mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
08b8a139c9
This rewrites registry.h, removing all the macros and replacing it with relatively ordinary template classes. The result is less code than the previous setup. It replaces large macros with a relatively straightforward C++ class, and now manages its own cleanup. The existing type-safe "key" class is replaced with the equivalent template class. This approach ended up requiring relatively few changes to the users of the registry code in gdb -- code using the key system just required a small change to the key's declaration. All existing users of the old C-like API are now converted to use the type-safe API. This mostly involved changing explicit deletion functions to be an operator() in a deleter class. The old "save/free" two-phase process is removed, and replaced with a single "free" phase. No existing code used both phases. The old "free" callbacks took a parameter for the enclosing container object. However, this wasn't truly needed and is removed here as well.
519 lines
13 KiB
C
519 lines
13 KiB
C
/* nto-tdep.c - general QNX Neutrino target functionality.
|
|
|
|
Copyright (C) 2003-2022 Free Software Foundation, Inc.
|
|
|
|
Contributed by QNX Software Systems Ltd.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include <sys/stat.h>
|
|
#include "nto-tdep.h"
|
|
#include "top.h"
|
|
#include "inferior.h"
|
|
#include "infrun.h"
|
|
#include "gdbarch.h"
|
|
#include "bfd.h"
|
|
#include "elf-bfd.h"
|
|
#include "solib-svr4.h"
|
|
#include "gdbcore.h"
|
|
#include "objfiles.h"
|
|
#include "source.h"
|
|
#include "gdbsupport/pathstuff.h"
|
|
|
|
#define QNX_NOTE_NAME "QNX"
|
|
#define QNX_INFO_SECT_NAME "QNX_info"
|
|
|
|
#ifdef __CYGWIN__
|
|
#include <sys/cygwin.h>
|
|
#endif
|
|
|
|
#ifdef __CYGWIN__
|
|
static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
|
|
#elif defined(__sun__) || defined(linux)
|
|
static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
|
|
#else
|
|
static char default_nto_target[] = "";
|
|
#endif
|
|
|
|
struct nto_target_ops current_nto_target;
|
|
|
|
static const registry<inferior>::key<struct nto_inferior_data>
|
|
nto_inferior_data_reg;
|
|
|
|
static char *
|
|
nto_target (void)
|
|
{
|
|
char *p = getenv ("QNX_TARGET");
|
|
|
|
#ifdef __CYGWIN__
|
|
static char buf[PATH_MAX];
|
|
if (p)
|
|
cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
|
|
else
|
|
cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
|
|
return buf;
|
|
#else
|
|
return p ? p : default_nto_target;
|
|
#endif
|
|
}
|
|
|
|
/* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
|
|
CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */
|
|
int
|
|
nto_map_arch_to_cputype (const char *arch)
|
|
{
|
|
if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
|
|
return CPUTYPE_X86;
|
|
if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
|
|
return CPUTYPE_PPC;
|
|
if (!strcmp (arch, "mips"))
|
|
return CPUTYPE_MIPS;
|
|
if (!strcmp (arch, "arm"))
|
|
return CPUTYPE_ARM;
|
|
if (!strcmp (arch, "sh"))
|
|
return CPUTYPE_SH;
|
|
return CPUTYPE_UNKNOWN;
|
|
}
|
|
|
|
int
|
|
nto_find_and_open_solib (const char *solib, unsigned o_flags,
|
|
gdb::unique_xmalloc_ptr<char> *temp_pathname)
|
|
{
|
|
char *buf, *arch_path, *nto_root;
|
|
const char *endian;
|
|
const char *base;
|
|
const char *arch;
|
|
int arch_len, len, ret;
|
|
#define PATH_FMT \
|
|
"%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"
|
|
|
|
nto_root = nto_target ();
|
|
if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
|
|
{
|
|
arch = "x86";
|
|
endian = "";
|
|
}
|
|
else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
|
|
"rs6000") == 0
|
|
|| strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
|
|
"powerpc") == 0)
|
|
{
|
|
arch = "ppc";
|
|
endian = "be";
|
|
}
|
|
else
|
|
{
|
|
arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
|
|
endian = gdbarch_byte_order (target_gdbarch ())
|
|
== BFD_ENDIAN_BIG ? "be" : "le";
|
|
}
|
|
|
|
/* In case nto_root is short, add strlen(solib)
|
|
so we can reuse arch_path below. */
|
|
|
|
arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
|
|
+ strlen (solib));
|
|
arch_path = (char *) alloca (arch_len);
|
|
xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);
|
|
|
|
len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
|
|
buf = (char *) alloca (len);
|
|
xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
|
|
arch_path);
|
|
|
|
base = lbasename (solib);
|
|
ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
|
|
temp_pathname);
|
|
if (ret < 0 && base != solib)
|
|
{
|
|
xsnprintf (arch_path, arch_len, "/%s", solib);
|
|
ret = open (arch_path, o_flags, 0);
|
|
if (temp_pathname)
|
|
{
|
|
if (ret >= 0)
|
|
*temp_pathname = gdb_realpath (arch_path);
|
|
else
|
|
temp_pathname->reset (NULL);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
nto_init_solib_absolute_prefix (void)
|
|
{
|
|
char buf[PATH_MAX * 2], arch_path[PATH_MAX];
|
|
char *nto_root;
|
|
const char *endian;
|
|
const char *arch;
|
|
|
|
nto_root = nto_target ();
|
|
if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
|
|
{
|
|
arch = "x86";
|
|
endian = "";
|
|
}
|
|
else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
|
|
"rs6000") == 0
|
|
|| strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
|
|
"powerpc") == 0)
|
|
{
|
|
arch = "ppc";
|
|
endian = "be";
|
|
}
|
|
else
|
|
{
|
|
arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
|
|
endian = gdbarch_byte_order (target_gdbarch ())
|
|
== BFD_ENDIAN_BIG ? "be" : "le";
|
|
}
|
|
|
|
xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);
|
|
|
|
xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
|
|
execute_command (buf, 0);
|
|
}
|
|
|
|
char **
|
|
nto_parse_redirection (char *pargv[], const char **pin, const char **pout,
|
|
const char **perr)
|
|
{
|
|
char **argv;
|
|
const char *in, *out, *err, *p;
|
|
int argc, i, n;
|
|
|
|
for (n = 0; pargv[n]; n++);
|
|
if (n == 0)
|
|
return NULL;
|
|
in = "";
|
|
out = "";
|
|
err = "";
|
|
|
|
argv = XCNEWVEC (char *, n + 1);
|
|
argc = n;
|
|
for (i = 0, n = 0; n < argc; n++)
|
|
{
|
|
p = pargv[n];
|
|
if (*p == '>')
|
|
{
|
|
p++;
|
|
if (*p)
|
|
out = p;
|
|
else
|
|
out = pargv[++n];
|
|
}
|
|
else if (*p == '<')
|
|
{
|
|
p++;
|
|
if (*p)
|
|
in = p;
|
|
else
|
|
in = pargv[++n];
|
|
}
|
|
else if (*p++ == '2' && *p++ == '>')
|
|
{
|
|
if (*p == '&' && *(p + 1) == '1')
|
|
err = out;
|
|
else if (*p)
|
|
err = p;
|
|
else
|
|
err = pargv[++n];
|
|
}
|
|
else
|
|
argv[i++] = pargv[n];
|
|
}
|
|
*pin = in;
|
|
*pout = out;
|
|
*perr = err;
|
|
return argv;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
lm_addr (struct so_list *so)
|
|
{
|
|
lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
|
|
|
|
return li->l_addr;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
nto_truncate_ptr (CORE_ADDR addr)
|
|
{
|
|
if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
|
|
/* We don't need to truncate anything, and the bit twiddling below
|
|
will fail due to overflow problems. */
|
|
return addr;
|
|
else
|
|
return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
|
|
}
|
|
|
|
static Elf_Internal_Phdr *
|
|
find_load_phdr (bfd *abfd)
|
|
{
|
|
Elf_Internal_Phdr *phdr;
|
|
unsigned int i;
|
|
|
|
if (!elf_tdata (abfd))
|
|
return NULL;
|
|
|
|
phdr = elf_tdata (abfd)->phdr;
|
|
for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
|
|
{
|
|
if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
|
|
return phdr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
nto_relocate_section_addresses (struct so_list *so, struct target_section *sec)
|
|
{
|
|
/* Neutrino treats the l_addr base address field in link.h as different than
|
|
the base address in the System V ABI and so the offset needs to be
|
|
calculated and applied to relocations. */
|
|
Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
|
|
unsigned vaddr = phdr ? phdr->p_vaddr : 0;
|
|
|
|
sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
|
|
sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
|
|
}
|
|
|
|
/* This is cheating a bit because our linker code is in libc.so. If we
|
|
ever implement lazy linking, this may need to be re-examined. */
|
|
int
|
|
nto_in_dynsym_resolve_code (CORE_ADDR pc)
|
|
{
|
|
if (in_plt_section (pc))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nto_dummy_supply_regset (struct regcache *regcache, char *regs)
|
|
{
|
|
/* Do nothing. */
|
|
}
|
|
|
|
static void
|
|
nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
|
|
{
|
|
const char *sectname;
|
|
unsigned int sectsize;
|
|
/* Buffer holding the section contents. */
|
|
char *note;
|
|
unsigned int namelen;
|
|
const char *name;
|
|
const unsigned sizeof_Elf_Nhdr = 12;
|
|
|
|
sectname = bfd_section_name (sect);
|
|
sectsize = bfd_section_size (sect);
|
|
|
|
if (sectsize > 128)
|
|
sectsize = 128;
|
|
|
|
if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
|
|
*(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
|
|
else if (sectname != NULL && strstr (sectname, "note") != NULL
|
|
&& sectsize > sizeof_Elf_Nhdr)
|
|
{
|
|
note = XNEWVEC (char, sectsize);
|
|
bfd_get_section_contents (abfd, sect, note, 0, sectsize);
|
|
namelen = (unsigned int) bfd_h_get_32 (abfd, note);
|
|
name = note + sizeof_Elf_Nhdr;
|
|
if (sectsize >= namelen + sizeof_Elf_Nhdr
|
|
&& namelen == sizeof (QNX_NOTE_NAME)
|
|
&& 0 == strcmp (name, QNX_NOTE_NAME))
|
|
*(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
|
|
|
|
XDELETEVEC (note);
|
|
}
|
|
}
|
|
|
|
enum gdb_osabi
|
|
nto_elf_osabi_sniffer (bfd *abfd)
|
|
{
|
|
enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
|
|
|
|
bfd_map_over_sections (abfd,
|
|
nto_sniff_abi_note_section,
|
|
&osabi);
|
|
|
|
return osabi;
|
|
}
|
|
|
|
static const char * const nto_thread_state_str[] =
|
|
{
|
|
"DEAD", /* 0 0x00 */
|
|
"RUNNING", /* 1 0x01 */
|
|
"READY", /* 2 0x02 */
|
|
"STOPPED", /* 3 0x03 */
|
|
"SEND", /* 4 0x04 */
|
|
"RECEIVE", /* 5 0x05 */
|
|
"REPLY", /* 6 0x06 */
|
|
"STACK", /* 7 0x07 */
|
|
"WAITTHREAD", /* 8 0x08 */
|
|
"WAITPAGE", /* 9 0x09 */
|
|
"SIGSUSPEND", /* 10 0x0a */
|
|
"SIGWAITINFO", /* 11 0x0b */
|
|
"NANOSLEEP", /* 12 0x0c */
|
|
"MUTEX", /* 13 0x0d */
|
|
"CONDVAR", /* 14 0x0e */
|
|
"JOIN", /* 15 0x0f */
|
|
"INTR", /* 16 0x10 */
|
|
"SEM", /* 17 0x11 */
|
|
"WAITCTX", /* 18 0x12 */
|
|
"NET_SEND", /* 19 0x13 */
|
|
"NET_REPLY" /* 20 0x14 */
|
|
};
|
|
|
|
const char *
|
|
nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
|
|
{
|
|
if (ti != NULL && ti->priv != NULL)
|
|
{
|
|
nto_thread_info *priv = get_nto_thread_info (ti);
|
|
|
|
if (priv->state < ARRAY_SIZE (nto_thread_state_str))
|
|
return nto_thread_state_str [priv->state];
|
|
}
|
|
return "";
|
|
}
|
|
|
|
void
|
|
nto_initialize_signals (void)
|
|
{
|
|
/* We use SIG45 for pulses, or something, so nostop, noprint
|
|
and pass them. */
|
|
signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
|
|
signal_print_update (gdb_signal_from_name ("SIG45"), 0);
|
|
signal_pass_update (gdb_signal_from_name ("SIG45"), 1);
|
|
|
|
/* By default we don't want to stop on these two, but we do want to pass. */
|
|
#if defined(SIGSELECT)
|
|
signal_stop_update (SIGSELECT, 0);
|
|
signal_print_update (SIGSELECT, 0);
|
|
signal_pass_update (SIGSELECT, 1);
|
|
#endif
|
|
|
|
#if defined(SIGPHOTON)
|
|
signal_stop_update (SIGPHOTON, 0);
|
|
signal_print_update (SIGPHOTON, 0);
|
|
signal_pass_update (SIGPHOTON, 1);
|
|
#endif
|
|
}
|
|
|
|
/* Read AUXV from initial_stack. */
|
|
LONGEST
|
|
nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
|
|
LONGEST len, size_t sizeof_auxv_t)
|
|
{
|
|
gdb_byte targ32[4]; /* For 32 bit target values. */
|
|
gdb_byte targ64[8]; /* For 64 bit target values. */
|
|
CORE_ADDR data_ofs = 0;
|
|
ULONGEST anint;
|
|
LONGEST len_read = 0;
|
|
gdb_byte *buff;
|
|
enum bfd_endian byte_order;
|
|
int ptr_size;
|
|
|
|
if (sizeof_auxv_t == 16)
|
|
ptr_size = 8;
|
|
else
|
|
ptr_size = 4;
|
|
|
|
/* Skip over argc, argv and envp... Comment from ldd.c:
|
|
|
|
The startup frame is set-up so that we have:
|
|
auxv
|
|
NULL
|
|
...
|
|
envp2
|
|
envp1 <----- void *frame + (argc + 2) * sizeof(char *)
|
|
NULL
|
|
...
|
|
argv2
|
|
argv1
|
|
argc <------ void * frame
|
|
|
|
On entry to ldd, frame gives the address of argc on the stack. */
|
|
/* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
|
|
* endian. So we just read first 4 bytes. */
|
|
if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
|
|
return 0;
|
|
|
|
byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
|
|
anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);
|
|
|
|
/* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
|
|
data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
|
|
NULL terminating pointer in
|
|
argv. */
|
|
|
|
/* Now loop over env table: */
|
|
anint = 0;
|
|
while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
|
|
== 0)
|
|
{
|
|
if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
|
|
anint = 1; /* Keep looping until non-null entry is found. */
|
|
else if (anint)
|
|
break;
|
|
data_ofs += ptr_size;
|
|
}
|
|
initial_stack += data_ofs;
|
|
|
|
memset (readbuf, 0, len);
|
|
buff = readbuf;
|
|
while (len_read <= len-sizeof_auxv_t)
|
|
{
|
|
if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
|
|
== 0)
|
|
{
|
|
/* Both 32 and 64 bit structures have int as the first field. */
|
|
const ULONGEST a_type
|
|
= extract_unsigned_integer (buff, sizeof (targ32), byte_order);
|
|
|
|
if (a_type == AT_NULL)
|
|
break;
|
|
buff += sizeof_auxv_t;
|
|
len_read += sizeof_auxv_t;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
return len_read;
|
|
}
|
|
|
|
/* Return nto_inferior_data for the given INFERIOR. If not yet created,
|
|
construct it. */
|
|
|
|
struct nto_inferior_data *
|
|
nto_inferior_data (struct inferior *const inferior)
|
|
{
|
|
struct inferior *const inf = inferior ? inferior : current_inferior ();
|
|
struct nto_inferior_data *inf_data;
|
|
|
|
gdb_assert (inf != NULL);
|
|
|
|
inf_data = nto_inferior_data_reg.get (inf);
|
|
if (inf_data == NULL)
|
|
inf_data = nto_inferior_data_reg.emplace (inf);
|
|
|
|
return inf_data;
|
|
}
|