binutils-gdb/gdb/inferior.h
Pedro Alves 329ea57934 enable target async by default; separate MI and target notions of async
This finally makes background execution commands possible by default.

However, in order to do that, there's one last thing we need to do --
we need to separate the MI and target notions of "async".  Unlike the
CLI, where the user explicitly requests foreground vs background
execution in the execution command itself (c vs c&), MI chose to treat
"set target-async" specially -- setting it changes the default
behavior of execution commands.

So, we can't simply "set target-async" default to on, as that would
affect MI frontends.  Instead we have to make the setting MI-specific,
and teach MI about sync commands on top of an async target.

Because the "target" word in "set target-async" ends up as a potential
source of confusion, the patch adds a "set mi-async" option, and makes
"set target-async" a deprecated alias.

Rather than make the targets always async, this patch introduces a new
"maint set target-async" option so that the GDB developer can control
whether the target is async.  This makes it simpler to debug issues
arising only in the synchronous mode; important because sync mode
seems unlikely to go away.

Unlike in previous revisions, "set target-async" does not affect this
new maint parameter.  The rationale for this is that then one can
easily run the test suite in the "maint set target-async off" mode and
have tests that enable mi-async fail just like they fail on
non-async-capable targets.  This emulation is exactly the point of the
maint option.

I had asked Tom in a previous iteration to split the actual change of
the target async default to a separate patch, but it turns out that
that is quite awkward in this version of the patch, because with MI
async and target async decoupled (unlike in previous versions), if we
don't flip the default at the same time, then just "set target-async
on" alone never actually manages to do anything.  It's best to not
have that transitory state in the tree.

Given "set target-async on" now only has effect for MI, the patch goes
through the testsuite removing it from non-MI tests.  MI tests are
adjusted to use the new and less confusing "mi-async" spelling.

2014-05-29  Pedro Alves  <palves@redhat.com>
	    Tom Tromey  <tromey@redhat.com>

	* NEWS: Mention "maint set target-async", "set mi-async", and that
	background execution commands are now always available.
	* target.h (target_async_permitted): Update comment.
	* target.c (target_async_permitted, target_async_permitted_1):
	Default to 1.
	(set_target_async_command): Rename to ...
	(maint_set_target_async_command): ... this.
	(show_target_async_command): Rename to ...
	(maint_show_target_async_command): ... this.
	(_initialize_target): Adjust.
	* infcmd.c (prepare_execution_command): Make extern.
	* inferior.h (prepare_execution_command): Declare.
	* infrun.c (set_observer_mode): Leave target async alone.
	* mi/mi-interp.c (mi_interpreter_init): Install
	mi_on_sync_execution_done as sync_execution_done observer.
	(mi_on_sync_execution_done): New function.
	(mi_execute_command_input_handler): Don't print the prompt if we
	just started a synchronous command with an async target.
	(mi_on_resume): Check sync_execution before printing prompt.
	* mi/mi-main.h (mi_async_p): Declare.
	* mi/mi-main.c: Include gdbcmd.h.
	(mi_async_p): New function.
	(mi_async, mi_async_1): New globals.
	(set_mi_async_command, show_mi_async_command, mi_async): New
	functions.
	(exec_continue): Call prepare_execution_command.
	(run_one_inferior, mi_cmd_exec_run, mi_cmd_list_target_features)
	(mi_execute_async_cli_command): Use mi_async_p.
	(_initialize_mi_main): Install "set mi-async".  Make
	"target-async" a deprecated alias.

2014-05-29  Pedro Alves  <palves@redhat.com>
	    Tom Tromey  <tromey@redhat.com>

	* gdb.texinfo (Non-Stop Mode): Remove "set target-async 1"
	from example.
	(Asynchronous and non-stop modes): Document '-gdb-set mi-async'.
	Mention that target-async is now deprecated.
	(Maintenance Commands): Document maint set/show target-async.

2014-05-29  Pedro Alves  <palves@redhat.com>
	    Tom Tromey  <tromey@redhat.com>

	* gdb.base/async-shell.exp: Don't enable target-async.
	* gdb.base/async.exp
	* gdb.base/corefile.exp (corefile_test_attach): Remove 'async'
	parameter.  Adjust.
	(top level): Don't test with "target-async".
	* gdb.base/dprintf-non-stop.exp: Don't enable target-async.
	* gdb.base/gdb-sigterm.exp: Don't test with "target-async".
	* gdb.base/inferior-died.exp: Don't enable target-async.
	* gdb.base/interrupt-noterm.exp: Likewise.
	* gdb.mi/mi-async.exp: Use "mi-async" instead of "target-async".
	* gdb.mi/mi-nonstop-exit.exp: Likewise.
	* gdb.mi/mi-nonstop.exp: Likewise.
	* gdb.mi/mi-ns-stale-regcache.exp: Likewise.
	* gdb.mi/mi-nsintrall.exp: Likewise.
	* gdb.mi/mi-nsmoribund.exp: Likewise.
	* gdb.mi/mi-nsthrexec.exp: Likewise.
	* gdb.mi/mi-watch-nonstop.exp: Likewise.
	* gdb.multi/watchpoint-multi.exp: Adjust comment.
	* gdb.python/py-evsignal.exp: Don't enable target-async.
	* gdb.python/py-evthreads.exp: Likewise.
	* gdb.python/py-prompt.exp: Likewise.
	* gdb.reverse/break-precsave.exp: Don't test with "target-async".
	* gdb.server/solib-list.exp: Don't enable target-async.
	* gdb.threads/thread-specific-bp.exp: Likewise.
	* lib/mi-support.exp: Adjust to use mi-async.
2014-05-29 14:38:02 +01:00

526 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Variables that describe the inferior process running under GDB:
Where it is, why it stopped, and how to step it.
Copyright (C) 1986-2014 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (INFERIOR_H)
#define INFERIOR_H 1
struct target_waitstatus;
struct frame_info;
struct ui_file;
struct type;
struct gdbarch;
struct regcache;
struct ui_out;
struct terminal_info;
struct target_desc_info;
#include "ptid.h"
/* For bpstat. */
#include "breakpoint.h"
/* For enum gdb_signal. */
#include "target.h"
/* For struct frame_id. */
#include "frame.h"
#include "progspace.h"
#include "registry.h"
struct infcall_suspend_state;
struct infcall_control_state;
extern struct infcall_suspend_state *save_infcall_suspend_state (void);
extern struct infcall_control_state *save_infcall_control_state (void);
extern void restore_infcall_suspend_state (struct infcall_suspend_state *);
extern void restore_infcall_control_state (struct infcall_control_state *);
extern struct cleanup *make_cleanup_restore_infcall_suspend_state
(struct infcall_suspend_state *);
extern struct cleanup *make_cleanup_restore_infcall_control_state
(struct infcall_control_state *);
extern void discard_infcall_suspend_state (struct infcall_suspend_state *);
extern void discard_infcall_control_state (struct infcall_control_state *);
extern struct regcache *
get_infcall_suspend_state_regcache (struct infcall_suspend_state *);
/* Save value of inferior_ptid so that it may be restored by
a later call to do_cleanups(). Returns the struct cleanup
pointer needed for later doing the cleanup. */
extern struct cleanup * save_inferior_ptid (void);
extern void set_sigint_trap (void);
extern void clear_sigint_trap (void);
/* Set/get file name for default use for standard in/out in the inferior. */
extern void set_inferior_io_terminal (const char *terminal_name);
extern const char *get_inferior_io_terminal (void);
/* Collected pid, tid, etc. of the debugged inferior. When there's
no inferior, ptid_get_pid (inferior_ptid) will be 0. */
extern ptid_t inferior_ptid;
extern void generic_mourn_inferior (void);
extern CORE_ADDR unsigned_pointer_to_address (struct gdbarch *gdbarch,
struct type *type,
const gdb_byte *buf);
extern void unsigned_address_to_pointer (struct gdbarch *gdbarch,
struct type *type, gdb_byte *buf,
CORE_ADDR addr);
extern CORE_ADDR signed_pointer_to_address (struct gdbarch *gdbarch,
struct type *type,
const gdb_byte *buf);
extern void address_to_signed_pointer (struct gdbarch *gdbarch,
struct type *type, gdb_byte *buf,
CORE_ADDR addr);
extern void reopen_exec_file (void);
/* From misc files */
extern void default_print_registers_info (struct gdbarch *gdbarch,
struct ui_file *file,
struct frame_info *frame,
int regnum, int all);
extern void child_terminal_info (struct target_ops *self, const char *, int);
extern void term_info (char *, int);
extern void child_terminal_save_ours (struct target_ops *self);
extern void child_terminal_ours (struct target_ops *self);
extern void child_terminal_ours_for_output (struct target_ops *self);
extern void child_terminal_inferior (struct target_ops *self);
extern void child_terminal_init (struct target_ops *self);
extern void child_terminal_init_with_pgrp (int pgrp);
/* From fork-child.c */
extern int fork_inferior (char *, char *, char **,
void (*)(void),
void (*)(int), void (*)(void), char *,
void (*)(const char *,
char * const *, char * const *));
extern void startup_inferior (int);
extern char *construct_inferior_arguments (int, char **);
/* From infcmd.c */
extern void post_create_inferior (struct target_ops *, int);
extern void attach_command (char *, int);
extern char *get_inferior_args (void);
extern void set_inferior_args (char *);
extern void set_inferior_args_vector (int, char **);
extern void registers_info (char *, int);
extern void continue_1 (int all_threads);
extern void interrupt_target_1 (int all_threads);
extern void delete_longjmp_breakpoint_cleanup (void *arg);
extern void detach_command (char *, int);
extern void notice_new_inferior (ptid_t, int, int);
extern struct value *get_return_value (struct value *function,
struct type *value_type);
/* Prepare for execution command. TARGET is the target that will run
the command. BACKGROUND determines whether this is a foreground
(synchronous) or background (asynchronous) command. */
extern void prepare_execution_command (struct target_ops *target,
int background);
/* Whether to start up the debuggee under a shell.
If startup-with-shell is set, GDB's "run" will attempt to start up
the debuggee under a shell.
This is in order for argument-expansion to occur. E.g.,
(gdb) run *
The "*" gets expanded by the shell into a list of files.
While this is a nice feature, it may be handy to bypass the shell
in some cases. To disable this feature, do "set startup-with-shell
false".
The catch-exec traps expected during start-up will be one more if
the target is started up with a shell. */
extern int startup_with_shell;
/* Address at which inferior stopped. */
extern CORE_ADDR stop_pc;
/* Nonzero if stopped due to completion of a stack dummy routine. */
extern enum stop_stack_kind stop_stack_dummy;
/* Nonzero if program stopped due to a random (unexpected) signal in
inferior process. */
extern int stopped_by_random_signal;
/* STEP_OVER_ALL means step over all subroutine calls.
STEP_OVER_UNDEBUGGABLE means step over calls to undebuggable functions.
STEP_OVER_NONE means don't step over any subroutine calls. */
enum step_over_calls_kind
{
STEP_OVER_NONE,
STEP_OVER_ALL,
STEP_OVER_UNDEBUGGABLE
};
/* Anything but NO_STOP_QUIETLY means we expect a trap and the caller
will handle it themselves. STOP_QUIETLY is used when running in
the shell before the child program has been exec'd and when running
through shared library loading. STOP_QUIETLY_REMOTE is used when
setting up a remote connection; it is like STOP_QUIETLY_NO_SIGSTOP
except that there is no need to hide a signal. */
/* STOP_QUIETLY_NO_SIGSTOP is used to handle a tricky situation with attach.
When doing an attach, the kernel stops the debuggee with a SIGSTOP.
On newer GNU/Linux kernels (>= 2.5.61) the handling of SIGSTOP for
a ptraced process has changed. Earlier versions of the kernel
would ignore these SIGSTOPs, while now SIGSTOP is treated like any
other signal, i.e. it is not muffled.
If the gdb user does a 'continue' after the 'attach', gdb passes
the global variable stop_signal (which stores the signal from the
attach, SIGSTOP) to the ptrace(PTRACE_CONT,...) call. This is
problematic, because the kernel doesn't ignore such SIGSTOP
now. I.e. it is reported back to gdb, which in turn presents it
back to the user.
To avoid the problem, we use STOP_QUIETLY_NO_SIGSTOP, which allows
gdb to clear the value of stop_signal after the attach, so that it
is not passed back down to the kernel. */
enum stop_kind
{
NO_STOP_QUIETLY = 0,
STOP_QUIETLY,
STOP_QUIETLY_REMOTE,
STOP_QUIETLY_NO_SIGSTOP
};
/* Possible values for gdbarch_call_dummy_location. */
#define ON_STACK 1
#define AT_ENTRY_POINT 4
/* Number of traps that happen between exec'ing the shell to run an
inferior and when we finally get to the inferior code, not counting
the exec for the shell. This is 1 on most implementations.
Overridden in nm.h files. */
#if !defined(START_INFERIOR_TRAPS_EXPECTED)
#define START_INFERIOR_TRAPS_EXPECTED 1
#endif
struct private_inferior;
/* Inferior process specific part of `struct infcall_control_state'.
Inferior thread counterpart is `struct thread_control_state'. */
struct inferior_control_state
{
/* See the definition of stop_kind above. */
enum stop_kind stop_soon;
};
/* Inferior process specific part of `struct infcall_suspend_state'.
Inferior thread counterpart is `struct thread_suspend_state'. */
#if 0 /* Currently unused and empty structures are not valid C. */
struct inferior_suspend_state
{
};
#endif
/* GDB represents the state of each program execution with an object
called an inferior. An inferior typically corresponds to a process
but is more general and applies also to targets that do not have a
notion of processes. Each run of an executable creates a new
inferior, as does each attachment to an existing process.
Inferiors have unique internal identifiers that are different from
target process ids. Each inferior may in turn have multiple
threads running in it. */
struct inferior
{
/* Pointer to next inferior in singly-linked list of inferiors. */
struct inferior *next;
/* Convenient handle (GDB inferior id). Unique across all
inferiors. */
int num;
/* Actual target inferior id, usually, a process id. This matches
the ptid_t.pid member of threads of this inferior. */
int pid;
/* True if the PID was actually faked by GDB. */
int fake_pid_p;
/* State of GDB control of inferior process execution.
See `struct inferior_control_state'. */
struct inferior_control_state control;
/* State of inferior process to restore after GDB is done with an inferior
call. See `struct inferior_suspend_state'. */
#if 0 /* Currently unused and empty structures are not valid C. */
struct inferior_suspend_state suspend;
#endif
/* True if this was an auto-created inferior, e.g. created from
following a fork; false, if this inferior was manually added by
the user, and we should not attempt to prune it
automatically. */
int removable;
/* The address space bound to this inferior. */
struct address_space *aspace;
/* The program space bound to this inferior. */
struct program_space *pspace;
/* The arguments string to use when running. */
char *args;
/* The size of elements in argv. */
int argc;
/* The vector version of arguments. If ARGC is nonzero,
then we must compute ARGS from this (via the target).
This is always coming from main's argv and therefore
should never be freed. */
char **argv;
/* The name of terminal device to use for I/O. */
char *terminal;
/* Environment to use for running inferior,
in format described in environ.h. */
struct gdb_environ *environment;
/* Nonzero if this child process was attached rather than
forked. */
int attach_flag;
/* If this inferior is a vfork child, then this is the pointer to
its vfork parent, if GDB is still attached to it. */
struct inferior *vfork_parent;
/* If this process is a vfork parent, this is the pointer to the
child. Since a vfork parent is left frozen by the kernel until
the child execs or exits, a process can only have one vfork child
at a given time. */
struct inferior *vfork_child;
/* True if this inferior should be detached when it's vfork sibling
exits or execs. */
int pending_detach;
/* True if this inferior is a vfork parent waiting for a vfork child
not under our control to be done with the shared memory region,
either by exiting or execing. */
int waiting_for_vfork_done;
/* True if we're in the process of detaching from this inferior. */
int detaching;
/* What is left to do for an execution command after any thread of
this inferior stops. For continuations associated with a
specific thread, see `struct thread_info'. */
struct continuation *continuations;
/* Private data used by the target vector implementation. */
struct private_inferior *private;
/* HAS_EXIT_CODE is true if the inferior exited with an exit code.
In this case, the EXIT_CODE field is also valid. */
int has_exit_code;
LONGEST exit_code;
/* Default flags to pass to the symbol reading functions. These are
used whenever a new objfile is created. The valid values come
from enum symfile_add_flags. */
int symfile_flags;
/* Info about an inferior's target description (if it's fetched; the
user supplied description's filename, if any; etc.). */
struct target_desc_info *tdesc_info;
/* The architecture associated with the inferior through the
connection to the target.
The architecture vector provides some information that is really
a property of the inferior, accessed through a particular target:
ptrace operations; the layout of certain RSP packets; the
solib_ops vector; etc. To differentiate architecture accesses to
per-inferior/target properties from
per-thread/per-frame/per-objfile properties, accesses to
per-inferior/target properties should be made through
this gdbarch. */
struct gdbarch *gdbarch;
/* Per inferior data-pointers required by other GDB modules. */
REGISTRY_FIELDS;
};
/* Keep a registry of per-inferior data-pointers required by other GDB
modules. */
DECLARE_REGISTRY (inferior);
/* Create an empty inferior list, or empty the existing one. */
extern void init_inferior_list (void);
/* Add an inferior to the inferior list, print a message that a new
inferior is found, and return the pointer to the new inferior.
Caller may use this pointer to initialize the private inferior
data. */
extern struct inferior *add_inferior (int pid);
/* Same as add_inferior, but don't print new inferior notifications to
the CLI. */
extern struct inferior *add_inferior_silent (int pid);
/* Delete an existing inferior list entry, due to inferior exit. */
extern void delete_inferior (int pid);
extern void delete_inferior_1 (struct inferior *todel, int silent);
/* Same as delete_inferior, but don't print new inferior notifications
to the CLI. */
extern void delete_inferior_silent (int pid);
/* Delete an existing inferior list entry, due to inferior detaching. */
extern void detach_inferior (int pid);
extern void exit_inferior (int pid);
extern void exit_inferior_silent (int pid);
extern void exit_inferior_num_silent (int num);
extern void inferior_appeared (struct inferior *inf, int pid);
/* Get rid of all inferiors. */
extern void discard_all_inferiors (void);
/* Translate the integer inferior id (GDB's homegrown id, not the system's)
into a "pid" (which may be overloaded with extra inferior information). */
extern int gdb_inferior_id_to_pid (int);
/* Translate a target 'pid' into the integer inferior id (GDB's
homegrown id, not the system's). */
extern int pid_to_gdb_inferior_id (int pid);
/* Boolean test for an already-known pid. */
extern int in_inferior_list (int pid);
/* Boolean test for an already-known inferior id (GDB's homegrown id,
not the system's). */
extern int valid_gdb_inferior_id (int num);
/* Search function to lookup an inferior by target 'pid'. */
extern struct inferior *find_inferior_pid (int pid);
/* Search function to lookup an inferior by GDB 'num'. */
extern struct inferior *find_inferior_id (int num);
/* Find an inferior bound to PSPACE. */
extern struct inferior *
find_inferior_for_program_space (struct program_space *pspace);
/* Inferior iterator function.
Calls a callback function once for each inferior, so long as the
callback function returns false. If the callback function returns
true, the iteration will end and the current inferior will be
returned. This can be useful for implementing a search for a
inferior with arbitrary attributes, or for applying some operation
to every inferior.
It is safe to delete the iterated inferior from the callback. */
extern struct inferior *iterate_over_inferiors (int (*) (struct inferior *,
void *),
void *);
/* Returns true if the inferior list is not empty. */
extern int have_inferiors (void);
/* Returns true if there are any live inferiors in the inferior list
(not cores, not executables, real live processes). */
extern int have_live_inferiors (void);
/* Return a pointer to the current inferior. It is an error to call
this if there is no current inferior. */
extern struct inferior *current_inferior (void);
extern void set_current_inferior (struct inferior *);
extern struct cleanup *save_current_inferior (void);
/* Traverse all inferiors. */
#define ALL_INFERIORS(I) \
for ((I) = inferior_list; (I); (I) = (I)->next)
extern struct inferior *inferior_list;
/* Prune away automatically added inferiors that aren't required
anymore. */
extern void prune_inferiors (void);
extern int number_of_inferiors (void);
extern struct inferior *add_inferior_with_spaces (void);
#endif /* !defined (INFERIOR_H) */