mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 21:44:19 +08:00
51b57ded88
symtab.h, tm-i386v4.h, valprint.c, values.c: Lint. * breakpoint.c, c-exp.y, coffread.c, command.c, environ.c, eval.c, findvar.c, infcmd.c, infptrace.c, infrun.c, m2-exp.y, parse.c, putenv.c, solib.c, sparc-xdep.c, symtab.c, tm-i386v.h, tm-sparc.h, utils.c, valarith.c, valops.c, valprint.c, values.c: Replace bcopy() use with memcpy(), which is more standard and can take advantage of gcc's builtin functions for increased performance. * breakpoint.c, buildsym.c, coffread.c, dbxread.c, i386-tdep.c, ieee-float.c, infcmd.c, sparc-tdep.c, stack.c, symtab.c, symtab.h, target.c, values.c: Replace bzero() use with memset(), which is more standard and can take advantage of gcc's builtin functions for increased performance. * i386-tdep.c, main.c, valprint.c: Replace bcmp() use with memcmp(), which is more standard and can take advantage of gcc's builtin functions for increased performance.
681 lines
17 KiB
C
681 lines
17 KiB
C
/* Intel 386 target-dependent stuff.
|
|
Copyright (C) 1988, 1989, 1991 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
|
#include <sys/procfs.h>
|
|
#endif
|
|
|
|
static long
|
|
i386_get_frame_setup PARAMS ((int));
|
|
|
|
static void
|
|
i386_follow_jump PARAMS ((void));
|
|
|
|
static void
|
|
codestream_read PARAMS ((unsigned char *, int));
|
|
|
|
static void
|
|
codestream_seek PARAMS ((int));
|
|
|
|
static unsigned char
|
|
codestream_fill PARAMS ((int));
|
|
|
|
/* helper functions for tm-i386.h */
|
|
|
|
/* Stdio style buffering was used to minimize calls to ptrace, but this
|
|
buffering did not take into account that the code section being accessed
|
|
may not be an even number of buffers long (even if the buffer is only
|
|
sizeof(int) long). In cases where the code section size happened to
|
|
be a non-integral number of buffers long, attempting to read the last
|
|
buffer would fail. Simply using target_read_memory and ignoring errors,
|
|
rather than read_memory, is not the correct solution, since legitimate
|
|
access errors would then be totally ignored. To properly handle this
|
|
situation and continue to use buffering would require that this code
|
|
be able to determine the minimum code section size granularity (not the
|
|
alignment of the section itself, since the actual failing case that
|
|
pointed out this problem had a section alignment of 4 but was not a
|
|
multiple of 4 bytes long), on a target by target basis, and then
|
|
adjust it's buffer size accordingly. This is messy, but potentially
|
|
feasible. It probably needs the bfd library's help and support. For
|
|
now, the buffer size is set to 1. (FIXME -fnf) */
|
|
|
|
#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
|
|
static CORE_ADDR codestream_next_addr;
|
|
static CORE_ADDR codestream_addr;
|
|
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
|
|
static int codestream_off;
|
|
static int codestream_cnt;
|
|
|
|
#define codestream_tell() (codestream_addr + codestream_off)
|
|
#define codestream_peek() (codestream_cnt == 0 ? \
|
|
codestream_fill(1): codestream_buf[codestream_off])
|
|
#define codestream_get() (codestream_cnt-- == 0 ? \
|
|
codestream_fill(0) : codestream_buf[codestream_off++])
|
|
|
|
static unsigned char
|
|
codestream_fill (peek_flag)
|
|
int peek_flag;
|
|
{
|
|
codestream_addr = codestream_next_addr;
|
|
codestream_next_addr += CODESTREAM_BUFSIZ;
|
|
codestream_off = 0;
|
|
codestream_cnt = CODESTREAM_BUFSIZ;
|
|
read_memory (codestream_addr,
|
|
(unsigned char *)codestream_buf,
|
|
CODESTREAM_BUFSIZ);
|
|
|
|
if (peek_flag)
|
|
return (codestream_peek());
|
|
else
|
|
return (codestream_get());
|
|
}
|
|
|
|
static void
|
|
codestream_seek (place)
|
|
int place;
|
|
{
|
|
codestream_next_addr = place / CODESTREAM_BUFSIZ;
|
|
codestream_next_addr *= CODESTREAM_BUFSIZ;
|
|
codestream_cnt = 0;
|
|
codestream_fill (1);
|
|
while (codestream_tell() != place)
|
|
codestream_get ();
|
|
}
|
|
|
|
static void
|
|
codestream_read (buf, count)
|
|
unsigned char *buf;
|
|
int count;
|
|
{
|
|
unsigned char *p;
|
|
int i;
|
|
p = buf;
|
|
for (i = 0; i < count; i++)
|
|
*p++ = codestream_get ();
|
|
}
|
|
|
|
/* next instruction is a jump, move to target */
|
|
|
|
static void
|
|
i386_follow_jump ()
|
|
{
|
|
int long_delta;
|
|
short short_delta;
|
|
char byte_delta;
|
|
int data16;
|
|
int pos;
|
|
|
|
pos = codestream_tell ();
|
|
|
|
data16 = 0;
|
|
if (codestream_peek () == 0x66)
|
|
{
|
|
codestream_get ();
|
|
data16 = 1;
|
|
}
|
|
|
|
switch (codestream_get ())
|
|
{
|
|
case 0xe9:
|
|
/* relative jump: if data16 == 0, disp32, else disp16 */
|
|
if (data16)
|
|
{
|
|
codestream_read ((unsigned char *)&short_delta, 2);
|
|
|
|
/* include size of jmp inst (including the 0x66 prefix). */
|
|
pos += short_delta + 4;
|
|
}
|
|
else
|
|
{
|
|
codestream_read ((unsigned char *)&long_delta, 4);
|
|
pos += long_delta + 5;
|
|
}
|
|
break;
|
|
case 0xeb:
|
|
/* relative jump, disp8 (ignore data16) */
|
|
codestream_read ((unsigned char *)&byte_delta, 1);
|
|
pos += byte_delta + 2;
|
|
break;
|
|
}
|
|
codestream_seek (pos);
|
|
}
|
|
|
|
/*
|
|
* find & return amound a local space allocated, and advance codestream to
|
|
* first register push (if any)
|
|
*
|
|
* if entry sequence doesn't make sense, return -1, and leave
|
|
* codestream pointer random
|
|
*/
|
|
|
|
static long
|
|
i386_get_frame_setup (pc)
|
|
int pc;
|
|
{
|
|
unsigned char op;
|
|
|
|
codestream_seek (pc);
|
|
|
|
i386_follow_jump ();
|
|
|
|
op = codestream_get ();
|
|
|
|
if (op == 0x58) /* popl %eax */
|
|
{
|
|
/*
|
|
* this function must start with
|
|
*
|
|
* popl %eax 0x58
|
|
* xchgl %eax, (%esp) 0x87 0x04 0x24
|
|
* or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
|
|
*
|
|
* (the system 5 compiler puts out the second xchg
|
|
* inst, and the assembler doesn't try to optimize it,
|
|
* so the 'sib' form gets generated)
|
|
*
|
|
* this sequence is used to get the address of the return
|
|
* buffer for a function that returns a structure
|
|
*/
|
|
int pos;
|
|
unsigned char buf[4];
|
|
static unsigned char proto1[3] = { 0x87,0x04,0x24 };
|
|
static unsigned char proto2[4] = { 0x87,0x44,0x24,0x00 };
|
|
pos = codestream_tell ();
|
|
codestream_read (buf, 4);
|
|
if (memcmp (buf, proto1, 3) == 0)
|
|
pos += 3;
|
|
else if (memcmp (buf, proto2, 4) == 0)
|
|
pos += 4;
|
|
|
|
codestream_seek (pos);
|
|
op = codestream_get (); /* update next opcode */
|
|
}
|
|
|
|
if (op == 0x55) /* pushl %ebp */
|
|
{
|
|
/* check for movl %esp, %ebp - can be written two ways */
|
|
switch (codestream_get ())
|
|
{
|
|
case 0x8b:
|
|
if (codestream_get () != 0xec)
|
|
return (-1);
|
|
break;
|
|
case 0x89:
|
|
if (codestream_get () != 0xe5)
|
|
return (-1);
|
|
break;
|
|
default:
|
|
return (-1);
|
|
}
|
|
/* check for stack adjustment
|
|
*
|
|
* subl $XXX, %esp
|
|
*
|
|
* note: you can't subtract a 16 bit immediate
|
|
* from a 32 bit reg, so we don't have to worry
|
|
* about a data16 prefix
|
|
*/
|
|
op = codestream_peek ();
|
|
if (op == 0x83)
|
|
{
|
|
/* subl with 8 bit immed */
|
|
codestream_get ();
|
|
if (codestream_get () != 0xec)
|
|
/* Some instruction starting with 0x83 other than subl. */
|
|
{
|
|
codestream_seek (codestream_tell () - 2);
|
|
return 0;
|
|
}
|
|
/* subl with signed byte immediate
|
|
* (though it wouldn't make sense to be negative)
|
|
*/
|
|
return (codestream_get());
|
|
}
|
|
else if (op == 0x81)
|
|
{
|
|
/* subl with 32 bit immed */
|
|
int locals;
|
|
codestream_get();
|
|
if (codestream_get () != 0xec)
|
|
/* Some instruction starting with 0x81 other than subl. */
|
|
{
|
|
codestream_seek (codestream_tell () - 2);
|
|
return 0;
|
|
}
|
|
/* subl with 32 bit immediate */
|
|
codestream_read ((unsigned char *)&locals, 4);
|
|
SWAP_TARGET_AND_HOST (&locals, 4);
|
|
return (locals);
|
|
}
|
|
else
|
|
{
|
|
return (0);
|
|
}
|
|
}
|
|
else if (op == 0xc8)
|
|
{
|
|
/* enter instruction: arg is 16 bit unsigned immed */
|
|
unsigned short slocals;
|
|
codestream_read ((unsigned char *)&slocals, 2);
|
|
SWAP_TARGET_AND_HOST (&slocals, 2);
|
|
codestream_get (); /* flush final byte of enter instruction */
|
|
return (slocals);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/* Return number of args passed to a frame.
|
|
Can return -1, meaning no way to tell. */
|
|
|
|
/* on the 386, the instruction following the call could be:
|
|
* popl %ecx - one arg
|
|
* addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
|
|
* anything else - zero args
|
|
*/
|
|
|
|
int
|
|
i386_frame_num_args (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
int retpc;
|
|
unsigned char op;
|
|
struct frame_info *pfi;
|
|
|
|
int frameless;
|
|
|
|
FRAMELESS_FUNCTION_INVOCATION (fi, frameless);
|
|
if (frameless)
|
|
/* In the absence of a frame pointer, GDB doesn't get correct values
|
|
for nameless arguments. Return -1, so it doesn't print any
|
|
nameless arguments. */
|
|
return -1;
|
|
|
|
pfi = get_prev_frame_info (fi);
|
|
if (pfi == 0)
|
|
{
|
|
/* Note: this can happen if we are looking at the frame for
|
|
main, because FRAME_CHAIN_VALID won't let us go into
|
|
start. If we have debugging symbols, that's not really
|
|
a big deal; it just means it will only show as many arguments
|
|
to main as are declared. */
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
retpc = pfi->pc;
|
|
op = read_memory_integer (retpc, 1);
|
|
if (op == 0x59)
|
|
/* pop %ecx */
|
|
return 1;
|
|
else if (op == 0x83)
|
|
{
|
|
op = read_memory_integer (retpc+1, 1);
|
|
if (op == 0xc4)
|
|
/* addl $<signed imm 8 bits>, %esp */
|
|
return (read_memory_integer (retpc+2,1)&0xff)/4;
|
|
else
|
|
return 0;
|
|
}
|
|
else if (op == 0x81)
|
|
{ /* add with 32 bit immediate */
|
|
op = read_memory_integer (retpc+1, 1);
|
|
if (op == 0xc4)
|
|
/* addl $<imm 32>, %esp */
|
|
return read_memory_integer (retpc+2, 4) / 4;
|
|
else
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* parse the first few instructions of the function to see
|
|
* what registers were stored.
|
|
*
|
|
* We handle these cases:
|
|
*
|
|
* The startup sequence can be at the start of the function,
|
|
* or the function can start with a branch to startup code at the end.
|
|
*
|
|
* %ebp can be set up with either the 'enter' instruction, or
|
|
* 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
|
|
* but was once used in the sys5 compiler)
|
|
*
|
|
* Local space is allocated just below the saved %ebp by either the
|
|
* 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
|
|
* a 16 bit unsigned argument for space to allocate, and the
|
|
* 'addl' instruction could have either a signed byte, or
|
|
* 32 bit immediate.
|
|
*
|
|
* Next, the registers used by this function are pushed. In
|
|
* the sys5 compiler they will always be in the order: %edi, %esi, %ebx
|
|
* (and sometimes a harmless bug causes it to also save but not restore %eax);
|
|
* however, the code below is willing to see the pushes in any order,
|
|
* and will handle up to 8 of them.
|
|
*
|
|
* If the setup sequence is at the end of the function, then the
|
|
* next instruction will be a branch back to the start.
|
|
*/
|
|
|
|
void
|
|
i386_frame_find_saved_regs (fip, fsrp)
|
|
struct frame_info *fip;
|
|
struct frame_saved_regs *fsrp;
|
|
{
|
|
long locals;
|
|
unsigned char op;
|
|
CORE_ADDR dummy_bottom;
|
|
CORE_ADDR adr;
|
|
int i;
|
|
|
|
(void) memset (fsrp, 0, sizeof *fsrp);
|
|
|
|
/* if frame is the end of a dummy, compute where the
|
|
* beginning would be
|
|
*/
|
|
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
|
|
|
|
/* check if the PC is in the stack, in a dummy frame */
|
|
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
|
|
{
|
|
/* all regs were saved by push_call_dummy () */
|
|
adr = fip->frame;
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
{
|
|
adr -= REGISTER_RAW_SIZE (i);
|
|
fsrp->regs[i] = adr;
|
|
}
|
|
return;
|
|
}
|
|
|
|
locals = i386_get_frame_setup (get_pc_function_start (fip->pc));
|
|
|
|
if (locals >= 0)
|
|
{
|
|
adr = fip->frame - 4 - locals;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
op = codestream_get ();
|
|
if (op < 0x50 || op > 0x57)
|
|
break;
|
|
fsrp->regs[op - 0x50] = adr;
|
|
adr -= 4;
|
|
}
|
|
}
|
|
|
|
fsrp->regs[PC_REGNUM] = fip->frame + 4;
|
|
fsrp->regs[FP_REGNUM] = fip->frame;
|
|
}
|
|
|
|
/* return pc of first real instruction */
|
|
|
|
int
|
|
i386_skip_prologue (pc)
|
|
int pc;
|
|
{
|
|
unsigned char op;
|
|
int i;
|
|
|
|
if (i386_get_frame_setup (pc) < 0)
|
|
return (pc);
|
|
|
|
/* found valid frame setup - codestream now points to
|
|
* start of push instructions for saving registers
|
|
*/
|
|
|
|
/* skip over register saves */
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
op = codestream_peek ();
|
|
/* break if not pushl inst */
|
|
if (op < 0x50 || op > 0x57)
|
|
break;
|
|
codestream_get ();
|
|
}
|
|
|
|
i386_follow_jump ();
|
|
|
|
return (codestream_tell ());
|
|
}
|
|
|
|
void
|
|
i386_push_dummy_frame ()
|
|
{
|
|
CORE_ADDR sp = read_register (SP_REGNUM);
|
|
int regnum;
|
|
char regbuf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
sp = push_word (sp, read_register (PC_REGNUM));
|
|
sp = push_word (sp, read_register (FP_REGNUM));
|
|
write_register (FP_REGNUM, sp);
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
read_register_gen (regnum, regbuf);
|
|
sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
write_register (SP_REGNUM, sp);
|
|
}
|
|
|
|
void
|
|
i386_pop_frame ()
|
|
{
|
|
FRAME frame = get_current_frame ();
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *fi;
|
|
char regbuf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
fi = get_frame_info (frame);
|
|
fp = fi->frame;
|
|
get_frame_saved_regs (fi, &fsr);
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
CORE_ADDR adr;
|
|
adr = fsr.regs[regnum];
|
|
if (adr)
|
|
{
|
|
read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
|
|
write_register_bytes (REGISTER_BYTE (regnum), regbuf,
|
|
REGISTER_RAW_SIZE (regnum));
|
|
}
|
|
}
|
|
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
|
write_register (SP_REGNUM, fp + 8);
|
|
flush_cached_frames ();
|
|
set_current_frame ( create_new_frame (read_register (FP_REGNUM),
|
|
read_pc ()));
|
|
}
|
|
|
|
#ifdef USE_PROC_FS /* Target dependent support for /proc */
|
|
|
|
/* The /proc interface divides the target machine's register set up into
|
|
two different sets, the general register set (gregset) and the floating
|
|
point register set (fpregset). For each set, there is an ioctl to get
|
|
the current register set and another ioctl to set the current values.
|
|
|
|
The actual structure passed through the ioctl interface is, of course,
|
|
naturally machine dependent, and is different for each set of registers.
|
|
For the i386 for example, the general register set is typically defined
|
|
by:
|
|
|
|
typedef int gregset_t[19]; (in <sys/regset.h>)
|
|
|
|
#define GS 0 (in <sys/reg.h>)
|
|
#define FS 1
|
|
...
|
|
#define UESP 17
|
|
#define SS 18
|
|
|
|
and the floating point set by:
|
|
|
|
typedef struct fpregset
|
|
{
|
|
union
|
|
{
|
|
struct fpchip_state // fp extension state //
|
|
{
|
|
int state[27]; // 287/387 saved state //
|
|
int status; // status word saved at exception //
|
|
} fpchip_state;
|
|
struct fp_emul_space // for emulators //
|
|
{
|
|
char fp_emul[246];
|
|
char fp_epad[2];
|
|
} fp_emul_space;
|
|
int f_fpregs[62]; // union of the above //
|
|
} fp_reg_set;
|
|
long f_wregs[33]; // saved weitek state //
|
|
} fpregset_t;
|
|
|
|
These routines provide the packing and unpacking of gregset_t and
|
|
fpregset_t formatted data.
|
|
|
|
*/
|
|
|
|
/* This is a duplicate of the table in i386-xdep.c. */
|
|
|
|
static int regmap[] =
|
|
{
|
|
EAX, ECX, EDX, EBX,
|
|
UESP, EBP, ESI, EDI,
|
|
EIP, EFL, CS, SS,
|
|
DS, ES, FS, GS,
|
|
};
|
|
|
|
|
|
/* Given a pointer to a general register set in /proc format (gregset_t *),
|
|
unpack the register contents and supply them as gdb's idea of the current
|
|
register values. */
|
|
|
|
void
|
|
supply_gregset (gregsetp)
|
|
gregset_t *gregsetp;
|
|
{
|
|
register int regno;
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
|
extern int regmap[];
|
|
|
|
for (regno = 0 ; regno < NUM_REGS ; regno++)
|
|
{
|
|
supply_register (regno, (char *) (regp + regmap[regno]));
|
|
}
|
|
}
|
|
|
|
void
|
|
fill_gregset (gregsetp, regno)
|
|
gregset_t *gregsetp;
|
|
int regno;
|
|
{
|
|
int regi;
|
|
register greg_t *regp = (greg_t *) gregsetp;
|
|
extern char registers[];
|
|
extern int regmap[];
|
|
|
|
for (regi = 0 ; regi < NUM_REGS ; regi++)
|
|
{
|
|
if ((regno == -1) || (regno == regi))
|
|
{
|
|
*(regp + regmap[regno]) = *(int *) ®isters[REGISTER_BYTE (regi)];
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined (FP0_REGNUM)
|
|
|
|
/* Given a pointer to a floating point register set in /proc format
|
|
(fpregset_t *), unpack the register contents and supply them as gdb's
|
|
idea of the current floating point register values. */
|
|
|
|
void
|
|
supply_fpregset (fpregsetp)
|
|
fpregset_t *fpregsetp;
|
|
{
|
|
register int regno;
|
|
|
|
/* FIXME: see m68k-tdep.c for an example, for the m68k. */
|
|
}
|
|
|
|
/* Given a pointer to a floating point register set in /proc format
|
|
(fpregset_t *), update the register specified by REGNO from gdb's idea
|
|
of the current floating point register set. If REGNO is -1, update
|
|
them all. */
|
|
|
|
void
|
|
fill_fpregset (fpregsetp, regno)
|
|
fpregset_t *fpregsetp;
|
|
int regno;
|
|
{
|
|
int regi;
|
|
char *to;
|
|
char *from;
|
|
extern char registers[];
|
|
|
|
/* FIXME: see m68k-tdep.c for an example, for the m68k. */
|
|
}
|
|
|
|
#endif /* defined (FP0_REGNUM) */
|
|
|
|
#endif /* USE_PROC_FS */
|
|
|
|
#ifdef GET_LONGJMP_TARGET
|
|
|
|
/* Figure out where the longjmp will land. Slurp the args out of the stack.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from which
|
|
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
|
This routine returns true on success. */
|
|
|
|
int
|
|
get_longjmp_target(pc)
|
|
CORE_ADDR *pc;
|
|
{
|
|
CORE_ADDR sp, jb_addr;
|
|
|
|
sp = read_register(SP_REGNUM);
|
|
|
|
if (target_read_memory(sp + SP_ARG0, /* Offset of first arg on stack */
|
|
(char *) &jb_addr,
|
|
sizeof(CORE_ADDR)))
|
|
return 0;
|
|
|
|
|
|
SWAP_TARGET_AND_HOST(&jb_addr, sizeof(CORE_ADDR));
|
|
|
|
if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) pc,
|
|
sizeof(CORE_ADDR)))
|
|
return 0;
|
|
|
|
SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif /* GET_LONGJMP_TARGET */
|