binutils-gdb/sim/m32r/traps.c
Mike Frysinger cec1974488 sim: delete old breakpoint code
This code relies on the old sim-break module, but that was deleted in 2003.
The module only existed for gdb to tell the sim to set breakpoints on its
behalf, but then that logic was abandoned in favor of gdb knowing all about
proper breakpoints (since it does already for non-sim targets).  Some dead
code lived on in the older ports though -- clean it up now.
2015-12-24 20:19:13 -05:00

159 lines
4.6 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* m32r exception, interrupt, and trap (EIT) support
Copyright (C) 1998-2015 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of GDB, the GNU debugger.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "sim-main.h"
#include "sim-syscall.h"
#include "targ-vals.h"
#define TRAP_FLUSH_CACHE 12
/* The semantic code invokes this for invalid (unrecognized) instructions. */
SEM_PC
sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC pc)
{
SIM_DESC sd = CPU_STATE (current_cpu);
#if 0
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
h_bsm_set (current_cpu, h_sm_get (current_cpu));
h_bie_set (current_cpu, h_ie_get (current_cpu));
h_bcond_set (current_cpu, h_cond_get (current_cpu));
/* sm not changed */
h_ie_set (current_cpu, 0);
h_cond_set (current_cpu, 0);
h_bpc_set (current_cpu, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_RSVD_INSN_ADDR);
}
else
#endif
sim_engine_halt (sd, current_cpu, NULL, cia, sim_stopped, SIM_SIGILL);
return pc;
}
/* Process an address exception. */
void
m32r_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
unsigned int map, int nr_bytes, address_word addr,
transfer_type transfer, sim_core_signals sig)
{
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
m32rbf_h_cr_set (current_cpu, H_CR_BBPC,
m32rbf_h_cr_get (current_cpu, H_CR_BPC));
switch (MACH_NUM (CPU_MACH (current_cpu)))
{
case MACH_M32R:
m32rbf_h_bpsw_set (current_cpu, m32rbf_h_psw_get (current_cpu));
/* sm not changed. */
m32rbf_h_psw_set (current_cpu, m32rbf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32RX:
m32rxf_h_bpsw_set (current_cpu, m32rxf_h_psw_get (current_cpu));
/* sm not changed. */
m32rxf_h_psw_set (current_cpu, m32rxf_h_psw_get (current_cpu) & 0x80);
break;
case MACH_M32R2:
m32r2f_h_bpsw_set (current_cpu, m32r2f_h_psw_get (current_cpu));
/* sm not changed. */
m32r2f_h_psw_set (current_cpu, m32r2f_h_psw_get (current_cpu) & 0x80);
break;
default:
abort ();
}
m32rbf_h_cr_set (current_cpu, H_CR_BPC, cia);
sim_engine_restart (CPU_STATE (current_cpu), current_cpu, NULL,
EIT_ADDR_EXCP_ADDR);
}
else
sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr,
transfer, sig);
}
/* Trap support.
The result is the pc address to continue at.
Preprocessing like saving the various registers has already been done. */
USI
m32r_trap (SIM_CPU *current_cpu, PCADDR pc, int num)
{
SIM_DESC sd = CPU_STATE (current_cpu);
host_callback *cb = STATE_CALLBACK (sd);
if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
{
/* The new pc is the trap vector entry.
We assume there's a branch there to some handler.
Use cr5 as EVB (EIT Vector Base) register. */
/* USI new_pc = EIT_TRAP_BASE_ADDR + num * 4; */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
switch (num)
{
case TRAP_SYSCALL :
{
long result, result2;
int errcode;
sim_syscall_multi (current_cpu,
m32rbf_h_gr_get (current_cpu, 0),
m32rbf_h_gr_get (current_cpu, 1),
m32rbf_h_gr_get (current_cpu, 2),
m32rbf_h_gr_get (current_cpu, 3),
m32rbf_h_gr_get (current_cpu, 4),
&result, &result2, &errcode);
m32rbf_h_gr_set (current_cpu, 2, errcode);
m32rbf_h_gr_set (current_cpu, 0, result);
m32rbf_h_gr_set (current_cpu, 1, result2);
break;
}
case TRAP_BREAKPOINT:
sim_engine_halt (sd, current_cpu, NULL, pc,
sim_stopped, SIM_SIGTRAP);
break;
case TRAP_FLUSH_CACHE:
/* Do nothing. */
break;
default :
{
/* USI new_pc = EIT_TRAP_BASE_ADDR + num * 4; */
/* Use cr5 as EVB (EIT Vector Base) register. */
USI new_pc = m32rbf_h_cr_get (current_cpu, 5) + 0x40 + num * 4;
return new_pc;
}
}
/* Fake an "rte" insn. */
/* FIXME: Should duplicate all of rte processing. */
return (pc & -4) + 4;
}