binutils-gdb/gdb/hppa-tdep.h
Andrew Burgess ab25d9bbe4 gdb: rename gdbarch_tdep struct to fix g++ 4.8 build
After the commit:

  commit 08106042d9
  Date:   Thu May 19 13:20:17 2022 +0100

      gdb: move the type cast into gdbarch_tdep

GDB would no longer build using g++ 4.8.  The issue appears to be some
confusion caused by GDB having 'struct gdbarch_tdep', but also a
templated function called 'gdbarch_tdep'.  Prior to the above commit
the gdbarch_tdep function was not templated, and this compiled just
fine.  Note that the above commit compiles just fine with later
versions of g++, so this issue was clearly fixed at some point, though
I've not tried to track down exactly when.

In this commit I propose to fix the g++ 4.8 build problem by renaming
'struct gdbarch_tdep' to 'struct gdbarch_tdep_base'.  This rename
better represents that the struct is only ever used as a base class,
and removes the overloading of the name, which allows GDB to build
with g++ 4.8.

I've also updated the comment on 'struct gdbarch_tdep_base' to fix a
typo, and the comment on the 'gdbarch_tdep' function, to mention that
in maintainer mode a run-time type check is performed.
2022-07-26 12:04:07 +01:00

222 lines
8.3 KiB
C

/* Target-dependent code for the HP PA-RISC architecture.
Copyright (C) 2003-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef HPPA_TDEP_H
#define HPPA_TDEP_H
#include "gdbarch.h"
struct trad_frame_saved_reg;
struct objfile;
struct so_list;
/* Register numbers of various important registers. */
enum hppa_regnum
{
HPPA_R0_REGNUM = 0, /* Doesn't actually exist, used as base for
other r registers. */
HPPA_R1_REGNUM = 1,
HPPA_FLAGS_REGNUM = 0, /* Various status flags */
HPPA_RP_REGNUM = 2, /* return pointer */
HPPA_FP_REGNUM = 3, /* The ABI's frame pointer, when used */
HPPA_DP_REGNUM = 27,
HPPA_RET0_REGNUM = 28,
HPPA_RET1_REGNUM = 29,
HPPA_SP_REGNUM = 30, /* Stack pointer. */
HPPA_R31_REGNUM = 31,
HPPA_SAR_REGNUM = 32, /* Shift Amount Register */
HPPA_IPSW_REGNUM = 41, /* Interrupt Processor Status Word */
HPPA_PCOQ_HEAD_REGNUM = 33, /* instruction offset queue head */
HPPA_PCSQ_HEAD_REGNUM = 34, /* instruction space queue head */
HPPA_PCOQ_TAIL_REGNUM = 35, /* instruction offset queue tail */
HPPA_PCSQ_TAIL_REGNUM = 36, /* instruction space queue tail */
HPPA_EIEM_REGNUM = 37, /* External Interrupt Enable Mask */
HPPA_IIR_REGNUM = 38, /* Interrupt Instruction Register */
HPPA_ISR_REGNUM = 39, /* Interrupt Space Register */
HPPA_IOR_REGNUM = 40, /* Interrupt Offset Register */
HPPA_SR4_REGNUM = 43, /* space register 4 */
HPPA_SR0_REGNUM = 44, /* space register 0 */
HPPA_SR1_REGNUM = 45, /* space register 1 */
HPPA_SR2_REGNUM = 46, /* space register 2 */
HPPA_SR3_REGNUM = 47, /* space register 3 */
HPPA_SR5_REGNUM = 48, /* space register 5 */
HPPA_SR6_REGNUM = 49, /* space register 6 */
HPPA_SR7_REGNUM = 50, /* space register 7 */
HPPA_RCR_REGNUM = 51, /* Recover Counter (also known as cr0) */
HPPA_PID0_REGNUM = 52, /* Protection ID */
HPPA_PID1_REGNUM = 53, /* Protection ID */
HPPA_PID2_REGNUM = 55, /* Protection ID */
HPPA_PID3_REGNUM = 56, /* Protection ID */
HPPA_CCR_REGNUM = 54, /* Coprocessor Configuration Register */
HPPA_TR0_REGNUM = 57, /* Temporary Registers (cr24 -> cr31) */
HPPA_CR26_REGNUM = 59,
HPPA_CR27_REGNUM = 60, /* Base register for thread-local
storage, cr27 */
HPPA_FP0_REGNUM = 64, /* First floating-point. */
HPPA_FP4_REGNUM = 72,
HPPA64_FP4_REGNUM = 68,
HPPA_FP31R_REGNUM = 127, /* Last floating-point. */
HPPA_ARG0_REGNUM = 26, /* The first argument of a callee. */
HPPA_ARG1_REGNUM = 25, /* The second argument of a callee. */
HPPA_ARG2_REGNUM = 24, /* The third argument of a callee. */
HPPA_ARG3_REGNUM = 23 /* The fourth argument of a callee. */
};
/* Instruction size. */
#define HPPA_INSN_SIZE 4
/* Target-dependent structure in gdbarch. */
struct hppa_gdbarch_tdep : gdbarch_tdep_base
{
/* The number of bytes in an address. For now, this field is designed
to allow us to differentiate hppa32 from hppa64 targets. */
int bytes_per_address = 0;
/* Is this an ELF target? This can be 64-bit HP-UX, or a 32/64-bit GNU/Linux
system. */
int is_elf = 0;
/* Given a function address, try to find the global pointer for the
corresponding shared object. */
CORE_ADDR (*find_global_pointer) (struct gdbarch *, struct value *) = nullptr;
/* For shared libraries, each call goes through a small piece of
trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE
evaluates to nonzero if we are currently stopped in one of these. */
int (*in_solib_call_trampoline) (struct gdbarch *gdbarch,
CORE_ADDR pc) = nullptr;
/* For targets that support multiple spaces, we may have additional stubs
in the return path. These stubs are internal to the ABI, and users are
not interested in them. If we detect that we are returning to a stub,
adjust the pc to the real caller. This improves the behavior of commands
that traverse frames such as "up" and "finish". */
void (*unwind_adjust_stub) (struct frame_info *this_frame, CORE_ADDR base,
trad_frame_saved_reg *saved_regs) = nullptr;
/* These are solib-dependent methods. They are really HPUX only, but
we don't have a HPUX-specific tdep vector at the moment. */
CORE_ADDR (*solib_thread_start_addr) (struct so_list *so) = nullptr;
CORE_ADDR (*solib_get_got_by_pc) (CORE_ADDR addr) = nullptr;
CORE_ADDR (*solib_get_solib_by_pc) (CORE_ADDR addr) = nullptr;
CORE_ADDR (*solib_get_text_base) (struct objfile *objfile) = nullptr;
};
/*
* Unwind table and descriptor.
*/
struct unwind_table_entry
{
CORE_ADDR region_start;
CORE_ADDR region_end;
unsigned int Cannot_unwind:1; /* 0 */
unsigned int Millicode:1; /* 1 */
unsigned int Millicode_save_sr0:1; /* 2 */
unsigned int Region_description:2; /* 3..4 */
unsigned int reserved:1; /* 5 */
unsigned int Entry_SR:1; /* 6 */
unsigned int Entry_FR:4; /* number saved *//* 7..10 */
unsigned int Entry_GR:5; /* number saved *//* 11..15 */
unsigned int Args_stored:1; /* 16 */
unsigned int Variable_Frame:1; /* 17 */
unsigned int Separate_Package_Body:1; /* 18 */
unsigned int Frame_Extension_Millicode:1; /* 19 */
unsigned int Stack_Overflow_Check:1; /* 20 */
unsigned int Two_Instruction_SP_Increment:1; /* 21 */
unsigned int sr4export:1; /* 22 */
unsigned int cxx_info:1; /* 23 */
unsigned int cxx_try_catch:1; /* 24 */
unsigned int sched_entry_seq:1; /* 25 */
unsigned int reserved1:1; /* 26 */
unsigned int Save_SP:1; /* 27 */
unsigned int Save_RP:1; /* 28 */
unsigned int Save_MRP_in_frame:1; /* 29 */
unsigned int save_r19:1; /* 30 */
unsigned int Cleanup_defined:1; /* 31 */
unsigned int MPE_XL_interrupt_marker:1; /* 0 */
unsigned int HP_UX_interrupt_marker:1; /* 1 */
unsigned int Large_frame:1; /* 2 */
unsigned int alloca_frame:1; /* 3 */
unsigned int reserved2:1; /* 4 */
unsigned int Total_frame_size:27; /* 5..31 */
/* This is *NOT* part of an actual unwind_descriptor in an object
file. It is *ONLY* part of the "internalized" descriptors that
we create from those in a file. */
struct
{
unsigned int stub_type:4; /* 0..3 */
unsigned int padding:28; /* 4..31 */
}
stub_unwind;
};
/* HP linkers also generate unwinds for various linker-generated stubs.
GDB reads in the stubs from the $UNWIND_END$ subspace, then
"converts" them into normal unwind entries using some of the reserved
fields to store the stub type. */
/* The gaps represent linker stubs used in MPE and space for future
expansion. */
enum unwind_stub_types
{
LONG_BRANCH = 1,
PARAMETER_RELOCATION = 2,
EXPORT = 10,
IMPORT = 11,
IMPORT_SHLIB = 12,
};
struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
int hppa_get_field (unsigned word, int from, int to);
int hppa_extract_5_load (unsigned int);
unsigned hppa_extract_5R_store (unsigned int);
unsigned hppa_extract_5r_store (unsigned int);
int hppa_extract_17 (unsigned int);
int hppa_extract_21 (unsigned);
int hppa_extract_14 (unsigned);
CORE_ADDR hppa_symbol_address(const char *sym);
extern struct value *
hppa_frame_prev_register_helper (struct frame_info *this_frame,
trad_frame_saved_reg *saved_regs,
int regnum);
extern CORE_ADDR hppa_read_pc (struct regcache *regcache);
extern void hppa_write_pc (struct regcache *regcache, CORE_ADDR pc);
extern CORE_ADDR hppa_unwind_pc (struct gdbarch *gdbarch,
struct frame_info *next_frame);
extern struct bound_minimal_symbol
hppa_lookup_stub_minimal_symbol (const char *name,
enum unwind_stub_types stub_type);
extern int hppa_in_solib_call_trampoline (struct gdbarch *gdbarch,
CORE_ADDR pc);
extern CORE_ADDR hppa_skip_trampoline_code (struct frame_info *, CORE_ADDR pc);
#endif /* hppa-tdep.h */