mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-29 20:23:28 +08:00
918fea3e3c
is not defined. * hppab-nat.c (call_ptrace): Delete redundant function. (kill_inferior, attach, detach, child_resume): Likewise. (child_xfer_memory): Likewise. * hppah-nat.c (call_ptrace): Delete redundant function. (kill_inferior, attach, detach, child_resume): Likewise. * config/pa/hppabsd.mh (NATDEPFILES): Add infptrace.o. * config/pa/hppahpux.mh (NATDEPFILES): Add infptrace.o. * config/pa/nm-hppab.h (FETCH_INFERIOR_REGISTERS): Define. * config/pa/nm-hppah.h (FETCH_INFERIOR_REGISTERS): Define. (CHILD_XFER_MEMORY): Define. (PT_*): Define so that generic infptrace.c code can be used.
453 lines
12 KiB
C
453 lines
12 KiB
C
/* Low level Unix child interface to ptrace, for GDB when running under Unix.
|
||
Copyright 1988, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
|
||
#ifdef USG
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#include <sys/param.h>
|
||
#include <sys/dir.h>
|
||
#include <signal.h>
|
||
#include <sys/ioctl.h>
|
||
|
||
#ifndef NO_PTRACE_H
|
||
#ifdef PTRACE_IN_WRONG_PLACE
|
||
#include <ptrace.h>
|
||
#else
|
||
#include <sys/ptrace.h>
|
||
#endif
|
||
#endif /* NO_PTRACE_H */
|
||
|
||
#if !defined (PT_KILL)
|
||
#define PT_KILL 8
|
||
#endif
|
||
|
||
#if !defined (PT_STEP)
|
||
#define PT_STEP 9
|
||
#define PT_CONTINUE 7
|
||
#define PT_READ_U 3
|
||
#define PT_WRITE_U 6
|
||
#define PT_READ_I 1
|
||
#define PT_READ_D 2
|
||
#define PT_WRITE_I 4
|
||
#define PT_WRITE_D 5
|
||
#endif /* No PT_STEP. */
|
||
|
||
#ifndef PT_ATTACH
|
||
#define PT_ATTACH PTRACE_ATTACH
|
||
#endif
|
||
#ifndef PT_DETACH
|
||
#define PT_DETACH PTRACE_DETACH
|
||
#endif
|
||
|
||
#include "gdbcore.h"
|
||
#ifndef NO_SYS_FILE
|
||
#include <sys/file.h>
|
||
#endif
|
||
#if 0
|
||
/* Don't think this is used anymore. On the sequent (not sure whether it's
|
||
dynix or ptx or both), it is included unconditionally by sys/user.h and
|
||
not protected against multiple inclusion. */
|
||
#include <sys/stat.h>
|
||
#endif
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
#include <sys/user.h> /* Probably need to poke the user structure */
|
||
#if defined (KERNEL_U_ADDR_BSD)
|
||
#include <a.out.h> /* For struct nlist */
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
#endif /* !FETCH_INFERIOR_REGISTERS */
|
||
|
||
|
||
/* This function simply calls ptrace with the given arguments.
|
||
It exists so that all calls to ptrace are isolated in this
|
||
machine-dependent file. */
|
||
int
|
||
call_ptrace (request, pid, addr, data)
|
||
int request, pid;
|
||
PTRACE_ARG3_TYPE addr;
|
||
int data;
|
||
{
|
||
return ptrace (request, pid, addr, data
|
||
#if defined (FIVE_ARG_PTRACE)
|
||
/* Deal with HPUX 8.0 braindamage. We never use the
|
||
calls which require the fifth argument. */
|
||
, 0
|
||
#endif
|
||
);
|
||
}
|
||
|
||
#if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
|
||
/* For the rest of the file, use an extra level of indirection */
|
||
/* This lets us breakpoint usefully on call_ptrace. */
|
||
#define ptrace call_ptrace
|
||
#endif
|
||
|
||
void
|
||
kill_inferior ()
|
||
{
|
||
if (inferior_pid == 0)
|
||
return;
|
||
/* ptrace PT_KILL only works if process is stopped!!! So stop it with
|
||
a real signal first, if we can. */
|
||
kill (inferior_pid, SIGKILL);
|
||
ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
wait ((int *)0);
|
||
target_mourn_inferior ();
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
child_resume (pid, step, signal)
|
||
int pid;
|
||
int step;
|
||
enum target_signal signal;
|
||
{
|
||
errno = 0;
|
||
|
||
if (pid == -1)
|
||
/* Resume all threads. */
|
||
#ifdef PIDGET
|
||
/* This is for Lynx, and should be cleaned up by having Lynx be
|
||
a separate debugging target, with its own target_resume function. */
|
||
pid = PIDGET (inferior_pid);
|
||
#else
|
||
/* I think this only gets used in the non-threaded case, where "resume
|
||
all threads" and "resume inferior_pid" are the same. */
|
||
pid = inferior_pid;
|
||
#endif
|
||
|
||
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
|
||
it was. (If GDB wanted it to start some other way, we have already
|
||
written a new PC value to the child.)
|
||
|
||
If this system does not support PT_STEP, a higher level function will
|
||
have called single_step() to transmute the step request into a
|
||
continue request (by setting breakpoints on all possible successor
|
||
instructions), so we don't have to worry about that here. */
|
||
|
||
if (step)
|
||
ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
|
||
target_signal_to_host (signal));
|
||
else
|
||
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
|
||
target_signal_to_host (signal));
|
||
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
#ifdef ATTACH_DETACH
|
||
/* Start debugging the process whose number is PID. */
|
||
int
|
||
attach (pid)
|
||
int pid;
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 1;
|
||
return pid;
|
||
}
|
||
|
||
/* Stop debugging the process whose number is PID
|
||
and continue it with signal number SIGNAL.
|
||
SIGNAL = 0 means just continue it. */
|
||
|
||
void
|
||
detach (signal)
|
||
int signal;
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
attach_flag = 0;
|
||
}
|
||
#endif /* ATTACH_DETACH */
|
||
|
||
/* Default the type of the ptrace transfer to int. */
|
||
#ifndef PTRACE_XFER_TYPE
|
||
#define PTRACE_XFER_TYPE int
|
||
#endif
|
||
|
||
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
|
||
to get the offset in the core file of the register values. */
|
||
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
||
/* Get kernel_u_addr using BSD-style nlist(). */
|
||
CORE_ADDR kernel_u_addr;
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
|
||
void
|
||
_initialize_kernel_u_addr ()
|
||
{
|
||
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
|
||
struct nlist names[2];
|
||
|
||
names[0].n_un.n_name = "_u";
|
||
names[1].n_un.n_name = NULL;
|
||
if (nlist ("/vmunix", names) == 0)
|
||
kernel_u_addr = names[0].n_value;
|
||
else
|
||
fatal ("Unable to get kernel u area address.");
|
||
#endif /* KERNEL_U_ADDR_BSD. */
|
||
}
|
||
|
||
#if !defined (FETCH_INFERIOR_REGISTERS)
|
||
|
||
#if !defined (offsetof)
|
||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||
#endif
|
||
|
||
/* U_REGS_OFFSET is the offset of the registers within the u area. */
|
||
#if !defined (U_REGS_OFFSET)
|
||
#define U_REGS_OFFSET \
|
||
ptrace (PT_READ_U, inferior_pid, \
|
||
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
|
||
- KERNEL_U_ADDR
|
||
#endif
|
||
|
||
/* Registers we shouldn't try to fetch. */
|
||
#if !defined (CANNOT_FETCH_REGISTER)
|
||
#define CANNOT_FETCH_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Fetch one register. */
|
||
|
||
static void
|
||
fetch_register (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[MAX_REGISTER_RAW_SIZE];
|
||
char mess[128]; /* For messages */
|
||
register int i;
|
||
|
||
/* Offset of registers within the u area. */
|
||
unsigned int offset;
|
||
|
||
if (CANNOT_FETCH_REGISTER (regno))
|
||
{
|
||
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
|
||
supply_register (regno, buf);
|
||
return;
|
||
}
|
||
|
||
offset = U_REGS_OFFSET;
|
||
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
*(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) regaddr, 0);
|
||
regaddr += sizeof (PTRACE_XFER_TYPE);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
|
||
perror_with_name (mess);
|
||
}
|
||
}
|
||
supply_register (regno, buf);
|
||
}
|
||
|
||
|
||
/* Fetch all registers, or just one, from the child process. */
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
if (regno == -1)
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
fetch_register (regno);
|
||
else
|
||
fetch_register (regno);
|
||
}
|
||
|
||
/* Registers we shouldn't try to store. */
|
||
#if !defined (CANNOT_STORE_REGISTER)
|
||
#define CANNOT_STORE_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
register unsigned int regaddr;
|
||
char buf[80];
|
||
register int i;
|
||
|
||
unsigned int offset = U_REGS_OFFSET;
|
||
|
||
if (regno >= 0)
|
||
{
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(PTRACE_XFER_TYPE *) ®isters[REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (buf, "writing register number %d(%d)", regno, i);
|
||
perror_with_name (buf);
|
||
}
|
||
regaddr += sizeof(PTRACE_XFER_TYPE);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
continue;
|
||
regaddr = register_addr (regno, offset);
|
||
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
|
||
*(PTRACE_XFER_TYPE *) ®isters[REGISTER_BYTE (regno) + i]);
|
||
if (errno != 0)
|
||
{
|
||
sprintf (buf, "writing register number %d(%d)", regno, i);
|
||
perror_with_name (buf);
|
||
}
|
||
regaddr += sizeof(PTRACE_XFER_TYPE);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
|
||
|
||
|
||
#if !defined (CHILD_XFER_MEMORY)
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. Copy to inferior if
|
||
WRITE is nonzero.
|
||
|
||
Returns the length copied, which is either the LEN argument or zero.
|
||
This xfer function does not do partial moves, since child_ops
|
||
doesn't allow memory operations to cross below us in the target stack
|
||
anyway. */
|
||
|
||
int
|
||
child_xfer_memory (memaddr, myaddr, len, write, target)
|
||
CORE_ADDR memaddr;
|
||
char *myaddr;
|
||
int len;
|
||
int write;
|
||
struct target_ops *target; /* ignored */
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
|
||
/ sizeof (PTRACE_XFER_TYPE);
|
||
/* Allocate buffer of that many longwords. */
|
||
register PTRACE_XFER_TYPE *buffer
|
||
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
|
||
|
||
if (write)
|
||
{
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
|
||
/* Need part of initial word -- fetch it. */
|
||
buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
0);
|
||
}
|
||
|
||
if (count > 1) /* FIXME, avoid if even boundary */
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_READ_I, inferior_pid,
|
||
((PTRACE_ARG3_TYPE)
|
||
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
|
||
0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
myaddr,
|
||
len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
if (errno)
|
||
{
|
||
/* Using the appropriate one (I or D) is necessary for
|
||
Gould NP1, at least. */
|
||
errno = 0;
|
||
ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
|
||
buffer[i]);
|
||
}
|
||
if (errno)
|
||
return 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
|
||
{
|
||
errno = 0;
|
||
buffer[i] = ptrace (PT_READ_I, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr, 0);
|
||
if (errno)
|
||
return 0;
|
||
QUIT;
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr,
|
||
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
|
||
len);
|
||
}
|
||
return len;
|
||
}
|
||
#endif /* !defined (CHILD_XFER_MEMORY). */
|