mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
af969b14ae
This largely mechanical patch is preparation for a followup patch. For quite some time I've thought that it would be useful to call elf_backend_size_dynamic_sections even when no dynamic objects are seen by the linker. That's what this patch does, with some renaming. There are no functional changes to the linker, just a move of the dynobj test in bfd_elf_size_dynamic_sections to target backend functions, replacing the asserts/aborts already there. No doubt some of the current always_size_sections functions could be moved to size_dynamic_sections but I haven't made that change. Because both hooks are now always called, I have renamed always_size_sections to early_size_sections and size_dynamic_sections to late_size_sections. I condisdered calling late_size_sections plain size_sections, since this is the usual target dynamic section sizing hook, but decided that searching the sources for "size_sections" would then hit early_size_sections and other functions.
4777 lines
134 KiB
C
4777 lines
134 KiB
C
/* KVX-specific support for NN-bit ELF.
|
|
Copyright (C) 2009-2024 Free Software Foundation, Inc.
|
|
Contributed by Kalray SA.
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; see the file COPYING3. If not,
|
|
see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "sysdep.h"
|
|
#include "bfd.h"
|
|
#include "libiberty.h"
|
|
#include "libbfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "bfdlink.h"
|
|
#include "objalloc.h"
|
|
#include "elf/kvx.h"
|
|
#include "elfxx-kvx.h"
|
|
|
|
#define ARCH_SIZE NN
|
|
|
|
#if ARCH_SIZE == 64
|
|
#define LOG_FILE_ALIGN 3
|
|
#endif
|
|
|
|
#if ARCH_SIZE == 32
|
|
#define LOG_FILE_ALIGN 2
|
|
#endif
|
|
|
|
#define IS_KVX_TLS_RELOC(R_TYPE) \
|
|
((R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LE_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LE_EX6 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_IE_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_IE_EX6 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_GD_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_GD_EX6 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S37_TLS_LD_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_LO10 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_UP27 \
|
|
|| (R_TYPE) == BFD_RELOC_KVX_S43_TLS_LD_EX6 \
|
|
)
|
|
|
|
#define IS_KVX_TLS_RELAX_RELOC(R_TYPE) 0
|
|
|
|
#define ELIMINATE_COPY_RELOCS 0
|
|
|
|
/* Return size of a relocation entry. HTAB is the bfd's
|
|
elf_kvx_link_hash_entry. */
|
|
#define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela))
|
|
|
|
/* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */
|
|
#define GOT_ENTRY_SIZE (ARCH_SIZE / 8)
|
|
#define PLT_ENTRY_SIZE (32)
|
|
|
|
#define PLT_SMALL_ENTRY_SIZE (4*4)
|
|
|
|
/* Encoding of the nop instruction */
|
|
#define INSN_NOP 0x00f0037f
|
|
|
|
#define kvx_compute_jump_table_size(htab) \
|
|
(((htab)->root.srelplt == NULL) ? 0 \
|
|
: (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE)
|
|
|
|
static const bfd_byte elfNN_kvx_small_plt0_entry[PLT_ENTRY_SIZE] =
|
|
{
|
|
/* FIXME KVX: no first entry, not used yet */
|
|
0
|
|
};
|
|
|
|
/* Per function entry in a procedure linkage table looks like this
|
|
if the distance between the PLTGOT and the PLT is < 4GB use
|
|
these PLT entries. */
|
|
static const bfd_byte elfNN_kvx_small_plt_entry[PLT_SMALL_ENTRY_SIZE] =
|
|
{
|
|
0x10, 0x00, 0xc4, 0x0f, /* get $r16 = $pc ;; */
|
|
#if ARCH_SIZE == 32
|
|
0x10, 0x00, 0x40, 0xb0, /* lwz $r16 = 0[$r16] ;; */
|
|
#else
|
|
0x10, 0x00, 0x40, 0xb8, /* ld $r16 = 0[$r16] ;; */
|
|
#endif
|
|
0x00, 0x00, 0x00, 0x18, /* upper 27 bits for LSU */
|
|
0x10, 0x00, 0xd8, 0x0f, /* igoto $r16 ;; */
|
|
};
|
|
|
|
/* Long stub use 43bits format of make. */
|
|
static const uint32_t elfNN_kvx_long_branch_stub[] =
|
|
{
|
|
0xe0400000, /* make $r16 = LO10<emm43> EX6<imm43> */
|
|
0x00000000, /* UP27<imm43> ;; */
|
|
0x0fd80010, /* igoto "r16 ;; */
|
|
};
|
|
|
|
#define elf_info_to_howto elfNN_kvx_info_to_howto
|
|
#define elf_info_to_howto_rel elfNN_kvx_info_to_howto
|
|
|
|
#define KVX_ELF_ABI_VERSION 0
|
|
|
|
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
|
|
#define ALL_ONES (~ (bfd_vma) 0)
|
|
|
|
/* Indexed by the bfd interal reloc enumerators.
|
|
Therefore, the table needs to be synced with BFD_RELOC_KVX_*
|
|
in reloc.c. */
|
|
|
|
#define KVX_KV3_V1_KV3_V2_KV4_V1
|
|
#include "elfxx-kvx-relocs.h"
|
|
#undef KVX_KV3_V1_KV3_V2_KV4_V1
|
|
|
|
/* Given HOWTO, return the bfd internal relocation enumerator. */
|
|
|
|
static bfd_reloc_code_real_type
|
|
elfNN_kvx_bfd_reloc_from_howto (reloc_howto_type *howto)
|
|
{
|
|
const int size = (int) ARRAY_SIZE (elf_kvx_howto_table);
|
|
const ptrdiff_t offset = howto - elf_kvx_howto_table;
|
|
|
|
if (offset >= 0 && offset < size)
|
|
return BFD_RELOC_KVX_RELOC_START + offset + 1;
|
|
|
|
return BFD_RELOC_KVX_RELOC_START + 1;
|
|
}
|
|
|
|
/* Given R_TYPE, return the bfd internal relocation enumerator. */
|
|
|
|
static bfd_reloc_code_real_type
|
|
elfNN_kvx_bfd_reloc_from_type (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type)
|
|
{
|
|
static bool initialized_p = false;
|
|
/* Indexed by R_TYPE, values are offsets in the howto_table. */
|
|
static unsigned int offsets[R_KVX_end];
|
|
|
|
if (!initialized_p)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i)
|
|
offsets[elf_kvx_howto_table[i].type] = i;
|
|
|
|
initialized_p = true;
|
|
}
|
|
|
|
/* PR 17512: file: b371e70a. */
|
|
if (r_type >= R_KVX_end)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return BFD_RELOC_KVX_RELOC_END;
|
|
}
|
|
|
|
return (BFD_RELOC_KVX_RELOC_START + 1) + offsets[r_type];
|
|
}
|
|
|
|
struct elf_kvx_reloc_map
|
|
{
|
|
bfd_reloc_code_real_type from;
|
|
bfd_reloc_code_real_type to;
|
|
};
|
|
|
|
/* Map bfd generic reloc to KVX-specific reloc. */
|
|
static const struct elf_kvx_reloc_map elf_kvx_reloc_map[] =
|
|
{
|
|
{BFD_RELOC_NONE, BFD_RELOC_KVX_NONE},
|
|
|
|
/* Basic data relocations. */
|
|
{BFD_RELOC_CTOR, BFD_RELOC_KVX_NN},
|
|
{BFD_RELOC_64, BFD_RELOC_KVX_64},
|
|
{BFD_RELOC_32, BFD_RELOC_KVX_32},
|
|
{BFD_RELOC_16, BFD_RELOC_KVX_16},
|
|
{BFD_RELOC_8, BFD_RELOC_KVX_8},
|
|
|
|
{BFD_RELOC_64_PCREL, BFD_RELOC_KVX_64_PCREL},
|
|
{BFD_RELOC_32_PCREL, BFD_RELOC_KVX_32_PCREL},
|
|
};
|
|
|
|
/* Given the bfd internal relocation enumerator in CODE, return the
|
|
corresponding howto entry. */
|
|
|
|
static reloc_howto_type *
|
|
elfNN_kvx_howto_from_bfd_reloc (bfd_reloc_code_real_type code)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Convert bfd generic reloc to KVX-specific reloc. */
|
|
if (code < BFD_RELOC_KVX_RELOC_START || code > BFD_RELOC_KVX_RELOC_END)
|
|
for (i = 0; i < ARRAY_SIZE (elf_kvx_reloc_map) ; i++)
|
|
if (elf_kvx_reloc_map[i].from == code)
|
|
{
|
|
code = elf_kvx_reloc_map[i].to;
|
|
break;
|
|
}
|
|
|
|
if (code > BFD_RELOC_KVX_RELOC_START && code < BFD_RELOC_KVX_RELOC_END)
|
|
return &elf_kvx_howto_table[code - (BFD_RELOC_KVX_RELOC_START + 1)];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
elfNN_kvx_howto_from_type (bfd *abfd, unsigned int r_type)
|
|
{
|
|
bfd_reloc_code_real_type val;
|
|
reloc_howto_type *howto;
|
|
|
|
#if ARCH_SIZE == 32
|
|
if (r_type > 256)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
val = elfNN_kvx_bfd_reloc_from_type (abfd, r_type);
|
|
howto = elfNN_kvx_howto_from_bfd_reloc (val);
|
|
|
|
if (howto != NULL)
|
|
return howto;
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return NULL;
|
|
}
|
|
|
|
static bool
|
|
elfNN_kvx_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc,
|
|
Elf_Internal_Rela *elf_reloc)
|
|
{
|
|
unsigned int r_type;
|
|
|
|
r_type = ELFNN_R_TYPE (elf_reloc->r_info);
|
|
bfd_reloc->howto = elfNN_kvx_howto_from_type (abfd, r_type);
|
|
|
|
if (bfd_reloc->howto == NULL)
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: unsupported relocation type %#x"),
|
|
abfd, r_type);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
elfNN_kvx_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type code)
|
|
{
|
|
reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (code);
|
|
|
|
if (howto != NULL)
|
|
return howto;
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return NULL;
|
|
}
|
|
|
|
static reloc_howto_type *
|
|
elfNN_kvx_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
|
const char *r_name)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE (elf_kvx_howto_table); ++i)
|
|
if (elf_kvx_howto_table[i].name != NULL
|
|
&& strcasecmp (elf_kvx_howto_table[i].name, r_name) == 0)
|
|
return &elf_kvx_howto_table[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define TARGET_LITTLE_SYM kvx_elfNN_vec
|
|
#define TARGET_LITTLE_NAME "elfNN-kvx"
|
|
|
|
/* The linker script knows the section names for placement.
|
|
The entry_names are used to do simple name mangling on the stubs.
|
|
Given a function name, and its type, the stub can be found. The
|
|
name can be changed. The only requirement is the %s be present. */
|
|
#define STUB_ENTRY_NAME "__%s_veneer"
|
|
|
|
/* The name of the dynamic interpreter. This is put in the .interp
|
|
section. */
|
|
#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
|
|
|
|
|
|
/* PCREL 27 is signed-extended and scaled by 4 */
|
|
#define KVX_MAX_FWD_CALL_OFFSET \
|
|
(((1 << 26) - 1) << 2)
|
|
#define KVX_MAX_BWD_CALL_OFFSET \
|
|
(-((1 << 26) << 2))
|
|
|
|
/* Check that the destination of the call is within the PCREL27
|
|
range. */
|
|
static int
|
|
kvx_valid_call_p (bfd_vma value, bfd_vma place)
|
|
{
|
|
bfd_signed_vma offset = (bfd_signed_vma) (value - place);
|
|
return (offset <= KVX_MAX_FWD_CALL_OFFSET
|
|
&& offset >= KVX_MAX_BWD_CALL_OFFSET);
|
|
}
|
|
|
|
/* Section name for stubs is the associated section name plus this
|
|
string. */
|
|
#define STUB_SUFFIX ".stub"
|
|
|
|
enum elf_kvx_stub_type
|
|
{
|
|
kvx_stub_none,
|
|
kvx_stub_long_branch,
|
|
};
|
|
|
|
struct elf_kvx_stub_hash_entry
|
|
{
|
|
/* Base hash table entry structure. */
|
|
struct bfd_hash_entry root;
|
|
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
|
|
/* Offset within stub_sec of the beginning of this stub. */
|
|
bfd_vma stub_offset;
|
|
|
|
/* Given the symbol's value and its section we can determine its final
|
|
value when building the stubs (so the stub knows where to jump). */
|
|
bfd_vma target_value;
|
|
asection *target_section;
|
|
|
|
enum elf_kvx_stub_type stub_type;
|
|
|
|
/* The symbol table entry, if any, that this was derived from. */
|
|
struct elf_kvx_link_hash_entry *h;
|
|
|
|
/* Destination symbol type */
|
|
unsigned char st_type;
|
|
|
|
/* Where this stub is being called from, or, in the case of combined
|
|
stub sections, the first input section in the group. */
|
|
asection *id_sec;
|
|
|
|
/* The name for the local symbol at the start of this stub. The
|
|
stub name in the hash table has to be unique; this does not, so
|
|
it can be friendlier. */
|
|
char *output_name;
|
|
};
|
|
|
|
/* Used to build a map of a section. This is required for mixed-endian
|
|
code/data. */
|
|
|
|
typedef struct elf_elf_section_map
|
|
{
|
|
bfd_vma vma;
|
|
char type;
|
|
}
|
|
elf_kvx_section_map;
|
|
|
|
|
|
typedef struct _kvx_elf_section_data
|
|
{
|
|
struct bfd_elf_section_data elf;
|
|
unsigned int mapcount;
|
|
unsigned int mapsize;
|
|
elf_kvx_section_map *map;
|
|
}
|
|
_kvx_elf_section_data;
|
|
|
|
#define elf_kvx_section_data(sec) \
|
|
((_kvx_elf_section_data *) elf_section_data (sec))
|
|
|
|
struct elf_kvx_local_symbol
|
|
{
|
|
unsigned int got_type;
|
|
bfd_signed_vma got_refcount;
|
|
bfd_vma got_offset;
|
|
};
|
|
|
|
struct elf_kvx_obj_tdata
|
|
{
|
|
struct elf_obj_tdata root;
|
|
|
|
/* local symbol descriptors */
|
|
struct elf_kvx_local_symbol *locals;
|
|
|
|
/* Zero to warn when linking objects with incompatible enum sizes. */
|
|
int no_enum_size_warning;
|
|
|
|
/* Zero to warn when linking objects with incompatible wchar_t sizes. */
|
|
int no_wchar_size_warning;
|
|
};
|
|
|
|
#define elf_kvx_tdata(bfd) \
|
|
((struct elf_kvx_obj_tdata *) (bfd)->tdata.any)
|
|
|
|
#define elf_kvx_locals(bfd) (elf_kvx_tdata (bfd)->locals)
|
|
|
|
#define is_kvx_elf(bfd) \
|
|
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
|
&& elf_tdata (bfd) != NULL \
|
|
&& elf_object_id (bfd) == KVX_ELF_DATA)
|
|
|
|
static bool
|
|
elfNN_kvx_mkobject (bfd *abfd)
|
|
{
|
|
return bfd_elf_allocate_object (abfd, sizeof (struct elf_kvx_obj_tdata),
|
|
KVX_ELF_DATA);
|
|
}
|
|
|
|
#define elf_kvx_hash_entry(ent) \
|
|
((struct elf_kvx_link_hash_entry *)(ent))
|
|
|
|
#define GOT_UNKNOWN 0
|
|
#define GOT_NORMAL 1
|
|
|
|
#define GOT_TLS_GD 2
|
|
#define GOT_TLS_IE 4
|
|
#define GOT_TLS_LD 8
|
|
|
|
/* KVX ELF linker hash entry. */
|
|
struct elf_kvx_link_hash_entry
|
|
{
|
|
struct elf_link_hash_entry root;
|
|
|
|
/* Since PLT entries have variable size, we need to record the
|
|
index into .got.plt instead of recomputing it from the PLT
|
|
offset. */
|
|
bfd_signed_vma plt_got_offset;
|
|
|
|
/* Bit mask representing the type of GOT entry(s) if any required by
|
|
this symbol. */
|
|
unsigned int got_type;
|
|
|
|
/* A pointer to the most recently used stub hash entry against this
|
|
symbol. */
|
|
struct elf_kvx_stub_hash_entry *stub_cache;
|
|
};
|
|
|
|
/* Get the KVX elf linker hash table from a link_info structure. */
|
|
#define elf_kvx_hash_table(info) \
|
|
((struct elf_kvx_link_hash_table *) ((info)->hash))
|
|
|
|
#define kvx_stub_hash_lookup(table, string, create, copy) \
|
|
((struct elf_kvx_stub_hash_entry *) \
|
|
bfd_hash_lookup ((table), (string), (create), (copy)))
|
|
|
|
/* KVX ELF linker hash table. */
|
|
struct elf_kvx_link_hash_table
|
|
{
|
|
/* The main hash table. */
|
|
struct elf_link_hash_table root;
|
|
|
|
/* Nonzero to force PIC branch veneers. */
|
|
int pic_veneer;
|
|
|
|
/* The number of bytes in the initial entry in the PLT. */
|
|
bfd_size_type plt_header_size;
|
|
|
|
/* The number of bytes in the subsequent PLT etries. */
|
|
bfd_size_type plt_entry_size;
|
|
|
|
/* The bytes of the subsequent PLT entry. */
|
|
const bfd_byte *plt_entry;
|
|
|
|
/* Short-cuts to get to dynamic linker sections. */
|
|
asection *sdynbss;
|
|
asection *srelbss;
|
|
|
|
/* Small local sym cache. */
|
|
struct sym_cache sym_cache;
|
|
|
|
/* For convenience in allocate_dynrelocs. */
|
|
bfd *obfd;
|
|
|
|
/* The amount of space used by the reserved portion of the sgotplt
|
|
section, plus whatever space is used by the jump slots. */
|
|
bfd_vma sgotplt_jump_table_size;
|
|
|
|
/* The stub hash table. */
|
|
struct bfd_hash_table stub_hash_table;
|
|
|
|
/* Linker stub bfd. */
|
|
bfd *stub_bfd;
|
|
|
|
/* Linker call-backs. */
|
|
asection *(*add_stub_section) (const char *, asection *);
|
|
void (*layout_sections_again) (void);
|
|
|
|
/* Array to keep track of which stub sections have been created, and
|
|
information on stub grouping. */
|
|
struct map_stub
|
|
{
|
|
/* This is the section to which stubs in the group will be
|
|
attached. */
|
|
asection *link_sec;
|
|
/* The stub section. */
|
|
asection *stub_sec;
|
|
} *stub_group;
|
|
|
|
/* Assorted information used by elfNN_kvx_size_stubs. */
|
|
unsigned int bfd_count;
|
|
unsigned int top_index;
|
|
asection **input_list;
|
|
};
|
|
|
|
/* Create an entry in an KVX ELF linker hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
elfNN_kvx_link_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table,
|
|
const char *string)
|
|
{
|
|
struct elf_kvx_link_hash_entry *ret =
|
|
(struct elf_kvx_link_hash_entry *) entry;
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (ret == NULL)
|
|
ret = bfd_hash_allocate (table,
|
|
sizeof (struct elf_kvx_link_hash_entry));
|
|
if (ret == NULL)
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
ret = ((struct elf_kvx_link_hash_entry *)
|
|
_bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
|
table, string));
|
|
if (ret != NULL)
|
|
{
|
|
ret->got_type = GOT_UNKNOWN;
|
|
ret->plt_got_offset = (bfd_vma) - 1;
|
|
ret->stub_cache = NULL;
|
|
}
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
}
|
|
|
|
/* Initialize an entry in the stub hash table. */
|
|
|
|
static struct bfd_hash_entry *
|
|
stub_hash_newfunc (struct bfd_hash_entry *entry,
|
|
struct bfd_hash_table *table, const char *string)
|
|
{
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
subclass. */
|
|
if (entry == NULL)
|
|
{
|
|
entry = bfd_hash_allocate (table,
|
|
sizeof (struct
|
|
elf_kvx_stub_hash_entry));
|
|
if (entry == NULL)
|
|
return entry;
|
|
}
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
entry = bfd_hash_newfunc (entry, table, string);
|
|
if (entry != NULL)
|
|
{
|
|
struct elf_kvx_stub_hash_entry *eh;
|
|
|
|
/* Initialize the local fields. */
|
|
eh = (struct elf_kvx_stub_hash_entry *) entry;
|
|
eh->stub_sec = NULL;
|
|
eh->stub_offset = 0;
|
|
eh->target_value = 0;
|
|
eh->target_section = NULL;
|
|
eh->stub_type = kvx_stub_none;
|
|
eh->h = NULL;
|
|
eh->id_sec = NULL;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
|
|
|
static void
|
|
elfNN_kvx_copy_indirect_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *dir,
|
|
struct elf_link_hash_entry *ind)
|
|
{
|
|
struct elf_kvx_link_hash_entry *edir, *eind;
|
|
|
|
edir = (struct elf_kvx_link_hash_entry *) dir;
|
|
eind = (struct elf_kvx_link_hash_entry *) ind;
|
|
|
|
if (ind->root.type == bfd_link_hash_indirect)
|
|
{
|
|
/* Copy over PLT info. */
|
|
if (dir->got.refcount <= 0)
|
|
{
|
|
edir->got_type = eind->got_type;
|
|
eind->got_type = GOT_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
|
}
|
|
|
|
/* Destroy a KVX elf linker hash table. */
|
|
|
|
static void
|
|
elfNN_kvx_link_hash_table_free (bfd *obfd)
|
|
{
|
|
struct elf_kvx_link_hash_table *ret
|
|
= (struct elf_kvx_link_hash_table *) obfd->link.hash;
|
|
|
|
bfd_hash_table_free (&ret->stub_hash_table);
|
|
_bfd_elf_link_hash_table_free (obfd);
|
|
}
|
|
|
|
/* Create a KVX elf linker hash table. */
|
|
|
|
static struct bfd_link_hash_table *
|
|
elfNN_kvx_link_hash_table_create (bfd *abfd)
|
|
{
|
|
struct elf_kvx_link_hash_table *ret;
|
|
bfd_size_type amt = sizeof (struct elf_kvx_link_hash_table);
|
|
|
|
ret = bfd_zmalloc (amt);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
if (!_bfd_elf_link_hash_table_init
|
|
(&ret->root, abfd, elfNN_kvx_link_hash_newfunc,
|
|
sizeof (struct elf_kvx_link_hash_entry), KVX_ELF_DATA))
|
|
{
|
|
free (ret);
|
|
return NULL;
|
|
}
|
|
|
|
ret->plt_header_size = PLT_ENTRY_SIZE;
|
|
ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE;
|
|
ret->plt_entry = elfNN_kvx_small_plt_entry;
|
|
|
|
ret->obfd = abfd;
|
|
|
|
if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
|
|
sizeof (struct elf_kvx_stub_hash_entry)))
|
|
{
|
|
_bfd_elf_link_hash_table_free (abfd);
|
|
return NULL;
|
|
}
|
|
|
|
ret->root.root.hash_table_free = elfNN_kvx_link_hash_table_free;
|
|
|
|
return &ret->root.root;
|
|
}
|
|
|
|
static bfd_reloc_status_type
|
|
kvx_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section,
|
|
bfd_vma offset, bfd_vma value)
|
|
{
|
|
reloc_howto_type *howto;
|
|
|
|
howto = elfNN_kvx_howto_from_type (input_bfd, r_type);
|
|
r_type = elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
|
|
return _bfd_kvx_elf_put_addend (input_bfd,
|
|
input_section->contents + offset, r_type,
|
|
howto, value);
|
|
}
|
|
|
|
/* Determine the type of stub needed, if any, for a call. */
|
|
|
|
static enum elf_kvx_stub_type
|
|
kvx_type_of_stub (asection *input_sec,
|
|
const Elf_Internal_Rela *rel,
|
|
asection *sym_sec,
|
|
unsigned char st_type,
|
|
bfd_vma destination)
|
|
{
|
|
bfd_vma location;
|
|
bfd_signed_vma branch_offset;
|
|
unsigned int r_type;
|
|
enum elf_kvx_stub_type stub_type = kvx_stub_none;
|
|
|
|
if (st_type != STT_FUNC
|
|
&& (sym_sec == input_sec))
|
|
return stub_type;
|
|
|
|
/* Determine where the call point is. */
|
|
location = (input_sec->output_offset
|
|
+ input_sec->output_section->vma + rel->r_offset);
|
|
|
|
branch_offset = (bfd_signed_vma) (destination - location);
|
|
|
|
r_type = ELFNN_R_TYPE (rel->r_info);
|
|
|
|
/* We don't want to redirect any old unconditional jump in this way,
|
|
only one which is being used for a sibcall, where it is
|
|
acceptable for the R16 and R17 registers to be clobbered. */
|
|
if (r_type == R_KVX_PCREL27
|
|
&& (branch_offset > KVX_MAX_FWD_CALL_OFFSET
|
|
|| branch_offset < KVX_MAX_BWD_CALL_OFFSET))
|
|
{
|
|
stub_type = kvx_stub_long_branch;
|
|
}
|
|
|
|
return stub_type;
|
|
}
|
|
|
|
/* Build a name for an entry in the stub hash table. */
|
|
|
|
static char *
|
|
elfNN_kvx_stub_name (const asection *input_section,
|
|
const asection *sym_sec,
|
|
const struct elf_kvx_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel)
|
|
{
|
|
char *stub_name;
|
|
bfd_size_type len;
|
|
|
|
if (hash)
|
|
{
|
|
len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
snprintf (stub_name, len, "%08x_%s+%" PRIx64 "x",
|
|
(unsigned int) input_section->id,
|
|
hash->root.root.root.string,
|
|
(uint64_t) rel->r_addend);
|
|
}
|
|
else
|
|
{
|
|
len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1;
|
|
stub_name = bfd_malloc (len);
|
|
if (stub_name != NULL)
|
|
snprintf (stub_name, len, "%08x_%x:%x+%" PRIx64 "x",
|
|
(unsigned int) input_section->id,
|
|
(unsigned int) sym_sec->id,
|
|
(unsigned int) ELFNN_R_SYM (rel->r_info),
|
|
(uint64_t) rel->r_addend);
|
|
}
|
|
|
|
return stub_name;
|
|
}
|
|
|
|
/* Return true if symbol H should be hashed in the `.gnu.hash' section. For
|
|
executable PLT slots where the executable never takes the address of those
|
|
functions, the function symbols are not added to the hash table. */
|
|
|
|
static bool
|
|
elf_kvx_hash_symbol (struct elf_link_hash_entry *h)
|
|
{
|
|
if (h->plt.offset != (bfd_vma) -1
|
|
&& !h->def_regular
|
|
&& !h->pointer_equality_needed)
|
|
return false;
|
|
|
|
return _bfd_elf_hash_symbol (h);
|
|
}
|
|
|
|
|
|
/* Look up an entry in the stub hash. Stub entries are cached because
|
|
creating the stub name takes a bit of time. */
|
|
|
|
static struct elf_kvx_stub_hash_entry *
|
|
elfNN_kvx_get_stub_entry (const asection *input_section,
|
|
const asection *sym_sec,
|
|
struct elf_link_hash_entry *hash,
|
|
const Elf_Internal_Rela *rel,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
struct elf_kvx_link_hash_entry *h =
|
|
(struct elf_kvx_link_hash_entry *) hash;
|
|
const asection *id_sec;
|
|
|
|
if ((input_section->flags & SEC_CODE) == 0)
|
|
return NULL;
|
|
|
|
/* If this input section is part of a group of sections sharing one
|
|
stub section, then use the id of the first section in the group.
|
|
Stub names need to include a section id, as there may well be
|
|
more than one stub used to reach say, printf, and we need to
|
|
distinguish between them. */
|
|
id_sec = htab->stub_group[input_section->id].link_sec;
|
|
|
|
if (h != NULL && h->stub_cache != NULL
|
|
&& h->stub_cache->h == h && h->stub_cache->id_sec == id_sec)
|
|
{
|
|
stub_entry = h->stub_cache;
|
|
}
|
|
else
|
|
{
|
|
char *stub_name;
|
|
|
|
stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, h, rel);
|
|
if (stub_name == NULL)
|
|
return NULL;
|
|
|
|
stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name, false, false);
|
|
if (h != NULL)
|
|
h->stub_cache = stub_entry;
|
|
|
|
free (stub_name);
|
|
}
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
|
|
/* Create a stub section. */
|
|
|
|
static asection *
|
|
_bfd_kvx_create_stub_section (asection *section,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
|
|
{
|
|
size_t namelen;
|
|
bfd_size_type len;
|
|
char *s_name;
|
|
|
|
namelen = strlen (section->name);
|
|
len = namelen + sizeof (STUB_SUFFIX);
|
|
s_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (s_name == NULL)
|
|
return NULL;
|
|
|
|
memcpy (s_name, section->name, namelen);
|
|
memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
|
|
return (*htab->add_stub_section) (s_name, section);
|
|
}
|
|
|
|
|
|
/* Find or create a stub section for a link section.
|
|
|
|
Fix or create the stub section used to collect stubs attached to
|
|
the specified link section. */
|
|
|
|
static asection *
|
|
_bfd_kvx_get_stub_for_link_section (asection *link_section,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
if (htab->stub_group[link_section->id].stub_sec == NULL)
|
|
htab->stub_group[link_section->id].stub_sec
|
|
= _bfd_kvx_create_stub_section (link_section, htab);
|
|
return htab->stub_group[link_section->id].stub_sec;
|
|
}
|
|
|
|
|
|
/* Find or create a stub section in the stub group for an input
|
|
section. */
|
|
|
|
static asection *
|
|
_bfd_kvx_create_or_find_stub_sec (asection *section,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
asection *link_sec = htab->stub_group[section->id].link_sec;
|
|
return _bfd_kvx_get_stub_for_link_section (link_sec, htab);
|
|
}
|
|
|
|
|
|
/* Add a new stub entry in the stub group associated with an input
|
|
section to the stub hash. Not all fields of the new stub entry are
|
|
initialised. */
|
|
|
|
static struct elf_kvx_stub_hash_entry *
|
|
_bfd_kvx_add_stub_entry_in_group (const char *stub_name,
|
|
asection *section,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
asection *link_sec;
|
|
asection *stub_sec;
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
|
|
link_sec = htab->stub_group[section->id].link_sec;
|
|
stub_sec = _bfd_kvx_create_or_find_stub_sec (section, htab);
|
|
|
|
/* Enter this entry into the linker stub hash table. */
|
|
stub_entry = kvx_stub_hash_lookup (&htab->stub_hash_table, stub_name,
|
|
true, false);
|
|
if (stub_entry == NULL)
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: cannot create stub entry %s"),
|
|
section->owner, stub_name);
|
|
return NULL;
|
|
}
|
|
|
|
stub_entry->stub_sec = stub_sec;
|
|
stub_entry->stub_offset = 0;
|
|
stub_entry->id_sec = link_sec;
|
|
|
|
return stub_entry;
|
|
}
|
|
|
|
static bool
|
|
kvx_build_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void *in_arg)
|
|
{
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
asection *stub_sec;
|
|
bfd *stub_bfd;
|
|
bfd_byte *loc;
|
|
bfd_vma sym_value;
|
|
unsigned int template_size;
|
|
const uint32_t *template;
|
|
unsigned int i;
|
|
struct bfd_link_info *info;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
|
|
|
|
info = (struct bfd_link_info *) in_arg;
|
|
|
|
/* Fail if the target section could not be assigned to an output
|
|
section. The user should fix his linker script. */
|
|
if (stub_entry->target_section->output_section == NULL
|
|
&& info->non_contiguous_regions)
|
|
info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
|
|
"Retry without "
|
|
"--enable-non-contiguous-regions.\n"),
|
|
stub_entry->target_section);
|
|
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Make a note of the offset within the stubs for this entry. */
|
|
stub_entry->stub_offset = stub_sec->size;
|
|
loc = stub_sec->contents + stub_entry->stub_offset;
|
|
|
|
stub_bfd = stub_sec->owner;
|
|
|
|
/* This is the address of the stub destination. */
|
|
sym_value = (stub_entry->target_value
|
|
+ stub_entry->target_section->output_offset
|
|
+ stub_entry->target_section->output_section->vma);
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case kvx_stub_long_branch:
|
|
template = elfNN_kvx_long_branch_stub;
|
|
template_size = sizeof (elfNN_kvx_long_branch_stub);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
for (i = 0; i < (template_size / sizeof template[0]); i++)
|
|
{
|
|
bfd_putl32 (template[i], loc);
|
|
loc += 4;
|
|
}
|
|
|
|
stub_sec->size += template_size;
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case kvx_stub_long_branch:
|
|
/* The stub uses a make insn with 43bits immediate.
|
|
We need to apply 3 relocations:
|
|
BFD_RELOC_KVX_S43_LO10,
|
|
BFD_RELOC_KVX_S43_UP27,
|
|
BFD_RELOC_KVX_S43_EX6. */
|
|
if (kvx_relocate (R_KVX_S43_LO10, stub_bfd, stub_sec,
|
|
stub_entry->stub_offset, sym_value) != bfd_reloc_ok)
|
|
BFD_FAIL ();
|
|
if (kvx_relocate (R_KVX_S43_EX6, stub_bfd, stub_sec,
|
|
stub_entry->stub_offset, sym_value) != bfd_reloc_ok)
|
|
BFD_FAIL ();
|
|
if (kvx_relocate (R_KVX_S43_UP27, stub_bfd, stub_sec,
|
|
stub_entry->stub_offset + 4, sym_value) != bfd_reloc_ok)
|
|
BFD_FAIL ();
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* As above, but don't actually build the stub. Just bump offset so
|
|
we know stub section sizes. */
|
|
|
|
static bool
|
|
kvx_size_one_stub (struct bfd_hash_entry *gen_entry,
|
|
void *in_arg ATTRIBUTE_UNUSED)
|
|
{
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
int size;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case kvx_stub_long_branch:
|
|
size = sizeof (elfNN_kvx_long_branch_stub);
|
|
break;
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
stub_entry->stub_sec->size += size;
|
|
return true;
|
|
}
|
|
|
|
/* External entry points for sizing and building linker stubs. */
|
|
|
|
/* Set up various things so that we can make a list of input sections
|
|
for each output section included in the link. Returns -1 on error,
|
|
0 when no stubs will be needed, and 1 on success. */
|
|
|
|
int
|
|
elfNN_kvx_setup_section_lists (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
bfd *input_bfd;
|
|
unsigned int bfd_count;
|
|
unsigned int top_id, top_index;
|
|
asection *section;
|
|
asection **input_list, **list;
|
|
bfd_size_type amt;
|
|
struct elf_kvx_link_hash_table *htab =
|
|
elf_kvx_hash_table (info);
|
|
|
|
if (!is_elf_hash_table ((const struct bfd_link_hash_table *)htab))
|
|
return 0;
|
|
|
|
/* Count the number of input BFDs and find the top input section id. */
|
|
for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
|
|
input_bfd != NULL; input_bfd = input_bfd->link.next)
|
|
{
|
|
bfd_count += 1;
|
|
for (section = input_bfd->sections;
|
|
section != NULL; section = section->next)
|
|
{
|
|
if (top_id < section->id)
|
|
top_id = section->id;
|
|
}
|
|
}
|
|
htab->bfd_count = bfd_count;
|
|
|
|
amt = sizeof (struct map_stub) * (top_id + 1);
|
|
htab->stub_group = bfd_zmalloc (amt);
|
|
if (htab->stub_group == NULL)
|
|
return -1;
|
|
|
|
/* We can't use output_bfd->section_count here to find the top output
|
|
section index as some sections may have been removed, and
|
|
_bfd_strip_section_from_output doesn't renumber the indices. */
|
|
for (section = output_bfd->sections, top_index = 0;
|
|
section != NULL; section = section->next)
|
|
{
|
|
if (top_index < section->index)
|
|
top_index = section->index;
|
|
}
|
|
|
|
htab->top_index = top_index;
|
|
amt = sizeof (asection *) * (top_index + 1);
|
|
input_list = bfd_malloc (amt);
|
|
htab->input_list = input_list;
|
|
if (input_list == NULL)
|
|
return -1;
|
|
|
|
/* For sections we aren't interested in, mark their entries with a
|
|
value we can check later. */
|
|
list = input_list + top_index;
|
|
do
|
|
*list = bfd_abs_section_ptr;
|
|
while (list-- != input_list);
|
|
|
|
for (section = output_bfd->sections;
|
|
section != NULL; section = section->next)
|
|
{
|
|
if ((section->flags & SEC_CODE) != 0)
|
|
input_list[section->index] = NULL;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Used by elfNN_kvx_next_input_section and group_sections. */
|
|
#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
|
|
|
|
/* The linker repeatedly calls this function for each input section,
|
|
in the order that input sections are linked into output sections.
|
|
Build lists of input sections to determine groupings between which
|
|
we may insert linker stubs. */
|
|
|
|
void
|
|
elfNN_kvx_next_input_section (struct bfd_link_info *info, asection *isec)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab =
|
|
elf_kvx_hash_table (info);
|
|
|
|
if (isec->output_section->index <= htab->top_index)
|
|
{
|
|
asection **list = htab->input_list + isec->output_section->index;
|
|
|
|
if (*list != bfd_abs_section_ptr)
|
|
{
|
|
/* Steal the link_sec pointer for our list. */
|
|
/* This happens to make the list in reverse order,
|
|
which is what we want. */
|
|
PREV_SEC (isec) = *list;
|
|
*list = isec;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See whether we can group stub sections together. Grouping stub
|
|
sections may result in fewer stubs. More importantly, we need to
|
|
put all .init* and .fini* stubs at the beginning of the .init or
|
|
.fini output sections respectively, because glibc splits the
|
|
_init and _fini functions into multiple parts. Putting a stub in
|
|
the middle of a function is not a good idea. */
|
|
|
|
static void
|
|
group_sections (struct elf_kvx_link_hash_table *htab,
|
|
bfd_size_type stub_group_size,
|
|
bool stubs_always_after_branch)
|
|
{
|
|
asection **list = htab->input_list;
|
|
|
|
do
|
|
{
|
|
asection *tail = *list;
|
|
asection *head;
|
|
|
|
if (tail == bfd_abs_section_ptr)
|
|
continue;
|
|
|
|
/* Reverse the list: we must avoid placing stubs at the
|
|
beginning of the section because the beginning of the text
|
|
section may be required for an interrupt vector in bare metal
|
|
code. */
|
|
#define NEXT_SEC PREV_SEC
|
|
head = NULL;
|
|
while (tail != NULL)
|
|
{
|
|
/* Pop from tail. */
|
|
asection *item = tail;
|
|
tail = PREV_SEC (item);
|
|
|
|
/* Push on head. */
|
|
NEXT_SEC (item) = head;
|
|
head = item;
|
|
}
|
|
|
|
while (head != NULL)
|
|
{
|
|
asection *curr;
|
|
asection *next;
|
|
bfd_vma stub_group_start = head->output_offset;
|
|
bfd_vma end_of_next;
|
|
|
|
curr = head;
|
|
while (NEXT_SEC (curr) != NULL)
|
|
{
|
|
next = NEXT_SEC (curr);
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from start, so stop. */
|
|
break;
|
|
/* Add NEXT to the group. */
|
|
curr = next;
|
|
}
|
|
|
|
/* OK, the size from the start to the start of CURR is less
|
|
than stub_group_size and thus can be handled by one stub
|
|
section. (Or the head section is itself larger than
|
|
stub_group_size, in which case we may be toast.)
|
|
We should really be keeping track of the total size of
|
|
stubs added here, as stubs contribute to the final output
|
|
section size. */
|
|
do
|
|
{
|
|
next = NEXT_SEC (head);
|
|
/* Set up this stub group. */
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
while (head != curr && (head = next) != NULL);
|
|
|
|
/* But wait, there's more! Input sections up to stub_group_size
|
|
bytes after the stub section can be handled by it too. */
|
|
if (!stubs_always_after_branch)
|
|
{
|
|
stub_group_start = curr->output_offset + curr->size;
|
|
|
|
while (next != NULL)
|
|
{
|
|
end_of_next = next->output_offset + next->size;
|
|
if (end_of_next - stub_group_start >= stub_group_size)
|
|
/* End of NEXT is too far from stubs, so stop. */
|
|
break;
|
|
/* Add NEXT to the stub group. */
|
|
head = next;
|
|
next = NEXT_SEC (head);
|
|
htab->stub_group[head->id].link_sec = curr;
|
|
}
|
|
}
|
|
head = next;
|
|
}
|
|
}
|
|
while (list++ != htab->input_list + htab->top_index);
|
|
|
|
free (htab->input_list);
|
|
}
|
|
|
|
static void
|
|
_bfd_kvx_resize_stubs (struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
asection *section;
|
|
|
|
/* OK, we've added some stubs. Find out the new size of the
|
|
stub sections. */
|
|
for (section = htab->stub_bfd->sections;
|
|
section != NULL; section = section->next)
|
|
{
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (section->name, STUB_SUFFIX))
|
|
continue;
|
|
section->size = 0;
|
|
}
|
|
|
|
bfd_hash_traverse (&htab->stub_hash_table, kvx_size_one_stub, htab);
|
|
}
|
|
|
|
/* Satisfy the ELF linker by filling in some fields in our fake bfd. */
|
|
|
|
bool
|
|
kvx_elfNN_init_stub_bfd (struct bfd_link_info *info,
|
|
bfd *stub_bfd)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
|
|
elf_elfheader (stub_bfd)->e_ident[EI_CLASS] = ELFCLASSNN;
|
|
|
|
/* Always hook our dynamic sections into the first bfd, which is the
|
|
linker created stub bfd. This ensures that the GOT header is at
|
|
the start of the output TOC section. */
|
|
htab = elf_kvx_hash_table (info);
|
|
if (htab == NULL)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Determine and set the size of the stub section for a final link.
|
|
|
|
The basic idea here is to examine all the relocations looking for
|
|
PC-relative calls to a target that is unreachable with a 27bits
|
|
immediate (found in call and goto). */
|
|
|
|
bool
|
|
elfNN_kvx_size_stubs (bfd *output_bfd,
|
|
bfd *stub_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd_signed_vma group_size,
|
|
asection * (*add_stub_section) (const char *,
|
|
asection *),
|
|
void (*layout_sections_again) (void))
|
|
{
|
|
bfd_size_type stub_group_size;
|
|
bool stubs_always_before_branch;
|
|
bool stub_changed = false;
|
|
struct elf_kvx_link_hash_table *htab = elf_kvx_hash_table (info);
|
|
|
|
/* Propagate mach to stub bfd, because it may not have been
|
|
finalized when we created stub_bfd. */
|
|
bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
|
|
bfd_get_mach (output_bfd));
|
|
|
|
/* Stash our params away. */
|
|
htab->stub_bfd = stub_bfd;
|
|
htab->add_stub_section = add_stub_section;
|
|
htab->layout_sections_again = layout_sections_again;
|
|
stubs_always_before_branch = group_size < 0;
|
|
if (group_size < 0)
|
|
stub_group_size = -group_size;
|
|
else
|
|
stub_group_size = group_size;
|
|
|
|
if (stub_group_size == 1)
|
|
{
|
|
/* Default values. */
|
|
/* KVX branch range is +-256MB. The value used is 1MB less. */
|
|
stub_group_size = 255 * 1024 * 1024;
|
|
}
|
|
|
|
group_sections (htab, stub_group_size, stubs_always_before_branch);
|
|
|
|
(*htab->layout_sections_again) ();
|
|
|
|
while (1)
|
|
{
|
|
bfd *input_bfd;
|
|
|
|
for (input_bfd = info->input_bfds;
|
|
input_bfd != NULL; input_bfd = input_bfd->link.next)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *section;
|
|
Elf_Internal_Sym *local_syms = NULL;
|
|
|
|
if (!is_kvx_elf (input_bfd)
|
|
|| (input_bfd->flags & BFD_LINKER_CREATED) != 0)
|
|
continue;
|
|
|
|
/* We'll need the symbol table in a second. */
|
|
symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
|
|
if (symtab_hdr->sh_info == 0)
|
|
continue;
|
|
|
|
/* Walk over each section attached to the input bfd. */
|
|
for (section = input_bfd->sections;
|
|
section != NULL; section = section->next)
|
|
{
|
|
Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
|
|
|
|
/* If there aren't any relocs, then there's nothing more
|
|
to do. */
|
|
if ((section->flags & SEC_RELOC) == 0
|
|
|| section->reloc_count == 0
|
|
|| (section->flags & SEC_CODE) == 0)
|
|
continue;
|
|
|
|
/* If this section is a link-once section that will be
|
|
discarded, then don't create any stubs. */
|
|
if (section->output_section == NULL
|
|
|| section->output_section->owner != output_bfd)
|
|
continue;
|
|
|
|
/* Get the relocs. */
|
|
internal_relocs
|
|
= _bfd_elf_link_read_relocs (input_bfd, section, NULL,
|
|
NULL, info->keep_memory);
|
|
if (internal_relocs == NULL)
|
|
goto error_ret_free_local;
|
|
|
|
/* Now examine each relocation. */
|
|
irela = internal_relocs;
|
|
irelaend = irela + section->reloc_count;
|
|
for (; irela < irelaend; irela++)
|
|
{
|
|
unsigned int r_type, r_indx;
|
|
enum elf_kvx_stub_type stub_type;
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
asection *sym_sec;
|
|
bfd_vma sym_value;
|
|
bfd_vma destination;
|
|
struct elf_kvx_link_hash_entry *hash;
|
|
const char *sym_name;
|
|
char *stub_name;
|
|
const asection *id_sec;
|
|
unsigned char st_type;
|
|
bfd_size_type len;
|
|
|
|
r_type = ELFNN_R_TYPE (irela->r_info);
|
|
r_indx = ELFNN_R_SYM (irela->r_info);
|
|
|
|
if (r_type >= (unsigned int) R_KVX_end)
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
error_ret_free_internal:
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
goto error_ret_free_local;
|
|
}
|
|
|
|
/* Only look for stubs on unconditional branch and
|
|
branch and link instructions. */
|
|
/* This catches CALL and GOTO insn */
|
|
if (r_type != (unsigned int) R_KVX_PCREL27)
|
|
continue;
|
|
|
|
/* Now determine the call target, its name, value,
|
|
section. */
|
|
sym_sec = NULL;
|
|
sym_value = 0;
|
|
destination = 0;
|
|
hash = NULL;
|
|
sym_name = NULL;
|
|
if (r_indx < symtab_hdr->sh_info)
|
|
{
|
|
/* It's a local symbol. */
|
|
Elf_Internal_Sym *sym;
|
|
Elf_Internal_Shdr *hdr;
|
|
|
|
if (local_syms == NULL)
|
|
{
|
|
local_syms
|
|
= (Elf_Internal_Sym *) symtab_hdr->contents;
|
|
if (local_syms == NULL)
|
|
local_syms
|
|
= bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
|
|
symtab_hdr->sh_info, 0,
|
|
NULL, NULL, NULL);
|
|
if (local_syms == NULL)
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
sym = local_syms + r_indx;
|
|
hdr = elf_elfsections (input_bfd)[sym->st_shndx];
|
|
sym_sec = hdr->bfd_section;
|
|
if (!sym_sec)
|
|
/* This is an undefined symbol. It can never
|
|
be resolved. */
|
|
continue;
|
|
|
|
if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
|
|
sym_value = sym->st_value;
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
st_type = ELF_ST_TYPE (sym->st_info);
|
|
sym_name
|
|
= bfd_elf_string_from_elf_section (input_bfd,
|
|
symtab_hdr->sh_link,
|
|
sym->st_name);
|
|
}
|
|
else
|
|
{
|
|
int e_indx;
|
|
|
|
e_indx = r_indx - symtab_hdr->sh_info;
|
|
hash = ((struct elf_kvx_link_hash_entry *)
|
|
elf_sym_hashes (input_bfd)[e_indx]);
|
|
|
|
while (hash->root.root.type == bfd_link_hash_indirect
|
|
|| hash->root.root.type == bfd_link_hash_warning)
|
|
hash = ((struct elf_kvx_link_hash_entry *)
|
|
hash->root.root.u.i.link);
|
|
|
|
if (hash->root.root.type == bfd_link_hash_defined
|
|
|| hash->root.root.type == bfd_link_hash_defweak)
|
|
{
|
|
struct elf_kvx_link_hash_table *globals =
|
|
elf_kvx_hash_table (info);
|
|
sym_sec = hash->root.root.u.def.section;
|
|
sym_value = hash->root.root.u.def.value;
|
|
/* For a destination in a shared library,
|
|
use the PLT stub as target address to
|
|
decide whether a branch stub is
|
|
needed. */
|
|
if (globals->root.splt != NULL && hash != NULL
|
|
&& hash->root.plt.offset != (bfd_vma) - 1)
|
|
{
|
|
sym_sec = globals->root.splt;
|
|
sym_value = hash->root.plt.offset;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (sym_sec->output_section != NULL)
|
|
destination = (sym_value + irela->r_addend
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else if (hash->root.root.type == bfd_link_hash_undefined
|
|
|| (hash->root.root.type
|
|
== bfd_link_hash_undefweak))
|
|
{
|
|
/* For a shared library, use the PLT stub as
|
|
target address to decide whether a long
|
|
branch stub is needed.
|
|
For absolute code, they cannot be handled. */
|
|
struct elf_kvx_link_hash_table *globals =
|
|
elf_kvx_hash_table (info);
|
|
|
|
if (globals->root.splt != NULL && hash != NULL
|
|
&& hash->root.plt.offset != (bfd_vma) - 1)
|
|
{
|
|
sym_sec = globals->root.splt;
|
|
sym_value = hash->root.plt.offset;
|
|
if (sym_sec->output_section != NULL)
|
|
destination = (sym_value
|
|
+ sym_sec->output_offset
|
|
+ sym_sec->output_section->vma);
|
|
}
|
|
else
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
bfd_set_error (bfd_error_bad_value);
|
|
goto error_ret_free_internal;
|
|
}
|
|
st_type = ELF_ST_TYPE (hash->root.type);
|
|
sym_name = hash->root.root.root.string;
|
|
}
|
|
|
|
/* Determine what (if any) linker stub is needed. */
|
|
stub_type = kvx_type_of_stub (section, irela, sym_sec,
|
|
st_type, destination);
|
|
if (stub_type == kvx_stub_none)
|
|
continue;
|
|
|
|
/* Support for grouping stub sections. */
|
|
id_sec = htab->stub_group[section->id].link_sec;
|
|
|
|
/* Get the name of this stub. */
|
|
stub_name = elfNN_kvx_stub_name (id_sec, sym_sec, hash,
|
|
irela);
|
|
if (!stub_name)
|
|
goto error_ret_free_internal;
|
|
|
|
stub_entry =
|
|
kvx_stub_hash_lookup (&htab->stub_hash_table,
|
|
stub_name, false, false);
|
|
if (stub_entry != NULL)
|
|
{
|
|
/* The proper stub has already been created. */
|
|
free (stub_name);
|
|
/* Always update this stub's target since it may have
|
|
changed after layout. */
|
|
stub_entry->target_value = sym_value + irela->r_addend;
|
|
continue;
|
|
}
|
|
|
|
stub_entry = _bfd_kvx_add_stub_entry_in_group
|
|
(stub_name, section, htab);
|
|
if (stub_entry == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
stub_entry->target_value = sym_value + irela->r_addend;
|
|
stub_entry->target_section = sym_sec;
|
|
stub_entry->stub_type = stub_type;
|
|
stub_entry->h = hash;
|
|
stub_entry->st_type = st_type;
|
|
|
|
if (sym_name == NULL)
|
|
sym_name = "unnamed";
|
|
len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name);
|
|
stub_entry->output_name = bfd_alloc (htab->stub_bfd, len);
|
|
if (stub_entry->output_name == NULL)
|
|
{
|
|
free (stub_name);
|
|
goto error_ret_free_internal;
|
|
}
|
|
|
|
snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME,
|
|
sym_name);
|
|
|
|
stub_changed = true;
|
|
}
|
|
|
|
/* We're done with the internal relocs, free them. */
|
|
if (elf_section_data (section)->relocs == NULL)
|
|
free (internal_relocs);
|
|
}
|
|
}
|
|
|
|
if (!stub_changed)
|
|
break;
|
|
|
|
_bfd_kvx_resize_stubs (htab);
|
|
|
|
/* Ask the linker to do its stuff. */
|
|
(*htab->layout_sections_again) ();
|
|
stub_changed = false;
|
|
}
|
|
|
|
return true;
|
|
|
|
error_ret_free_local:
|
|
return false;
|
|
|
|
}
|
|
|
|
/* Build all the stubs associated with the current output file. The
|
|
stubs are kept in a hash table attached to the main linker hash
|
|
table. We also set up the .plt entries for statically linked PIC
|
|
functions here. This function is called via kvx_elf_finish in the
|
|
linker. */
|
|
|
|
bool
|
|
elfNN_kvx_build_stubs (struct bfd_link_info *info)
|
|
{
|
|
asection *stub_sec;
|
|
struct bfd_hash_table *table;
|
|
struct elf_kvx_link_hash_table *htab;
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL; stub_sec = stub_sec->next)
|
|
{
|
|
bfd_size_type size;
|
|
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
/* Allocate memory to hold the linker stubs. */
|
|
size = stub_sec->size;
|
|
stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
|
|
if (stub_sec->contents == NULL && size != 0)
|
|
return false;
|
|
stub_sec->size = 0;
|
|
}
|
|
|
|
/* Build the stubs as directed by the stub hash table. */
|
|
table = &htab->stub_hash_table;
|
|
bfd_hash_traverse (table, kvx_build_one_stub, info);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bfd_vma
|
|
kvx_calculate_got_entry_vma (struct elf_link_hash_entry *h,
|
|
struct elf_kvx_link_hash_table
|
|
*globals, struct bfd_link_info *info,
|
|
bfd_vma value, bfd *output_bfd,
|
|
bool *unresolved_reloc_p)
|
|
{
|
|
bfd_vma off = (bfd_vma) - 1;
|
|
asection *basegot = globals->root.sgot;
|
|
bool dyn = globals->root.dynamic_sections_created;
|
|
|
|
if (h != NULL)
|
|
{
|
|
BFD_ASSERT (basegot != NULL);
|
|
off = h->got.offset;
|
|
BFD_ASSERT (off != (bfd_vma) - 1);
|
|
if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
|
|
|| (bfd_link_pic (info)
|
|
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
|
|| (ELF_ST_VISIBILITY (h->other)
|
|
&& h->root.type == bfd_link_hash_undefweak))
|
|
{
|
|
/* This is actually a static link, or it is a -Bsymbolic link
|
|
and the symbol is defined locally. We must initialize this
|
|
entry in the global offset table. Since the offset must
|
|
always be a multiple of 8 (4 in the case of ILP32), we use
|
|
the least significant bit to record whether we have
|
|
initialized it already.
|
|
When doing a dynamic link, we create a .rel(a).got relocation
|
|
entry to initialize the value. This is done in the
|
|
finish_dynamic_symbol routine. */
|
|
if ((off & 1) != 0)
|
|
off &= ~1;
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, value, basegot->contents + off);
|
|
h->got.offset |= 1;
|
|
}
|
|
}
|
|
else
|
|
*unresolved_reloc_p = false;
|
|
}
|
|
|
|
return off;
|
|
}
|
|
|
|
static unsigned int
|
|
kvx_reloc_got_type (bfd_reloc_code_real_type r_type)
|
|
{
|
|
switch (r_type)
|
|
{
|
|
/* Extracted with:
|
|
awk 'match ($0, /HOWTO.*R_(KVX.*_GOT(OFF)?(64)?_.*),/,ary) \
|
|
{print "case BFD_RELOC_" ary[1] ":";}' elfxx-kvxc.def */
|
|
case BFD_RELOC_KVX_S37_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S37_GOTOFF_UP27:
|
|
|
|
case BFD_RELOC_KVX_S37_GOT_LO10:
|
|
case BFD_RELOC_KVX_S37_GOT_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_UP27:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_EX6:
|
|
|
|
case BFD_RELOC_KVX_S43_GOT_LO10:
|
|
case BFD_RELOC_KVX_S43_GOT_UP27:
|
|
case BFD_RELOC_KVX_S43_GOT_EX6:
|
|
return GOT_NORMAL;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_EX6:
|
|
return GOT_TLS_GD;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_EX6:
|
|
return GOT_TLS_LD;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_EX6:
|
|
return GOT_TLS_IE;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return GOT_UNKNOWN;
|
|
}
|
|
|
|
static bool
|
|
kvx_can_relax_tls (bfd *input_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
bfd_reloc_code_real_type r_type ATTRIBUTE_UNUSED,
|
|
struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
|
|
unsigned long r_symndx ATTRIBUTE_UNUSED)
|
|
{
|
|
if (! IS_KVX_TLS_RELAX_RELOC (r_type))
|
|
return false;
|
|
|
|
/* Relaxing hook. Disabled on KVX. */
|
|
/* See elfnn-aarch64.c */
|
|
return true;
|
|
}
|
|
|
|
/* Given the relocation code R_TYPE, return the relaxed bfd reloc
|
|
enumerator. */
|
|
|
|
static bfd_reloc_code_real_type
|
|
kvx_tls_transition (bfd *input_bfd,
|
|
struct bfd_link_info *info,
|
|
unsigned int r_type,
|
|
struct elf_link_hash_entry *h,
|
|
unsigned long r_symndx)
|
|
{
|
|
bfd_reloc_code_real_type bfd_r_type
|
|
= elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
|
|
|
|
if (! kvx_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx))
|
|
return bfd_r_type;
|
|
|
|
return bfd_r_type;
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving R_KVX_*_TLS_GD_* and R_KVX_*_TLS_LD_* relocation. */
|
|
|
|
static bfd_vma
|
|
dtpoff_base (struct bfd_link_info *info)
|
|
{
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
|
|
return elf_hash_table (info)->tls_sec->vma;
|
|
}
|
|
|
|
/* Return the base VMA address which should be subtracted from real addresses
|
|
when resolving R_KVX_*_TLS_IE_* and R_KVX_*_TLS_LE_* relocations. */
|
|
|
|
static bfd_vma
|
|
tpoff_base (struct bfd_link_info *info)
|
|
{
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
/* If tls_sec is NULL, we should have signalled an error already. */
|
|
BFD_ASSERT (htab->tls_sec != NULL);
|
|
|
|
bfd_vma base = align_power ((bfd_vma) 0,
|
|
htab->tls_sec->alignment_power);
|
|
return htab->tls_sec->vma - base;
|
|
}
|
|
|
|
static bfd_vma *
|
|
symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h,
|
|
unsigned long r_symndx)
|
|
{
|
|
/* Calculate the address of the GOT entry for symbol
|
|
referred to in h. */
|
|
if (h != NULL)
|
|
return &h->got.offset;
|
|
else
|
|
{
|
|
/* local symbol */
|
|
struct elf_kvx_local_symbol *l;
|
|
|
|
l = elf_kvx_locals (input_bfd);
|
|
return &l[r_symndx].got_offset;
|
|
}
|
|
}
|
|
|
|
static void
|
|
symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h,
|
|
unsigned long r_symndx)
|
|
{
|
|
bfd_vma *p;
|
|
p = symbol_got_offset_ref (input_bfd, h, r_symndx);
|
|
*p |= 1;
|
|
}
|
|
|
|
static int
|
|
symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h,
|
|
unsigned long r_symndx)
|
|
{
|
|
bfd_vma value;
|
|
value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
|
|
return value & 1;
|
|
}
|
|
|
|
static bfd_vma
|
|
symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h,
|
|
unsigned long r_symndx)
|
|
{
|
|
bfd_vma value;
|
|
value = * symbol_got_offset_ref (input_bfd, h, r_symndx);
|
|
value &= ~1;
|
|
return value;
|
|
}
|
|
|
|
/* N_ONES produces N one bits, without overflowing machine arithmetic. */
|
|
#define N_ONES(n) (((((bfd_vma) 1 << ((n) -1)) - 1) << 1) | 1)
|
|
|
|
/* This is a copy/paste + modification from
|
|
reloc.c:_bfd_relocate_contents. Relocations are applied to 32bits
|
|
words, so all overflow checks will overflow for values above
|
|
32bits. */
|
|
static bfd_reloc_status_type
|
|
check_signed_overflow (enum complain_overflow complain_on_overflow,
|
|
bfd_reloc_code_real_type bfd_r_type, bfd *input_bfd,
|
|
bfd_vma relocation)
|
|
{
|
|
bfd_reloc_status_type flag = bfd_reloc_ok;
|
|
bfd_vma addrmask, fieldmask, signmask, ss;
|
|
bfd_vma a, b, sum;
|
|
bfd_vma x = 0;
|
|
|
|
/* These usually come from howto struct. As we don't check for
|
|
values fitting in bitfields or in subpart of words, we set all
|
|
these to values to check as if the field is starting from first
|
|
bit. */
|
|
unsigned int rightshift = 0;
|
|
unsigned int bitpos = 0;
|
|
unsigned int bitsize = 0;
|
|
bfd_vma src_mask = -1;
|
|
|
|
/* Only regular symbol relocations are checked here. Others
|
|
relocations (GOT, TLS) could be checked if the need is
|
|
confirmed. At the moment, we keep previous behavior
|
|
(ie. unchecked) for those. */
|
|
switch (bfd_r_type)
|
|
{
|
|
case BFD_RELOC_KVX_S37_LO10:
|
|
case BFD_RELOC_KVX_S37_UP27:
|
|
bitsize = 37;
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S32_LO5:
|
|
case BFD_RELOC_KVX_S32_UP27:
|
|
bitsize = 32;
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S43_LO10:
|
|
case BFD_RELOC_KVX_S43_UP27:
|
|
case BFD_RELOC_KVX_S43_EX6:
|
|
bitsize = 43;
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S64_LO10:
|
|
case BFD_RELOC_KVX_S64_UP27:
|
|
case BFD_RELOC_KVX_S64_EX27:
|
|
bitsize = 64;
|
|
break;
|
|
|
|
default:
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* direct copy/paste from reloc.c below */
|
|
|
|
/* Get the values to be added together. For signed and unsigned
|
|
relocations, we assume that all values should be truncated to
|
|
the size of an address. For bitfields, all the bits matter.
|
|
See also bfd_check_overflow. */
|
|
fieldmask = N_ONES (bitsize);
|
|
signmask = ~fieldmask;
|
|
addrmask = (N_ONES (bfd_arch_bits_per_address (input_bfd))
|
|
| (fieldmask << rightshift));
|
|
a = (relocation & addrmask) >> rightshift;
|
|
b = (x & src_mask & addrmask) >> bitpos;
|
|
addrmask >>= rightshift;
|
|
|
|
switch (complain_on_overflow)
|
|
{
|
|
case complain_overflow_signed:
|
|
/* If any sign bits are set, all sign bits must be set.
|
|
That is, A must be a valid negative address after
|
|
shifting. */
|
|
signmask = ~(fieldmask >> 1);
|
|
/* Fall thru */
|
|
|
|
case complain_overflow_bitfield:
|
|
/* Much like the signed check, but for a field one bit
|
|
wider. We allow a bitfield to represent numbers in the
|
|
range -2**n to 2**n-1, where n is the number of bits in the
|
|
field. Note that when bfd_vma is 32 bits, a 32-bit reloc
|
|
can't overflow, which is exactly what we want. */
|
|
ss = a & signmask;
|
|
if (ss != 0 && ss != (addrmask & signmask))
|
|
flag = bfd_reloc_overflow;
|
|
|
|
/* We only need this next bit of code if the sign bit of B
|
|
is below the sign bit of A. This would only happen if
|
|
SRC_MASK had fewer bits than BITSIZE. Note that if
|
|
SRC_MASK has more bits than BITSIZE, we can get into
|
|
trouble; we would need to verify that B is in range, as
|
|
we do for A above. */
|
|
ss = ((~src_mask) >> 1) & src_mask;
|
|
ss >>= bitpos;
|
|
|
|
/* Set all the bits above the sign bit. */
|
|
b = (b ^ ss) - ss;
|
|
|
|
/* Now we can do the addition. */
|
|
sum = a + b;
|
|
|
|
/* See if the result has the correct sign. Bits above the
|
|
sign bit are junk now; ignore them. If the sum is
|
|
positive, make sure we did not have all negative inputs;
|
|
if the sum is negative, make sure we did not have all
|
|
positive inputs. The test below looks only at the sign
|
|
bits, and it really just
|
|
SIGN (A) == SIGN (B) && SIGN (A) != SIGN (SUM)
|
|
|
|
We mask with addrmask here to explicitly allow an address
|
|
wrap-around. The Linux kernel relies on it, and it is
|
|
the only way to write assembler code which can run when
|
|
loaded at a location 0x80000000 away from the location at
|
|
which it is linked. */
|
|
if (((~(a ^ b)) & (a ^ sum)) & signmask & addrmask)
|
|
flag = bfd_reloc_overflow;
|
|
break;
|
|
|
|
case complain_overflow_unsigned:
|
|
/* Checking for an unsigned overflow is relatively easy:
|
|
trim the addresses and add, and trim the result as well.
|
|
Overflow is normally indicated when the result does not
|
|
fit in the field. However, we also need to consider the
|
|
case when, e.g., fieldmask is 0x7fffffff or smaller, an
|
|
input is 0x80000000, and bfd_vma is only 32 bits; then we
|
|
will get sum == 0, but there is an overflow, since the
|
|
inputs did not fit in the field. Instead of doing a
|
|
separate test, we can check for this by or-ing in the
|
|
operands when testing for the sum overflowing its final
|
|
field. */
|
|
sum = (a + b) & addrmask;
|
|
if ((a | b | sum) & signmask)
|
|
flag = bfd_reloc_overflow;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
return flag;
|
|
}
|
|
|
|
/* Perform a relocation as part of a final link. */
|
|
static bfd_reloc_status_type
|
|
elfNN_kvx_final_link_relocate (reloc_howto_type *howto,
|
|
bfd *input_bfd,
|
|
bfd *output_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *rel,
|
|
bfd_vma value,
|
|
struct bfd_link_info *info,
|
|
asection *sym_sec,
|
|
struct elf_link_hash_entry *h,
|
|
bool *unresolved_reloc_p,
|
|
bool save_addend,
|
|
bfd_vma *saved_addend,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
unsigned int r_type = howto->type;
|
|
bfd_reloc_code_real_type bfd_r_type
|
|
= elfNN_kvx_bfd_reloc_from_howto (howto);
|
|
bfd_reloc_code_real_type new_bfd_r_type;
|
|
unsigned long r_symndx;
|
|
bfd_byte *hit_data = contents + rel->r_offset;
|
|
bfd_vma place, off;
|
|
bfd_vma addend;
|
|
struct elf_kvx_link_hash_table *globals;
|
|
bool weak_undef_p;
|
|
asection *base_got;
|
|
bfd_reloc_status_type rret = bfd_reloc_ok;
|
|
bool resolved_to_zero;
|
|
globals = elf_kvx_hash_table (info);
|
|
|
|
symtab_hdr = &elf_symtab_hdr (input_bfd);
|
|
|
|
BFD_ASSERT (is_kvx_elf (input_bfd));
|
|
|
|
r_symndx = ELFNN_R_SYM (rel->r_info);
|
|
|
|
/* It is possible to have linker relaxations on some TLS access
|
|
models. Update our information here. */
|
|
new_bfd_r_type = kvx_tls_transition (input_bfd, info, r_type, h, r_symndx);
|
|
if (new_bfd_r_type != bfd_r_type)
|
|
{
|
|
bfd_r_type = new_bfd_r_type;
|
|
howto = elfNN_kvx_howto_from_bfd_reloc (bfd_r_type);
|
|
BFD_ASSERT (howto != NULL);
|
|
r_type = howto->type;
|
|
}
|
|
|
|
place = input_section->output_section->vma
|
|
+ input_section->output_offset + rel->r_offset;
|
|
|
|
/* Get addend, accumulating the addend for consecutive relocs
|
|
which refer to the same offset. */
|
|
addend = saved_addend ? *saved_addend : 0;
|
|
addend += rel->r_addend;
|
|
|
|
weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak
|
|
: bfd_is_und_section (sym_sec));
|
|
resolved_to_zero = (h != NULL
|
|
&& UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
|
|
|
|
switch (bfd_r_type)
|
|
{
|
|
case BFD_RELOC_KVX_NN:
|
|
#if ARCH_SIZE == 64
|
|
case BFD_RELOC_KVX_32:
|
|
#endif
|
|
case BFD_RELOC_KVX_S37_LO10:
|
|
case BFD_RELOC_KVX_S37_UP27:
|
|
|
|
case BFD_RELOC_KVX_S32_LO5:
|
|
case BFD_RELOC_KVX_S32_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_LO10:
|
|
case BFD_RELOC_KVX_S43_UP27:
|
|
case BFD_RELOC_KVX_S43_EX6:
|
|
|
|
case BFD_RELOC_KVX_S64_LO10:
|
|
case BFD_RELOC_KVX_S64_UP27:
|
|
case BFD_RELOC_KVX_S64_EX27:
|
|
/* When generating a shared library or PIE, these relocations
|
|
are copied into the output file to be resolved at run time. */
|
|
if (bfd_link_pic (info)
|
|
&& (input_section->flags & SEC_ALLOC)
|
|
&& (h == NULL
|
|
|| (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
&& !resolved_to_zero)
|
|
|| h->root.type != bfd_link_hash_undefweak))
|
|
{
|
|
Elf_Internal_Rela outrel;
|
|
bfd_byte *loc;
|
|
bool skip, relocate;
|
|
asection *sreloc;
|
|
|
|
*unresolved_reloc_p = false;
|
|
|
|
skip = false;
|
|
relocate = false;
|
|
|
|
outrel.r_addend = addend;
|
|
outrel.r_offset =
|
|
_bfd_elf_section_offset (output_bfd, info, input_section,
|
|
rel->r_offset);
|
|
if (outrel.r_offset == (bfd_vma) - 1)
|
|
skip = true;
|
|
else if (outrel.r_offset == (bfd_vma) - 2)
|
|
{
|
|
skip = true;
|
|
relocate = true;
|
|
}
|
|
|
|
outrel.r_offset += (input_section->output_section->vma
|
|
+ input_section->output_offset);
|
|
|
|
if (skip)
|
|
memset (&outrel, 0, sizeof outrel);
|
|
else if (h != NULL
|
|
&& h->dynindx != -1
|
|
&& (!bfd_link_pic (info) || !info->symbolic
|
|
|| !h->def_regular))
|
|
outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type);
|
|
else if (bfd_r_type == BFD_RELOC_KVX_32
|
|
|| bfd_r_type == BFD_RELOC_KVX_64)
|
|
{
|
|
int symbol;
|
|
|
|
/* On SVR4-ish systems, the dynamic loader cannot
|
|
relocate the text and data segments independently,
|
|
so the symbol does not matter. */
|
|
symbol = 0;
|
|
outrel.r_info = ELFNN_R_INFO (symbol, R_KVX_RELATIVE);
|
|
outrel.r_addend += value;
|
|
}
|
|
else if (bfd_link_pic (info) && info->symbolic)
|
|
{
|
|
goto skip_because_pic;
|
|
}
|
|
else
|
|
{
|
|
/* We may endup here from bad input code trying to
|
|
insert relocation on symbols within code. We do not
|
|
want that currently, and such code should use GOT +
|
|
KVX_32/64 reloc that translate in KVX_RELATIVE. */
|
|
const char *name;
|
|
if (h && h->root.root.string)
|
|
name = h->root.root.string;
|
|
else
|
|
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
|
|
NULL);
|
|
|
|
(*_bfd_error_handler)
|
|
/* xgettext:c-format */
|
|
(_("%pB(%pA+%#" PRIx64 "): "
|
|
"unresolvable %s relocation in section `%s'"),
|
|
input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
|
|
name);
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
sreloc = elf_section_data (input_section)->sreloc;
|
|
if (sreloc == NULL || sreloc->contents == NULL)
|
|
return bfd_reloc_notsupported;
|
|
|
|
loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
|
|
|
|
if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size)
|
|
{
|
|
/* Sanity to check that we have previously allocated
|
|
sufficient space in the relocation section for the
|
|
number of relocations we actually want to emit. */
|
|
abort ();
|
|
}
|
|
|
|
/* If this reloc is against an external symbol, we do not want to
|
|
fiddle with the addend. Otherwise, we need to include the symbol
|
|
value so that it becomes an addend for the dynamic reloc. */
|
|
if (!relocate)
|
|
return bfd_reloc_ok;
|
|
|
|
rret = check_signed_overflow (complain_overflow_signed, bfd_r_type,
|
|
input_bfd, value + addend);
|
|
if (rret != bfd_reloc_ok)
|
|
return rret;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
}
|
|
|
|
skip_because_pic:
|
|
rret = check_signed_overflow (complain_overflow_signed, bfd_r_type,
|
|
input_bfd, value + addend);
|
|
if (rret != bfd_reloc_ok)
|
|
return rret;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_PCREL17:
|
|
case BFD_RELOC_KVX_PCREL27:
|
|
{
|
|
/* BCU insn are always first in a bundle, so there is no need
|
|
to correct the address using offset within bundle. */
|
|
|
|
asection *splt = globals->root.splt;
|
|
bool via_plt_p =
|
|
splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1;
|
|
|
|
/* A call to an undefined weak symbol is converted to a jump to
|
|
the next instruction unless a PLT entry will be created.
|
|
The jump to the next instruction is optimized as a NOP.
|
|
Do the same for local undefined symbols. */
|
|
if (weak_undef_p && ! via_plt_p)
|
|
{
|
|
bfd_putl32 (INSN_NOP, hit_data);
|
|
return bfd_reloc_ok;
|
|
}
|
|
|
|
/* If the call goes through a PLT entry, make sure to
|
|
check distance to the right destination address. */
|
|
if (via_plt_p)
|
|
value = (splt->output_section->vma
|
|
+ splt->output_offset + h->plt.offset);
|
|
|
|
/* Check if a stub has to be inserted because the destination
|
|
is too far away. */
|
|
struct elf_kvx_stub_hash_entry *stub_entry = NULL;
|
|
|
|
/* If the target symbol is global and marked as a function the
|
|
relocation applies a function call or a tail call. In this
|
|
situation we can veneer out of range branches. The veneers
|
|
use R16 and R17 hence cannot be used arbitrary out of range
|
|
branches that occur within the body of a function. */
|
|
|
|
/* Check if a stub has to be inserted because the destination
|
|
is too far away. */
|
|
if (! kvx_valid_call_p (value, place))
|
|
{
|
|
/* The target is out of reach, so redirect the branch to
|
|
the local stub for this function. */
|
|
stub_entry = elfNN_kvx_get_stub_entry (input_section,
|
|
sym_sec, h,
|
|
rel, globals);
|
|
if (stub_entry != NULL)
|
|
value = (stub_entry->stub_offset
|
|
+ stub_entry->stub_sec->output_offset
|
|
+ stub_entry->stub_sec->output_section->vma);
|
|
/* We have redirected the destination to stub entry address,
|
|
so ignore any addend record in the original rela entry. */
|
|
addend = 0;
|
|
}
|
|
}
|
|
*unresolved_reloc_p = false;
|
|
|
|
/* FALLTHROUGH */
|
|
|
|
/* PCREL 32 are used in dwarf2 table for exception handling */
|
|
case BFD_RELOC_KVX_32_PCREL:
|
|
case BFD_RELOC_KVX_S64_PCREL_LO10:
|
|
case BFD_RELOC_KVX_S64_PCREL_UP27:
|
|
case BFD_RELOC_KVX_S64_PCREL_EX27:
|
|
case BFD_RELOC_KVX_S37_PCREL_LO10:
|
|
case BFD_RELOC_KVX_S37_PCREL_UP27:
|
|
case BFD_RELOC_KVX_S43_PCREL_LO10:
|
|
case BFD_RELOC_KVX_S43_PCREL_UP27:
|
|
case BFD_RELOC_KVX_S43_PCREL_EX6:
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_LE_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_LE_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_LE_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_LE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LE_EX6:
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
value - tpoff_base (info), addend);
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_DTPOFF_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_DTPOFF_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_DTPOFF_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_DTPOFF_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_DTPOFF_EX6:
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset,
|
|
value - dtpoff_base (info), addend);
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S37_TLS_GD_LO10:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_EX6:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_LO10:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S37_TLS_IE_LO10:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_EX6:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_LO10:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S37_TLS_LD_LO10:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_EX6:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_LO10:
|
|
|
|
if (globals->root.sgot == NULL)
|
|
return bfd_reloc_notsupported;
|
|
value = symbol_got_offset (input_bfd, h, r_symndx);
|
|
|
|
_bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value, addend);
|
|
*unresolved_reloc_p = false;
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_GOTADDR_UP27:
|
|
case BFD_RELOC_KVX_S37_GOTADDR_LO10:
|
|
|
|
case BFD_RELOC_KVX_S43_GOTADDR_UP27:
|
|
case BFD_RELOC_KVX_S43_GOTADDR_EX6:
|
|
case BFD_RELOC_KVX_S43_GOTADDR_LO10:
|
|
|
|
case BFD_RELOC_KVX_S64_GOTADDR_UP27:
|
|
case BFD_RELOC_KVX_S64_GOTADDR_EX27:
|
|
case BFD_RELOC_KVX_S64_GOTADDR_LO10:
|
|
{
|
|
if (globals->root.sgot == NULL)
|
|
BFD_ASSERT (h != NULL);
|
|
|
|
value = globals->root.sgot->output_section->vma
|
|
+ globals->root.sgot->output_offset;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
}
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S37_GOTOFF_UP27:
|
|
|
|
case BFD_RELOC_KVX_32_GOTOFF:
|
|
case BFD_RELOC_KVX_64_GOTOFF:
|
|
|
|
case BFD_RELOC_KVX_S43_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_UP27:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_EX6:
|
|
|
|
{
|
|
asection *basegot = globals->root.sgot;
|
|
/* BFD_ASSERT(h == NULL); */
|
|
BFD_ASSERT(globals->root.sgot != NULL);
|
|
value -= basegot->output_section->vma + basegot->output_offset;
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
}
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_GOT_LO10:
|
|
case BFD_RELOC_KVX_S37_GOT_UP27:
|
|
|
|
case BFD_RELOC_KVX_32_GOT:
|
|
case BFD_RELOC_KVX_64_GOT:
|
|
|
|
case BFD_RELOC_KVX_S43_GOT_LO10:
|
|
case BFD_RELOC_KVX_S43_GOT_UP27:
|
|
case BFD_RELOC_KVX_S43_GOT_EX6:
|
|
|
|
if (globals->root.sgot == NULL)
|
|
BFD_ASSERT (h != NULL);
|
|
|
|
if (h != NULL)
|
|
{
|
|
value = kvx_calculate_got_entry_vma (h, globals, info, value,
|
|
output_bfd,
|
|
unresolved_reloc_p);
|
|
#ifdef UGLY_DEBUG
|
|
printf("GOT_LO/HI for %s, value %x\n", h->root.root.string, value);
|
|
#endif
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, value,
|
|
addend);
|
|
}
|
|
else
|
|
{
|
|
#ifdef UGLY_DEBUG
|
|
printf("GOT_LO/HI with h NULL, initial value %x\n", value);
|
|
#endif
|
|
struct elf_kvx_local_symbol *locals = elf_kvx_locals (input_bfd);
|
|
|
|
if (locals == NULL)
|
|
{
|
|
int howto_index = bfd_r_type - BFD_RELOC_KVX_RELOC_START;
|
|
_bfd_error_handler
|
|
/* xgettext:c-format */
|
|
(_("%pB: local symbol descriptor table be NULL when applying "
|
|
"relocation %s against local symbol"),
|
|
input_bfd, elf_kvx_howto_table[howto_index].name);
|
|
abort ();
|
|
}
|
|
|
|
off = symbol_got_offset (input_bfd, h, r_symndx);
|
|
base_got = globals->root.sgot;
|
|
bfd_vma got_entry_addr = (base_got->output_section->vma
|
|
+ base_got->output_offset + off);
|
|
|
|
if (!symbol_got_offset_mark_p (input_bfd, h, r_symndx))
|
|
{
|
|
bfd_put_64 (output_bfd, value, base_got->contents + off);
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
asection *s;
|
|
Elf_Internal_Rela outrel;
|
|
|
|
/* For PIC executables and shared libraries we need
|
|
to relocate the GOT entry at run time. */
|
|
s = globals->root.srelgot;
|
|
if (s == NULL)
|
|
abort ();
|
|
|
|
outrel.r_offset = got_entry_addr;
|
|
outrel.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE);
|
|
outrel.r_addend = value;
|
|
elf_append_rela (output_bfd, s, &outrel);
|
|
}
|
|
|
|
symbol_got_offset_mark (input_bfd, h, r_symndx);
|
|
}
|
|
|
|
/* Update the relocation value to GOT entry addr as we have
|
|
transformed the direct data access into an indirect data
|
|
access through GOT. */
|
|
value = got_entry_addr;
|
|
|
|
return _bfd_final_link_relocate (howto, input_bfd, input_section,
|
|
contents, rel->r_offset, off, 0);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return bfd_reloc_notsupported;
|
|
}
|
|
|
|
if (saved_addend)
|
|
*saved_addend = value;
|
|
|
|
/* Only apply the final relocation in a sequence. */
|
|
if (save_addend)
|
|
return bfd_reloc_continue;
|
|
|
|
return _bfd_kvx_elf_put_addend (input_bfd, hit_data, bfd_r_type,
|
|
howto, value);
|
|
}
|
|
|
|
|
|
|
|
/* Relocate a KVX ELF section. */
|
|
|
|
static int
|
|
elfNN_kvx_relocate_section (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
bfd *input_bfd,
|
|
asection *input_section,
|
|
bfd_byte *contents,
|
|
Elf_Internal_Rela *relocs,
|
|
Elf_Internal_Sym *local_syms,
|
|
asection **local_sections)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
Elf_Internal_Rela *rel;
|
|
Elf_Internal_Rela *relend;
|
|
const char *name;
|
|
struct elf_kvx_link_hash_table *globals;
|
|
bool save_addend = false;
|
|
bfd_vma addend = 0;
|
|
|
|
globals = elf_kvx_hash_table (info);
|
|
|
|
symtab_hdr = &elf_symtab_hdr (input_bfd);
|
|
sym_hashes = elf_sym_hashes (input_bfd);
|
|
|
|
rel = relocs;
|
|
relend = relocs + input_section->reloc_count;
|
|
for (; rel < relend; rel++)
|
|
{
|
|
unsigned int r_type;
|
|
bfd_reloc_code_real_type bfd_r_type;
|
|
reloc_howto_type *howto;
|
|
unsigned long r_symndx;
|
|
Elf_Internal_Sym *sym;
|
|
asection *sec;
|
|
struct elf_link_hash_entry *h;
|
|
bfd_vma relocation;
|
|
bfd_reloc_status_type r;
|
|
arelent bfd_reloc;
|
|
char sym_type;
|
|
bool unresolved_reloc = false;
|
|
char *error_message = NULL;
|
|
|
|
r_symndx = ELFNN_R_SYM (rel->r_info);
|
|
r_type = ELFNN_R_TYPE (rel->r_info);
|
|
|
|
bfd_reloc.howto = elfNN_kvx_howto_from_type (input_bfd, r_type);
|
|
howto = bfd_reloc.howto;
|
|
|
|
if (howto == NULL)
|
|
return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
|
|
|
|
bfd_r_type = elfNN_kvx_bfd_reloc_from_howto (howto);
|
|
|
|
h = NULL;
|
|
sym = NULL;
|
|
sec = NULL;
|
|
|
|
if (r_symndx < symtab_hdr->sh_info) /* A local symbol. */
|
|
{
|
|
sym = local_syms + r_symndx;
|
|
sym_type = ELFNN_ST_TYPE (sym->st_info);
|
|
sec = local_sections[r_symndx];
|
|
|
|
/* An object file might have a reference to a local
|
|
undefined symbol. This is a draft object file, but we
|
|
should at least do something about it. */
|
|
if (r_type != R_KVX_NONE
|
|
&& r_type != R_KVX_S37_GOTADDR_LO10
|
|
&& r_type != R_KVX_S37_GOTADDR_UP27
|
|
&& r_type != R_KVX_S64_GOTADDR_LO10
|
|
&& r_type != R_KVX_S64_GOTADDR_UP27
|
|
&& r_type != R_KVX_S64_GOTADDR_EX27
|
|
&& r_type != R_KVX_S43_GOTADDR_LO10
|
|
&& r_type != R_KVX_S43_GOTADDR_UP27
|
|
&& r_type != R_KVX_S43_GOTADDR_EX6
|
|
&& bfd_is_und_section (sec)
|
|
&& ELF_ST_BIND (sym->st_info) != STB_WEAK)
|
|
(*info->callbacks->undefined_symbol)
|
|
(info, bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name),
|
|
input_bfd, input_section, rel->r_offset, true);
|
|
|
|
relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
|
|
}
|
|
else
|
|
{
|
|
bool warned, ignored;
|
|
|
|
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
|
r_symndx, symtab_hdr, sym_hashes,
|
|
h, sec, relocation,
|
|
unresolved_reloc, warned, ignored);
|
|
|
|
sym_type = h->type;
|
|
}
|
|
|
|
if (sec != NULL && discarded_section (sec))
|
|
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
|
rel, 1, relend, howto, 0, contents);
|
|
|
|
if (bfd_link_relocatable (info))
|
|
continue;
|
|
|
|
if (h != NULL)
|
|
name = h->root.root.string;
|
|
else
|
|
{
|
|
name = (bfd_elf_string_from_elf_section
|
|
(input_bfd, symtab_hdr->sh_link, sym->st_name));
|
|
if (name == NULL || *name == '\0')
|
|
name = bfd_section_name (sec);
|
|
}
|
|
|
|
if (r_symndx != 0
|
|
&& r_type != R_KVX_NONE
|
|
&& (h == NULL
|
|
|| h->root.type == bfd_link_hash_defined
|
|
|| h->root.type == bfd_link_hash_defweak)
|
|
&& IS_KVX_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS))
|
|
{
|
|
(*_bfd_error_handler)
|
|
((sym_type == STT_TLS
|
|
/* xgettext:c-format */
|
|
? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
|
|
/* xgettext:c-format */
|
|
: _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
|
|
input_bfd,
|
|
input_section, (uint64_t) rel->r_offset, howto->name, name);
|
|
}
|
|
|
|
/* Original aarch64 has relaxation handling for TLS here. */
|
|
r = bfd_reloc_continue;
|
|
|
|
/* There may be multiple consecutive relocations for the
|
|
same offset. In that case we are supposed to treat the
|
|
output of each relocation as the addend for the next. */
|
|
if (rel + 1 < relend
|
|
&& rel->r_offset == rel[1].r_offset
|
|
&& ELFNN_R_TYPE (rel[1].r_info) != R_KVX_NONE)
|
|
|
|
save_addend = true;
|
|
else
|
|
save_addend = false;
|
|
|
|
if (r == bfd_reloc_continue)
|
|
r = elfNN_kvx_final_link_relocate (howto, input_bfd, output_bfd,
|
|
input_section, contents, rel,
|
|
relocation, info, sec,
|
|
h, &unresolved_reloc,
|
|
save_addend, &addend, sym);
|
|
|
|
switch (elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type))
|
|
{
|
|
case BFD_RELOC_KVX_S37_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_GD_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_LD_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_EX6:
|
|
|
|
if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
|
|
{
|
|
bool need_relocs = false;
|
|
bfd_byte *loc;
|
|
int indx;
|
|
bfd_vma off;
|
|
|
|
off = symbol_got_offset (input_bfd, h, r_symndx);
|
|
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
|
|
|
need_relocs =
|
|
(bfd_link_pic (info) || indx != 0) &&
|
|
(h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak);
|
|
|
|
BFD_ASSERT (globals->root.srelgot != NULL);
|
|
|
|
if (need_relocs)
|
|
{
|
|
Elf_Internal_Rela rela;
|
|
rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_DTPMOD);
|
|
rela.r_addend = 0;
|
|
rela.r_offset = globals->root.sgot->output_section->vma +
|
|
globals->root.sgot->output_offset + off;
|
|
|
|
loc = globals->root.srelgot->contents;
|
|
loc += globals->root.srelgot->reloc_count++
|
|
* RELOC_SIZE (htab);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
|
|
bfd_reloc_code_real_type real_type =
|
|
elfNN_kvx_bfd_reloc_from_type (input_bfd, r_type);
|
|
|
|
if (real_type == BFD_RELOC_KVX_S37_TLS_LD_LO10
|
|
|| real_type == BFD_RELOC_KVX_S37_TLS_LD_UP27
|
|
|| real_type == BFD_RELOC_KVX_S43_TLS_LD_LO10
|
|
|| real_type == BFD_RELOC_KVX_S43_TLS_LD_UP27
|
|
|| real_type == BFD_RELOC_KVX_S43_TLS_LD_EX6)
|
|
{
|
|
/* For local dynamic, don't generate DTPOFF in any case.
|
|
Initialize the DTPOFF slot into zero, so we get module
|
|
base address when invoke runtime TLS resolver. */
|
|
bfd_put_NN (output_bfd, 0,
|
|
globals->root.sgot->contents + off
|
|
+ GOT_ENTRY_SIZE);
|
|
}
|
|
else if (indx == 0)
|
|
{
|
|
bfd_put_NN (output_bfd,
|
|
relocation - dtpoff_base (info),
|
|
globals->root.sgot->contents + off
|
|
+ GOT_ENTRY_SIZE);
|
|
}
|
|
else
|
|
{
|
|
/* This TLS symbol is global. We emit a
|
|
relocation to fixup the tls offset at load
|
|
time. */
|
|
rela.r_info =
|
|
ELFNN_R_INFO (indx, R_KVX_64_DTPOFF);
|
|
rela.r_addend = 0;
|
|
rela.r_offset =
|
|
(globals->root.sgot->output_section->vma
|
|
+ globals->root.sgot->output_offset + off
|
|
+ GOT_ENTRY_SIZE);
|
|
|
|
loc = globals->root.srelgot->contents;
|
|
loc += globals->root.srelgot->reloc_count++
|
|
* RELOC_SIZE (globals);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
bfd_put_NN (output_bfd, (bfd_vma) 0,
|
|
globals->root.sgot->contents + off
|
|
+ GOT_ENTRY_SIZE);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bfd_put_NN (output_bfd, (bfd_vma) 1,
|
|
globals->root.sgot->contents + off);
|
|
bfd_put_NN (output_bfd,
|
|
relocation - dtpoff_base (info),
|
|
globals->root.sgot->contents + off
|
|
+ GOT_ENTRY_SIZE);
|
|
}
|
|
|
|
symbol_got_offset_mark (input_bfd, h, r_symndx);
|
|
}
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_IE_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_EX6:
|
|
if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx))
|
|
{
|
|
bool need_relocs = false;
|
|
bfd_byte *loc;
|
|
int indx;
|
|
bfd_vma off;
|
|
|
|
off = symbol_got_offset (input_bfd, h, r_symndx);
|
|
|
|
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
|
|
|
need_relocs =
|
|
(bfd_link_pic (info) || indx != 0) &&
|
|
(h == NULL
|
|
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak);
|
|
|
|
BFD_ASSERT (globals->root.srelgot != NULL);
|
|
|
|
if (need_relocs)
|
|
{
|
|
Elf_Internal_Rela rela;
|
|
|
|
if (indx == 0)
|
|
rela.r_addend = relocation - dtpoff_base (info);
|
|
else
|
|
rela.r_addend = 0;
|
|
|
|
rela.r_info = ELFNN_R_INFO (indx, R_KVX_64_TPOFF);
|
|
rela.r_offset = globals->root.sgot->output_section->vma +
|
|
globals->root.sgot->output_offset + off;
|
|
|
|
loc = globals->root.srelgot->contents;
|
|
loc += globals->root.srelgot->reloc_count++
|
|
* RELOC_SIZE (htab);
|
|
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
|
|
bfd_put_NN (output_bfd, rela.r_addend,
|
|
globals->root.sgot->contents + off);
|
|
}
|
|
else
|
|
bfd_put_NN (output_bfd, relocation - tpoff_base (info),
|
|
globals->root.sgot->contents + off);
|
|
|
|
symbol_got_offset_mark (input_bfd, h, r_symndx);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
|
because such sections are not SEC_ALLOC and thus ld.so will
|
|
not process them. */
|
|
if (unresolved_reloc
|
|
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
|
&& h->def_dynamic)
|
|
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
|
+rel->r_offset) != (bfd_vma) - 1)
|
|
{
|
|
(*_bfd_error_handler)
|
|
/* xgettext:c-format */
|
|
(_("%pB(%pA+%#" PRIx64 "): "
|
|
"unresolvable %s relocation against symbol `%s'"),
|
|
input_bfd, input_section, (uint64_t) rel->r_offset, howto->name,
|
|
h->root.root.string);
|
|
return false;
|
|
}
|
|
|
|
if (r != bfd_reloc_ok && r != bfd_reloc_continue)
|
|
{
|
|
switch (r)
|
|
{
|
|
case bfd_reloc_overflow:
|
|
(*info->callbacks->reloc_overflow)
|
|
(info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0,
|
|
input_bfd, input_section, rel->r_offset);
|
|
|
|
/* Original aarch64 code had a check for alignement correctness */
|
|
break;
|
|
|
|
case bfd_reloc_undefined:
|
|
(*info->callbacks->undefined_symbol)
|
|
(info, name, input_bfd, input_section, rel->r_offset, true);
|
|
break;
|
|
|
|
case bfd_reloc_outofrange:
|
|
error_message = _("out of range");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_notsupported:
|
|
error_message = _("unsupported relocation");
|
|
goto common_error;
|
|
|
|
case bfd_reloc_dangerous:
|
|
/* error_message should already be set. */
|
|
goto common_error;
|
|
|
|
default:
|
|
error_message = _("unknown error");
|
|
/* Fall through. */
|
|
|
|
common_error:
|
|
BFD_ASSERT (error_message != NULL);
|
|
(*info->callbacks->reloc_dangerous)
|
|
(info, error_message, input_bfd, input_section, rel->r_offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!save_addend)
|
|
addend = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Set the right machine number. */
|
|
|
|
static bool
|
|
elfNN_kvx_object_p (bfd *abfd)
|
|
{
|
|
/* must be coherent with default arch in cpu-kvx.c */
|
|
int e_set = bfd_mach_kv3_1;
|
|
|
|
if (elf_elfheader (abfd)->e_machine == EM_KVX)
|
|
{
|
|
int e_core = elf_elfheader (abfd)->e_flags & ELF_KVX_CORE_MASK;
|
|
switch(e_core)
|
|
{
|
|
#if ARCH_SIZE == 64
|
|
case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1_64; break;
|
|
case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2_64; break;
|
|
case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1_64; break;
|
|
#else
|
|
case ELF_KVX_CORE_KV3_1 : e_set = bfd_mach_kv3_1; break;
|
|
case ELF_KVX_CORE_KV3_2 : e_set = bfd_mach_kv3_2; break;
|
|
case ELF_KVX_CORE_KV4_1 : e_set = bfd_mach_kv4_1; break;
|
|
#endif
|
|
default:
|
|
(*_bfd_error_handler)(_("%s: Bad ELF id: `%d'"),
|
|
abfd->filename, e_core);
|
|
}
|
|
}
|
|
return bfd_default_set_arch_mach (abfd, bfd_arch_kvx, e_set);
|
|
}
|
|
|
|
/* Function to keep KVX specific flags in the ELF header. */
|
|
|
|
static bool
|
|
elfNN_kvx_set_private_flags (bfd *abfd, flagword flags)
|
|
{
|
|
if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags)
|
|
{
|
|
}
|
|
else
|
|
{
|
|
elf_elfheader (abfd)->e_flags = flags;
|
|
elf_flags_init (abfd) = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Merge backend specific data from an object file to the output
|
|
object file when linking. */
|
|
|
|
static bool
|
|
elfNN_kvx_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
|
|
{
|
|
bfd *obfd = info->output_bfd;
|
|
flagword out_flags;
|
|
flagword in_flags;
|
|
bool flags_compatible = true;
|
|
asection *sec;
|
|
|
|
/* Check if we have the same endianess. */
|
|
if (!_bfd_generic_verify_endian_match (ibfd, info))
|
|
return false;
|
|
|
|
if (!is_kvx_elf (ibfd) || !is_kvx_elf (obfd))
|
|
return true;
|
|
|
|
/* The input BFD must have had its flags initialised. */
|
|
/* The following seems bogus to me -- The flags are initialized in
|
|
the assembler but I don't think an elf_flags_init field is
|
|
written into the object. */
|
|
/* BFD_ASSERT (elf_flags_init (ibfd)); */
|
|
|
|
if (bfd_get_arch_size (ibfd) != bfd_get_arch_size (obfd))
|
|
{
|
|
const char *msg;
|
|
|
|
if (bfd_get_arch_size (ibfd) == 32
|
|
&& bfd_get_arch_size (obfd) == 64)
|
|
msg = _("%s: compiled as 32-bit object and %s is 64-bit");
|
|
else if (bfd_get_arch_size (ibfd) == 64
|
|
&& bfd_get_arch_size (obfd) == 32)
|
|
msg = _("%s: compiled as 64-bit object and %s is 32-bit");
|
|
else
|
|
msg = _("%s: object size does not match that of target %s");
|
|
|
|
(*_bfd_error_handler) (msg, bfd_get_filename (ibfd),
|
|
bfd_get_filename (obfd));
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
return false;
|
|
}
|
|
|
|
in_flags = elf_elfheader (ibfd)->e_flags;
|
|
out_flags = elf_elfheader (obfd)->e_flags;
|
|
|
|
if (!elf_flags_init (obfd))
|
|
{
|
|
/* If the input is the default architecture and had the default
|
|
flags then do not bother setting the flags for the output
|
|
architecture, instead allow future merges to do this. If no
|
|
future merges ever set these flags then they will retain their
|
|
uninitialised values, which surprise surprise, correspond
|
|
to the default values. */
|
|
if (bfd_get_arch_info (ibfd)->the_default
|
|
&& elf_elfheader (ibfd)->e_flags == 0)
|
|
return true;
|
|
|
|
elf_flags_init (obfd) = true;
|
|
elf_elfheader (obfd)->e_flags = in_flags;
|
|
|
|
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
|
|
&& bfd_get_arch_info (obfd)->the_default)
|
|
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
|
|
bfd_get_mach (ibfd));
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Identical flags must be compatible. */
|
|
if (in_flags == out_flags)
|
|
return true;
|
|
|
|
/* Check to see if the input BFD actually contains any sections. If
|
|
not, its flags may not have been initialised either, but it
|
|
cannot actually cause any incompatiblity. Do not short-circuit
|
|
dynamic objects; their section list may be emptied by
|
|
elf_link_add_object_symbols.
|
|
|
|
Also check to see if there are no code sections in the input.
|
|
In this case there is no need to check for code specific flags.
|
|
XXX - do we need to worry about floating-point format compatability
|
|
in data sections ? */
|
|
if (!(ibfd->flags & DYNAMIC))
|
|
{
|
|
bool null_input_bfd = true;
|
|
bool only_data_sections = true;
|
|
|
|
for (sec = ibfd->sections; sec != NULL; sec = sec->next)
|
|
{
|
|
if ((bfd_section_flags (sec)
|
|
& (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
== (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
|
|
only_data_sections = false;
|
|
|
|
null_input_bfd = false;
|
|
break;
|
|
}
|
|
|
|
if (null_input_bfd || only_data_sections)
|
|
return true;
|
|
}
|
|
return flags_compatible;
|
|
}
|
|
|
|
/* Display the flags field. */
|
|
|
|
static bool
|
|
elfNN_kvx_print_private_bfd_data (bfd *abfd, void *ptr)
|
|
{
|
|
FILE *file = (FILE *) ptr;
|
|
unsigned long flags;
|
|
|
|
BFD_ASSERT (abfd != NULL && ptr != NULL);
|
|
|
|
/* Print normal ELF private data. */
|
|
_bfd_elf_print_private_bfd_data (abfd, ptr);
|
|
|
|
flags = elf_elfheader (abfd)->e_flags;
|
|
/* Ignore init flag - it may not be set, despite the flags field
|
|
containing valid data. */
|
|
|
|
/* xgettext:c-format */
|
|
fprintf (file, _("Private flags = 0x%lx : "), elf_elfheader (abfd)->e_flags);
|
|
if((flags & ELF_KVX_ABI_64B_ADDR_BIT) == ELF_KVX_ABI_64B_ADDR_BIT)
|
|
{
|
|
if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1))
|
|
fprintf (file, _("Coolidge (kv3) V1 64 bits"));
|
|
else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2))
|
|
fprintf (file, _("Coolidge (kv3) V2 64 bits"));
|
|
else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1))
|
|
fprintf (file, _("Coolidge (kv4) V1 64 bits"));
|
|
}
|
|
else
|
|
{
|
|
if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_1))
|
|
fprintf (file, _("Coolidge (kv3) V1 32 bits"));
|
|
else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV3_2))
|
|
fprintf (file, _("Coolidge (kv3) V2 32 bits"));
|
|
else if (ELF_KVX_CHECK_CORE(flags,ELF_KVX_CORE_KV4_1))
|
|
fprintf (file, _("Coolidge (kv4) V1 32 bits"));
|
|
}
|
|
|
|
fputc ('\n', file);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Adjust a symbol defined by a dynamic object and referenced by a
|
|
regular object. The current definition is in some section of the
|
|
dynamic object, but we're not including those sections. We have to
|
|
change the definition to something the rest of the link can
|
|
understand. */
|
|
|
|
static bool
|
|
elfNN_kvx_adjust_dynamic_symbol (struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
asection *s;
|
|
|
|
/* If this is a function, put it in the procedure linkage table. We
|
|
will fill in the contents of the procedure linkage table later,
|
|
when we know the address of the .got section. */
|
|
if (h->type == STT_FUNC || h->needs_plt)
|
|
{
|
|
if (h->plt.refcount <= 0
|
|
|| ((SYMBOL_CALLS_LOCAL (info, h)
|
|
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
&& h->root.type == bfd_link_hash_undefweak))))
|
|
{
|
|
/* This case can occur if we saw a CALL26 reloc in
|
|
an input file, but the symbol wasn't referred to
|
|
by a dynamic object or all references were
|
|
garbage collected. In which case we can end up
|
|
resolving. */
|
|
h->plt.offset = (bfd_vma) - 1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
/* Otherwise, reset to -1. */
|
|
h->plt.offset = (bfd_vma) - 1;
|
|
|
|
|
|
/* If this is a weak symbol, and there is a real definition, the
|
|
processor independent code will have arranged for us to see the
|
|
real definition first, and we can just use the same value. */
|
|
if (h->is_weakalias)
|
|
{
|
|
struct elf_link_hash_entry *def = weakdef (h);
|
|
BFD_ASSERT (def->root.type == bfd_link_hash_defined);
|
|
h->root.u.def.section = def->root.u.def.section;
|
|
h->root.u.def.value = def->root.u.def.value;
|
|
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
|
|
h->non_got_ref = def->non_got_ref;
|
|
return true;
|
|
}
|
|
|
|
/* If we are creating a shared library, we must presume that the
|
|
only references to the symbol are via the global offset table.
|
|
For such cases we need not do anything here; the relocations will
|
|
be handled correctly by relocate_section. */
|
|
if (bfd_link_pic (info))
|
|
return true;
|
|
|
|
/* If there are no references to this symbol that do not use the
|
|
GOT, we don't need to generate a copy reloc. */
|
|
if (!h->non_got_ref)
|
|
return true;
|
|
|
|
/* If -z nocopyreloc was given, we won't generate them either. */
|
|
if (info->nocopyreloc)
|
|
{
|
|
h->non_got_ref = 0;
|
|
return true;
|
|
}
|
|
|
|
/* We must allocate the symbol in our .dynbss section, which will
|
|
become part of the .bss section of the executable. There will be
|
|
an entry for this symbol in the .dynsym section. The dynamic
|
|
object will contain position independent code, so all references
|
|
from the dynamic object to this symbol will go through the global
|
|
offset table. The dynamic linker will use the .dynsym entry to
|
|
determine the address it must put in the global offset table, so
|
|
both the dynamic object and the regular object will refer to the
|
|
same memory location for the variable. */
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
|
|
/* We must generate a R_KVX_COPY reloc to tell the dynamic linker
|
|
to copy the initial value out of the dynamic object and into the
|
|
runtime process image. */
|
|
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
|
{
|
|
htab->srelbss->size += RELOC_SIZE (htab);
|
|
h->needs_copy = 1;
|
|
}
|
|
|
|
s = htab->sdynbss;
|
|
|
|
return _bfd_elf_adjust_dynamic_copy (info, h, s);
|
|
}
|
|
|
|
static bool
|
|
elfNN_kvx_allocate_local_symbols (bfd *abfd, unsigned number)
|
|
{
|
|
struct elf_kvx_local_symbol *locals;
|
|
locals = elf_kvx_locals (abfd);
|
|
if (locals == NULL)
|
|
{
|
|
locals = (struct elf_kvx_local_symbol *)
|
|
bfd_zalloc (abfd, number * sizeof (struct elf_kvx_local_symbol));
|
|
if (locals == NULL)
|
|
return false;
|
|
elf_kvx_locals (abfd) = locals;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Create the .got section to hold the global offset table. */
|
|
|
|
static bool
|
|
kvx_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
|
|
{
|
|
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
|
flagword flags;
|
|
asection *s;
|
|
struct elf_link_hash_entry *h;
|
|
struct elf_link_hash_table *htab = elf_hash_table (info);
|
|
|
|
/* This function may be called more than once. */
|
|
s = bfd_get_linker_section (abfd, ".got");
|
|
if (s != NULL)
|
|
return true;
|
|
|
|
flags = bed->dynamic_sec_flags;
|
|
|
|
s = bfd_make_section_anyway_with_flags (abfd,
|
|
(bed->rela_plts_and_copies_p
|
|
? ".rela.got" : ".rel.got"),
|
|
(bed->dynamic_sec_flags
|
|
| SEC_READONLY));
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
|
|
|
|
return false;
|
|
htab->srelgot = s;
|
|
|
|
s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s, bed->s->log_file_align))
|
|
return false;
|
|
htab->sgot = s;
|
|
htab->sgot->size += GOT_ENTRY_SIZE;
|
|
|
|
if (bed->want_got_sym)
|
|
{
|
|
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
|
|
(or .got.plt) section. We don't do this in the linker script
|
|
because we don't want to define the symbol if we are not creating
|
|
a global offset table. */
|
|
h = _bfd_elf_define_linkage_sym (abfd, info, s,
|
|
"_GLOBAL_OFFSET_TABLE_");
|
|
elf_hash_table (info)->hgot = h;
|
|
if (h == NULL)
|
|
return false;
|
|
}
|
|
|
|
if (bed->want_got_plt)
|
|
{
|
|
s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
|
|
if (s == NULL
|
|
|| !bfd_set_section_alignment (s,
|
|
bed->s->log_file_align))
|
|
return false;
|
|
htab->sgotplt = s;
|
|
}
|
|
|
|
/* The first bit of the global offset table is the header. */
|
|
s->size += bed->got_header_size;
|
|
|
|
/* we still need to handle got content when doing static link with PIC */
|
|
if (bfd_link_executable (info) && !bfd_link_pic (info)) {
|
|
htab->dynobj = abfd;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Look through the relocs for a section during the first phase. */
|
|
|
|
static bool
|
|
elfNN_kvx_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
|
asection *sec, const Elf_Internal_Rela *relocs)
|
|
{
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
struct elf_link_hash_entry **sym_hashes;
|
|
const Elf_Internal_Rela *rel;
|
|
const Elf_Internal_Rela *rel_end;
|
|
asection *sreloc;
|
|
|
|
struct elf_kvx_link_hash_table *htab;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
BFD_ASSERT (is_kvx_elf (abfd));
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
sreloc = NULL;
|
|
|
|
symtab_hdr = &elf_symtab_hdr (abfd);
|
|
sym_hashes = elf_sym_hashes (abfd);
|
|
|
|
rel_end = relocs + sec->reloc_count;
|
|
for (rel = relocs; rel < rel_end; rel++)
|
|
{
|
|
struct elf_link_hash_entry *h;
|
|
unsigned int r_symndx;
|
|
unsigned int r_type;
|
|
bfd_reloc_code_real_type bfd_r_type;
|
|
Elf_Internal_Sym *isym;
|
|
|
|
r_symndx = ELFNN_R_SYM (rel->r_info);
|
|
r_type = ELFNN_R_TYPE (rel->r_info);
|
|
|
|
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
|
{
|
|
/* xgettext:c-format */
|
|
_bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, r_symndx);
|
|
return false;
|
|
}
|
|
|
|
if (r_symndx < symtab_hdr->sh_info)
|
|
{
|
|
/* A local symbol. */
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return false;
|
|
|
|
h = NULL;
|
|
}
|
|
else
|
|
{
|
|
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
|
while (h->root.type == bfd_link_hash_indirect
|
|
|| h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
}
|
|
|
|
/* Could be done earlier, if h were already available. */
|
|
bfd_r_type = kvx_tls_transition (abfd, info, r_type, h, r_symndx);
|
|
|
|
if (h != NULL)
|
|
{
|
|
/* Create the ifunc sections for static executables. If we
|
|
never see an indirect function symbol nor we are building
|
|
a static executable, those sections will be empty and
|
|
won't appear in output. */
|
|
switch (bfd_r_type)
|
|
{
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* It is referenced by a non-shared object. */
|
|
h->ref_regular = 1;
|
|
}
|
|
|
|
switch (bfd_r_type)
|
|
{
|
|
|
|
case BFD_RELOC_KVX_S43_LO10:
|
|
case BFD_RELOC_KVX_S43_UP27:
|
|
case BFD_RELOC_KVX_S43_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_LO10:
|
|
case BFD_RELOC_KVX_S37_UP27:
|
|
|
|
case BFD_RELOC_KVX_S64_LO10:
|
|
case BFD_RELOC_KVX_S64_UP27:
|
|
case BFD_RELOC_KVX_S64_EX27:
|
|
|
|
case BFD_RELOC_KVX_32:
|
|
case BFD_RELOC_KVX_64:
|
|
|
|
/* We don't need to handle relocs into sections not going into
|
|
the "real" output. */
|
|
if ((sec->flags & SEC_ALLOC) == 0)
|
|
break;
|
|
|
|
if (h != NULL)
|
|
{
|
|
if (!bfd_link_pic (info))
|
|
h->non_got_ref = 1;
|
|
|
|
h->plt.refcount += 1;
|
|
h->pointer_equality_needed = 1;
|
|
}
|
|
|
|
/* No need to do anything if we're not creating a shared
|
|
object. */
|
|
if (! bfd_link_pic (info))
|
|
break;
|
|
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
struct elf_dyn_relocs **head;
|
|
|
|
/* We must copy these reloc types into the output file.
|
|
Create a reloc section in dynobj and make room for
|
|
this reloc. */
|
|
if (sreloc == NULL)
|
|
{
|
|
if (htab->root.dynobj == NULL)
|
|
htab->root.dynobj = abfd;
|
|
|
|
sreloc = _bfd_elf_make_dynamic_reloc_section
|
|
(sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ true);
|
|
|
|
if (sreloc == NULL)
|
|
return false;
|
|
}
|
|
|
|
/* If this is a global symbol, we count the number of
|
|
relocations we need for this symbol. */
|
|
if (h != NULL)
|
|
{
|
|
head = &h->dyn_relocs;
|
|
}
|
|
else
|
|
{
|
|
/* Track dynamic relocs needed for local syms too.
|
|
We really need local syms available to do this
|
|
easily. Oh well. */
|
|
|
|
asection *s;
|
|
void **vpp;
|
|
|
|
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
|
abfd, r_symndx);
|
|
if (isym == NULL)
|
|
return false;
|
|
|
|
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
|
if (s == NULL)
|
|
s = sec;
|
|
|
|
/* Beware of type punned pointers vs strict aliasing
|
|
rules. */
|
|
vpp = &(elf_section_data (s)->local_dynrel);
|
|
head = (struct elf_dyn_relocs **) vpp;
|
|
}
|
|
|
|
p = *head;
|
|
if (p == NULL || p->sec != sec)
|
|
{
|
|
bfd_size_type amt = sizeof *p;
|
|
p = ((struct elf_dyn_relocs *)
|
|
bfd_zalloc (htab->root.dynobj, amt));
|
|
if (p == NULL)
|
|
return false;
|
|
p->next = *head;
|
|
*head = p;
|
|
p->sec = sec;
|
|
}
|
|
|
|
p->count += 1;
|
|
|
|
}
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_S37_GOT_LO10:
|
|
case BFD_RELOC_KVX_S37_GOT_UP27:
|
|
|
|
case BFD_RELOC_KVX_S37_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S37_GOTOFF_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_GOT_LO10:
|
|
case BFD_RELOC_KVX_S43_GOT_UP27:
|
|
case BFD_RELOC_KVX_S43_GOT_EX6:
|
|
|
|
case BFD_RELOC_KVX_S43_GOTOFF_LO10:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_UP27:
|
|
case BFD_RELOC_KVX_S43_GOTOFF_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_GD_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_GD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_GD_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_IE_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_IE_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_IE_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S37_TLS_LD_UP27:
|
|
|
|
case BFD_RELOC_KVX_S43_TLS_LD_LO10:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_UP27:
|
|
case BFD_RELOC_KVX_S43_TLS_LD_EX6:
|
|
{
|
|
unsigned got_type;
|
|
unsigned old_got_type;
|
|
|
|
got_type = kvx_reloc_got_type (bfd_r_type);
|
|
|
|
if (h)
|
|
{
|
|
h->got.refcount += 1;
|
|
old_got_type = elf_kvx_hash_entry (h)->got_type;
|
|
}
|
|
else
|
|
{
|
|
struct elf_kvx_local_symbol *locals;
|
|
|
|
if (!elfNN_kvx_allocate_local_symbols
|
|
(abfd, symtab_hdr->sh_info))
|
|
return false;
|
|
|
|
locals = elf_kvx_locals (abfd);
|
|
BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
|
|
locals[r_symndx].got_refcount += 1;
|
|
old_got_type = locals[r_symndx].got_type;
|
|
}
|
|
|
|
/* We will already have issued an error message if there
|
|
is a TLS/non-TLS mismatch, based on the symbol type.
|
|
So just combine any TLS types needed. */
|
|
if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL
|
|
&& got_type != GOT_NORMAL)
|
|
got_type |= old_got_type;
|
|
|
|
/* If the symbol is accessed by both IE and GD methods, we
|
|
are able to relax. Turn off the GD flag, without
|
|
messing up with any other kind of TLS types that may be
|
|
involved. */
|
|
/* Disabled untested and unused TLS */
|
|
/* if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) */
|
|
/* got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); */
|
|
|
|
if (old_got_type != got_type)
|
|
{
|
|
if (h != NULL)
|
|
elf_kvx_hash_entry (h)->got_type = got_type;
|
|
else
|
|
{
|
|
struct elf_kvx_local_symbol *locals;
|
|
locals = elf_kvx_locals (abfd);
|
|
BFD_ASSERT (r_symndx < symtab_hdr->sh_info);
|
|
locals[r_symndx].got_type = got_type;
|
|
}
|
|
}
|
|
|
|
if (htab->root.dynobj == NULL)
|
|
htab->root.dynobj = abfd;
|
|
if (! kvx_elf_create_got_section (htab->root.dynobj, info))
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
case BFD_RELOC_KVX_S64_GOTADDR_LO10:
|
|
case BFD_RELOC_KVX_S64_GOTADDR_UP27:
|
|
case BFD_RELOC_KVX_S64_GOTADDR_EX27:
|
|
|
|
case BFD_RELOC_KVX_S43_GOTADDR_LO10:
|
|
case BFD_RELOC_KVX_S43_GOTADDR_UP27:
|
|
case BFD_RELOC_KVX_S43_GOTADDR_EX6:
|
|
|
|
case BFD_RELOC_KVX_S37_GOTADDR_LO10:
|
|
case BFD_RELOC_KVX_S37_GOTADDR_UP27:
|
|
|
|
if (htab->root.dynobj == NULL)
|
|
htab->root.dynobj = abfd;
|
|
if (! kvx_elf_create_got_section (htab->root.dynobj, info))
|
|
return false;
|
|
break;
|
|
|
|
case BFD_RELOC_KVX_PCREL27:
|
|
case BFD_RELOC_KVX_PCREL17:
|
|
/* If this is a local symbol then we resolve it
|
|
directly without creating a PLT entry. */
|
|
if (h == NULL)
|
|
continue;
|
|
|
|
h->needs_plt = 1;
|
|
if (h->plt.refcount <= 0)
|
|
h->plt.refcount = 1;
|
|
else
|
|
h->plt.refcount += 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
elfNN_kvx_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
|
|
{
|
|
Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
|
|
|
|
if (!_bfd_elf_init_file_header (abfd, link_info))
|
|
return false;
|
|
|
|
i_ehdrp = elf_elfheader (abfd);
|
|
i_ehdrp->e_ident[EI_ABIVERSION] = KVX_ELF_ABI_VERSION;
|
|
return true;
|
|
}
|
|
|
|
static enum elf_reloc_type_class
|
|
elfNN_kvx_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
|
const asection *rel_sec ATTRIBUTE_UNUSED,
|
|
const Elf_Internal_Rela *rela)
|
|
{
|
|
switch ((int) ELFNN_R_TYPE (rela->r_info))
|
|
{
|
|
case R_KVX_RELATIVE:
|
|
return reloc_class_relative;
|
|
case R_KVX_JMP_SLOT:
|
|
return reloc_class_plt;
|
|
case R_KVX_COPY:
|
|
return reloc_class_copy;
|
|
default:
|
|
return reloc_class_normal;
|
|
}
|
|
}
|
|
|
|
/* A structure used to record a list of sections, independently
|
|
of the next and prev fields in the asection structure. */
|
|
typedef struct section_list
|
|
{
|
|
asection *sec;
|
|
struct section_list *next;
|
|
struct section_list *prev;
|
|
}
|
|
section_list;
|
|
|
|
typedef struct
|
|
{
|
|
void *finfo;
|
|
struct bfd_link_info *info;
|
|
asection *sec;
|
|
int sec_shndx;
|
|
int (*func) (void *, const char *, Elf_Internal_Sym *,
|
|
asection *, struct elf_link_hash_entry *);
|
|
} output_arch_syminfo;
|
|
|
|
/* Output a single local symbol for a generated stub. */
|
|
|
|
static bool
|
|
elfNN_kvx_output_stub_sym (output_arch_syminfo *osi, const char *name,
|
|
bfd_vma offset, bfd_vma size)
|
|
{
|
|
Elf_Internal_Sym sym;
|
|
|
|
sym.st_value = (osi->sec->output_section->vma
|
|
+ osi->sec->output_offset + offset);
|
|
sym.st_size = size;
|
|
sym.st_other = 0;
|
|
sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
|
|
sym.st_shndx = osi->sec_shndx;
|
|
return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
|
|
}
|
|
|
|
static bool
|
|
kvx_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
|
|
{
|
|
struct elf_kvx_stub_hash_entry *stub_entry;
|
|
asection *stub_sec;
|
|
bfd_vma addr;
|
|
char *stub_name;
|
|
output_arch_syminfo *osi;
|
|
|
|
/* Massage our args to the form they really have. */
|
|
stub_entry = (struct elf_kvx_stub_hash_entry *) gen_entry;
|
|
osi = (output_arch_syminfo *) in_arg;
|
|
|
|
stub_sec = stub_entry->stub_sec;
|
|
|
|
/* Ensure this stub is attached to the current section being
|
|
processed. */
|
|
if (stub_sec != osi->sec)
|
|
return true;
|
|
|
|
addr = (bfd_vma) stub_entry->stub_offset;
|
|
|
|
stub_name = stub_entry->output_name;
|
|
|
|
switch (stub_entry->stub_type)
|
|
{
|
|
case kvx_stub_long_branch:
|
|
if (!elfNN_kvx_output_stub_sym
|
|
(osi, stub_name, addr, sizeof (elfNN_kvx_long_branch_stub)))
|
|
return false;
|
|
break;
|
|
|
|
default:
|
|
abort ();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Output mapping symbols for linker generated sections. */
|
|
|
|
static bool
|
|
elfNN_kvx_output_arch_local_syms (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
void *finfo,
|
|
int (*func) (void *, const char *,
|
|
Elf_Internal_Sym *,
|
|
asection *,
|
|
struct elf_link_hash_entry *))
|
|
{
|
|
output_arch_syminfo osi;
|
|
struct elf_kvx_link_hash_table *htab;
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
|
|
osi.finfo = finfo;
|
|
osi.info = info;
|
|
osi.func = func;
|
|
|
|
/* Long calls stubs. */
|
|
if (htab->stub_bfd && htab->stub_bfd->sections)
|
|
{
|
|
asection *stub_sec;
|
|
|
|
for (stub_sec = htab->stub_bfd->sections;
|
|
stub_sec != NULL; stub_sec = stub_sec->next)
|
|
{
|
|
/* Ignore non-stub sections. */
|
|
if (!strstr (stub_sec->name, STUB_SUFFIX))
|
|
continue;
|
|
|
|
osi.sec = stub_sec;
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, osi.sec->output_section);
|
|
|
|
bfd_hash_traverse (&htab->stub_hash_table, kvx_map_one_stub,
|
|
&osi);
|
|
}
|
|
}
|
|
|
|
/* Finally, output mapping symbols for the PLT. */
|
|
if (!htab->root.splt || htab->root.splt->size == 0)
|
|
return true;
|
|
|
|
osi.sec_shndx = _bfd_elf_section_from_bfd_section
|
|
(output_bfd, htab->root.splt->output_section);
|
|
osi.sec = htab->root.splt;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
/* Allocate target specific section data. */
|
|
|
|
static bool
|
|
elfNN_kvx_new_section_hook (bfd *abfd, asection *sec)
|
|
{
|
|
if (!sec->used_by_bfd)
|
|
{
|
|
_kvx_elf_section_data *sdata;
|
|
bfd_size_type amt = sizeof (*sdata);
|
|
|
|
sdata = bfd_zalloc (abfd, amt);
|
|
if (sdata == NULL)
|
|
return false;
|
|
sec->used_by_bfd = sdata;
|
|
}
|
|
|
|
return _bfd_elf_new_section_hook (abfd, sec);
|
|
}
|
|
|
|
/* Create dynamic sections. This is different from the ARM backend in that
|
|
the got, plt, gotplt and their relocation sections are all created in the
|
|
standard part of the bfd elf backend. */
|
|
|
|
static bool
|
|
elfNN_kvx_create_dynamic_sections (bfd *dynobj,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
|
|
/* We need to create .got section. */
|
|
if (!kvx_elf_create_got_section (dynobj, info))
|
|
return false;
|
|
|
|
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
|
return false;
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
|
|
if (!bfd_link_pic (info))
|
|
htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
|
|
|
|
if (!htab->sdynbss || (!bfd_link_pic (info) && !htab->srelbss))
|
|
abort ();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Allocate space in .plt, .got and associated reloc sections for
|
|
dynamic relocs. */
|
|
|
|
static bool
|
|
elfNN_kvx_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
|
|
{
|
|
struct bfd_link_info *info;
|
|
struct elf_kvx_link_hash_table *htab;
|
|
struct elf_dyn_relocs *p;
|
|
|
|
/* An example of a bfd_link_hash_indirect symbol is versioned
|
|
symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect)
|
|
-> __gxx_personality_v0(bfd_link_hash_defined)
|
|
|
|
There is no need to process bfd_link_hash_indirect symbols here
|
|
because we will also be presented with the concrete instance of
|
|
the symbol and elfNN_kvx_copy_indirect_symbol () will have been
|
|
called to copy all relevant data from the generic to the concrete
|
|
symbol instance. */
|
|
if (h->root.type == bfd_link_hash_indirect)
|
|
return true;
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
|
|
|
info = (struct bfd_link_info *) inf;
|
|
htab = elf_kvx_hash_table (info);
|
|
|
|
if (htab->root.dynamic_sections_created && h->plt.refcount > 0)
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1 && !h->forced_local)
|
|
{
|
|
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
if (bfd_link_pic (info) || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
|
{
|
|
asection *s = htab->root.splt;
|
|
|
|
/* If this is the first .plt entry, make room for the special
|
|
first entry. */
|
|
if (s->size == 0)
|
|
s->size += htab->plt_header_size;
|
|
|
|
h->plt.offset = s->size;
|
|
|
|
/* If this symbol is not defined in a regular file, and we are
|
|
not generating a shared library, then set the symbol to this
|
|
location in the .plt. This is required to make function
|
|
pointers compare as equal between the normal executable and
|
|
the shared library. */
|
|
if (!bfd_link_pic (info) && !h->def_regular)
|
|
{
|
|
h->root.u.def.section = s;
|
|
h->root.u.def.value = h->plt.offset;
|
|
}
|
|
|
|
/* Make room for this entry. For now we only create the
|
|
small model PLT entries. We later need to find a way
|
|
of relaxing into these from the large model PLT entries. */
|
|
s->size += PLT_SMALL_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .got.plt section, which
|
|
will be placed in the .got section by the linker script. */
|
|
htab->root.sgotplt->size += GOT_ENTRY_SIZE;
|
|
|
|
/* We also need to make an entry in the .rela.plt section. */
|
|
htab->root.srelplt->size += RELOC_SIZE (htab);
|
|
|
|
/* We need to ensure that all GOT entries that serve the PLT
|
|
are consecutive with the special GOT slots [0] [1] and
|
|
[2]. Any addtional relocations must be placed after the
|
|
PLT related entries. We abuse the reloc_count such that
|
|
during sizing we adjust reloc_count to indicate the
|
|
number of PLT related reserved entries. In subsequent
|
|
phases when filling in the contents of the reloc entries,
|
|
PLT related entries are placed by computing their PLT
|
|
index (0 .. reloc_count). While other none PLT relocs are
|
|
placed at the slot indicated by reloc_count and
|
|
reloc_count is updated. */
|
|
|
|
htab->root.srelplt->reloc_count++;
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) - 1;
|
|
h->needs_plt = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->plt.offset = (bfd_vma) - 1;
|
|
h->needs_plt = 0;
|
|
}
|
|
|
|
if (h->got.refcount > 0)
|
|
{
|
|
bool dyn;
|
|
unsigned got_type = elf_kvx_hash_entry (h)->got_type;
|
|
|
|
h->got.offset = (bfd_vma) - 1;
|
|
|
|
dyn = htab->root.dynamic_sections_created;
|
|
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (dyn && h->dynindx == -1 && !h->forced_local)
|
|
{
|
|
if (!bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
if (got_type == GOT_UNKNOWN)
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("relocation against `%s' has faulty GOT type "),
|
|
(h) ? h->root.root.string : "a local symbol");
|
|
bfd_set_error (bfd_error_bad_value);
|
|
return false;
|
|
}
|
|
else if (got_type == GOT_NORMAL)
|
|
{
|
|
h->got.offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += GOT_ENTRY_SIZE;
|
|
if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& (bfd_link_pic (info)
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
|
{
|
|
htab->root.srelgot->size += RELOC_SIZE (htab);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int indx;
|
|
|
|
/* Any of these will require 2 GOT slots because
|
|
* they use __tls_get_addr() */
|
|
if (got_type & (GOT_TLS_GD | GOT_TLS_LD))
|
|
{
|
|
h->got.offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
|
|
}
|
|
|
|
if (got_type & GOT_TLS_IE)
|
|
{
|
|
h->got.offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
|
if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
|
|| h->root.type != bfd_link_hash_undefweak)
|
|
&& (bfd_link_pic (info)
|
|
|| indx != 0
|
|
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
|
{
|
|
/* Only the GD case requires 2 relocations. */
|
|
if (got_type & GOT_TLS_GD)
|
|
htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
|
|
|
|
/* LD needs a DTPMOD reloc, IE needs a DTPOFF. */
|
|
if (got_type & (GOT_TLS_LD | GOT_TLS_IE))
|
|
htab->root.srelgot->size += RELOC_SIZE (htab);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
h->got.offset = (bfd_vma) - 1;
|
|
}
|
|
|
|
if (h->dyn_relocs == NULL)
|
|
return true;
|
|
|
|
/* In the shared -Bsymbolic case, discard space allocated for
|
|
dynamic pc-relative relocs against symbols which turn out to be
|
|
defined in regular objects. For the normal shared case, discard
|
|
space for pc-relative relocs that have become local due to symbol
|
|
visibility changes. */
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
/* Relocs that use pc_count are those that appear on a call
|
|
insn, or certain REL relocs that can generated via assembly.
|
|
We want calls to protected symbols to resolve directly to the
|
|
function rather than going via the plt. If people want
|
|
function pointer comparisons to work as expected then they
|
|
should avoid writing weird assembly. */
|
|
if (SYMBOL_CALLS_LOCAL (info, h))
|
|
{
|
|
struct elf_dyn_relocs **pp;
|
|
|
|
for (pp = &h->dyn_relocs; (p = *pp) != NULL;)
|
|
{
|
|
p->count -= p->pc_count;
|
|
p->pc_count = 0;
|
|
if (p->count == 0)
|
|
*pp = p->next;
|
|
else
|
|
pp = &p->next;
|
|
}
|
|
}
|
|
|
|
/* Also discard relocs on undefined weak syms with non-default
|
|
visibility. */
|
|
if (h->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak)
|
|
{
|
|
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
|
|| UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
|
|
h->dyn_relocs = NULL;
|
|
|
|
/* Make sure undefined weak symbols are output as a dynamic
|
|
symbol in PIEs. */
|
|
else if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
}
|
|
|
|
}
|
|
else if (ELIMINATE_COPY_RELOCS)
|
|
{
|
|
/* For the non-shared case, discard space for relocs against
|
|
symbols which turn out to need copy relocs or are not
|
|
dynamic. */
|
|
|
|
if (!h->non_got_ref
|
|
&& ((h->def_dynamic
|
|
&& !h->def_regular)
|
|
|| (htab->root.dynamic_sections_created
|
|
&& (h->root.type == bfd_link_hash_undefweak
|
|
|| h->root.type == bfd_link_hash_undefined))))
|
|
{
|
|
/* Make sure this symbol is output as a dynamic symbol.
|
|
Undefined weak syms won't yet be marked as dynamic. */
|
|
if (h->dynindx == -1
|
|
&& !h->forced_local
|
|
&& !bfd_elf_link_record_dynamic_symbol (info, h))
|
|
return false;
|
|
|
|
/* If that succeeded, we know we'll be keeping all the
|
|
relocs. */
|
|
if (h->dynindx != -1)
|
|
goto keep;
|
|
}
|
|
|
|
h->dyn_relocs = NULL;
|
|
|
|
keep:;
|
|
}
|
|
|
|
/* Finally, allocate space. */
|
|
for (p = h->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *sreloc;
|
|
|
|
sreloc = elf_section_data (p->sec)->sreloc;
|
|
|
|
BFD_ASSERT (sreloc != NULL);
|
|
|
|
sreloc->size += p->count * RELOC_SIZE (htab);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Find any dynamic relocs that apply to read-only sections. */
|
|
|
|
static bool
|
|
kvx_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
|
|
{
|
|
struct elf_dyn_relocs * p;
|
|
|
|
for (p = h->dyn_relocs; p != NULL; p = p->next)
|
|
{
|
|
asection *s = p->sec;
|
|
|
|
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
|
{
|
|
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
|
|
|
info->flags |= DF_TEXTREL;
|
|
info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' in "
|
|
"read-only section `%pA'\n"),
|
|
s->owner, h->root.root.string, s);
|
|
|
|
/* Not an error, just cut short the traversal. */
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* This is the most important function of all . Innocuosly named
|
|
though ! */
|
|
static bool
|
|
elfNN_kvx_late_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *s;
|
|
bool relocs;
|
|
bfd *ibfd;
|
|
|
|
htab = elf_kvx_hash_table ((info));
|
|
dynobj = htab->root.dynobj;
|
|
if (dynobj == NULL)
|
|
return true;
|
|
|
|
if (htab->root.dynamic_sections_created)
|
|
{
|
|
if (bfd_link_executable (info) && !info->nointerp)
|
|
{
|
|
s = bfd_get_linker_section (dynobj, ".interp");
|
|
if (s == NULL)
|
|
abort ();
|
|
s->size = sizeof ELF_DYNAMIC_INTERPRETER;
|
|
s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
|
|
}
|
|
}
|
|
|
|
/* Set up .got offsets for local syms, and space for local dynamic
|
|
relocs. */
|
|
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
|
|
{
|
|
struct elf_kvx_local_symbol *locals = NULL;
|
|
Elf_Internal_Shdr *symtab_hdr;
|
|
asection *srel;
|
|
unsigned int i;
|
|
|
|
if (!is_kvx_elf (ibfd))
|
|
continue;
|
|
|
|
for (s = ibfd->sections; s != NULL; s = s->next)
|
|
{
|
|
struct elf_dyn_relocs *p;
|
|
|
|
for (p = (struct elf_dyn_relocs *)
|
|
(elf_section_data (s)->local_dynrel); p != NULL; p = p->next)
|
|
{
|
|
if (!bfd_is_abs_section (p->sec)
|
|
&& bfd_is_abs_section (p->sec->output_section))
|
|
{
|
|
/* Input section has been discarded, either because
|
|
it is a copy of a linkonce section or due to
|
|
linker script /DISCARD/, so we'll be discarding
|
|
the relocs too. */
|
|
}
|
|
else if (p->count != 0)
|
|
{
|
|
srel = elf_section_data (p->sec)->sreloc;
|
|
srel->size += p->count * RELOC_SIZE (htab);
|
|
if ((p->sec->output_section->flags & SEC_READONLY) != 0)
|
|
info->flags |= DF_TEXTREL;
|
|
}
|
|
}
|
|
}
|
|
|
|
locals = elf_kvx_locals (ibfd);
|
|
if (!locals)
|
|
continue;
|
|
|
|
symtab_hdr = &elf_symtab_hdr (ibfd);
|
|
srel = htab->root.srelgot;
|
|
for (i = 0; i < symtab_hdr->sh_info; i++)
|
|
{
|
|
locals[i].got_offset = (bfd_vma) - 1;
|
|
if (locals[i].got_refcount > 0)
|
|
{
|
|
unsigned got_type = locals[i].got_type;
|
|
if (got_type & (GOT_TLS_GD | GOT_TLS_LD))
|
|
{
|
|
locals[i].got_offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += GOT_ENTRY_SIZE * 2;
|
|
}
|
|
|
|
if (got_type & (GOT_NORMAL | GOT_TLS_IE ))
|
|
{
|
|
locals[i].got_offset = htab->root.sgot->size;
|
|
htab->root.sgot->size += GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
if (got_type == GOT_UNKNOWN)
|
|
{
|
|
}
|
|
|
|
if (bfd_link_pic (info))
|
|
{
|
|
if (got_type & GOT_TLS_GD)
|
|
htab->root.srelgot->size += RELOC_SIZE (htab) * 2;
|
|
|
|
if (got_type & GOT_TLS_IE
|
|
|| got_type & GOT_TLS_LD
|
|
|| got_type & GOT_NORMAL)
|
|
htab->root.srelgot->size += RELOC_SIZE (htab);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
locals[i].got_refcount = (bfd_vma) - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Allocate global sym .plt and .got entries, and space for global
|
|
sym dynamic relocs. */
|
|
elf_link_hash_traverse (&htab->root, elfNN_kvx_allocate_dynrelocs,
|
|
info);
|
|
|
|
/* For every jump slot reserved in the sgotplt, reloc_count is
|
|
incremented. However, when we reserve space for TLS descriptors,
|
|
it's not incremented, so in order to compute the space reserved
|
|
for them, it suffices to multiply the reloc count by the jump
|
|
slot size. */
|
|
|
|
if (htab->root.srelplt)
|
|
htab->sgotplt_jump_table_size = kvx_compute_jump_table_size (htab);
|
|
|
|
/* We now have determined the sizes of the various dynamic sections.
|
|
Allocate memory for them. */
|
|
relocs = false;
|
|
for (s = dynobj->sections; s != NULL; s = s->next)
|
|
{
|
|
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
|
continue;
|
|
|
|
if (s == htab->root.splt
|
|
|| s == htab->root.sgot
|
|
|| s == htab->root.sgotplt
|
|
|| s == htab->root.iplt
|
|
|| s == htab->root.igotplt || s == htab->sdynbss)
|
|
{
|
|
/* Strip this section if we don't need it; see the
|
|
comment below. */
|
|
}
|
|
else if (startswith (bfd_section_name (s), ".rela"))
|
|
{
|
|
if (s->size != 0 && s != htab->root.srelplt)
|
|
relocs = true;
|
|
|
|
/* We use the reloc_count field as a counter if we need
|
|
to copy relocs into the output file. */
|
|
if (s != htab->root.srelplt)
|
|
s->reloc_count = 0;
|
|
}
|
|
else
|
|
{
|
|
/* It's not one of our sections, so don't allocate space. */
|
|
continue;
|
|
}
|
|
|
|
if (s->size == 0)
|
|
{
|
|
/* If we don't need this section, strip it from the
|
|
output file. This is mostly to handle .rela.bss and
|
|
.rela.plt. We must create both sections in
|
|
create_dynamic_sections, because they must be created
|
|
before the linker maps input sections to output
|
|
sections. The linker does that before
|
|
adjust_dynamic_symbol is called, and it is that
|
|
function which decides whether anything needs to go
|
|
into these sections. */
|
|
|
|
s->flags |= SEC_EXCLUDE;
|
|
continue;
|
|
}
|
|
|
|
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
|
continue;
|
|
|
|
/* Allocate memory for the section contents. We use bfd_zalloc
|
|
here in case unused entries are not reclaimed before the
|
|
section's contents are written out. This should not happen,
|
|
but this way if it does, we get a R_KVX_NONE reloc instead
|
|
of garbage. */
|
|
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
|
if (s->contents == NULL)
|
|
return false;
|
|
}
|
|
|
|
if (htab->root.dynamic_sections_created)
|
|
{
|
|
/* Add some entries to the .dynamic section. We fill in the
|
|
values later, in elfNN_kvx_finish_dynamic_sections, but we
|
|
must add the entries now so that we get the correct size for
|
|
the .dynamic section. The DT_DEBUG entry is filled in by the
|
|
dynamic linker and used by the debugger. */
|
|
#define add_dynamic_entry(TAG, VAL) \
|
|
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
|
|
|
if (bfd_link_executable (info))
|
|
{
|
|
if (!add_dynamic_entry (DT_DEBUG, 0))
|
|
return false;
|
|
}
|
|
|
|
if (htab->root.splt->size != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
|
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
|
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
|
|| !add_dynamic_entry (DT_JMPREL, 0))
|
|
return false;
|
|
}
|
|
|
|
if (relocs)
|
|
{
|
|
if (!add_dynamic_entry (DT_RELA, 0)
|
|
|| !add_dynamic_entry (DT_RELASZ, 0)
|
|
|| !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
|
|
return false;
|
|
|
|
/* If any dynamic relocs apply to a read-only section,
|
|
then we need a DT_TEXTREL entry. */
|
|
if ((info->flags & DF_TEXTREL) == 0)
|
|
elf_link_hash_traverse (&htab->root, kvx_readonly_dynrelocs,
|
|
info);
|
|
|
|
if ((info->flags & DF_TEXTREL) != 0)
|
|
{
|
|
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
#undef add_dynamic_entry
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline void
|
|
elf_kvx_update_plt_entry (bfd *output_bfd,
|
|
bfd_reloc_code_real_type r_type,
|
|
bfd_byte *plt_entry, bfd_vma value)
|
|
{
|
|
reloc_howto_type *howto = elfNN_kvx_howto_from_bfd_reloc (r_type);
|
|
BFD_ASSERT(howto != NULL);
|
|
_bfd_kvx_elf_put_addend (output_bfd, plt_entry, r_type, howto, value);
|
|
}
|
|
|
|
static void
|
|
elfNN_kvx_create_small_pltn_entry (struct elf_link_hash_entry *h,
|
|
struct elf_kvx_link_hash_table *htab,
|
|
bfd *output_bfd)
|
|
{
|
|
bfd_byte *plt_entry;
|
|
bfd_vma plt_index;
|
|
bfd_vma got_offset;
|
|
bfd_vma gotplt_entry_address;
|
|
bfd_vma plt_entry_address;
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
asection *plt, *gotplt, *relplt;
|
|
|
|
plt = htab->root.splt;
|
|
gotplt = htab->root.sgotplt;
|
|
relplt = htab->root.srelplt;
|
|
|
|
/* Get the index in the procedure linkage table which
|
|
corresponds to this symbol. This is the index of this symbol
|
|
in all the symbols for which we are making plt entries. The
|
|
first entry in the procedure linkage table is reserved.
|
|
|
|
Get the offset into the .got table of the entry that
|
|
corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
|
|
bytes. The first three are reserved for the dynamic linker.
|
|
|
|
For static executables, we don't reserve anything. */
|
|
|
|
if (plt == htab->root.splt)
|
|
{
|
|
plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
|
|
got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
|
|
}
|
|
else
|
|
{
|
|
plt_index = h->plt.offset / htab->plt_entry_size;
|
|
got_offset = plt_index * GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
plt_entry = plt->contents + h->plt.offset;
|
|
plt_entry_address = plt->output_section->vma
|
|
+ plt->output_offset + h->plt.offset;
|
|
gotplt_entry_address = gotplt->output_section->vma +
|
|
gotplt->output_offset + got_offset;
|
|
|
|
/* Copy in the boiler-plate for the PLTn entry. */
|
|
memcpy (plt_entry, elfNN_kvx_small_plt_entry, PLT_SMALL_ENTRY_SIZE);
|
|
|
|
/* Patch the loading of the GOT entry, relative to the PLT entry
|
|
address. */
|
|
|
|
/* Use 37bits offset for both 32 and 64bits mode.
|
|
Fill the LO10 of of lw $r9 = 0[$r14]. */
|
|
elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_LO10,
|
|
plt_entry+4,
|
|
gotplt_entry_address - plt_entry_address);
|
|
|
|
/* Fill the UP27 of of lw $r9 = 0[$r14]. */
|
|
elf_kvx_update_plt_entry(output_bfd, BFD_RELOC_KVX_S37_UP27,
|
|
plt_entry+8,
|
|
gotplt_entry_address - plt_entry_address);
|
|
|
|
rela.r_offset = gotplt_entry_address;
|
|
|
|
/* Fill in the entry in the .rela.plt section. */
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_JMP_SLOT);
|
|
rela.r_addend = 0;
|
|
|
|
/* Compute the relocation entry to used based on PLT index and do
|
|
not adjust reloc_count. The reloc_count has already been adjusted
|
|
to account for this entry. */
|
|
loc = relplt->contents + plt_index * RELOC_SIZE (htab);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
/* Size sections even though they're not dynamic. We use it to setup
|
|
_TLS_MODULE_BASE_, if needed. */
|
|
|
|
static bool
|
|
elfNN_kvx_early_size_sections (bfd *output_bfd, struct bfd_link_info *info)
|
|
{
|
|
asection *tls_sec;
|
|
|
|
if (bfd_link_relocatable (info))
|
|
return true;
|
|
|
|
tls_sec = elf_hash_table (info)->tls_sec;
|
|
|
|
if (tls_sec)
|
|
{
|
|
struct elf_link_hash_entry *tlsbase;
|
|
|
|
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
|
|
"_TLS_MODULE_BASE_", true, true, false);
|
|
|
|
if (tlsbase)
|
|
{
|
|
struct bfd_link_hash_entry *h = NULL;
|
|
const struct elf_backend_data *bed =
|
|
get_elf_backend_data (output_bfd);
|
|
|
|
if (!(_bfd_generic_link_add_one_symbol
|
|
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
|
tls_sec, 0, NULL, false, bed->collect, &h)))
|
|
return false;
|
|
|
|
tlsbase->type = STT_TLS;
|
|
tlsbase = (struct elf_link_hash_entry *) h;
|
|
tlsbase->def_regular = 1;
|
|
tlsbase->other = STV_HIDDEN;
|
|
(*bed->elf_backend_hide_symbol) (info, tlsbase, true);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Finish up dynamic symbol handling. We set the contents of various
|
|
dynamic sections here. */
|
|
static bool
|
|
elfNN_kvx_finish_dynamic_symbol (bfd *output_bfd,
|
|
struct bfd_link_info *info,
|
|
struct elf_link_hash_entry *h,
|
|
Elf_Internal_Sym *sym)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
htab = elf_kvx_hash_table (info);
|
|
|
|
if (h->plt.offset != (bfd_vma) - 1)
|
|
{
|
|
asection *plt = NULL, *gotplt = NULL, *relplt = NULL;
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
|
|
if (htab->root.splt != NULL)
|
|
{
|
|
plt = htab->root.splt;
|
|
gotplt = htab->root.sgotplt;
|
|
relplt = htab->root.srelplt;
|
|
}
|
|
|
|
/* This symbol has an entry in the procedure linkage table. Set
|
|
it up. */
|
|
if ((h->dynindx == -1
|
|
&& !((h->forced_local || bfd_link_executable (info))
|
|
&& h->def_regular
|
|
&& h->type == STT_GNU_IFUNC))
|
|
|| plt == NULL
|
|
|| gotplt == NULL
|
|
|| relplt == NULL)
|
|
abort ();
|
|
|
|
elfNN_kvx_create_small_pltn_entry (h, htab, output_bfd);
|
|
if (!h->def_regular)
|
|
{
|
|
/* Mark the symbol as undefined, rather than as defined in
|
|
the .plt section. */
|
|
sym->st_shndx = SHN_UNDEF;
|
|
/* If the symbol is weak we need to clear the value.
|
|
Otherwise, the PLT entry would provide a definition for
|
|
the symbol even if the symbol wasn't defined anywhere,
|
|
and so the symbol would never be NULL. Leave the value if
|
|
there were any relocations where pointer equality matters
|
|
(this is a clue for the dynamic linker, to make function
|
|
pointer comparisons work between an application and shared
|
|
library). */
|
|
if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
|
|
sym->st_value = 0;
|
|
}
|
|
}
|
|
|
|
if (h->got.offset != (bfd_vma) - 1
|
|
&& elf_kvx_hash_entry (h)->got_type == GOT_NORMAL)
|
|
{
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
|
|
/* This symbol has an entry in the global offset table. Set it
|
|
up. */
|
|
if (htab->root.sgot == NULL || htab->root.srelgot == NULL)
|
|
abort ();
|
|
|
|
rela.r_offset = (htab->root.sgot->output_section->vma
|
|
+ htab->root.sgot->output_offset
|
|
+ (h->got.offset & ~(bfd_vma) 1));
|
|
|
|
#ifdef UGLY_DEBUG
|
|
printf("setting rela at offset 0x%x(0x%x + 0x%x + 0x%x) for %s\n",
|
|
rela.r_offset,
|
|
htab->root.sgot->output_section->vma,
|
|
htab->root.sgot->output_offset,
|
|
h->got.offset,
|
|
h->root.root.string);
|
|
#endif
|
|
|
|
if (bfd_link_pic (info) && SYMBOL_REFERENCES_LOCAL (info, h))
|
|
{
|
|
if (!h->def_regular)
|
|
return false;
|
|
|
|
/* in case of PLT related GOT entry, it is not clear who is
|
|
supposed to set the LSB of GOT entry...
|
|
kvx_calculate_got_entry_vma() would be a good candidate,
|
|
but it is not called currently
|
|
So we are commenting it ATM. */
|
|
// BFD_ASSERT ((h->got.offset & 1) != 0);
|
|
rela.r_info = ELFNN_R_INFO (0, R_KVX_RELATIVE);
|
|
rela.r_addend = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
}
|
|
else
|
|
{
|
|
BFD_ASSERT ((h->got.offset & 1) == 0);
|
|
bfd_put_NN (output_bfd, (bfd_vma) 0,
|
|
htab->root.sgot->contents + h->got.offset);
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_GLOB_DAT);
|
|
rela.r_addend = 0;
|
|
}
|
|
|
|
loc = htab->root.srelgot->contents;
|
|
loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
if (h->needs_copy)
|
|
{
|
|
Elf_Internal_Rela rela;
|
|
bfd_byte *loc;
|
|
|
|
/* This symbol needs a copy reloc. Set it up. */
|
|
|
|
if (h->dynindx == -1
|
|
|| (h->root.type != bfd_link_hash_defined
|
|
&& h->root.type != bfd_link_hash_defweak)
|
|
|| htab->srelbss == NULL)
|
|
abort ();
|
|
|
|
rela.r_offset = (h->root.u.def.value
|
|
+ h->root.u.def.section->output_section->vma
|
|
+ h->root.u.def.section->output_offset);
|
|
rela.r_info = ELFNN_R_INFO (h->dynindx, R_KVX_COPY);
|
|
rela.r_addend = 0;
|
|
loc = htab->srelbss->contents;
|
|
loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab);
|
|
bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc);
|
|
}
|
|
|
|
/* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may
|
|
be NULL for local symbols. */
|
|
if (sym != NULL
|
|
&& (h == elf_hash_table (info)->hdynamic
|
|
|| h == elf_hash_table (info)->hgot))
|
|
sym->st_shndx = SHN_ABS;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
elfNN_kvx_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED,
|
|
struct elf_kvx_link_hash_table *htab)
|
|
{
|
|
memcpy (htab->root.splt->contents, elfNN_kvx_small_plt0_entry,
|
|
PLT_ENTRY_SIZE);
|
|
elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize =
|
|
PLT_ENTRY_SIZE;
|
|
}
|
|
|
|
static bool
|
|
elfNN_kvx_finish_dynamic_sections (bfd *output_bfd,
|
|
struct bfd_link_info *info)
|
|
{
|
|
struct elf_kvx_link_hash_table *htab;
|
|
bfd *dynobj;
|
|
asection *sdyn;
|
|
|
|
htab = elf_kvx_hash_table (info);
|
|
dynobj = htab->root.dynobj;
|
|
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
|
|
|
if (htab->root.dynamic_sections_created)
|
|
{
|
|
ElfNN_External_Dyn *dyncon, *dynconend;
|
|
|
|
if (sdyn == NULL || htab->root.sgot == NULL)
|
|
abort ();
|
|
|
|
dyncon = (ElfNN_External_Dyn *) sdyn->contents;
|
|
dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
|
|
for (; dyncon < dynconend; dyncon++)
|
|
{
|
|
Elf_Internal_Dyn dyn;
|
|
asection *s;
|
|
|
|
bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
|
|
|
|
switch (dyn.d_tag)
|
|
{
|
|
default:
|
|
continue;
|
|
|
|
case DT_PLTGOT:
|
|
s = htab->root.sgotplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
|
|
case DT_JMPREL:
|
|
s = htab->root.srelplt;
|
|
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
|
break;
|
|
|
|
case DT_PLTRELSZ:
|
|
s = htab->root.srelplt;
|
|
dyn.d_un.d_val = s->size;
|
|
break;
|
|
|
|
case DT_RELASZ:
|
|
/* The procedure linkage table relocs (DT_JMPREL) should
|
|
not be included in the overall relocs (DT_RELA).
|
|
Therefore, we override the DT_RELASZ entry here to
|
|
make it not include the JMPREL relocs. Since the
|
|
linker script arranges for .rela.plt to follow all
|
|
other relocation sections, we don't have to worry
|
|
about changing the DT_RELA entry. */
|
|
if (htab->root.srelplt != NULL)
|
|
{
|
|
s = htab->root.srelplt;
|
|
dyn.d_un.d_val -= s->size;
|
|
}
|
|
break;
|
|
}
|
|
|
|
bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon);
|
|
}
|
|
|
|
}
|
|
|
|
/* Fill in the special first entry in the procedure linkage table. */
|
|
if (htab->root.splt && htab->root.splt->size > 0)
|
|
{
|
|
elfNN_kvx_init_small_plt0_entry (output_bfd, htab);
|
|
|
|
elf_section_data (htab->root.splt->output_section)->
|
|
this_hdr.sh_entsize = htab->plt_entry_size;
|
|
}
|
|
|
|
if (htab->root.sgotplt)
|
|
{
|
|
if (bfd_is_abs_section (htab->root.sgotplt->output_section))
|
|
{
|
|
(*_bfd_error_handler)
|
|
(_("discarded output section: `%pA'"), htab->root.sgotplt);
|
|
return false;
|
|
}
|
|
|
|
/* Fill in the first three entries in the global offset table. */
|
|
if (htab->root.sgotplt->size > 0)
|
|
{
|
|
bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents);
|
|
|
|
/* Write GOT[1] and GOT[2], needed for the dynamic linker. */
|
|
bfd_put_NN (output_bfd,
|
|
(bfd_vma) 0,
|
|
htab->root.sgotplt->contents + GOT_ENTRY_SIZE);
|
|
bfd_put_NN (output_bfd,
|
|
(bfd_vma) 0,
|
|
htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2);
|
|
}
|
|
|
|
if (htab->root.sgot)
|
|
{
|
|
if (htab->root.sgot->size > 0)
|
|
{
|
|
bfd_vma addr =
|
|
sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0;
|
|
bfd_put_NN (output_bfd, addr, htab->root.sgot->contents);
|
|
}
|
|
}
|
|
|
|
elf_section_data (htab->root.sgotplt->output_section)->
|
|
this_hdr.sh_entsize = GOT_ENTRY_SIZE;
|
|
}
|
|
|
|
if (htab->root.sgot && htab->root.sgot->size > 0)
|
|
elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize
|
|
= GOT_ENTRY_SIZE;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
|
or (bfd_vma) -1 if it should not be included. */
|
|
|
|
static bfd_vma
|
|
elfNN_kvx_plt_sym_val (bfd_vma i, const asection *plt,
|
|
const arelent *rel ATTRIBUTE_UNUSED)
|
|
{
|
|
return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE;
|
|
}
|
|
|
|
#define ELF_ARCH bfd_arch_kvx
|
|
#define ELF_MACHINE_CODE EM_KVX
|
|
#define ELF_MAXPAGESIZE 0x10000
|
|
#define ELF_MINPAGESIZE 0x1000
|
|
#define ELF_COMMONPAGESIZE 0x1000
|
|
|
|
#define bfd_elfNN_bfd_link_hash_table_create \
|
|
elfNN_kvx_link_hash_table_create
|
|
|
|
#define bfd_elfNN_bfd_merge_private_bfd_data \
|
|
elfNN_kvx_merge_private_bfd_data
|
|
|
|
#define bfd_elfNN_bfd_print_private_bfd_data \
|
|
elfNN_kvx_print_private_bfd_data
|
|
|
|
#define bfd_elfNN_bfd_reloc_type_lookup \
|
|
elfNN_kvx_reloc_type_lookup
|
|
|
|
#define bfd_elfNN_bfd_reloc_name_lookup \
|
|
elfNN_kvx_reloc_name_lookup
|
|
|
|
#define bfd_elfNN_bfd_set_private_flags \
|
|
elfNN_kvx_set_private_flags
|
|
|
|
#define bfd_elfNN_mkobject \
|
|
elfNN_kvx_mkobject
|
|
|
|
#define bfd_elfNN_new_section_hook \
|
|
elfNN_kvx_new_section_hook
|
|
|
|
#define elf_backend_adjust_dynamic_symbol \
|
|
elfNN_kvx_adjust_dynamic_symbol
|
|
|
|
#define elf_backend_early_size_sections \
|
|
elfNN_kvx_early_size_sections
|
|
|
|
#define elf_backend_check_relocs \
|
|
elfNN_kvx_check_relocs
|
|
|
|
#define elf_backend_copy_indirect_symbol \
|
|
elfNN_kvx_copy_indirect_symbol
|
|
|
|
/* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts
|
|
to them in our hash. */
|
|
#define elf_backend_create_dynamic_sections \
|
|
elfNN_kvx_create_dynamic_sections
|
|
|
|
#define elf_backend_init_index_section \
|
|
_bfd_elf_init_2_index_sections
|
|
|
|
#define elf_backend_finish_dynamic_sections \
|
|
elfNN_kvx_finish_dynamic_sections
|
|
|
|
#define elf_backend_finish_dynamic_symbol \
|
|
elfNN_kvx_finish_dynamic_symbol
|
|
|
|
#define elf_backend_object_p \
|
|
elfNN_kvx_object_p
|
|
|
|
#define elf_backend_output_arch_local_syms \
|
|
elfNN_kvx_output_arch_local_syms
|
|
|
|
#define elf_backend_plt_sym_val \
|
|
elfNN_kvx_plt_sym_val
|
|
|
|
#define elf_backend_init_file_header \
|
|
elfNN_kvx_init_file_header
|
|
|
|
#define elf_backend_init_process_headers \
|
|
elfNN_kvx_init_process_headers
|
|
|
|
#define elf_backend_relocate_section \
|
|
elfNN_kvx_relocate_section
|
|
|
|
#define elf_backend_reloc_type_class \
|
|
elfNN_kvx_reloc_type_class
|
|
|
|
#define elf_backend_late_size_sections \
|
|
elfNN_kvx_late_size_sections
|
|
|
|
#define elf_backend_can_refcount 1
|
|
#define elf_backend_can_gc_sections 1
|
|
#define elf_backend_plt_readonly 1
|
|
#define elf_backend_want_got_plt 1
|
|
#define elf_backend_want_plt_sym 0
|
|
#define elf_backend_may_use_rel_p 0
|
|
#define elf_backend_may_use_rela_p 1
|
|
#define elf_backend_default_use_rela_p 1
|
|
#define elf_backend_rela_normal 1
|
|
#define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3)
|
|
#define elf_backend_default_execstack 0
|
|
#define elf_backend_extern_protected_data 1
|
|
#define elf_backend_hash_symbol elf_kvx_hash_symbol
|
|
|
|
#include "elfNN-target.h"
|