mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
f4f9705a2d
* gdbarch.h, gdbarch.c: Regenerate. * defs.h (breakpoint_from_pc_fn): Delete type definition. * target.h (memory_breakpoint_from_pc): Update declaration. * config/mcore/tm-mcore.h (mcore_breakpoint_from_p): Ditto. * arch-utils.c (legacy_breakpoint_from_pc): Update return type. * mcore-tdep.c (mcore_breakpoint_from_pc): Ditto. * mem-break.c (memory_breakpoint_from_pc): Ditto. * rs6000-tdep.c (rs6000_breakpoint_from_pc): Ditto. * s390-tdep.c (s390_breakpoint_from_pc): Ditto * xstormy16-tdep.c (xstormy16_breakpoint_from_pc): Ditto. * mn10300-tdep.c (mn10300_breakpoint_from_pc): Ditto. * mips-tdep.c (mips_breakpoint_from_pc): Ditto. * m68hc11-tdep.c (m68hc11_breakpoint_from_pc): Ditto. * ia64-tdep.c (ia64_breakpoint_from_pc): Ditto. * d10v-tdep.c (d10v_breakpoint_from_pc): Ditto. * arch-utils.c (legacy_breakpoint_from_pc): Ditto.. * mem-break.c (default_memory_insert_breakpoint): Make `bp' a const pointer. * monitor.c (monitor_insert_breakpoint): Ditto. * rs6000-tdep.c (rs6000_software_single_step): Ditto for `breakp'. * config/mcore/tm-mcore.h: Update copyright. * mem-break.c: Ditto. * xstormy16-tdep.c: Ditto.
2240 lines
71 KiB
C
2240 lines
71 KiB
C
/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
|
|
|
|
Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "inferior.h"
|
|
#include "symfile.h" /* for entry_point_address */
|
|
#include "gdbcore.h"
|
|
#include "arch-utils.h"
|
|
#include "floatformat.h"
|
|
#include "regcache.h"
|
|
#include "doublest.h"
|
|
#include "value.h"
|
|
|
|
#include "objfiles.h"
|
|
#include "elf/common.h" /* for DT_PLTGOT value */
|
|
#include "elf-bfd.h"
|
|
|
|
/* Hook for determining the global pointer when calling functions in
|
|
the inferior under AIX. The initialization code in ia64-aix-nat.c
|
|
sets this hook to the address of a function which will find the
|
|
global pointer for a given address.
|
|
|
|
The generic code which uses the dynamic section in the inferior for
|
|
finding the global pointer is not of much use on AIX since the
|
|
values obtained from the inferior have not been relocated. */
|
|
|
|
CORE_ADDR (*native_find_global_pointer) (CORE_ADDR) = 0;
|
|
|
|
/* An enumeration of the different IA-64 instruction types. */
|
|
|
|
typedef enum instruction_type
|
|
{
|
|
A, /* Integer ALU ; I-unit or M-unit */
|
|
I, /* Non-ALU integer; I-unit */
|
|
M, /* Memory ; M-unit */
|
|
F, /* Floating-point ; F-unit */
|
|
B, /* Branch ; B-unit */
|
|
L, /* Extended (L+X) ; I-unit */
|
|
X, /* Extended (L+X) ; I-unit */
|
|
undefined /* undefined or reserved */
|
|
} instruction_type;
|
|
|
|
/* We represent IA-64 PC addresses as the value of the instruction
|
|
pointer or'd with some bit combination in the low nibble which
|
|
represents the slot number in the bundle addressed by the
|
|
instruction pointer. The problem is that the Linux kernel
|
|
multiplies its slot numbers (for exceptions) by one while the
|
|
disassembler multiplies its slot numbers by 6. In addition, I've
|
|
heard it said that the simulator uses 1 as the multiplier.
|
|
|
|
I've fixed the disassembler so that the bytes_per_line field will
|
|
be the slot multiplier. If bytes_per_line comes in as zero, it
|
|
is set to six (which is how it was set up initially). -- objdump
|
|
displays pretty disassembly dumps with this value. For our purposes,
|
|
we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
|
|
never want to also display the raw bytes the way objdump does. */
|
|
|
|
#define SLOT_MULTIPLIER 1
|
|
|
|
/* Length in bytes of an instruction bundle */
|
|
|
|
#define BUNDLE_LEN 16
|
|
|
|
/* FIXME: These extern declarations should go in ia64-tdep.h. */
|
|
extern CORE_ADDR ia64_linux_sigcontext_register_address (CORE_ADDR, int);
|
|
extern CORE_ADDR ia64_aix_sigcontext_register_address (CORE_ADDR, int);
|
|
|
|
static gdbarch_init_ftype ia64_gdbarch_init;
|
|
|
|
static gdbarch_register_name_ftype ia64_register_name;
|
|
static gdbarch_register_raw_size_ftype ia64_register_raw_size;
|
|
static gdbarch_register_virtual_size_ftype ia64_register_virtual_size;
|
|
static gdbarch_register_virtual_type_ftype ia64_register_virtual_type;
|
|
static gdbarch_register_byte_ftype ia64_register_byte;
|
|
static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
|
|
static gdbarch_frame_chain_ftype ia64_frame_chain;
|
|
static gdbarch_frame_saved_pc_ftype ia64_frame_saved_pc;
|
|
static gdbarch_skip_prologue_ftype ia64_skip_prologue;
|
|
static gdbarch_frame_init_saved_regs_ftype ia64_frame_init_saved_regs;
|
|
static gdbarch_get_saved_register_ftype ia64_get_saved_register;
|
|
static gdbarch_extract_return_value_ftype ia64_extract_return_value;
|
|
static gdbarch_extract_struct_value_address_ftype ia64_extract_struct_value_address;
|
|
static gdbarch_use_struct_convention_ftype ia64_use_struct_convention;
|
|
static gdbarch_frameless_function_invocation_ftype ia64_frameless_function_invocation;
|
|
static gdbarch_init_extra_frame_info_ftype ia64_init_extra_frame_info;
|
|
static gdbarch_store_return_value_ftype ia64_store_return_value;
|
|
static gdbarch_store_struct_return_ftype ia64_store_struct_return;
|
|
static gdbarch_push_arguments_ftype ia64_push_arguments;
|
|
static gdbarch_push_return_address_ftype ia64_push_return_address;
|
|
static gdbarch_pop_frame_ftype ia64_pop_frame;
|
|
static gdbarch_saved_pc_after_call_ftype ia64_saved_pc_after_call;
|
|
static void ia64_pop_frame_regular (struct frame_info *frame);
|
|
static struct type *is_float_or_hfa_type (struct type *t);
|
|
|
|
static int ia64_num_regs = 590;
|
|
|
|
static int pc_regnum = IA64_IP_REGNUM;
|
|
static int sp_regnum = IA64_GR12_REGNUM;
|
|
static int fp_regnum = IA64_VFP_REGNUM;
|
|
static int lr_regnum = IA64_VRAP_REGNUM;
|
|
|
|
static LONGEST ia64_call_dummy_words[] = {0};
|
|
|
|
/* Array of register names; There should be ia64_num_regs strings in
|
|
the initializer. */
|
|
|
|
static char *ia64_register_names[] =
|
|
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
|
|
"r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
|
|
"r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
|
|
"r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
|
|
"r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
|
|
"r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
|
|
"r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
|
|
"r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
|
|
"r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
|
|
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
|
|
"f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
|
|
"f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
|
|
"f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
|
|
"f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
|
|
"f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
|
|
"f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
|
|
"f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
|
|
"f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
|
|
"f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
|
|
"f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
|
|
"f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
|
|
|
|
"p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
|
|
"p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
|
|
"p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
|
|
"p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
|
|
"p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
|
|
"p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
|
|
"p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
|
|
"p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
|
|
|
|
"b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
|
|
|
|
"vfp", "vrap",
|
|
|
|
"pr", "ip", "psr", "cfm",
|
|
|
|
"kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
|
|
"", "", "", "", "", "", "", "",
|
|
"rsc", "bsp", "bspstore", "rnat",
|
|
"", "fcr", "", "",
|
|
"eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
|
|
"ccv", "", "", "", "unat", "", "", "",
|
|
"fpsr", "", "", "", "itc",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "",
|
|
"pfs", "lc", "ec",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "", "", "",
|
|
"",
|
|
"nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
|
|
"nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
|
|
"nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
|
|
"nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
|
|
"nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
|
|
"nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
|
|
"nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
|
|
"nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
|
|
"nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
|
|
"nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
|
|
"nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
|
|
"nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
|
|
"nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
|
|
"nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
|
|
"nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
|
|
"nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
|
|
};
|
|
|
|
struct frame_extra_info
|
|
{
|
|
CORE_ADDR bsp; /* points at r32 for the current frame */
|
|
CORE_ADDR cfm; /* cfm value for current frame */
|
|
int sof; /* Size of frame (decoded from cfm value) */
|
|
int sol; /* Size of locals (decoded from cfm value) */
|
|
CORE_ADDR after_prologue;
|
|
/* Address of first instruction after the last
|
|
prologue instruction; Note that there may
|
|
be instructions from the function's body
|
|
intermingled with the prologue. */
|
|
int mem_stack_frame_size;
|
|
/* Size of the memory stack frame (may be zero),
|
|
or -1 if it has not been determined yet. */
|
|
int fp_reg; /* Register number (if any) used a frame pointer
|
|
for this frame. 0 if no register is being used
|
|
as the frame pointer. */
|
|
};
|
|
|
|
struct gdbarch_tdep
|
|
{
|
|
int os_ident; /* From the ELF header, one of the ELFOSABI_
|
|
constants: ELFOSABI_LINUX, ELFOSABI_AIX,
|
|
etc. */
|
|
CORE_ADDR (*sigcontext_register_address) (CORE_ADDR, int);
|
|
/* OS specific function which, given a frame address
|
|
and register number, returns the offset to the
|
|
given register from the start of the frame. */
|
|
CORE_ADDR (*find_global_pointer) (CORE_ADDR);
|
|
};
|
|
|
|
#define SIGCONTEXT_REGISTER_ADDRESS \
|
|
(gdbarch_tdep (current_gdbarch)->sigcontext_register_address)
|
|
#define FIND_GLOBAL_POINTER \
|
|
(gdbarch_tdep (current_gdbarch)->find_global_pointer)
|
|
|
|
static char *
|
|
ia64_register_name (int reg)
|
|
{
|
|
return ia64_register_names[reg];
|
|
}
|
|
|
|
int
|
|
ia64_register_raw_size (int reg)
|
|
{
|
|
return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8;
|
|
}
|
|
|
|
int
|
|
ia64_register_virtual_size (int reg)
|
|
{
|
|
return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8;
|
|
}
|
|
|
|
/* Return true iff register N's virtual format is different from
|
|
its raw format. */
|
|
int
|
|
ia64_register_convertible (int nr)
|
|
{
|
|
return (IA64_FR0_REGNUM <= nr && nr <= IA64_FR127_REGNUM);
|
|
}
|
|
|
|
const struct floatformat floatformat_ia64_ext =
|
|
{
|
|
floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
|
|
floatformat_intbit_yes
|
|
};
|
|
|
|
void
|
|
ia64_register_convert_to_virtual (int regnum, struct type *type,
|
|
char *from, char *to)
|
|
{
|
|
if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM)
|
|
{
|
|
DOUBLEST val;
|
|
floatformat_to_doublest (&floatformat_ia64_ext, from, &val);
|
|
store_floating(to, TYPE_LENGTH(type), val);
|
|
}
|
|
else
|
|
error("ia64_register_convert_to_virtual called with non floating point register number");
|
|
}
|
|
|
|
void
|
|
ia64_register_convert_to_raw (struct type *type, int regnum,
|
|
char *from, char *to)
|
|
{
|
|
if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM)
|
|
{
|
|
DOUBLEST val = extract_floating (from, TYPE_LENGTH(type));
|
|
floatformat_from_doublest (&floatformat_ia64_ext, &val, to);
|
|
}
|
|
else
|
|
error("ia64_register_convert_to_raw called with non floating point register number");
|
|
}
|
|
|
|
struct type *
|
|
ia64_register_virtual_type (int reg)
|
|
{
|
|
if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
|
|
return builtin_type_long_double;
|
|
else
|
|
return builtin_type_long;
|
|
}
|
|
|
|
int
|
|
ia64_register_byte (int reg)
|
|
{
|
|
return (8 * reg) +
|
|
(reg <= IA64_FR0_REGNUM ? 0 : 8 * ((reg > IA64_FR127_REGNUM) ? 128 : reg - IA64_FR0_REGNUM));
|
|
}
|
|
|
|
/* Read the given register from a sigcontext structure in the
|
|
specified frame. */
|
|
|
|
static CORE_ADDR
|
|
read_sigcontext_register (struct frame_info *frame, int regnum)
|
|
{
|
|
CORE_ADDR regaddr;
|
|
|
|
if (frame == NULL)
|
|
internal_error (__FILE__, __LINE__,
|
|
"read_sigcontext_register: NULL frame");
|
|
if (!frame->signal_handler_caller)
|
|
internal_error (__FILE__, __LINE__,
|
|
"read_sigcontext_register: frame not a signal_handler_caller");
|
|
if (SIGCONTEXT_REGISTER_ADDRESS == 0)
|
|
internal_error (__FILE__, __LINE__,
|
|
"read_sigcontext_register: SIGCONTEXT_REGISTER_ADDRESS is 0");
|
|
|
|
regaddr = SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regnum);
|
|
if (regaddr)
|
|
return read_memory_integer (regaddr, REGISTER_RAW_SIZE (regnum));
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
"read_sigcontext_register: Register %d not in struct sigcontext", regnum);
|
|
}
|
|
|
|
/* Extract ``len'' bits from an instruction bundle starting at
|
|
bit ``from''. */
|
|
|
|
static long long
|
|
extract_bit_field (char *bundle, int from, int len)
|
|
{
|
|
long long result = 0LL;
|
|
int to = from + len;
|
|
int from_byte = from / 8;
|
|
int to_byte = to / 8;
|
|
unsigned char *b = (unsigned char *) bundle;
|
|
unsigned char c;
|
|
int lshift;
|
|
int i;
|
|
|
|
c = b[from_byte];
|
|
if (from_byte == to_byte)
|
|
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
|
result = c >> (from % 8);
|
|
lshift = 8 - (from % 8);
|
|
|
|
for (i = from_byte+1; i < to_byte; i++)
|
|
{
|
|
result |= ((long long) b[i]) << lshift;
|
|
lshift += 8;
|
|
}
|
|
|
|
if (from_byte < to_byte && (to % 8 != 0))
|
|
{
|
|
c = b[to_byte];
|
|
c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
|
|
result |= ((long long) c) << lshift;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Replace the specified bits in an instruction bundle */
|
|
|
|
static void
|
|
replace_bit_field (char *bundle, long long val, int from, int len)
|
|
{
|
|
int to = from + len;
|
|
int from_byte = from / 8;
|
|
int to_byte = to / 8;
|
|
unsigned char *b = (unsigned char *) bundle;
|
|
unsigned char c;
|
|
|
|
if (from_byte == to_byte)
|
|
{
|
|
unsigned char left, right;
|
|
c = b[from_byte];
|
|
left = (c >> (to % 8)) << (to % 8);
|
|
right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
|
c = (unsigned char) (val & 0xff);
|
|
c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
|
|
c |= right | left;
|
|
b[from_byte] = c;
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
c = b[from_byte];
|
|
c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
|
|
c = c | (val << (from % 8));
|
|
b[from_byte] = c;
|
|
val >>= 8 - from % 8;
|
|
|
|
for (i = from_byte+1; i < to_byte; i++)
|
|
{
|
|
c = val & 0xff;
|
|
val >>= 8;
|
|
b[i] = c;
|
|
}
|
|
|
|
if (to % 8 != 0)
|
|
{
|
|
unsigned char cv = (unsigned char) val;
|
|
c = b[to_byte];
|
|
c = c >> (to % 8) << (to % 8);
|
|
c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
|
|
b[to_byte] = c;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return the contents of slot N (for N = 0, 1, or 2) in
|
|
and instruction bundle */
|
|
|
|
static long long
|
|
slotN_contents (char *bundle, int slotnum)
|
|
{
|
|
return extract_bit_field (bundle, 5+41*slotnum, 41);
|
|
}
|
|
|
|
/* Store an instruction in an instruction bundle */
|
|
|
|
static void
|
|
replace_slotN_contents (char *bundle, long long instr, int slotnum)
|
|
{
|
|
replace_bit_field (bundle, instr, 5+41*slotnum, 41);
|
|
}
|
|
|
|
static enum instruction_type template_encoding_table[32][3] =
|
|
{
|
|
{ M, I, I }, /* 00 */
|
|
{ M, I, I }, /* 01 */
|
|
{ M, I, I }, /* 02 */
|
|
{ M, I, I }, /* 03 */
|
|
{ M, L, X }, /* 04 */
|
|
{ M, L, X }, /* 05 */
|
|
{ undefined, undefined, undefined }, /* 06 */
|
|
{ undefined, undefined, undefined }, /* 07 */
|
|
{ M, M, I }, /* 08 */
|
|
{ M, M, I }, /* 09 */
|
|
{ M, M, I }, /* 0A */
|
|
{ M, M, I }, /* 0B */
|
|
{ M, F, I }, /* 0C */
|
|
{ M, F, I }, /* 0D */
|
|
{ M, M, F }, /* 0E */
|
|
{ M, M, F }, /* 0F */
|
|
{ M, I, B }, /* 10 */
|
|
{ M, I, B }, /* 11 */
|
|
{ M, B, B }, /* 12 */
|
|
{ M, B, B }, /* 13 */
|
|
{ undefined, undefined, undefined }, /* 14 */
|
|
{ undefined, undefined, undefined }, /* 15 */
|
|
{ B, B, B }, /* 16 */
|
|
{ B, B, B }, /* 17 */
|
|
{ M, M, B }, /* 18 */
|
|
{ M, M, B }, /* 19 */
|
|
{ undefined, undefined, undefined }, /* 1A */
|
|
{ undefined, undefined, undefined }, /* 1B */
|
|
{ M, F, B }, /* 1C */
|
|
{ M, F, B }, /* 1D */
|
|
{ undefined, undefined, undefined }, /* 1E */
|
|
{ undefined, undefined, undefined }, /* 1F */
|
|
};
|
|
|
|
/* Fetch and (partially) decode an instruction at ADDR and return the
|
|
address of the next instruction to fetch. */
|
|
|
|
static CORE_ADDR
|
|
fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
|
|
{
|
|
char bundle[BUNDLE_LEN];
|
|
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
|
|
long long template;
|
|
int val;
|
|
|
|
/* Warn about slot numbers greater than 2. We used to generate
|
|
an error here on the assumption that the user entered an invalid
|
|
address. But, sometimes GDB itself requests an invalid address.
|
|
This can (easily) happen when execution stops in a function for
|
|
which there are no symbols. The prologue scanner will attempt to
|
|
find the beginning of the function - if the nearest symbol
|
|
happens to not be aligned on a bundle boundary (16 bytes), the
|
|
resulting starting address will cause GDB to think that the slot
|
|
number is too large.
|
|
|
|
So we warn about it and set the slot number to zero. It is
|
|
not necessarily a fatal condition, particularly if debugging
|
|
at the assembly language level. */
|
|
if (slotnum > 2)
|
|
{
|
|
warning ("Can't fetch instructions for slot numbers greater than 2.\n"
|
|
"Using slot 0 instead");
|
|
slotnum = 0;
|
|
}
|
|
|
|
addr &= ~0x0f;
|
|
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
|
|
|
if (val != 0)
|
|
return 0;
|
|
|
|
*instr = slotN_contents (bundle, slotnum);
|
|
template = extract_bit_field (bundle, 0, 5);
|
|
*it = template_encoding_table[(int)template][slotnum];
|
|
|
|
if (slotnum == 2 || (slotnum == 1 && *it == L))
|
|
addr += 16;
|
|
else
|
|
addr += (slotnum + 1) * SLOT_MULTIPLIER;
|
|
|
|
return addr;
|
|
}
|
|
|
|
/* There are 5 different break instructions (break.i, break.b,
|
|
break.m, break.f, and break.x), but they all have the same
|
|
encoding. (The five bit template in the low five bits of the
|
|
instruction bundle distinguishes one from another.)
|
|
|
|
The runtime architecture manual specifies that break instructions
|
|
used for debugging purposes must have the upper two bits of the 21
|
|
bit immediate set to a 0 and a 1 respectively. A breakpoint
|
|
instruction encodes the most significant bit of its 21 bit
|
|
immediate at bit 36 of the 41 bit instruction. The penultimate msb
|
|
is at bit 25 which leads to the pattern below.
|
|
|
|
Originally, I had this set up to do, e.g, a "break.i 0x80000" But
|
|
it turns out that 0x80000 was used as the syscall break in the early
|
|
simulators. So I changed the pattern slightly to do "break.i 0x080001"
|
|
instead. But that didn't work either (I later found out that this
|
|
pattern was used by the simulator that I was using.) So I ended up
|
|
using the pattern seen below. */
|
|
|
|
#if 0
|
|
#define BREAKPOINT 0x00002000040LL
|
|
#endif
|
|
#define BREAKPOINT 0x00003333300LL
|
|
|
|
static int
|
|
ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
|
|
{
|
|
char bundle[BUNDLE_LEN];
|
|
int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
|
|
long long instr;
|
|
int val;
|
|
|
|
if (slotnum > 2)
|
|
error("Can't insert breakpoint for slot numbers greater than 2.");
|
|
|
|
addr &= ~0x0f;
|
|
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
|
instr = slotN_contents (bundle, slotnum);
|
|
memcpy(contents_cache, &instr, sizeof(instr));
|
|
replace_slotN_contents (bundle, BREAKPOINT, slotnum);
|
|
if (val == 0)
|
|
target_write_memory (addr, bundle, BUNDLE_LEN);
|
|
|
|
return val;
|
|
}
|
|
|
|
static int
|
|
ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
|
|
{
|
|
char bundle[BUNDLE_LEN];
|
|
int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
|
|
long long instr;
|
|
int val;
|
|
|
|
addr &= ~0x0f;
|
|
|
|
val = target_read_memory (addr, bundle, BUNDLE_LEN);
|
|
memcpy (&instr, contents_cache, sizeof instr);
|
|
replace_slotN_contents (bundle, instr, slotnum);
|
|
if (val == 0)
|
|
target_write_memory (addr, bundle, BUNDLE_LEN);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* We don't really want to use this, but remote.c needs to call it in order
|
|
to figure out if Z-packets are supported or not. Oh, well. */
|
|
const unsigned char *
|
|
ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
|
|
{
|
|
static unsigned char breakpoint[] =
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
*lenptr = sizeof (breakpoint);
|
|
#if 0
|
|
*pcptr &= ~0x0f;
|
|
#endif
|
|
return breakpoint;
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_read_pc (ptid_t ptid)
|
|
{
|
|
CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
|
|
CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid);
|
|
int slot_num = (psr_value >> 41) & 3;
|
|
|
|
return pc_value | (slot_num * SLOT_MULTIPLIER);
|
|
}
|
|
|
|
void
|
|
ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid)
|
|
{
|
|
int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
|
|
CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
|
|
psr_value &= ~(3LL << 41);
|
|
psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41;
|
|
|
|
new_pc &= ~0xfLL;
|
|
|
|
write_register_pid (IA64_PSR_REGNUM, psr_value, ptid);
|
|
write_register_pid (IA64_IP_REGNUM, new_pc, ptid);
|
|
}
|
|
|
|
#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
|
|
|
|
/* Returns the address of the slot that's NSLOTS slots away from
|
|
the address ADDR. NSLOTS may be positive or negative. */
|
|
static CORE_ADDR
|
|
rse_address_add(CORE_ADDR addr, int nslots)
|
|
{
|
|
CORE_ADDR new_addr;
|
|
int mandatory_nat_slots = nslots / 63;
|
|
int direction = nslots < 0 ? -1 : 1;
|
|
|
|
new_addr = addr + 8 * (nslots + mandatory_nat_slots);
|
|
|
|
if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
|
|
new_addr += 8 * direction;
|
|
|
|
if (IS_NaT_COLLECTION_ADDR(new_addr))
|
|
new_addr += 8 * direction;
|
|
|
|
return new_addr;
|
|
}
|
|
|
|
/* The IA-64 frame chain is a bit odd. We won't always have a frame
|
|
pointer, so we use the SP value as the FP for the purpose of
|
|
creating a frame. There is sometimes a register (not fixed) which
|
|
is used as a frame pointer. When this register exists, it is not
|
|
especially hard to determine which one is being used. It isn't
|
|
even really hard to compute the frame chain, but it can be
|
|
computationally expensive. So, instead of making life difficult
|
|
(and slow), we pick a more convenient representation of the frame
|
|
chain, knowing that we'll have to make some small adjustments in
|
|
other places. (E.g, note that read_fp() is actually read_sp() in
|
|
ia64_gdbarch_init() below.)
|
|
|
|
Okay, so what is the frame chain exactly? It'll be the SP value
|
|
at the time that the function in question was entered.
|
|
|
|
Note that this *should* actually the frame pointer for the current
|
|
function! But as I note above, if we were to attempt to find the
|
|
address of the beginning of the previous frame, we'd waste a lot
|
|
of cycles for no good reason. So instead, we simply choose to
|
|
represent the frame chain as the end of the previous frame instead
|
|
of the beginning. */
|
|
|
|
CORE_ADDR
|
|
ia64_frame_chain (struct frame_info *frame)
|
|
{
|
|
if (frame->signal_handler_caller)
|
|
return read_sigcontext_register (frame, sp_regnum);
|
|
else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
return frame->frame;
|
|
else
|
|
{
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
if (frame->saved_regs[IA64_VFP_REGNUM])
|
|
return read_memory_integer (frame->saved_regs[IA64_VFP_REGNUM], 8);
|
|
else
|
|
return frame->frame + frame->extra_info->mem_stack_frame_size;
|
|
}
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_frame_saved_pc (struct frame_info *frame)
|
|
{
|
|
if (frame->signal_handler_caller)
|
|
return read_sigcontext_register (frame, pc_regnum);
|
|
else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
return generic_read_register_dummy (frame->pc, frame->frame, pc_regnum);
|
|
else
|
|
{
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
|
|
if (frame->saved_regs[IA64_VRAP_REGNUM])
|
|
return read_memory_integer (frame->saved_regs[IA64_VRAP_REGNUM], 8);
|
|
else if (frame->next && frame->next->signal_handler_caller)
|
|
return read_sigcontext_register (frame->next, IA64_BR0_REGNUM);
|
|
else /* either frameless, or not far enough along in the prologue... */
|
|
return ia64_saved_pc_after_call (frame);
|
|
}
|
|
}
|
|
|
|
/* Limit the number of skipped non-prologue instructions since examining
|
|
of the prologue is expensive. */
|
|
static int max_skip_non_prologue_insns = 10;
|
|
|
|
/* Given PC representing the starting address of a function, and
|
|
LIM_PC which is the (sloppy) limit to which to scan when looking
|
|
for a prologue, attempt to further refine this limit by using
|
|
the line data in the symbol table. If successful, a better guess
|
|
on where the prologue ends is returned, otherwise the previous
|
|
value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
|
|
which will be set to indicate whether the returned limit may be
|
|
used with no further scanning in the event that the function is
|
|
frameless. */
|
|
|
|
static CORE_ADDR
|
|
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
|
|
{
|
|
struct symtab_and_line prologue_sal;
|
|
CORE_ADDR start_pc = pc;
|
|
|
|
/* Start off not trusting the limit. */
|
|
*trust_limit = 0;
|
|
|
|
prologue_sal = find_pc_line (pc, 0);
|
|
if (prologue_sal.line != 0)
|
|
{
|
|
int i;
|
|
CORE_ADDR addr = prologue_sal.end;
|
|
|
|
/* Handle the case in which compiler's optimizer/scheduler
|
|
has moved instructions into the prologue. We scan ahead
|
|
in the function looking for address ranges whose corresponding
|
|
line number is less than or equal to the first one that we
|
|
found for the function. (It can be less than when the
|
|
scheduler puts a body instruction before the first prologue
|
|
instruction.) */
|
|
for (i = 2 * max_skip_non_prologue_insns;
|
|
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
|
i--)
|
|
{
|
|
struct symtab_and_line sal;
|
|
|
|
sal = find_pc_line (addr, 0);
|
|
if (sal.line == 0)
|
|
break;
|
|
if (sal.line <= prologue_sal.line
|
|
&& sal.symtab == prologue_sal.symtab)
|
|
{
|
|
prologue_sal = sal;
|
|
}
|
|
addr = sal.end;
|
|
}
|
|
|
|
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
|
{
|
|
lim_pc = prologue_sal.end;
|
|
if (start_pc == get_pc_function_start (lim_pc))
|
|
*trust_limit = 1;
|
|
}
|
|
}
|
|
return lim_pc;
|
|
}
|
|
|
|
#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
|
|
|| (8 <= (_regnum_) && (_regnum_) <= 11) \
|
|
|| (14 <= (_regnum_) && (_regnum_) <= 31))
|
|
#define imm9(_instr_) \
|
|
( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
|
|
| (((_instr_) & 0x00008000000LL) >> 20) \
|
|
| (((_instr_) & 0x00000001fc0LL) >> 6))
|
|
|
|
static CORE_ADDR
|
|
examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *frame)
|
|
{
|
|
CORE_ADDR next_pc;
|
|
CORE_ADDR last_prologue_pc = pc;
|
|
instruction_type it;
|
|
long long instr;
|
|
int do_fsr_stuff = 0;
|
|
|
|
int cfm_reg = 0;
|
|
int ret_reg = 0;
|
|
int fp_reg = 0;
|
|
int unat_save_reg = 0;
|
|
int pr_save_reg = 0;
|
|
int mem_stack_frame_size = 0;
|
|
int spill_reg = 0;
|
|
CORE_ADDR spill_addr = 0;
|
|
char instores[8];
|
|
char infpstores[8];
|
|
int trust_limit;
|
|
|
|
memset (instores, 0, sizeof instores);
|
|
memset (infpstores, 0, sizeof infpstores);
|
|
|
|
if (frame && !frame->saved_regs)
|
|
{
|
|
frame_saved_regs_zalloc (frame);
|
|
do_fsr_stuff = 1;
|
|
}
|
|
|
|
if (frame
|
|
&& !do_fsr_stuff
|
|
&& frame->extra_info->after_prologue != 0
|
|
&& frame->extra_info->after_prologue <= lim_pc)
|
|
return frame->extra_info->after_prologue;
|
|
|
|
lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
|
|
|
|
/* Must start with an alloc instruction */
|
|
next_pc = fetch_instruction (pc, &it, &instr);
|
|
if (pc < lim_pc && next_pc
|
|
&& it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
|
|
{
|
|
/* alloc */
|
|
int sor = (int) ((instr & 0x00078000000LL) >> 27);
|
|
int sol = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int sof = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
/* Okay, so sor, sol, and sof aren't used right now; but perhaps
|
|
we could compare against the size given to us via the cfm as
|
|
either a sanity check or possibly to see if the frame has been
|
|
changed by a later alloc instruction... */
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
|
cfm_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
pc = next_pc;
|
|
}
|
|
else
|
|
{
|
|
pc = lim_pc; /* Frameless: We're done early. */
|
|
if (trust_limit)
|
|
last_prologue_pc = lim_pc;
|
|
}
|
|
|
|
/* Loop, looking for prologue instructions, keeping track of
|
|
where preserved registers were spilled. */
|
|
while (pc < lim_pc)
|
|
{
|
|
next_pc = fetch_instruction (pc, &it, &instr);
|
|
if (next_pc == 0)
|
|
break;
|
|
|
|
if ((it == B && ((instr & 0x1e1f800003f) != 0x04000000000))
|
|
|| ((instr & 0x3fLL) != 0LL))
|
|
{
|
|
/* Exit loop upon hitting a non-nop branch instruction
|
|
or a predicated instruction. */
|
|
break;
|
|
}
|
|
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
|
|
{
|
|
/* Move from BR */
|
|
int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
|
int qp = (int) (instr & 0x0000000003f);
|
|
|
|
if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
|
|
{
|
|
ret_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if ((it == I || it == M)
|
|
&& ((instr & 0x1ee00000000LL) == 0x10800000000LL))
|
|
{
|
|
/* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
|
|
int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
|
|
| ((instr & 0x001f8000000LL) >> 20)
|
|
| ((instr & 0x000000fe000LL) >> 13));
|
|
int rM = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
|
|
if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
|
|
{
|
|
/* mov rN, r12 */
|
|
fp_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
else if (qp == 0 && rN == 12 && rM == 12)
|
|
{
|
|
/* adds r12, -mem_stack_frame_size, r12 */
|
|
mem_stack_frame_size -= imm;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
else if (qp == 0 && rN == 2
|
|
&& ((rM == fp_reg && fp_reg != 0) || rM == 12))
|
|
{
|
|
/* adds r2, spilloffset, rFramePointer
|
|
or
|
|
adds r2, spilloffset, r12
|
|
|
|
Get ready for stf.spill or st8.spill instructions.
|
|
The address to start spilling at is loaded into r2.
|
|
FIXME: Why r2? That's what gcc currently uses; it
|
|
could well be different for other compilers. */
|
|
|
|
/* Hmm... whether or not this will work will depend on
|
|
where the pc is. If it's still early in the prologue
|
|
this'll be wrong. FIXME */
|
|
spill_addr = (frame ? frame->frame : 0)
|
|
+ (rM == 12 ? 0 : mem_stack_frame_size)
|
|
+ imm;
|
|
spill_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == M
|
|
&& ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
|
|
|| ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
|
|
{
|
|
/* stf.spill [rN] = fM, imm9
|
|
or
|
|
stf.spill [rN] = fM */
|
|
|
|
int imm = imm9(instr);
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
|
&& ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
|
|
{
|
|
if (do_fsr_stuff)
|
|
frame->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
|
|
|
|
if ((instr & 0x1efc0000000) == 0x0eec0000000)
|
|
spill_addr += imm;
|
|
else
|
|
spill_addr = 0; /* last one; must be done */
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
|
|
|| (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
|
|
{
|
|
/* mov.m rN = arM
|
|
or
|
|
mov.i rN = arM */
|
|
|
|
int arM = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
|
|
{
|
|
/* We have something like "mov.m r3 = ar.unat". Remember the
|
|
r3 (or whatever) and watch for a store of this register... */
|
|
unat_save_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
|
|
{
|
|
/* mov rN = pr */
|
|
int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && isScratch (rN))
|
|
{
|
|
pr_save_reg = rN;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == M
|
|
&& ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
|
|
|| ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
|
|
{
|
|
/* st8 [rN] = rM
|
|
or
|
|
st8 [rN] = rM, imm9 */
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && rN == spill_reg && spill_addr != 0
|
|
&& (rM == unat_save_reg || rM == pr_save_reg))
|
|
{
|
|
/* We've found a spill of either the UNAT register or the PR
|
|
register. (Well, not exactly; what we've actually found is
|
|
a spill of the register that UNAT or PR was moved to).
|
|
Record that fact and move on... */
|
|
if (rM == unat_save_reg)
|
|
{
|
|
/* Track UNAT register */
|
|
if (do_fsr_stuff)
|
|
frame->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
|
|
unat_save_reg = 0;
|
|
}
|
|
else
|
|
{
|
|
/* Track PR register */
|
|
if (do_fsr_stuff)
|
|
frame->saved_regs[IA64_PR_REGNUM] = spill_addr;
|
|
pr_save_reg = 0;
|
|
}
|
|
if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
|
|
/* st8 [rN] = rM, imm9 */
|
|
spill_addr += imm9(instr);
|
|
else
|
|
spill_addr = 0; /* must be done spilling */
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
|
{
|
|
/* Allow up to one store of each input register. */
|
|
instores[rM-32] = 1;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
|
|
{
|
|
/* One of
|
|
st1 [rN] = rM
|
|
st2 [rN] = rM
|
|
st4 [rN] = rM
|
|
st8 [rN] = rM
|
|
Note that the st8 case is handled in the clause above.
|
|
|
|
Advance over stores of input registers. One store per input
|
|
register is permitted. */
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
|
|
{
|
|
instores[rM-32] = 1;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
|
|
{
|
|
/* Either
|
|
stfs [rN] = fM
|
|
or
|
|
stfd [rN] = fM
|
|
|
|
Advance over stores of floating point input registers. Again
|
|
one store per register is permitted */
|
|
int fM = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
|
|
{
|
|
infpstores[fM-8] = 1;
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
else if (it == M
|
|
&& ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
|
|
|| ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
|
|
{
|
|
/* st8.spill [rN] = rM
|
|
or
|
|
st8.spill [rN] = rM, imm9 */
|
|
int rN = (int) ((instr & 0x00007f00000LL) >> 20);
|
|
int rM = (int) ((instr & 0x000000fe000LL) >> 13);
|
|
int qp = (int) (instr & 0x0000000003fLL);
|
|
if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
|
|
{
|
|
/* We've found a spill of one of the preserved general purpose
|
|
regs. Record the spill address and advance the spill
|
|
register if appropriate. */
|
|
if (do_fsr_stuff)
|
|
frame->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
|
|
if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
|
|
/* st8.spill [rN] = rM, imm9 */
|
|
spill_addr += imm9(instr);
|
|
else
|
|
spill_addr = 0; /* Done spilling */
|
|
last_prologue_pc = next_pc;
|
|
}
|
|
}
|
|
|
|
pc = next_pc;
|
|
}
|
|
|
|
if (do_fsr_stuff) {
|
|
int i;
|
|
CORE_ADDR addr;
|
|
int sor, rrb_gr;
|
|
|
|
/* Extract the size of the rotating portion of the stack
|
|
frame and the register rename base from the current
|
|
frame marker. */
|
|
sor = ((frame->extra_info->cfm >> 14) & 0xf) * 8;
|
|
rrb_gr = (frame->extra_info->cfm >> 18) & 0x7f;
|
|
|
|
for (i = 0, addr = frame->extra_info->bsp;
|
|
i < frame->extra_info->sof;
|
|
i++, addr += 8)
|
|
{
|
|
if (IS_NaT_COLLECTION_ADDR (addr))
|
|
{
|
|
addr += 8;
|
|
}
|
|
if (i < sor)
|
|
frame->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
|
|
= addr;
|
|
else
|
|
frame->saved_regs[IA64_GR32_REGNUM + i] = addr;
|
|
|
|
if (i+32 == cfm_reg)
|
|
frame->saved_regs[IA64_CFM_REGNUM] = addr;
|
|
if (i+32 == ret_reg)
|
|
frame->saved_regs[IA64_VRAP_REGNUM] = addr;
|
|
if (i+32 == fp_reg)
|
|
frame->saved_regs[IA64_VFP_REGNUM] = addr;
|
|
}
|
|
}
|
|
|
|
if (frame && frame->extra_info) {
|
|
frame->extra_info->after_prologue = last_prologue_pc;
|
|
frame->extra_info->mem_stack_frame_size = mem_stack_frame_size;
|
|
frame->extra_info->fp_reg = fp_reg;
|
|
}
|
|
|
|
return last_prologue_pc;
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
return examine_prologue (pc, pc+1024, 0);
|
|
}
|
|
|
|
void
|
|
ia64_frame_init_saved_regs (struct frame_info *frame)
|
|
{
|
|
if (frame->saved_regs)
|
|
return;
|
|
|
|
if (frame->signal_handler_caller && SIGCONTEXT_REGISTER_ADDRESS)
|
|
{
|
|
int regno;
|
|
|
|
frame_saved_regs_zalloc (frame);
|
|
|
|
frame->saved_regs[IA64_VRAP_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_IP_REGNUM);
|
|
frame->saved_regs[IA64_CFM_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CFM_REGNUM);
|
|
frame->saved_regs[IA64_PSR_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PSR_REGNUM);
|
|
#if 0
|
|
frame->saved_regs[IA64_BSP_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_BSP_REGNUM);
|
|
#endif
|
|
frame->saved_regs[IA64_RNAT_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_RNAT_REGNUM);
|
|
frame->saved_regs[IA64_CCV_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CCV_REGNUM);
|
|
frame->saved_regs[IA64_UNAT_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_UNAT_REGNUM);
|
|
frame->saved_regs[IA64_FPSR_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_FPSR_REGNUM);
|
|
frame->saved_regs[IA64_PFS_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PFS_REGNUM);
|
|
frame->saved_regs[IA64_LC_REGNUM] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_LC_REGNUM);
|
|
for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
|
|
if (regno != sp_regnum)
|
|
frame->saved_regs[regno] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno);
|
|
for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
|
|
frame->saved_regs[regno] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno);
|
|
for (regno = IA64_FR2_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
|
|
frame->saved_regs[regno] =
|
|
SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno);
|
|
}
|
|
else
|
|
{
|
|
CORE_ADDR func_start;
|
|
|
|
func_start = get_pc_function_start (frame->pc);
|
|
examine_prologue (func_start, frame->pc, frame);
|
|
}
|
|
}
|
|
|
|
void
|
|
ia64_get_saved_register (char *raw_buffer,
|
|
int *optimized,
|
|
CORE_ADDR *addrp,
|
|
struct frame_info *frame,
|
|
int regnum,
|
|
enum lval_type *lval)
|
|
{
|
|
int is_dummy_frame;
|
|
|
|
if (!target_has_registers)
|
|
error ("No registers.");
|
|
|
|
if (optimized != NULL)
|
|
*optimized = 0;
|
|
|
|
if (addrp != NULL)
|
|
*addrp = 0;
|
|
|
|
if (lval != NULL)
|
|
*lval = not_lval;
|
|
|
|
is_dummy_frame = PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame);
|
|
|
|
if (regnum == SP_REGNUM && frame->next)
|
|
{
|
|
/* Handle SP values for all frames but the topmost. */
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame);
|
|
}
|
|
else if (regnum == IA64_BSP_REGNUM)
|
|
{
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
|
frame->extra_info->bsp);
|
|
}
|
|
else if (regnum == IA64_VFP_REGNUM)
|
|
{
|
|
/* If the function in question uses an automatic register (r32-r127)
|
|
for the frame pointer, it'll be found by ia64_find_saved_register()
|
|
above. If the function lacks one of these frame pointers, we can
|
|
still provide a value since we know the size of the frame */
|
|
CORE_ADDR vfp = frame->frame + frame->extra_info->mem_stack_frame_size;
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_VFP_REGNUM), vfp);
|
|
}
|
|
else if (IA64_PR0_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM)
|
|
{
|
|
char *pr_raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
|
int pr_optim;
|
|
enum lval_type pr_lval;
|
|
CORE_ADDR pr_addr;
|
|
int prN_val;
|
|
ia64_get_saved_register (pr_raw_buffer, &pr_optim, &pr_addr,
|
|
frame, IA64_PR_REGNUM, &pr_lval);
|
|
if (IA64_PR16_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM)
|
|
{
|
|
/* Fetch predicate register rename base from current frame
|
|
marker for this frame. */
|
|
int rrb_pr = (frame->extra_info->cfm >> 32) & 0x3f;
|
|
|
|
/* Adjust the register number to account for register rotation. */
|
|
regnum = IA64_PR16_REGNUM
|
|
+ ((regnum - IA64_PR16_REGNUM) + rrb_pr) % 48;
|
|
}
|
|
prN_val = extract_bit_field ((unsigned char *) pr_raw_buffer,
|
|
regnum - IA64_PR0_REGNUM, 1);
|
|
store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), prN_val);
|
|
}
|
|
else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
|
|
{
|
|
char *unat_raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
|
int unat_optim;
|
|
enum lval_type unat_lval;
|
|
CORE_ADDR unat_addr;
|
|
int unatN_val;
|
|
ia64_get_saved_register (unat_raw_buffer, &unat_optim, &unat_addr,
|
|
frame, IA64_UNAT_REGNUM, &unat_lval);
|
|
unatN_val = extract_bit_field ((unsigned char *) unat_raw_buffer,
|
|
regnum - IA64_NAT0_REGNUM, 1);
|
|
store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum),
|
|
unatN_val);
|
|
}
|
|
else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
|
|
{
|
|
int natval = 0;
|
|
/* Find address of general register corresponding to nat bit we're
|
|
interested in. */
|
|
CORE_ADDR gr_addr = 0;
|
|
|
|
if (!is_dummy_frame)
|
|
{
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
gr_addr = frame->saved_regs[ regnum - IA64_NAT0_REGNUM
|
|
+ IA64_GR0_REGNUM];
|
|
}
|
|
if (gr_addr)
|
|
{
|
|
/* Compute address of nat collection bits */
|
|
CORE_ADDR nat_addr = gr_addr | 0x1f8;
|
|
CORE_ADDR bsp = read_register (IA64_BSP_REGNUM);
|
|
CORE_ADDR nat_collection;
|
|
int nat_bit;
|
|
/* If our nat collection address is bigger than bsp, we have to get
|
|
the nat collection from rnat. Otherwise, we fetch the nat
|
|
collection from the computed address. */
|
|
if (nat_addr >= bsp)
|
|
nat_collection = read_register (IA64_RNAT_REGNUM);
|
|
else
|
|
nat_collection = read_memory_integer (nat_addr, 8);
|
|
nat_bit = (gr_addr >> 3) & 0x3f;
|
|
natval = (nat_collection >> nat_bit) & 1;
|
|
}
|
|
store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), natval);
|
|
}
|
|
else if (regnum == IA64_IP_REGNUM)
|
|
{
|
|
CORE_ADDR pc;
|
|
if (frame->next)
|
|
{
|
|
/* FIXME: Set *addrp, *lval when possible. */
|
|
pc = ia64_frame_saved_pc (frame->next);
|
|
}
|
|
else
|
|
{
|
|
pc = read_pc ();
|
|
}
|
|
store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_IP_REGNUM), pc);
|
|
}
|
|
else if (IA64_GR32_REGNUM <= regnum && regnum <= IA64_GR127_REGNUM)
|
|
{
|
|
CORE_ADDR addr = 0;
|
|
if (!is_dummy_frame)
|
|
{
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
addr = frame->saved_regs[regnum];
|
|
}
|
|
|
|
if (addr != 0)
|
|
{
|
|
if (lval != NULL)
|
|
*lval = lval_memory;
|
|
if (addrp != NULL)
|
|
*addrp = addr;
|
|
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
else
|
|
{
|
|
/* r32 - r127 must be fetchable via memory. If they aren't,
|
|
then the register is unavailable */
|
|
memset (raw_buffer, 0, REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
|
|
{
|
|
/* Fetch floating point register rename base from current
|
|
frame marker for this frame. */
|
|
int rrb_fr = (frame->extra_info->cfm >> 25) & 0x7f;
|
|
|
|
/* Adjust the floating point register number to account for
|
|
register rotation. */
|
|
regnum = IA64_FR32_REGNUM
|
|
+ ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
|
|
}
|
|
|
|
generic_get_saved_register (raw_buffer, optimized, addrp, frame,
|
|
regnum, lval);
|
|
}
|
|
}
|
|
|
|
/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
|
|
EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
|
|
and TYPE is the type (which is known to be struct, union or array). */
|
|
int
|
|
ia64_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
struct type *float_elt_type;
|
|
|
|
/* HFAs are structures (or arrays) consisting entirely of floating
|
|
point values of the same length. Up to 8 of these are returned
|
|
in registers. Don't use the struct convention when this is the
|
|
case. */
|
|
float_elt_type = is_float_or_hfa_type (type);
|
|
if (float_elt_type != NULL
|
|
&& TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
|
|
return 0;
|
|
|
|
/* Other structs of length 32 or less are returned in r8-r11.
|
|
Don't use the struct convention for those either. */
|
|
return TYPE_LENGTH (type) > 32;
|
|
}
|
|
|
|
void
|
|
ia64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
|
{
|
|
struct type *float_elt_type;
|
|
|
|
float_elt_type = is_float_or_hfa_type (type);
|
|
if (float_elt_type != NULL)
|
|
{
|
|
int offset = 0;
|
|
int regnum = IA64_FR8_REGNUM;
|
|
int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
|
|
|
|
while (n-- > 0)
|
|
{
|
|
ia64_register_convert_to_virtual (regnum, float_elt_type,
|
|
®buf[REGISTER_BYTE (regnum)], valbuf + offset);
|
|
offset += TYPE_LENGTH (float_elt_type);
|
|
regnum++;
|
|
}
|
|
}
|
|
else
|
|
memcpy (valbuf, ®buf[REGISTER_BYTE (IA64_GR8_REGNUM)],
|
|
TYPE_LENGTH (type));
|
|
}
|
|
|
|
/* FIXME: Turn this into a stack of some sort. Unfortunately, something
|
|
like this is necessary though since the IA-64 calling conventions specify
|
|
that r8 is not preserved. */
|
|
static CORE_ADDR struct_return_address;
|
|
|
|
CORE_ADDR
|
|
ia64_extract_struct_value_address (char *regbuf)
|
|
{
|
|
/* FIXME: See above. */
|
|
return struct_return_address;
|
|
}
|
|
|
|
void
|
|
ia64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
/* FIXME: See above. */
|
|
/* Note that most of the work was done in ia64_push_arguments() */
|
|
struct_return_address = addr;
|
|
}
|
|
|
|
int
|
|
ia64_frameless_function_invocation (struct frame_info *frame)
|
|
{
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
return (frame->extra_info->mem_stack_frame_size == 0);
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_saved_pc_after_call (struct frame_info *frame)
|
|
{
|
|
return read_register (IA64_BR0_REGNUM);
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_frame_args_address (struct frame_info *frame)
|
|
{
|
|
/* frame->frame points at the SP for this frame; But we want the start
|
|
of the frame, not the end. Calling frame chain will get his for us. */
|
|
return ia64_frame_chain (frame);
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_frame_locals_address (struct frame_info *frame)
|
|
{
|
|
/* frame->frame points at the SP for this frame; But we want the start
|
|
of the frame, not the end. Calling frame chain will get his for us. */
|
|
return ia64_frame_chain (frame);
|
|
}
|
|
|
|
void
|
|
ia64_init_extra_frame_info (int fromleaf, struct frame_info *frame)
|
|
{
|
|
CORE_ADDR bsp, cfm;
|
|
int next_frame_is_call_dummy = ((frame->next != NULL)
|
|
&& PC_IN_CALL_DUMMY (frame->next->pc, frame->next->frame,
|
|
frame->next->frame));
|
|
|
|
frame->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
|
|
if (frame->next == 0)
|
|
{
|
|
bsp = read_register (IA64_BSP_REGNUM);
|
|
cfm = read_register (IA64_CFM_REGNUM);
|
|
|
|
}
|
|
else if (frame->next->signal_handler_caller)
|
|
{
|
|
bsp = read_sigcontext_register (frame->next, IA64_BSP_REGNUM);
|
|
cfm = read_sigcontext_register (frame->next, IA64_CFM_REGNUM);
|
|
}
|
|
else if (next_frame_is_call_dummy)
|
|
{
|
|
bsp = generic_read_register_dummy (frame->next->pc, frame->next->frame,
|
|
IA64_BSP_REGNUM);
|
|
cfm = generic_read_register_dummy (frame->next->pc, frame->next->frame,
|
|
IA64_CFM_REGNUM);
|
|
}
|
|
else
|
|
{
|
|
struct frame_info *frn = frame->next;
|
|
|
|
FRAME_INIT_SAVED_REGS (frn);
|
|
|
|
if (frn->saved_regs[IA64_CFM_REGNUM] != 0)
|
|
cfm = read_memory_integer (frn->saved_regs[IA64_CFM_REGNUM], 8);
|
|
else if (frn->next && frn->next->signal_handler_caller)
|
|
cfm = read_sigcontext_register (frn->next, IA64_PFS_REGNUM);
|
|
else if (frn->next
|
|
&& PC_IN_CALL_DUMMY (frn->next->pc, frn->next->frame,
|
|
frn->next->frame))
|
|
cfm = generic_read_register_dummy (frn->next->pc, frn->next->frame,
|
|
IA64_PFS_REGNUM);
|
|
else
|
|
cfm = read_register (IA64_PFS_REGNUM);
|
|
|
|
bsp = frn->extra_info->bsp;
|
|
}
|
|
frame->extra_info->cfm = cfm;
|
|
frame->extra_info->sof = cfm & 0x7f;
|
|
frame->extra_info->sol = (cfm >> 7) & 0x7f;
|
|
if (frame->next == 0
|
|
|| frame->next->signal_handler_caller
|
|
|| next_frame_is_call_dummy)
|
|
frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sof);
|
|
else
|
|
frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sol);
|
|
|
|
frame->extra_info->after_prologue = 0;
|
|
frame->extra_info->mem_stack_frame_size = -1; /* Not yet determined */
|
|
frame->extra_info->fp_reg = 0;
|
|
}
|
|
|
|
static int
|
|
is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
|
|
{
|
|
switch (TYPE_CODE (t))
|
|
{
|
|
case TYPE_CODE_FLT:
|
|
if (*etp)
|
|
return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
|
|
else
|
|
{
|
|
*etp = t;
|
|
return 1;
|
|
}
|
|
break;
|
|
case TYPE_CODE_ARRAY:
|
|
return
|
|
is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
|
|
etp);
|
|
break;
|
|
case TYPE_CODE_STRUCT:
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
|
if (!is_float_or_hfa_type_recurse
|
|
(check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Determine if the given type is one of the floating point types or
|
|
and HFA (which is a struct, array, or combination thereof whose
|
|
bottom-most elements are all of the same floating point type.) */
|
|
|
|
static struct type *
|
|
is_float_or_hfa_type (struct type *t)
|
|
{
|
|
struct type *et = 0;
|
|
|
|
return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
|
|
}
|
|
|
|
|
|
/* Return 1 if the alignment of T is such that the next even slot
|
|
should be used. Return 0, if the next available slot should
|
|
be used. (See section 8.5.1 of the IA-64 Software Conventions
|
|
and Runtime manual.) */
|
|
|
|
static int
|
|
slot_alignment_is_next_even (struct type *t)
|
|
{
|
|
switch (TYPE_CODE (t))
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_FLT:
|
|
if (TYPE_LENGTH (t) > 8)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
case TYPE_CODE_ARRAY:
|
|
return
|
|
slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
|
|
case TYPE_CODE_STRUCT:
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TYPE_NFIELDS (t); i++)
|
|
if (slot_alignment_is_next_even
|
|
(check_typedef (TYPE_FIELD_TYPE (t, i))))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Attempt to find (and return) the global pointer for the given
|
|
function.
|
|
|
|
This is a rather nasty bit of code searchs for the .dynamic section
|
|
in the objfile corresponding to the pc of the function we're trying
|
|
to call. Once it finds the addresses at which the .dynamic section
|
|
lives in the child process, it scans the Elf64_Dyn entries for a
|
|
DT_PLTGOT tag. If it finds one of these, the corresponding
|
|
d_un.d_ptr value is the global pointer. */
|
|
|
|
static CORE_ADDR
|
|
generic_elf_find_global_pointer (CORE_ADDR faddr)
|
|
{
|
|
struct obj_section *faddr_sect;
|
|
|
|
faddr_sect = find_pc_section (faddr);
|
|
if (faddr_sect != NULL)
|
|
{
|
|
struct obj_section *osect;
|
|
|
|
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
|
{
|
|
if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
|
|
break;
|
|
}
|
|
|
|
if (osect < faddr_sect->objfile->sections_end)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
addr = osect->addr;
|
|
while (addr < osect->endaddr)
|
|
{
|
|
int status;
|
|
LONGEST tag;
|
|
char buf[8];
|
|
|
|
status = target_read_memory (addr, buf, sizeof (buf));
|
|
if (status != 0)
|
|
break;
|
|
tag = extract_signed_integer (buf, sizeof (buf));
|
|
|
|
if (tag == DT_PLTGOT)
|
|
{
|
|
CORE_ADDR global_pointer;
|
|
|
|
status = target_read_memory (addr + 8, buf, sizeof (buf));
|
|
if (status != 0)
|
|
break;
|
|
global_pointer = extract_address (buf, sizeof (buf));
|
|
|
|
/* The payoff... */
|
|
return global_pointer;
|
|
}
|
|
|
|
if (tag == DT_NULL)
|
|
break;
|
|
|
|
addr += 16;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Given a function's address, attempt to find (and return) the
|
|
corresponding (canonical) function descriptor. Return 0 if
|
|
not found. */
|
|
static CORE_ADDR
|
|
find_extant_func_descr (CORE_ADDR faddr)
|
|
{
|
|
struct obj_section *faddr_sect;
|
|
|
|
/* Return early if faddr is already a function descriptor */
|
|
faddr_sect = find_pc_section (faddr);
|
|
if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
|
|
return faddr;
|
|
|
|
if (faddr_sect != NULL)
|
|
{
|
|
struct obj_section *osect;
|
|
ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
|
|
{
|
|
if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
|
|
break;
|
|
}
|
|
|
|
if (osect < faddr_sect->objfile->sections_end)
|
|
{
|
|
CORE_ADDR addr;
|
|
|
|
addr = osect->addr;
|
|
while (addr < osect->endaddr)
|
|
{
|
|
int status;
|
|
LONGEST faddr2;
|
|
char buf[8];
|
|
|
|
status = target_read_memory (addr, buf, sizeof (buf));
|
|
if (status != 0)
|
|
break;
|
|
faddr2 = extract_signed_integer (buf, sizeof (buf));
|
|
|
|
if (faddr == faddr2)
|
|
return addr;
|
|
|
|
addr += 16;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Attempt to find a function descriptor corresponding to the
|
|
given address. If none is found, construct one on the
|
|
stack using the address at fdaptr */
|
|
|
|
static CORE_ADDR
|
|
find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr)
|
|
{
|
|
CORE_ADDR fdesc;
|
|
|
|
fdesc = find_extant_func_descr (faddr);
|
|
|
|
if (fdesc == 0)
|
|
{
|
|
CORE_ADDR global_pointer;
|
|
char buf[16];
|
|
|
|
fdesc = *fdaptr;
|
|
*fdaptr += 16;
|
|
|
|
global_pointer = FIND_GLOBAL_POINTER (faddr);
|
|
|
|
if (global_pointer == 0)
|
|
global_pointer = read_register (IA64_GR1_REGNUM);
|
|
|
|
store_address (buf, 8, faddr);
|
|
store_address (buf + 8, 8, global_pointer);
|
|
|
|
write_memory (fdesc, buf, 16);
|
|
}
|
|
|
|
return fdesc;
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argno;
|
|
struct value *arg;
|
|
struct type *type;
|
|
int len, argoffset;
|
|
int nslots, rseslots, memslots, slotnum, nfuncargs;
|
|
int floatreg;
|
|
CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr;
|
|
|
|
nslots = 0;
|
|
nfuncargs = 0;
|
|
/* Count the number of slots needed for the arguments */
|
|
for (argno = 0; argno < nargs; argno++)
|
|
{
|
|
arg = args[argno];
|
|
type = check_typedef (VALUE_TYPE (arg));
|
|
len = TYPE_LENGTH (type);
|
|
|
|
if ((nslots & 1) && slot_alignment_is_next_even (type))
|
|
nslots++;
|
|
|
|
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
|
nfuncargs++;
|
|
|
|
nslots += (len + 7) / 8;
|
|
}
|
|
|
|
/* Divvy up the slots between the RSE and the memory stack */
|
|
rseslots = (nslots > 8) ? 8 : nslots;
|
|
memslots = nslots - rseslots;
|
|
|
|
/* Allocate a new RSE frame */
|
|
cfm = read_register (IA64_CFM_REGNUM);
|
|
|
|
bsp = read_register (IA64_BSP_REGNUM);
|
|
bsp = rse_address_add (bsp, cfm & 0x7f);
|
|
new_bsp = rse_address_add (bsp, rseslots);
|
|
write_register (IA64_BSP_REGNUM, new_bsp);
|
|
|
|
pfs = read_register (IA64_PFS_REGNUM);
|
|
pfs &= 0xc000000000000000LL;
|
|
pfs |= (cfm & 0xffffffffffffLL);
|
|
write_register (IA64_PFS_REGNUM, pfs);
|
|
|
|
cfm &= 0xc000000000000000LL;
|
|
cfm |= rseslots;
|
|
write_register (IA64_CFM_REGNUM, cfm);
|
|
|
|
/* We will attempt to find function descriptors in the .opd segment,
|
|
but if we can't we'll construct them ourselves. That being the
|
|
case, we'll need to reserve space on the stack for them. */
|
|
funcdescaddr = sp - nfuncargs * 16;
|
|
funcdescaddr &= ~0xfLL;
|
|
|
|
/* Adjust the stack pointer to it's new value. The calling conventions
|
|
require us to have 16 bytes of scratch, plus whatever space is
|
|
necessary for the memory slots and our function descriptors */
|
|
sp = sp - 16 - (memslots + nfuncargs) * 8;
|
|
sp &= ~0xfLL; /* Maintain 16 byte alignment */
|
|
|
|
/* Place the arguments where they belong. The arguments will be
|
|
either placed in the RSE backing store or on the memory stack.
|
|
In addition, floating point arguments or HFAs are placed in
|
|
floating point registers. */
|
|
slotnum = 0;
|
|
floatreg = IA64_FR8_REGNUM;
|
|
for (argno = 0; argno < nargs; argno++)
|
|
{
|
|
struct type *float_elt_type;
|
|
|
|
arg = args[argno];
|
|
type = check_typedef (VALUE_TYPE (arg));
|
|
len = TYPE_LENGTH (type);
|
|
|
|
/* Special handling for function parameters */
|
|
if (len == 8
|
|
&& TYPE_CODE (type) == TYPE_CODE_PTR
|
|
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
|
|
{
|
|
char val_buf[8];
|
|
|
|
store_address (val_buf, 8,
|
|
find_func_descr (extract_address (VALUE_CONTENTS (arg), 8),
|
|
&funcdescaddr));
|
|
if (slotnum < rseslots)
|
|
write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
|
|
else
|
|
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
|
slotnum++;
|
|
continue;
|
|
}
|
|
|
|
/* Normal slots */
|
|
|
|
/* Skip odd slot if necessary... */
|
|
if ((slotnum & 1) && slot_alignment_is_next_even (type))
|
|
slotnum++;
|
|
|
|
argoffset = 0;
|
|
while (len > 0)
|
|
{
|
|
char val_buf[8];
|
|
|
|
memset (val_buf, 0, 8);
|
|
memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len);
|
|
|
|
if (slotnum < rseslots)
|
|
write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
|
|
else
|
|
write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
|
|
|
|
argoffset += 8;
|
|
len -= 8;
|
|
slotnum++;
|
|
}
|
|
|
|
/* Handle floating point types (including HFAs) */
|
|
float_elt_type = is_float_or_hfa_type (type);
|
|
if (float_elt_type != NULL)
|
|
{
|
|
argoffset = 0;
|
|
len = TYPE_LENGTH (type);
|
|
while (len > 0 && floatreg < IA64_FR16_REGNUM)
|
|
{
|
|
ia64_register_convert_to_raw (
|
|
float_elt_type,
|
|
floatreg,
|
|
VALUE_CONTENTS (arg) + argoffset,
|
|
®isters[REGISTER_BYTE (floatreg)]);
|
|
floatreg++;
|
|
argoffset += TYPE_LENGTH (float_elt_type);
|
|
len -= TYPE_LENGTH (float_elt_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Store the struct return value in r8 if necessary. */
|
|
if (struct_return)
|
|
{
|
|
store_address (®isters[REGISTER_BYTE (IA64_GR8_REGNUM)],
|
|
REGISTER_RAW_SIZE (IA64_GR8_REGNUM),
|
|
struct_addr);
|
|
}
|
|
|
|
/* Sync gdb's idea of what the registers are with the target. */
|
|
target_store_registers (-1);
|
|
|
|
/* FIXME: This doesn't belong here! Instead, SAVE_DUMMY_FRAME_TOS needs
|
|
to be defined to call generic_save_dummy_frame_tos(). But at the
|
|
time of this writing, SAVE_DUMMY_FRAME_TOS wasn't gdbarch'd, so
|
|
I chose to put this call here instead of using the old mechanisms.
|
|
Once SAVE_DUMMY_FRAME_TOS is gdbarch'd, all we need to do is add the
|
|
line
|
|
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
|
|
|
to ia64_gdbarch_init() and remove the line below. */
|
|
generic_save_dummy_frame_tos (sp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
CORE_ADDR
|
|
ia64_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
CORE_ADDR global_pointer = FIND_GLOBAL_POINTER (pc);
|
|
|
|
if (global_pointer != 0)
|
|
write_register (IA64_GR1_REGNUM, global_pointer);
|
|
|
|
write_register (IA64_BR0_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
void
|
|
ia64_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
|
{
|
|
ia64_register_convert_to_raw (type, IA64_FR8_REGNUM, valbuf,
|
|
®isters[REGISTER_BYTE (IA64_FR8_REGNUM)]);
|
|
target_store_registers (IA64_FR8_REGNUM);
|
|
}
|
|
else
|
|
write_register_bytes (REGISTER_BYTE (IA64_GR8_REGNUM),
|
|
valbuf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
void
|
|
ia64_pop_frame (void)
|
|
{
|
|
generic_pop_current_frame (ia64_pop_frame_regular);
|
|
}
|
|
|
|
static void
|
|
ia64_pop_frame_regular (struct frame_info *frame)
|
|
{
|
|
int regno;
|
|
CORE_ADDR bsp, cfm, pfs;
|
|
|
|
FRAME_INIT_SAVED_REGS (frame);
|
|
|
|
for (regno = 0; regno < ia64_num_regs; regno++)
|
|
{
|
|
if (frame->saved_regs[regno]
|
|
&& (!(IA64_GR32_REGNUM <= regno && regno <= IA64_GR127_REGNUM))
|
|
&& regno != pc_regnum
|
|
&& regno != sp_regnum
|
|
&& regno != IA64_PFS_REGNUM
|
|
&& regno != IA64_CFM_REGNUM
|
|
&& regno != IA64_BSP_REGNUM
|
|
&& regno != IA64_BSPSTORE_REGNUM)
|
|
{
|
|
write_register (regno,
|
|
read_memory_integer (frame->saved_regs[regno],
|
|
REGISTER_RAW_SIZE (regno)));
|
|
}
|
|
}
|
|
|
|
write_register (sp_regnum, FRAME_CHAIN (frame));
|
|
write_pc (FRAME_SAVED_PC (frame));
|
|
|
|
cfm = read_register (IA64_CFM_REGNUM);
|
|
|
|
if (frame->saved_regs[IA64_PFS_REGNUM])
|
|
{
|
|
pfs = read_memory_integer (frame->saved_regs[IA64_PFS_REGNUM],
|
|
REGISTER_RAW_SIZE (IA64_PFS_REGNUM));
|
|
}
|
|
else
|
|
pfs = read_register (IA64_PFS_REGNUM);
|
|
|
|
/* Compute the new bsp by *adding* the difference between the
|
|
size of the frame and the size of the locals (both wrt the
|
|
frame that we're going back to). This seems kind of strange,
|
|
especially since it seems like we ought to be subtracting the
|
|
size of the locals... and we should; but the Linux kernel
|
|
wants bsp to be set at the end of all used registers. It's
|
|
likely that this code will need to be revised to accomodate
|
|
other operating systems. */
|
|
bsp = rse_address_add (frame->extra_info->bsp,
|
|
(pfs & 0x7f) - ((pfs >> 7) & 0x7f));
|
|
write_register (IA64_BSP_REGNUM, bsp);
|
|
|
|
/* FIXME: What becomes of the epilog count in the PFS? */
|
|
cfm = (cfm & ~0xffffffffffffLL) | (pfs & 0xffffffffffffLL);
|
|
write_register (IA64_CFM_REGNUM, cfm);
|
|
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
static void
|
|
ia64_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
|
|
CORE_ADDR *targ_addr, int *targ_len)
|
|
{
|
|
*targ_addr = memaddr;
|
|
*targ_len = nr_bytes;
|
|
}
|
|
|
|
static void
|
|
process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
|
|
{
|
|
int *os_ident_ptr = obj;
|
|
const char *name;
|
|
unsigned int sectsize;
|
|
|
|
name = bfd_get_section_name (abfd, sect);
|
|
sectsize = bfd_section_size (abfd, sect);
|
|
if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
|
|
{
|
|
unsigned int name_length, data_length, note_type;
|
|
char *note = alloca (sectsize);
|
|
|
|
bfd_get_section_contents (abfd, sect, note,
|
|
(file_ptr) 0, (bfd_size_type) sectsize);
|
|
|
|
name_length = bfd_h_get_32 (abfd, note);
|
|
data_length = bfd_h_get_32 (abfd, note + 4);
|
|
note_type = bfd_h_get_32 (abfd, note + 8);
|
|
|
|
if (name_length == 4 && data_length == 16 && note_type == 1
|
|
&& strcmp (note + 12, "GNU") == 0)
|
|
{
|
|
int os_number = bfd_h_get_32 (abfd, note + 16);
|
|
|
|
/* The case numbers are from abi-tags in glibc */
|
|
switch (os_number)
|
|
{
|
|
case 0 :
|
|
*os_ident_ptr = ELFOSABI_LINUX;
|
|
break;
|
|
case 1 :
|
|
*os_ident_ptr = ELFOSABI_HURD;
|
|
break;
|
|
case 2 :
|
|
*os_ident_ptr = ELFOSABI_SOLARIS;
|
|
break;
|
|
default :
|
|
internal_error (__FILE__, __LINE__,
|
|
"process_note_abi_sections: unknown OS number %d", os_number);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct gdbarch *
|
|
ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int os_ident;
|
|
|
|
if (info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
{
|
|
os_ident = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
|
|
|
|
/* If os_ident is 0, it is not necessarily the case that we're
|
|
on a SYSV system. (ELFOSABI_NONE is defined to be 0.)
|
|
GNU/Linux uses a note section to record OS/ABI info, but
|
|
leaves e_ident[EI_OSABI] zero. So we have to check for note
|
|
sections too. */
|
|
if (os_ident == 0)
|
|
{
|
|
bfd_map_over_sections (info.abfd,
|
|
process_note_abi_tag_sections,
|
|
&os_ident);
|
|
}
|
|
}
|
|
else
|
|
os_ident = -1;
|
|
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
tdep = gdbarch_tdep (arches->gdbarch);
|
|
if (tdep &&tdep->os_ident == os_ident)
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->os_ident = os_ident;
|
|
|
|
|
|
/* Set the method of obtaining the sigcontext addresses at which
|
|
registers are saved. The method of checking to see if
|
|
native_find_global_pointer is nonzero to indicate that we're
|
|
on AIX is kind of hokey, but I can't think of a better way
|
|
to do it. */
|
|
if (os_ident == ELFOSABI_LINUX)
|
|
tdep->sigcontext_register_address = ia64_linux_sigcontext_register_address;
|
|
else if (native_find_global_pointer != 0)
|
|
tdep->sigcontext_register_address = ia64_aix_sigcontext_register_address;
|
|
else
|
|
tdep->sigcontext_register_address = 0;
|
|
|
|
/* We know that GNU/Linux won't have to resort to the
|
|
native_find_global_pointer hackery. But that's the only one we
|
|
know about so far, so if native_find_global_pointer is set to
|
|
something non-zero, then use it. Otherwise fall back to using
|
|
generic_elf_find_global_pointer. This arrangement should (in
|
|
theory) allow us to cross debug GNU/Linux binaries from an AIX
|
|
machine. */
|
|
if (os_ident == ELFOSABI_LINUX)
|
|
tdep->find_global_pointer = generic_elf_find_global_pointer;
|
|
else if (native_find_global_pointer != 0)
|
|
tdep->find_global_pointer = native_find_global_pointer;
|
|
else
|
|
tdep->find_global_pointer = generic_elf_find_global_pointer;
|
|
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
|
|
set_gdbarch_num_regs (gdbarch, ia64_num_regs);
|
|
set_gdbarch_sp_regnum (gdbarch, sp_regnum);
|
|
set_gdbarch_fp_regnum (gdbarch, fp_regnum);
|
|
set_gdbarch_pc_regnum (gdbarch, pc_regnum);
|
|
set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
|
|
|
|
set_gdbarch_register_name (gdbarch, ia64_register_name);
|
|
set_gdbarch_register_size (gdbarch, 8);
|
|
set_gdbarch_register_bytes (gdbarch, ia64_num_regs * 8 + 128*8);
|
|
set_gdbarch_register_byte (gdbarch, ia64_register_byte);
|
|
set_gdbarch_register_raw_size (gdbarch, ia64_register_raw_size);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 16);
|
|
set_gdbarch_register_virtual_size (gdbarch, ia64_register_virtual_size);
|
|
set_gdbarch_max_register_virtual_size (gdbarch, 16);
|
|
set_gdbarch_register_virtual_type (gdbarch, ia64_register_virtual_type);
|
|
|
|
set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
|
|
|
|
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
|
|
set_gdbarch_frameless_function_invocation (gdbarch, ia64_frameless_function_invocation);
|
|
|
|
set_gdbarch_saved_pc_after_call (gdbarch, ia64_saved_pc_after_call);
|
|
|
|
set_gdbarch_frame_chain (gdbarch, ia64_frame_chain);
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
|
|
set_gdbarch_frame_saved_pc (gdbarch, ia64_frame_saved_pc);
|
|
|
|
set_gdbarch_frame_init_saved_regs (gdbarch, ia64_frame_init_saved_regs);
|
|
set_gdbarch_get_saved_register (gdbarch, ia64_get_saved_register);
|
|
|
|
set_gdbarch_register_convertible (gdbarch, ia64_register_convertible);
|
|
set_gdbarch_register_convert_to_virtual (gdbarch, ia64_register_convert_to_virtual);
|
|
set_gdbarch_register_convert_to_raw (gdbarch, ia64_register_convert_to_raw);
|
|
|
|
set_gdbarch_use_struct_convention (gdbarch, ia64_use_struct_convention);
|
|
set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value);
|
|
|
|
set_gdbarch_store_struct_return (gdbarch, ia64_store_struct_return);
|
|
set_gdbarch_store_return_value (gdbarch, ia64_store_return_value);
|
|
set_gdbarch_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address);
|
|
|
|
set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
|
|
set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
|
|
set_gdbarch_read_pc (gdbarch, ia64_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, ia64_write_pc);
|
|
|
|
/* Settings for calling functions in the inferior. */
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_push_arguments (gdbarch, ia64_push_arguments);
|
|
set_gdbarch_push_return_address (gdbarch, ia64_push_return_address);
|
|
set_gdbarch_pop_frame (gdbarch, ia64_pop_frame);
|
|
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_words (gdbarch, ia64_call_dummy_words);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (ia64_call_dummy_words));
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
|
set_gdbarch_init_extra_frame_info (gdbarch, ia64_init_extra_frame_info);
|
|
set_gdbarch_frame_args_address (gdbarch, ia64_frame_args_address);
|
|
set_gdbarch_frame_locals_address (gdbarch, ia64_frame_locals_address);
|
|
|
|
/* We won't necessarily have a frame pointer and even if we do,
|
|
it winds up being extraordinarly messy when attempting to find
|
|
the frame chain. So for the purposes of creating frames (which
|
|
is all read_fp() is used for), simply use the stack pointer value
|
|
instead. */
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_sp);
|
|
|
|
/* Settings that should be unnecessary. */
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
|
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
|
|
set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
|
|
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
set_gdbarch_function_start_offset (gdbarch, 0);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
|
|
set_gdbarch_remote_translate_xfer_address (
|
|
gdbarch, ia64_remote_translate_xfer_address);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_ia64_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init);
|
|
|
|
tm_print_insn = print_insn_ia64;
|
|
tm_print_insn_info.bytes_per_line = SLOT_MULTIPLIER;
|
|
}
|