binutils-gdb/gdb/s390-linux-nat.c
Simon Marchi 82d23ca811 gdb: fix auxv caching
There's a flaw in the interaction of the auxv caching and the fact that
target_auxv_search allows reading auxv from an arbitrary target_ops
(passed in as a parameter).  This has consequences as explained in this
thread:

  https://inbox.sourceware.org/gdb-patches/20220719144542.1478037-1-luis.machado@arm.com/

In summary, when loading an AArch64 core file with MTE support by
passing the executable and core file names directly to GDB, we see the
MTE info:

    $ ./gdb -nx --data-directory=data-directory -q aarch64-mte-gcore aarch64-mte-gcore.core
    ...
    Program terminated with signal SIGSEGV, Segmentation fault
    Memory tag violation while accessing address 0x0000ffff8ef5e000
    Allocation tag 0x1
    Logical tag 0x0.
    #0  0x0000aaaade3d0b4c in ?? ()
    (gdb)

But if we do it as two separate commands (file and core) we don't:

    $ ./gdb -nx --data-directory=data-directory -q -ex "file aarch64-mte-gcore" -ex "core aarch64-mte-gcore.core"
    ...
    Program terminated with signal SIGSEGV, Segmentation fault.
    #0  0x0000aaaade3d0b4c in ?? ()
    (gdb)

The problem with the latter is that auxv data gets improperly cached
between the two commands.  When executing the file command, auxv gets
first queried here, when loading the executable:

    #0  target_auxv_search (ops=0x55555b842400 <exec_ops>, match=0x9, valp=0x7fffffffc5d0) at /home/simark/src/binutils-gdb/gdb/auxv.c:383
    #1  0x0000555557e576f2 in svr4_exec_displacement (displacementp=0x7fffffffc8c0) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2482
    #2  0x0000555557e594d1 in svr4_relocate_main_executable () at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2878
    #3  0x0000555557e5989e in svr4_solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib-svr4.c:2933
    #4  0x0000555557e6e49f in solib_create_inferior_hook (from_tty=1) at /home/simark/src/binutils-gdb/gdb/solib.c:1253
    #5  0x0000555557f33e29 in symbol_file_command (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/symfile.c:1655
    #6  0x00005555573319c3 in file_command (arg=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/exec.c:555
    #7  0x0000555556e47185 in do_simple_func (args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1, c=0x612000047740) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:95
    #8  0x0000555556e551c9 in cmd_func (cmd=0x612000047740, args=0x7fffffffe01c "aarch64-mte-gcore", from_tty=1) at /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:2543
    #9  0x00005555580e63fd in execute_command (p=0x7fffffffe02c "e", from_tty=1) at /home/simark/src/binutils-gdb/gdb/top.c:692
    #10 0x0000555557771913 in catch_command_errors (command=0x5555580e55ad <execute_command(char const*, int)>, arg=0x7fffffffe017 "file aarch64-mte-gcore", from_tty=1, do_bp_actions=true) at /home/simark/src/binutils-gdb/gdb/main.c:513
    #11 0x0000555557771fba in execute_cmdargs (cmdarg_vec=0x7fffffffd570, file_type=CMDARG_FILE, cmd_type=CMDARG_COMMAND, ret=0x7fffffffd230) at /home/simark/src/binutils-gdb/gdb/main.c:608
    #12 0x00005555577755ac in captured_main_1 (context=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1299
    #13 0x0000555557775c2d in captured_main (data=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1320
    #14 0x0000555557775cc2 in gdb_main (args=0x7fffffffda10) at /home/simark/src/binutils-gdb/gdb/main.c:1345
    #15 0x00005555568bdcbe in main (argc=10, argv=0x7fffffffdba8) at /home/simark/src/binutils-gdb/gdb/gdb.c:32

Here, target_auxv_search is called on the inferior's target stack.  The
target stack only contains the exec target, so the query returns empty
auxv data.  This gets cached for that inferior in `auxv_inferior_data`.

In its constructor (before it is pushed to the inferior's target stack),
the core_target needs to identify the right target description from the
core, and for that asks the gdbarch to read a target description from
the core file.  Because some implementations of
gdbarch_core_read_description (such as AArch64's) need to read auxv data
from the core in order to determine the right target description, the
core_target passes a pointer to itself, allowing implementations to call
target_auxv_search it.  However, because we have previously cached
(empty) auxv data for that inferior, target_auxv_search searched that
cached (empty) auxv data, not auxv data read from the core.  Remember
that this data was obtained by reading auxv on the inferior's target
stack, which only contained an exec target.

The problem I see is that while target_auxv_search offers the
flexibility of reading from an arbitrary (passed as an argument) target,
the caching doesn't do the distinction of which target is being queried,
and where the cached data came from.  So, you could read auxv from a
target A, it gets cached, then you try to read auxv from a target B, and
it returns the cached data from target A.  That sounds wrong.  In our
case, we expect to read different auxv data from the core target than
what we have read from the target stack earlier, so it doesn't make
sense to hit the cache in this case.

To fix this, I propose splitting the code paths that read auxv data from
an inferior's target stack and those that read from a passed-in target.
The code path that reads from the target stack will keep caching,
whereas the one that reads from a passed-in target won't.  And since,
searching in auxv data is independent from where this data came from,
split the "read" part from the "search" part.

From what I understand, auxv caching was introduced mostly to reduce
latency on remote connections, when doing many queries.  With the change
I propose, only the queries done while constructing the core_target
end up not using cached auxv data.  This is fine, because there are just
a handful of queries max, done at this point, and reading core files is
local.

The changes to auxv functions are:

 - Introduce 2 target_read_auxv functions.  One reads from an explicit
   target_ops and doesn't do caching (to be used in
   gdbarch_core_read_description context).  The other takes no argument,
   reads from the current inferior's target stack (it looks just like a
   standard target function wrapper) and does caching.

   The first target_read_auxv actually replaces get_auxv_inferior_data,
   since it became a trivial wrapper around it.

 - Change the existing target_auxv_search to not read auxv data from the
   target, but to accept it as a parameter (a gdb::byte_vector).  This
   function doesn't care where the data came from, it just searches in
   it.  It still needs to take a target_ops and gdbarch to know how to
   parse auxv entries.

 - Add a convenience target_auxv_search overload that reads auxv
   data from the inferior's target stack and searches in it.  This
   overload is useful to replace the exist target_auxv_search calls that
   passed the `current_inferior ()->top_target ()` target and keep the
   call sites short.

 - Modify parse_auxv to accept a target_ops and gdbarch to use for
   parsing entries.  Not strictly related to the rest of this change,
   but it seems like a good change in the context.

Changes in architecture-specific files (tdep and nat):

 - In linux-tdep, linux_get_hwcap and linux_get_hwcap2 get split in two,
   similar to target_auxv_search.  One version receives auxv data,
   target and arch as parameters.  The other gets everything from the
   current inferior.  The latter is for convenience, to avoid making
   call sites too ugly.

 - Call sites of linux_get_hwcap and linux_get_hwcap2 are adjusted to
   use either of the new versions.  The call sites in
   gdbarch_core_read_description context explicitly read auxv data from
   the passed-in target and call the linux_get_hwcap{,2} function with
   parameters.  Other call sites use the versions without parameters.

 - Same idea for arm_fbsd_read_description_auxv.

 - Call sites of target_auxv_search that passed
   `current_inferior ()->top_target ()` are changed to use the
   target_auxv_search overload that works in the current inferior.

Reviewed-By: John Baldwin <jhb@FreeBSD.org>
Reviewed-By: Luis Machado <luis.machado@arm.com>
Change-Id: Ib775a220cf1e76443fb7da2fdff8fc631128fe66
2022-10-11 13:52:18 -04:00

1069 lines
31 KiB
C

/* S390 native-dependent code for GDB, the GNU debugger.
Copyright (C) 2001-2022 Free Software Foundation, Inc.
Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
for IBM Deutschland Entwicklung GmbH, IBM Corporation.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "regcache.h"
#include "inferior.h"
#include "target.h"
#include "linux-nat.h"
#include "auxv.h"
#include "gregset.h"
#include "regset.h"
#include "nat/linux-ptrace.h"
#include "gdbcmd.h"
#include "gdbarch.h"
#include "s390-tdep.h"
#include "s390-linux-tdep.h"
#include "elf/common.h"
#include <asm/ptrace.h>
#include "nat/gdb_ptrace.h"
#include <asm/types.h>
#include <sys/procfs.h>
#include <sys/ucontext.h>
#include <elf.h>
#include <algorithm>
#include "inf-ptrace.h"
#include "linux-tdep.h"
/* Per-thread arch-specific data. */
struct arch_lwp_info
{
/* Non-zero if the thread's PER info must be re-written. */
int per_info_changed;
};
static int have_regset_last_break = 0;
static int have_regset_system_call = 0;
static int have_regset_tdb = 0;
static int have_regset_vxrs = 0;
static int have_regset_gs = 0;
/* Register map for 32-bit executables running under a 64-bit
kernel. */
#ifdef __s390x__
static const struct regcache_map_entry s390_64_regmap_gregset[] =
{
/* Skip PSWM and PSWA, since they must be handled specially. */
{ 2, REGCACHE_MAP_SKIP, 8 },
{ 1, S390_R0_UPPER_REGNUM, 4 }, { 1, S390_R0_REGNUM, 4 },
{ 1, S390_R1_UPPER_REGNUM, 4 }, { 1, S390_R1_REGNUM, 4 },
{ 1, S390_R2_UPPER_REGNUM, 4 }, { 1, S390_R2_REGNUM, 4 },
{ 1, S390_R3_UPPER_REGNUM, 4 }, { 1, S390_R3_REGNUM, 4 },
{ 1, S390_R4_UPPER_REGNUM, 4 }, { 1, S390_R4_REGNUM, 4 },
{ 1, S390_R5_UPPER_REGNUM, 4 }, { 1, S390_R5_REGNUM, 4 },
{ 1, S390_R6_UPPER_REGNUM, 4 }, { 1, S390_R6_REGNUM, 4 },
{ 1, S390_R7_UPPER_REGNUM, 4 }, { 1, S390_R7_REGNUM, 4 },
{ 1, S390_R8_UPPER_REGNUM, 4 }, { 1, S390_R8_REGNUM, 4 },
{ 1, S390_R9_UPPER_REGNUM, 4 }, { 1, S390_R9_REGNUM, 4 },
{ 1, S390_R10_UPPER_REGNUM, 4 }, { 1, S390_R10_REGNUM, 4 },
{ 1, S390_R11_UPPER_REGNUM, 4 }, { 1, S390_R11_REGNUM, 4 },
{ 1, S390_R12_UPPER_REGNUM, 4 }, { 1, S390_R12_REGNUM, 4 },
{ 1, S390_R13_UPPER_REGNUM, 4 }, { 1, S390_R13_REGNUM, 4 },
{ 1, S390_R14_UPPER_REGNUM, 4 }, { 1, S390_R14_REGNUM, 4 },
{ 1, S390_R15_UPPER_REGNUM, 4 }, { 1, S390_R15_REGNUM, 4 },
{ 16, S390_A0_REGNUM, 4 },
{ 1, REGCACHE_MAP_SKIP, 4 }, { 1, S390_ORIG_R2_REGNUM, 4 },
{ 0 }
};
static const struct regset s390_64_gregset =
{
s390_64_regmap_gregset,
regcache_supply_regset,
regcache_collect_regset
};
#define S390_PSWM_OFFSET 0
#define S390_PSWA_OFFSET 8
#endif
/* PER-event mask bits and PER control bits (CR9). */
#define PER_BIT(n) (1UL << (63 - (n)))
#define PER_EVENT_BRANCH PER_BIT (32)
#define PER_EVENT_IFETCH PER_BIT (33)
#define PER_EVENT_STORE PER_BIT (34)
#define PER_EVENT_NULLIFICATION PER_BIT (39)
#define PER_CONTROL_BRANCH_ADDRESS PER_BIT (40)
#define PER_CONTROL_SUSPENSION PER_BIT (41)
#define PER_CONTROL_ALTERATION PER_BIT (42)
class s390_linux_nat_target final : public linux_nat_target
{
public:
/* Add our register access methods. */
void fetch_registers (struct regcache *, int) override;
void store_registers (struct regcache *, int) override;
/* Add our watchpoint methods. */
int can_use_hw_breakpoint (enum bptype, int, int) override;
int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
override;
int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
override;
int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
bool stopped_by_watchpoint () override;
int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
/* Detect target architecture. */
const struct target_desc *read_description () override;
int auxv_parse (const gdb_byte **readptr,
const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
override;
/* Override linux_nat_target low methods. */
void low_new_thread (struct lwp_info *lp) override;
void low_delete_thread (struct arch_lwp_info *lp) override;
void low_prepare_to_resume (struct lwp_info *lp) override;
void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
void low_forget_process (pid_t pid) override;
};
static s390_linux_nat_target the_s390_linux_nat_target;
/* Fill GDB's register array with the general-purpose register values
in *REGP.
When debugging a 32-bit executable running under a 64-bit kernel,
we have to fix up the 64-bit registers we get from the kernel to
make them look like 32-bit registers. */
void
supply_gregset (struct regcache *regcache, const gregset_t *regp)
{
#ifdef __s390x__
struct gdbarch *gdbarch = regcache->arch ();
if (gdbarch_ptr_bit (gdbarch) == 32)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswm, pswa;
gdb_byte buf[4];
regcache_supply_regset (&s390_64_gregset, regcache, -1,
regp, sizeof (gregset_t));
pswm = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWM_OFFSET, 8, byte_order);
pswa = extract_unsigned_integer ((const gdb_byte *) regp
+ S390_PSWA_OFFSET, 8, byte_order);
store_unsigned_integer (buf, 4, byte_order, (pswm >> 32) | 0x80000);
regcache->raw_supply (S390_PSWM_REGNUM, buf);
store_unsigned_integer (buf, 4, byte_order,
(pswa & 0x7fffffff) | (pswm & 0x80000000));
regcache->raw_supply (S390_PSWA_REGNUM, buf);
return;
}
#endif
regcache_supply_regset (&s390_gregset, regcache, -1, regp,
sizeof (gregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_gregset (const struct regcache *regcache, gregset_t *regp, int regno)
{
#ifdef __s390x__
struct gdbarch *gdbarch = regcache->arch ();
if (gdbarch_ptr_bit (gdbarch) == 32)
{
regcache_collect_regset (&s390_64_gregset, regcache, regno,
regp, sizeof (gregset_t));
if (regno == -1
|| regno == S390_PSWM_REGNUM || regno == S390_PSWA_REGNUM)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ULONGEST pswa, pswm;
gdb_byte buf[4];
gdb_byte *pswm_p = (gdb_byte *) regp + S390_PSWM_OFFSET;
gdb_byte *pswa_p = (gdb_byte *) regp + S390_PSWA_OFFSET;
pswm = extract_unsigned_integer (pswm_p, 8, byte_order);
if (regno == -1 || regno == S390_PSWM_REGNUM)
{
pswm &= 0x80000000;
regcache->raw_collect (S390_PSWM_REGNUM, buf);
pswm |= (extract_unsigned_integer (buf, 4, byte_order)
& 0xfff7ffff) << 32;
}
if (regno == -1 || regno == S390_PSWA_REGNUM)
{
regcache->raw_collect (S390_PSWA_REGNUM, buf);
pswa = extract_unsigned_integer (buf, 4, byte_order);
pswm ^= (pswm ^ pswa) & 0x80000000;
pswa &= 0x7fffffff;
store_unsigned_integer (pswa_p, 8, byte_order, pswa);
}
store_unsigned_integer (pswm_p, 8, byte_order, pswm);
}
return;
}
#endif
regcache_collect_regset (&s390_gregset, regcache, regno, regp,
sizeof (gregset_t));
}
/* Fill GDB's register array with the floating-point register values
in *REGP. */
void
supply_fpregset (struct regcache *regcache, const fpregset_t *regp)
{
regcache_supply_regset (&s390_fpregset, regcache, -1, regp,
sizeof (fpregset_t));
}
/* Fill register REGNO (if it is a general-purpose register) in
*REGP with the value in GDB's register array. If REGNO is -1,
do this for all registers. */
void
fill_fpregset (const struct regcache *regcache, fpregset_t *regp, int regno)
{
regcache_collect_regset (&s390_fpregset, regcache, regno, regp,
sizeof (fpregset_t));
}
/* Find the TID for the current inferior thread to use with ptrace. */
static int
s390_inferior_tid (void)
{
/* GNU/Linux LWP ID's are process ID's. */
int tid = inferior_ptid.lwp ();
if (tid == 0)
tid = inferior_ptid.pid (); /* Not a threaded program. */
return tid;
}
/* Fetch all general-purpose registers from process/thread TID and
store their values in GDB's register cache. */
static void
fetch_regs (struct regcache *regcache, int tid)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
supply_gregset (regcache, (const gregset_t *) &regs);
}
/* Store all valid general-purpose registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_regs (const struct regcache *regcache, int tid, int regnum)
{
gregset_t regs;
ptrace_area parea;
parea.len = sizeof (regs);
parea.process_addr = (addr_t) &regs;
parea.kernel_addr = offsetof (struct user_regs_struct, psw);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get registers"));
fill_gregset (regcache, &regs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write registers"));
}
/* Fetch all floating-point registers from process/thread TID and store
their values in GDB's register cache. */
static void
fetch_fpregs (struct regcache *regcache, int tid)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
supply_fpregset (regcache, (const fpregset_t *) &fpregs);
}
/* Store all valid floating-point registers in GDB's register cache
into the process/thread specified by TID. */
static void
store_fpregs (const struct regcache *regcache, int tid, int regnum)
{
fpregset_t fpregs;
ptrace_area parea;
parea.len = sizeof (fpregs);
parea.process_addr = (addr_t) &fpregs;
parea.kernel_addr = offsetof (struct user_regs_struct, fp_regs);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't get floating point status"));
fill_fpregset (regcache, &fpregs, regnum);
if (ptrace (PTRACE_POKEUSR_AREA, tid, (long) &parea, 0) < 0)
perror_with_name (_("Couldn't write floating point status"));
}
/* Fetch all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from process/thread TID and store their values in GDB's
register cache. */
static void
fetch_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
{
if (errno == ENODATA)
regcache_supply_regset (regset, regcache, -1, NULL, regsize);
else
perror_with_name (_("Couldn't get register set"));
}
else
regcache_supply_regset (regset, regcache, -1, buf, regsize);
}
/* Store all registers in the kernel's register set whose number is
REGSET_ID, whose size is REGSIZE, and whose layout is described by
REGSET, from GDB's register cache back to process/thread TID. */
static void
store_regset (struct regcache *regcache, int tid,
int regset_id, int regsize, const struct regset *regset)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't get register set"));
regcache_collect_regset (regset, regcache, -1, buf, regsize);
if (ptrace (PTRACE_SETREGSET, tid, (long) regset_id, (long) &iov) < 0)
perror_with_name (_("Couldn't set register set"));
}
/* Check whether the kernel provides a register set with number REGSET
of size REGSIZE for process/thread TID. */
static int
check_regset (int tid, int regset, int regsize)
{
void *buf = alloca (regsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsize;
if (ptrace (PTRACE_GETREGSET, tid, (long) regset, (long) &iov) >= 0
|| errno == ENODATA)
return 1;
return 0;
}
/* Fetch register REGNUM from the child process. If REGNUM is -1, do
this for all registers. */
void
s390_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
{
pid_t tid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
fetch_regs (regcache, tid);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
fetch_fpregs (regcache, tid);
if (have_regset_last_break)
if (regnum == -1 || regnum == S390_LAST_BREAK_REGNUM)
fetch_regset (regcache, tid, NT_S390_LAST_BREAK, 8,
(gdbarch_ptr_bit (regcache->arch ()) == 32
? &s390_last_break_regset : &s390x_last_break_regset));
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
fetch_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_tdb)
if (regnum == -1 || S390_IS_TDBREGSET_REGNUM (regnum))
fetch_regset (regcache, tid, NT_S390_TDB, s390_sizeof_tdbregset,
&s390_tdb_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
fetch_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
if (have_regset_gs)
{
if (regnum == -1 || (regnum >= S390_GSD_REGNUM
&& regnum <= S390_GSEPLA_REGNUM))
fetch_regset (regcache, tid, NT_S390_GS_CB, 4 * 8,
&s390_gs_regset);
if (regnum == -1 || (regnum >= S390_BC_GSD_REGNUM
&& regnum <= S390_BC_GSEPLA_REGNUM))
fetch_regset (regcache, tid, NT_S390_GS_BC, 4 * 8,
&s390_gsbc_regset);
}
}
/* Store register REGNUM back into the child process. If REGNUM is
-1, do this for all registers. */
void
s390_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
{
pid_t tid = get_ptrace_pid (regcache->ptid ());
if (regnum == -1 || S390_IS_GREGSET_REGNUM (regnum))
store_regs (regcache, tid, regnum);
if (regnum == -1 || S390_IS_FPREGSET_REGNUM (regnum))
store_fpregs (regcache, tid, regnum);
/* S390_LAST_BREAK_REGNUM is read-only. */
if (have_regset_system_call)
if (regnum == -1 || regnum == S390_SYSTEM_CALL_REGNUM)
store_regset (regcache, tid, NT_S390_SYSTEM_CALL, 4,
&s390_system_call_regset);
if (have_regset_vxrs)
{
if (regnum == -1 || (regnum >= S390_V0_LOWER_REGNUM
&& regnum <= S390_V15_LOWER_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_LOW, 16 * 8,
&s390_vxrs_low_regset);
if (regnum == -1 || (regnum >= S390_V16_REGNUM
&& regnum <= S390_V31_REGNUM))
store_regset (regcache, tid, NT_S390_VXRS_HIGH, 16 * 16,
&s390_vxrs_high_regset);
}
}
/* Hardware-assisted watchpoint handling. */
/* For each process we maintain a list of all currently active
watchpoints, in order to properly handle watchpoint removal.
The only thing we actually need is the total address space area
spanned by the watchpoints. */
struct watch_area
{
CORE_ADDR lo_addr;
CORE_ADDR hi_addr;
};
/* Hardware debug state. */
struct s390_debug_reg_state
{
std::vector<watch_area> watch_areas;
std::vector<watch_area> break_areas;
};
/* Per-process data. */
struct s390_process_info
{
struct s390_process_info *next = nullptr;
pid_t pid = 0;
struct s390_debug_reg_state state;
};
static struct s390_process_info *s390_process_list = NULL;
/* Find process data for process PID. */
static struct s390_process_info *
s390_find_process_pid (pid_t pid)
{
struct s390_process_info *proc;
for (proc = s390_process_list; proc; proc = proc->next)
if (proc->pid == pid)
return proc;
return NULL;
}
/* Add process data for process PID. Returns newly allocated info
object. */
static struct s390_process_info *
s390_add_process (pid_t pid)
{
struct s390_process_info *proc = new struct s390_process_info;
proc->pid = pid;
proc->next = s390_process_list;
s390_process_list = proc;
return proc;
}
/* Get data specific info for process PID, creating it if necessary.
Never returns NULL. */
static struct s390_process_info *
s390_process_info_get (pid_t pid)
{
struct s390_process_info *proc;
proc = s390_find_process_pid (pid);
if (proc == NULL)
proc = s390_add_process (pid);
return proc;
}
/* Get hardware debug state for process PID. */
static struct s390_debug_reg_state *
s390_get_debug_reg_state (pid_t pid)
{
return &s390_process_info_get (pid)->state;
}
/* Called whenever GDB is no longer debugging process PID. It deletes
data structures that keep track of hardware debug state. */
void
s390_linux_nat_target::low_forget_process (pid_t pid)
{
struct s390_process_info *proc, **proc_link;
proc = s390_process_list;
proc_link = &s390_process_list;
while (proc != NULL)
{
if (proc->pid == pid)
{
*proc_link = proc->next;
delete proc;
return;
}
proc_link = &proc->next;
proc = *proc_link;
}
}
/* linux_nat_new_fork hook. */
void
s390_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
{
pid_t parent_pid;
struct s390_debug_reg_state *parent_state;
struct s390_debug_reg_state *child_state;
/* NULL means no watchpoint has ever been set in the parent. In
that case, there's nothing to do. */
if (lwp_arch_private_info (parent) == NULL)
return;
/* GDB core assumes the child inherits the watchpoints/hw breakpoints of
the parent. So copy the debug state from parent to child. */
parent_pid = parent->ptid.pid ();
parent_state = s390_get_debug_reg_state (parent_pid);
child_state = s390_get_debug_reg_state (child_pid);
child_state->watch_areas = parent_state->watch_areas;
child_state->break_areas = parent_state->break_areas;
}
/* Dump PER state. */
static void
s390_show_debug_regs (int tid, const char *where)
{
per_struct per_info;
ptrace_area parea;
parea.len = sizeof (per_info);
parea.process_addr = (addr_t) &per_info;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
if (ptrace (PTRACE_PEEKUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve debug regs"));
debug_printf ("PER (debug) state for %d -- %s\n"
" cr9-11: %lx %lx %lx\n"
" start, end: %lx %lx\n"
" code/ATMID: %x address: %lx PAID: %x\n",
tid,
where,
per_info.control_regs.words.cr[0],
per_info.control_regs.words.cr[1],
per_info.control_regs.words.cr[2],
per_info.starting_addr,
per_info.ending_addr,
per_info.lowcore.words.perc_atmid,
per_info.lowcore.words.address,
per_info.lowcore.words.access_id);
}
bool
s390_linux_nat_target::stopped_by_watchpoint ()
{
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (inferior_ptid.pid ());
per_lowcore_bits per_lowcore;
ptrace_area parea;
if (show_debug_regs)
s390_show_debug_regs (s390_inferior_tid (), "stop");
/* Speed up common case. */
if (state->watch_areas.empty ())
return false;
parea.len = sizeof (per_lowcore);
parea.process_addr = (addr_t) & per_lowcore;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info.lowcore);
if (ptrace (PTRACE_PEEKUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't retrieve watchpoint status"));
bool result = (per_lowcore.perc_storage_alteration == 1
&& per_lowcore.perc_store_real_address == 0);
if (result)
{
/* Do not report this watchpoint again. */
memset (&per_lowcore, 0, sizeof (per_lowcore));
if (ptrace (PTRACE_POKEUSR_AREA, s390_inferior_tid (), &parea, 0) < 0)
perror_with_name (_("Couldn't clear watchpoint status"));
}
return result;
}
/* Each time before resuming a thread, update its PER info. */
void
s390_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
{
int tid;
pid_t pid = ptid_of_lwp (lp).pid ();
per_struct per_info;
ptrace_area parea;
CORE_ADDR watch_lo_addr = (CORE_ADDR)-1, watch_hi_addr = 0;
struct arch_lwp_info *lp_priv = lwp_arch_private_info (lp);
struct s390_debug_reg_state *state = s390_get_debug_reg_state (pid);
int step = lwp_is_stepping (lp);
/* Nothing to do if there was never any PER info for this thread. */
if (lp_priv == NULL)
return;
/* If PER info has changed, update it. When single-stepping, disable
hardware breakpoints (if any). Otherwise we're done. */
if (!lp_priv->per_info_changed)
{
if (!step || state->break_areas.empty ())
return;
}
lp_priv->per_info_changed = 0;
tid = ptid_of_lwp (lp).lwp ();
if (tid == 0)
tid = pid;
parea.len = sizeof (per_info);
parea.process_addr = (addr_t) & per_info;
parea.kernel_addr = offsetof (struct user_regs_struct, per_info);
/* Clear PER info, but adjust the single_step field (used by older
kernels only). */
memset (&per_info, 0, sizeof (per_info));
per_info.single_step = (step != 0);
if (!state->watch_areas.empty ())
{
for (const auto &area : state->watch_areas)
{
watch_lo_addr = std::min (watch_lo_addr, area.lo_addr);
watch_hi_addr = std::max (watch_hi_addr, area.hi_addr);
}
/* Enable storage-alteration events. */
per_info.control_regs.words.cr[0] |= (PER_EVENT_STORE
| PER_CONTROL_ALTERATION);
}
if (!state->break_areas.empty ())
{
/* Don't install hardware breakpoints while single-stepping, since
our PER settings (e.g. the nullification bit) might then conflict
with the kernel's. But re-install them afterwards. */
if (step)
lp_priv->per_info_changed = 1;
else
{
for (const auto &area : state->break_areas)
{
watch_lo_addr = std::min (watch_lo_addr, area.lo_addr);
watch_hi_addr = std::max (watch_hi_addr, area.hi_addr);
}
/* If there's just one breakpoint, enable instruction-fetching
nullification events for the breakpoint address (fast).
Otherwise stop after any instruction within the PER area and
after any branch into it (slow). */
if (watch_hi_addr == watch_lo_addr)
per_info.control_regs.words.cr[0] |= (PER_EVENT_NULLIFICATION
| PER_EVENT_IFETCH);
else
{
/* The PER area must include the instruction before the
first breakpoint address. */
watch_lo_addr = watch_lo_addr > 6 ? watch_lo_addr - 6 : 0;
per_info.control_regs.words.cr[0]
|= (PER_EVENT_BRANCH
| PER_EVENT_IFETCH
| PER_CONTROL_BRANCH_ADDRESS);
}
}
}
per_info.starting_addr = watch_lo_addr;
per_info.ending_addr = watch_hi_addr;
if (ptrace (PTRACE_POKEUSR_AREA, tid, &parea, 0) < 0)
perror_with_name (_("Couldn't modify watchpoint status"));
if (show_debug_regs)
s390_show_debug_regs (tid, "resume");
}
/* Mark the PER info as changed, so the next resume will update it. */
static void
s390_mark_per_info_changed (struct lwp_info *lp)
{
if (lwp_arch_private_info (lp) == NULL)
lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
lwp_arch_private_info (lp)->per_info_changed = 1;
}
/* When attaching to a new thread, mark its PER info as changed. */
void
s390_linux_nat_target::low_new_thread (struct lwp_info *lp)
{
s390_mark_per_info_changed (lp);
}
/* Function to call when a thread is being deleted. */
void
s390_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
{
xfree (arch_lwp);
}
/* Iterator callback for s390_refresh_per_info. */
static int
s390_refresh_per_info_cb (struct lwp_info *lp)
{
s390_mark_per_info_changed (lp);
if (!lwp_is_stopped (lp))
linux_stop_lwp (lp);
return 0;
}
/* Make sure that threads are stopped and mark PER info as changed. */
static int
s390_refresh_per_info (void)
{
ptid_t pid_ptid = ptid_t (current_lwp_ptid ().pid ());
iterate_over_lwps (pid_ptid, s390_refresh_per_info_cb);
return 0;
}
int
s390_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
watch_area area;
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (inferior_ptid.pid ());
area.lo_addr = addr;
area.hi_addr = addr + len - 1;
state->watch_areas.push_back (area);
return s390_refresh_per_info ();
}
int
s390_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
unsigned ix;
struct s390_debug_reg_state *state
= s390_get_debug_reg_state (inferior_ptid.pid ());
for (ix = 0; ix < state->watch_areas.size (); ix++)
{
watch_area &area = state->watch_areas[ix];
if (area.lo_addr == addr && area.hi_addr == addr + len - 1)
{
unordered_remove (state->watch_areas, ix);
return s390_refresh_per_info ();
}
}
gdb_printf (gdb_stderr,
"Attempt to remove nonexistent watchpoint.\n");
return -1;
}
/* Implement the "can_use_hw_breakpoint" target_ops method. */
int
s390_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
int cnt, int othertype)
{
if (type == bp_hardware_watchpoint || type == bp_hardware_breakpoint)
return 1;
return 0;
}
/* Implement the "insert_hw_breakpoint" target_ops method. */
int
s390_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
watch_area area;
struct s390_debug_reg_state *state;
area.lo_addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
area.hi_addr = area.lo_addr;
state = s390_get_debug_reg_state (inferior_ptid.pid ());
state->break_areas.push_back (area);
return s390_refresh_per_info ();
}
/* Implement the "remove_hw_breakpoint" target_ops method. */
int
s390_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
unsigned ix;
struct s390_debug_reg_state *state;
state = s390_get_debug_reg_state (inferior_ptid.pid ());
for (ix = 0; state->break_areas.size (); ix++)
{
watch_area &area = state->break_areas[ix];
if (area.lo_addr == bp_tgt->placed_address)
{
unordered_remove (state->break_areas, ix);
return s390_refresh_per_info ();
}
}
gdb_printf (gdb_stderr,
"Attempt to remove nonexistent breakpoint.\n");
return -1;
}
int
s390_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int cnt)
{
return 1;
}
static int
s390_target_wordsize (void)
{
int wordsize = 4;
/* Check for 64-bit inferior process. This is the case when the host is
64-bit, and in addition bit 32 of the PSW mask is set. */
#ifdef __s390x__
long pswm;
errno = 0;
pswm = (long) ptrace (PTRACE_PEEKUSER, s390_inferior_tid (), PT_PSWMASK, 0);
if (errno == 0 && (pswm & 0x100000000ul) != 0)
wordsize = 8;
#endif
return wordsize;
}
int
s390_linux_nat_target::auxv_parse (const gdb_byte **readptr,
const gdb_byte *endptr, CORE_ADDR *typep,
CORE_ADDR *valp)
{
int sizeof_auxv_field = s390_target_wordsize ();
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
const gdb_byte *ptr = *readptr;
if (endptr == ptr)
return 0;
if (endptr - ptr < sizeof_auxv_field * 2)
return -1;
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*readptr = ptr;
return 1;
}
const struct target_desc *
s390_linux_nat_target::read_description ()
{
int tid = inferior_ptid.pid ();
have_regset_last_break
= check_regset (tid, NT_S390_LAST_BREAK, 8);
have_regset_system_call
= check_regset (tid, NT_S390_SYSTEM_CALL, 4);
/* If GDB itself is compiled as 64-bit, we are running on a machine in
z/Architecture mode. If the target is running in 64-bit addressing
mode, report s390x architecture. If the target is running in 31-bit
addressing mode, but the kernel supports using 64-bit registers in
that mode, report s390 architecture with 64-bit GPRs. */
#ifdef __s390x__
{
CORE_ADDR hwcap = linux_get_hwcap ();
have_regset_tdb = (hwcap & HWCAP_S390_TE)
&& check_regset (tid, NT_S390_TDB, s390_sizeof_tdbregset);
have_regset_vxrs = (hwcap & HWCAP_S390_VX)
&& check_regset (tid, NT_S390_VXRS_LOW, 16 * 8)
&& check_regset (tid, NT_S390_VXRS_HIGH, 16 * 16);
have_regset_gs = (hwcap & HWCAP_S390_GS)
&& check_regset (tid, NT_S390_GS_CB, 4 * 8)
&& check_regset (tid, NT_S390_GS_BC, 4 * 8);
if (s390_target_wordsize () == 8)
return (have_regset_gs ? tdesc_s390x_gs_linux64 :
have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390x_tevx_linux64 :
tdesc_s390x_vx_linux64) :
have_regset_tdb ? tdesc_s390x_te_linux64 :
have_regset_system_call ? tdesc_s390x_linux64v2 :
have_regset_last_break ? tdesc_s390x_linux64v1 :
tdesc_s390x_linux64);
if (hwcap & HWCAP_S390_HIGH_GPRS)
return (have_regset_gs ? tdesc_s390_gs_linux64 :
have_regset_vxrs ?
(have_regset_tdb ? tdesc_s390_tevx_linux64 :
tdesc_s390_vx_linux64) :
have_regset_tdb ? tdesc_s390_te_linux64 :
have_regset_system_call ? tdesc_s390_linux64v2 :
have_regset_last_break ? tdesc_s390_linux64v1 :
tdesc_s390_linux64);
}
#endif
/* If GDB itself is compiled as 31-bit, or if we're running a 31-bit inferior
on a 64-bit kernel that does not support using 64-bit registers in 31-bit
mode, report s390 architecture with 32-bit GPRs. */
return (have_regset_system_call? tdesc_s390_linux32v2 :
have_regset_last_break? tdesc_s390_linux32v1 :
tdesc_s390_linux32);
}
void _initialize_s390_nat ();
void
_initialize_s390_nat ()
{
/* Register the target. */
linux_target = &the_s390_linux_nat_target;
add_inf_child_target (&the_s390_linux_nat_target);
/* A maintenance command to enable showing the PER state. */
add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
&show_debug_regs, _("\
Set whether to show the PER (debug) hardware state."), _("\
Show whether to show the PER (debug) hardware state."), _("\
Use \"on\" to enable, \"off\" to disable.\n\
If enabled, the PER state is shown after it is changed by GDB,\n\
and when the inferior triggers a breakpoint or watchpoint."),
NULL,
NULL,
&maintenance_set_cmdlist,
&maintenance_show_cmdlist);
}