn, \
|
|
jjump_pad_insn_size, \
|
|
adjusted_insn_addr, \
|
|
adjusted_insn_addr_end, \
|
|
err) \
|
|
(*the_target->install_fast_tracepoint_jump_pad) (tpoint, tpaddr, \
|
|
collector,lockaddr, \
|
|
orig_size, jump_entry, \
|
|
trampoline, \
|
|
trampoline_size, \
|
|
jjump_pad_insn, \
|
|
jjump_pad_insn_size, \
|
|
adjusted_insn_addr, \
|
|
adjusted_insn_addr_end, \
|
|
err)
|
|
|
|
#define target_emit_ops() \
|
|
(the_target->emit_ops ? (*the_target->emit_ops) () : NULL)
|
|
|
|
#define target_supports_disable_randomization() \
|
|
(the_target->supports_disable_randomization ? \
|
|
(*the_target->supports_disable_randomization) () : 0)
|
|
|
|
#define target_supports_agent() \
|
|
(the_target->supports_agent ? \
|
|
(*the_target->supports_agent) () : 0)
|
|
|
|
static inline struct btrace_target_info *
|
|
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
|
|
{
|
|
if (the_target->enable_btrace == nullptr)
|
|
error (_("Target does not support branch tracing."));
|
|
|
|
return (*the_target->enable_btrace) (ptid, conf);
|
|
}
|
|
|
|
static inline int
|
|
target_disable_btrace (struct btrace_target_info *tinfo)
|
|
{
|
|
if (the_target->disable_btrace == nullptr)
|
|
error (_("Target does not support branch tracing."));
|
|
|
|
return (*the_target->disable_btrace) (tinfo);
|
|
}
|
|
|
|
static inline int
|
|
target_read_btrace (struct btrace_target_info *tinfo,
|
|
struct buffer *buffer,
|
|
enum btrace_read_type type)
|
|
{
|
|
if (the_target->read_btrace == nullptr)
|
|
error (_("Target does not support branch tracing."));
|
|
|
|
return (*the_target->read_btrace) (tinfo, buffer, type);
|
|
}
|
|
|
|
static inline int
|
|
target_read_btrace_conf (struct btrace_target_info *tinfo,
|
|
struct buffer *buffer)
|
|
{
|
|
if (the_target->read_btrace_conf == nullptr)
|
|
error (_("Target does not support branch tracing."));
|
|
|
|
return (*the_target->read_btrace_conf) (tinfo, buffer);
|
|
}
|
|
|
|
#define target_supports_range_stepping() \
|
|
(the_target->supports_range_stepping ? \
|
|
(*the_target->supports_range_stepping) () : 0)
|
|
|
|
#define target_supports_stopped_by_sw_breakpoint() \
|
|
the_target->pt->supports_stopped_by_sw_breakpoint ()
|
|
|
|
#define target_stopped_by_sw_breakpoint() \
|
|
the_target->pt->stopped_by_sw_breakpoint ()
|
|
|
|
#define target_supports_stopped_by_hw_breakpoint() \
|
|
the_target->pt->supports_stopped_by_hw_breakpoint ()
|
|
|
|
#define target_supports_hardware_single_step() \
|
|
(the_target->supports_hardware_single_step ? \
|
|
(*the_target->supports_hardware_single_step) () : 0)
|
|
|
|
#define target_stopped_by_hw_breakpoint() \
|
|
the_target->pt->stopped_by_hw_breakpoint ()
|
|
|
|
#define target_breakpoint_kind_from_pc(pcptr) \
|
|
(the_target->breakpoint_kind_from_pc \
|
|
? (*the_target->breakpoint_kind_from_pc) (pcptr) \
|
|
: default_breakpoint_kind_from_pc (pcptr))
|
|
|
|
#define target_breakpoint_kind_from_current_state(pcptr) \
|
|
(the_target->breakpoint_kind_from_current_state \
|
|
? (*the_target->breakpoint_kind_from_current_state) (pcptr) \
|
|
: target_breakpoint_kind_from_pc (pcptr))
|
|
|
|
#define target_supports_software_single_step() \
|
|
(the_target->supports_software_single_step ? \
|
|
(*the_target->supports_software_single_step) () : 0)
|
|
|
|
/* Start non-stop mode, returns 0 on success, -1 on failure. */
|
|
|
|
int start_non_stop (int nonstop);
|
|
|
|
ptid_t mywait (ptid_t ptid, struct target_waitstatus *ourstatus, int options,
|
|
int connected_wait);
|
|
|
|
/* Prepare to read or write memory from the inferior process. See the
|
|
corresponding process_stratum_target methods for more details. */
|
|
|
|
int prepare_to_access_memory (void);
|
|
void done_accessing_memory (void);
|
|
|
|
#define target_core_of_thread(ptid) \
|
|
(the_target->core_of_thread ? (*the_target->core_of_thread) (ptid) \
|
|
: -1)
|
|
|
|
#define target_thread_name(ptid) \
|
|
(the_target->thread_name ? (*the_target->thread_name) (ptid) \
|
|
: NULL)
|
|
|
|
#define target_thread_handle(ptid, handle, handle_len) \
|
|
(the_target->thread_handle ? (*the_target->thread_handle) \
|
|
(ptid, handle, handle_len) \
|
|
: false)
|
|
|
|
int read_inferior_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len);
|
|
|
|
int set_desired_thread ();
|
|
|
|
const char *target_pid_to_str (ptid_t);
|
|
|
|
int target_can_do_hardware_single_step (void);
|
|
|
|
int default_breakpoint_kind_from_pc (CORE_ADDR *pcptr);
|
|
|
|
#endif /* GDBSERVER_TARGET_H */
|