mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 18:44:20 +08:00
81a9a963a1
* osfsolib.c (solib_map_sections): Ditto. * irix5-nat.c (solib_map_sections): Ditto. * corelow.c (gdb_check_format): Ditto. * symfile.c (symfile_bfd_open): Ditto. * solib.c (solib_map_sections): Ditto. Partially fix PR gdb/354.
1321 lines
36 KiB
C
1321 lines
36 KiB
C
/* Native support for the SGI Iris running IRIX version 5, for GDB.
|
||
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
|
||
1999, 2000, 2001 Free Software Foundation, Inc.
|
||
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
|
||
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
||
Implemented for Irix 4.x by Garrett A. Wollman.
|
||
Modified for Irix 5.x by Ian Lance Taylor.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "regcache.h"
|
||
|
||
#include "gdb_string.h"
|
||
#include <sys/time.h>
|
||
#include <sys/procfs.h>
|
||
#include <setjmp.h> /* For JB_XXX. */
|
||
|
||
/* Prototypes for supply_gregset etc. */
|
||
#include "gregset.h"
|
||
|
||
static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
|
||
|
||
/* Size of elements in jmpbuf */
|
||
|
||
#define JB_ELEMENT_SIZE 4
|
||
|
||
/*
|
||
* See the comment in m68k-tdep.c regarding the utility of these functions.
|
||
*
|
||
* These definitions are from the MIPS SVR4 ABI, so they may work for
|
||
* any MIPS SVR4 target.
|
||
*/
|
||
|
||
void
|
||
supply_gregset (gregset_t *gregsetp)
|
||
{
|
||
register int regi;
|
||
register greg_t *regp = &(*gregsetp)[0];
|
||
int gregoff = sizeof (greg_t) - MIPS_REGSIZE;
|
||
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
||
{0};
|
||
|
||
for (regi = 0; regi <= CTX_RA; regi++)
|
||
supply_register (regi, (char *) (regp + regi) + gregoff);
|
||
|
||
supply_register (PC_REGNUM, (char *) (regp + CTX_EPC) + gregoff);
|
||
supply_register (HI_REGNUM, (char *) (regp + CTX_MDHI) + gregoff);
|
||
supply_register (LO_REGNUM, (char *) (regp + CTX_MDLO) + gregoff);
|
||
supply_register (CAUSE_REGNUM, (char *) (regp + CTX_CAUSE) + gregoff);
|
||
|
||
/* Fill inaccessible registers with zero. */
|
||
supply_register (BADVADDR_REGNUM, zerobuf);
|
||
}
|
||
|
||
void
|
||
fill_gregset (gregset_t *gregsetp, int regno)
|
||
{
|
||
int regi;
|
||
register greg_t *regp = &(*gregsetp)[0];
|
||
|
||
/* Under Irix6, if GDB is built with N32 ABI and is debugging an O32
|
||
executable, we have to sign extend the registers to 64 bits before
|
||
filling in the gregset structure. */
|
||
|
||
for (regi = 0; regi <= CTX_RA; regi++)
|
||
if ((regno == -1) || (regno == regi))
|
||
*(regp + regi) =
|
||
extract_signed_integer (®isters[REGISTER_BYTE (regi)],
|
||
REGISTER_RAW_SIZE (regi));
|
||
|
||
if ((regno == -1) || (regno == PC_REGNUM))
|
||
*(regp + CTX_EPC) =
|
||
extract_signed_integer (®isters[REGISTER_BYTE (PC_REGNUM)],
|
||
REGISTER_RAW_SIZE (PC_REGNUM));
|
||
|
||
if ((regno == -1) || (regno == CAUSE_REGNUM))
|
||
*(regp + CTX_CAUSE) =
|
||
extract_signed_integer (®isters[REGISTER_BYTE (CAUSE_REGNUM)],
|
||
REGISTER_RAW_SIZE (CAUSE_REGNUM));
|
||
|
||
if ((regno == -1) || (regno == HI_REGNUM))
|
||
*(regp + CTX_MDHI) =
|
||
extract_signed_integer (®isters[REGISTER_BYTE (HI_REGNUM)],
|
||
REGISTER_RAW_SIZE (HI_REGNUM));
|
||
|
||
if ((regno == -1) || (regno == LO_REGNUM))
|
||
*(regp + CTX_MDLO) =
|
||
extract_signed_integer (®isters[REGISTER_BYTE (LO_REGNUM)],
|
||
REGISTER_RAW_SIZE (LO_REGNUM));
|
||
}
|
||
|
||
/*
|
||
* Now we do the same thing for floating-point registers.
|
||
* We don't bother to condition on FP0_REGNUM since any
|
||
* reasonable MIPS configuration has an R3010 in it.
|
||
*
|
||
* Again, see the comments in m68k-tdep.c.
|
||
*/
|
||
|
||
void
|
||
supply_fpregset (fpregset_t *fpregsetp)
|
||
{
|
||
register int regi;
|
||
static char zerobuf[MAX_REGISTER_RAW_SIZE] =
|
||
{0};
|
||
|
||
/* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
|
||
|
||
for (regi = 0; regi < 32; regi++)
|
||
supply_register (FP0_REGNUM + regi,
|
||
(char *) &fpregsetp->fp_r.fp_regs[regi]);
|
||
|
||
supply_register (FCRCS_REGNUM, (char *) &fpregsetp->fp_csr);
|
||
|
||
/* FIXME: how can we supply FCRIR_REGNUM? SGI doesn't tell us. */
|
||
supply_register (FCRIR_REGNUM, zerobuf);
|
||
}
|
||
|
||
void
|
||
fill_fpregset (fpregset_t *fpregsetp, int regno)
|
||
{
|
||
int regi;
|
||
char *from, *to;
|
||
|
||
/* FIXME, this is wrong for the N32 ABI which has 64 bit FP regs. */
|
||
|
||
for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
|
||
{
|
||
if ((regno == -1) || (regno == regi))
|
||
{
|
||
from = (char *) ®isters[REGISTER_BYTE (regi)];
|
||
to = (char *) &(fpregsetp->fp_r.fp_regs[regi - FP0_REGNUM]);
|
||
memcpy (to, from, REGISTER_RAW_SIZE (regi));
|
||
}
|
||
}
|
||
|
||
if ((regno == -1) || (regno == FCRCS_REGNUM))
|
||
fpregsetp->fp_csr = *(unsigned *) ®isters[REGISTER_BYTE (FCRCS_REGNUM)];
|
||
}
|
||
|
||
|
||
/* Figure out where the longjmp will land.
|
||
We expect the first arg to be a pointer to the jmp_buf structure from which
|
||
we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
|
||
This routine returns true on success. */
|
||
|
||
int
|
||
get_longjmp_target (CORE_ADDR *pc)
|
||
{
|
||
char *buf;
|
||
CORE_ADDR jb_addr;
|
||
|
||
buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
jb_addr = read_register (A0_REGNUM);
|
||
|
||
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
|
||
TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
||
return 0;
|
||
|
||
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Provide registers to GDB from a core file.
|
||
|
||
CORE_REG_SECT points to an array of bytes, which were obtained from
|
||
a core file which BFD thinks might contain register contents.
|
||
CORE_REG_SIZE is its size.
|
||
|
||
Normally, WHICH says which register set corelow suspects this is:
|
||
0 --- the general-purpose register set
|
||
2 --- the floating-point register set
|
||
However, for Irix 5, WHICH isn't used.
|
||
|
||
REG_ADDR is also unused. */
|
||
|
||
static void
|
||
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
|
||
int which, CORE_ADDR reg_addr)
|
||
{
|
||
if (core_reg_size == REGISTER_BYTES)
|
||
{
|
||
memcpy ((char *) registers, core_reg_sect, core_reg_size);
|
||
}
|
||
else if (MIPS_REGSIZE == 4 &&
|
||
core_reg_size == (2 * MIPS_REGSIZE) * NUM_REGS)
|
||
{
|
||
/* This is a core file from a N32 executable, 64 bits are saved
|
||
for all registers. */
|
||
char *srcp = core_reg_sect;
|
||
char *dstp = registers;
|
||
int regno;
|
||
|
||
for (regno = 0; regno < NUM_REGS; regno++)
|
||
{
|
||
if (regno >= FP0_REGNUM && regno < (FP0_REGNUM + 32))
|
||
{
|
||
/* FIXME, this is wrong, N32 has 64 bit FP regs, but GDB
|
||
currently assumes that they are 32 bit. */
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
if (REGISTER_RAW_SIZE (regno) == 4)
|
||
{
|
||
/* copying 4 bytes from eight bytes?
|
||
I don't see how this can be right... */
|
||
srcp += 4;
|
||
}
|
||
else
|
||
{
|
||
/* copy all 8 bytes (sizeof(double)) */
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
srcp += 4;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
*dstp++ = *srcp++;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
warning ("wrong size gregset struct in core file");
|
||
return;
|
||
}
|
||
|
||
registers_fetched ();
|
||
}
|
||
|
||
/* Irix 5 uses what appears to be a unique form of shared library
|
||
support. This is a copy of solib.c modified for Irix 5. */
|
||
/* FIXME: Most of this code could be merged with osfsolib.c and solib.c
|
||
by using next_link_map_member and xfer_link_map_member in solib.c. */
|
||
|
||
#include <sys/types.h>
|
||
#include <signal.h>
|
||
#include <sys/param.h>
|
||
#include <fcntl.h>
|
||
|
||
/* <obj.h> includes <sym.h> and <symconst.h>, which causes conflicts
|
||
with our versions of those files included by tm-mips.h. Prevent
|
||
<obj.h> from including them with some appropriate defines. */
|
||
#define __SYM_H__
|
||
#define __SYMCONST_H__
|
||
#include <obj.h>
|
||
#ifdef HAVE_OBJLIST_H
|
||
#include <objlist.h>
|
||
#endif
|
||
|
||
#ifdef NEW_OBJ_INFO_MAGIC
|
||
#define HANDLE_NEW_OBJ_LIST
|
||
#endif
|
||
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "command.h"
|
||
#include "frame.h"
|
||
#include "gdb_regex.h"
|
||
#include "inferior.h"
|
||
#include "language.h"
|
||
#include "gdbcmd.h"
|
||
|
||
/* The symbol which starts off the list of shared libraries. */
|
||
#define DEBUG_BASE "__rld_obj_head"
|
||
|
||
/* Irix 6.x introduces a new variant of object lists.
|
||
To be able to debug O32 executables under Irix 6, we have to handle both
|
||
variants. */
|
||
|
||
typedef enum
|
||
{
|
||
OBJ_LIST_OLD, /* Pre Irix 6.x object list. */
|
||
OBJ_LIST_32, /* 32 Bit Elf32_Obj_Info. */
|
||
OBJ_LIST_64 /* 64 Bit Elf64_Obj_Info, FIXME not yet implemented. */
|
||
}
|
||
obj_list_variant;
|
||
|
||
/* Define our own link_map structure.
|
||
This will help to share code with osfsolib.c and solib.c. */
|
||
|
||
struct link_map
|
||
{
|
||
obj_list_variant l_variant; /* which variant of object list */
|
||
CORE_ADDR l_lladdr; /* addr in inferior list was read from */
|
||
CORE_ADDR l_next; /* address of next object list entry */
|
||
};
|
||
|
||
/* Irix 5 shared objects are pre-linked to particular addresses
|
||
although the dynamic linker may have to relocate them if the
|
||
address ranges of the libraries used by the main program clash.
|
||
The offset is the difference between the address where the object
|
||
is mapped and the binding address of the shared library. */
|
||
#define LM_OFFSET(so) ((so) -> offset)
|
||
/* Loaded address of shared library. */
|
||
#define LM_ADDR(so) ((so) -> lmstart)
|
||
|
||
char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
|
||
|
||
struct so_list
|
||
{
|
||
struct so_list *next; /* next structure in linked list */
|
||
struct link_map lm;
|
||
CORE_ADDR offset; /* prelink to load address offset */
|
||
char *so_name; /* shared object lib name */
|
||
CORE_ADDR lmstart; /* lower addr bound of mapped object */
|
||
CORE_ADDR lmend; /* upper addr bound of mapped object */
|
||
char symbols_loaded; /* flag: symbols read in yet? */
|
||
char from_tty; /* flag: print msgs? */
|
||
struct objfile *objfile; /* objfile for loaded lib */
|
||
struct section_table *sections;
|
||
struct section_table *sections_end;
|
||
struct section_table *textsection;
|
||
bfd *abfd;
|
||
};
|
||
|
||
static struct so_list *so_list_head; /* List of known shared objects */
|
||
static CORE_ADDR debug_base; /* Base of dynamic linker structures */
|
||
static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */
|
||
|
||
/* Local function prototypes */
|
||
|
||
static void sharedlibrary_command (char *, int);
|
||
|
||
static int enable_break (void);
|
||
|
||
static int disable_break (void);
|
||
|
||
static void info_sharedlibrary_command (char *, int);
|
||
|
||
static int symbol_add_stub (void *);
|
||
|
||
static struct so_list *find_solib (struct so_list *);
|
||
|
||
static struct link_map *first_link_map_member (void);
|
||
|
||
static struct link_map *next_link_map_member (struct so_list *);
|
||
|
||
static void xfer_link_map_member (struct so_list *, struct link_map *);
|
||
|
||
static CORE_ADDR locate_base (void);
|
||
|
||
static int solib_map_sections (void *);
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
solib_map_sections -- open bfd and build sections for shared lib
|
||
|
||
SYNOPSIS
|
||
|
||
static int solib_map_sections (struct so_list *so)
|
||
|
||
DESCRIPTION
|
||
|
||
Given a pointer to one of the shared objects in our list
|
||
of mapped objects, use the recorded name to open a bfd
|
||
descriptor for the object, build a section table, and then
|
||
relocate all the section addresses by the base address at
|
||
which the shared object was mapped.
|
||
|
||
FIXMES
|
||
|
||
In most (all?) cases the shared object file name recorded in the
|
||
dynamic linkage tables will be a fully qualified pathname. For
|
||
cases where it isn't, do we really mimic the systems search
|
||
mechanism correctly in the below code (particularly the tilde
|
||
expansion stuff?).
|
||
*/
|
||
|
||
static int
|
||
solib_map_sections (void *arg)
|
||
{
|
||
struct so_list *so = (struct so_list *) arg; /* catch_errors bogon */
|
||
char *filename;
|
||
char *scratch_pathname;
|
||
int scratch_chan;
|
||
struct section_table *p;
|
||
struct cleanup *old_chain;
|
||
bfd *abfd;
|
||
|
||
filename = tilde_expand (so->so_name);
|
||
old_chain = make_cleanup (xfree, filename);
|
||
|
||
scratch_chan = openp (getenv ("PATH"), 1, filename, O_RDONLY, 0,
|
||
&scratch_pathname);
|
||
if (scratch_chan < 0)
|
||
{
|
||
scratch_chan = openp (getenv ("LD_LIBRARY_PATH"), 1, filename,
|
||
O_RDONLY, 0, &scratch_pathname);
|
||
}
|
||
if (scratch_chan < 0)
|
||
{
|
||
perror_with_name (filename);
|
||
}
|
||
/* Leave scratch_pathname allocated. abfd->name will point to it. */
|
||
|
||
abfd = bfd_fdopenr (scratch_pathname, gnutarget, scratch_chan);
|
||
if (!abfd)
|
||
{
|
||
close (scratch_chan);
|
||
error ("Could not open `%s' as an executable file: %s",
|
||
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
/* Leave bfd open, core_xfer_memory and "info files" need it. */
|
||
so->abfd = abfd;
|
||
abfd->cacheable = 1;
|
||
|
||
if (!bfd_check_format (abfd, bfd_object))
|
||
{
|
||
error ("\"%s\": not in executable format: %s.",
|
||
scratch_pathname, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
if (build_section_table (abfd, &so->sections, &so->sections_end))
|
||
{
|
||
error ("Can't find the file sections in `%s': %s",
|
||
bfd_get_filename (exec_bfd), bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
for (p = so->sections; p < so->sections_end; p++)
|
||
{
|
||
/* Relocate the section binding addresses as recorded in the shared
|
||
object's file by the offset to get the address to which the
|
||
object was actually mapped. */
|
||
p->addr += LM_OFFSET (so);
|
||
p->endaddr += LM_OFFSET (so);
|
||
so->lmend = (CORE_ADDR) max (p->endaddr, so->lmend);
|
||
if (STREQ (p->the_bfd_section->name, ".text"))
|
||
{
|
||
so->textsection = p;
|
||
}
|
||
}
|
||
|
||
/* Free the file names, close the file now. */
|
||
do_cleanups (old_chain);
|
||
|
||
/* must be non-zero */
|
||
return (1);
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
locate_base -- locate the base address of dynamic linker structs
|
||
|
||
SYNOPSIS
|
||
|
||
CORE_ADDR locate_base (void)
|
||
|
||
DESCRIPTION
|
||
|
||
For both the SunOS and SVR4 shared library implementations, if the
|
||
inferior executable has been linked dynamically, there is a single
|
||
address somewhere in the inferior's data space which is the key to
|
||
locating all of the dynamic linker's runtime structures. This
|
||
address is the value of the symbol defined by the macro DEBUG_BASE.
|
||
The job of this function is to find and return that address, or to
|
||
return 0 if there is no such address (the executable is statically
|
||
linked for example).
|
||
|
||
For SunOS, the job is almost trivial, since the dynamic linker and
|
||
all of it's structures are statically linked to the executable at
|
||
link time. Thus the symbol for the address we are looking for has
|
||
already been added to the minimal symbol table for the executable's
|
||
objfile at the time the symbol file's symbols were read, and all we
|
||
have to do is look it up there. Note that we explicitly do NOT want
|
||
to find the copies in the shared library.
|
||
|
||
The SVR4 version is much more complicated because the dynamic linker
|
||
and it's structures are located in the shared C library, which gets
|
||
run as the executable's "interpreter" by the kernel. We have to go
|
||
to a lot more work to discover the address of DEBUG_BASE. Because
|
||
of this complexity, we cache the value we find and return that value
|
||
on subsequent invocations. Note there is no copy in the executable
|
||
symbol tables.
|
||
|
||
Irix 5 is basically like SunOS.
|
||
|
||
Note that we can assume nothing about the process state at the time
|
||
we need to find this address. We may be stopped on the first instruc-
|
||
tion of the interpreter (C shared library), the first instruction of
|
||
the executable itself, or somewhere else entirely (if we attached
|
||
to the process for example).
|
||
|
||
*/
|
||
|
||
static CORE_ADDR
|
||
locate_base (void)
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
CORE_ADDR address = 0;
|
||
|
||
msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
|
||
if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
|
||
{
|
||
address = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
}
|
||
return (address);
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
first_link_map_member -- locate first member in dynamic linker's map
|
||
|
||
SYNOPSIS
|
||
|
||
static struct link_map *first_link_map_member (void)
|
||
|
||
DESCRIPTION
|
||
|
||
Read in a copy of the first member in the inferior's dynamic
|
||
link map from the inferior's dynamic linker structures, and return
|
||
a pointer to the link map descriptor.
|
||
*/
|
||
|
||
static struct link_map *
|
||
first_link_map_member (void)
|
||
{
|
||
struct obj_list *listp;
|
||
struct obj_list list_old;
|
||
struct link_map *lm;
|
||
static struct link_map first_lm;
|
||
CORE_ADDR lladdr;
|
||
CORE_ADDR next_lladdr;
|
||
|
||
/* We have not already read in the dynamic linking structures
|
||
from the inferior, lookup the address of the base structure. */
|
||
debug_base = locate_base ();
|
||
if (debug_base == 0)
|
||
return NULL;
|
||
|
||
/* Get address of first list entry. */
|
||
read_memory (debug_base, (char *) &listp, sizeof (struct obj_list *));
|
||
|
||
if (listp == NULL)
|
||
return NULL;
|
||
|
||
/* Get first list entry. */
|
||
/* The MIPS Sign extends addresses. */
|
||
lladdr = host_pointer_to_address (listp);
|
||
read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
|
||
|
||
/* The first entry in the list is the object file we are debugging,
|
||
so skip it. */
|
||
next_lladdr = host_pointer_to_address (list_old.next);
|
||
|
||
#ifdef HANDLE_NEW_OBJ_LIST
|
||
if (list_old.data == NEW_OBJ_INFO_MAGIC)
|
||
{
|
||
Elf32_Obj_Info list_32;
|
||
|
||
read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
|
||
if (list_32.oi_size != sizeof (Elf32_Obj_Info))
|
||
return NULL;
|
||
next_lladdr = (CORE_ADDR) list_32.oi_next;
|
||
}
|
||
#endif
|
||
|
||
if (next_lladdr == 0)
|
||
return NULL;
|
||
|
||
first_lm.l_lladdr = next_lladdr;
|
||
lm = &first_lm;
|
||
return lm;
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
next_link_map_member -- locate next member in dynamic linker's map
|
||
|
||
SYNOPSIS
|
||
|
||
static struct link_map *next_link_map_member (so_list_ptr)
|
||
|
||
DESCRIPTION
|
||
|
||
Read in a copy of the next member in the inferior's dynamic
|
||
link map from the inferior's dynamic linker structures, and return
|
||
a pointer to the link map descriptor.
|
||
*/
|
||
|
||
static struct link_map *
|
||
next_link_map_member (struct so_list *so_list_ptr)
|
||
{
|
||
struct link_map *lm = &so_list_ptr->lm;
|
||
CORE_ADDR next_lladdr = lm->l_next;
|
||
static struct link_map next_lm;
|
||
|
||
if (next_lladdr == 0)
|
||
{
|
||
/* We have hit the end of the list, so check to see if any were
|
||
added, but be quiet if we can't read from the target any more. */
|
||
int status = 0;
|
||
|
||
if (lm->l_variant == OBJ_LIST_OLD)
|
||
{
|
||
struct obj_list list_old;
|
||
|
||
status = target_read_memory (lm->l_lladdr,
|
||
(char *) &list_old,
|
||
sizeof (struct obj_list));
|
||
next_lladdr = host_pointer_to_address (list_old.next);
|
||
}
|
||
#ifdef HANDLE_NEW_OBJ_LIST
|
||
else if (lm->l_variant == OBJ_LIST_32)
|
||
{
|
||
Elf32_Obj_Info list_32;
|
||
status = target_read_memory (lm->l_lladdr,
|
||
(char *) &list_32,
|
||
sizeof (Elf32_Obj_Info));
|
||
next_lladdr = (CORE_ADDR) list_32.oi_next;
|
||
}
|
||
#endif
|
||
|
||
if (status != 0 || next_lladdr == 0)
|
||
return NULL;
|
||
}
|
||
|
||
next_lm.l_lladdr = next_lladdr;
|
||
lm = &next_lm;
|
||
return lm;
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
xfer_link_map_member -- set local variables from dynamic linker's map
|
||
|
||
SYNOPSIS
|
||
|
||
static void xfer_link_map_member (so_list_ptr, lm)
|
||
|
||
DESCRIPTION
|
||
|
||
Read in a copy of the requested member in the inferior's dynamic
|
||
link map from the inferior's dynamic linker structures, and fill
|
||
in the necessary so_list_ptr elements.
|
||
*/
|
||
|
||
static void
|
||
xfer_link_map_member (struct so_list *so_list_ptr, struct link_map *lm)
|
||
{
|
||
struct obj_list list_old;
|
||
CORE_ADDR lladdr = lm->l_lladdr;
|
||
struct link_map *new_lm = &so_list_ptr->lm;
|
||
int errcode;
|
||
|
||
read_memory (lladdr, (char *) &list_old, sizeof (struct obj_list));
|
||
|
||
new_lm->l_variant = OBJ_LIST_OLD;
|
||
new_lm->l_lladdr = lladdr;
|
||
new_lm->l_next = host_pointer_to_address (list_old.next);
|
||
|
||
#ifdef HANDLE_NEW_OBJ_LIST
|
||
if (list_old.data == NEW_OBJ_INFO_MAGIC)
|
||
{
|
||
Elf32_Obj_Info list_32;
|
||
|
||
read_memory (lladdr, (char *) &list_32, sizeof (Elf32_Obj_Info));
|
||
if (list_32.oi_size != sizeof (Elf32_Obj_Info))
|
||
return;
|
||
new_lm->l_variant = OBJ_LIST_32;
|
||
new_lm->l_next = (CORE_ADDR) list_32.oi_next;
|
||
|
||
target_read_string ((CORE_ADDR) list_32.oi_pathname,
|
||
&so_list_ptr->so_name,
|
||
list_32.oi_pathname_len + 1, &errcode);
|
||
if (errcode != 0)
|
||
memory_error (errcode, (CORE_ADDR) list_32.oi_pathname);
|
||
|
||
LM_ADDR (so_list_ptr) = (CORE_ADDR) list_32.oi_ehdr;
|
||
LM_OFFSET (so_list_ptr) =
|
||
(CORE_ADDR) list_32.oi_ehdr - (CORE_ADDR) list_32.oi_orig_ehdr;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
|
||
/* If we are compiling GDB under N32 ABI, the alignments in
|
||
the obj struct are different from the O32 ABI and we will get
|
||
wrong values when accessing the struct.
|
||
As a workaround we use fixed values which are good for
|
||
Irix 6.2. */
|
||
char buf[432];
|
||
|
||
read_memory ((CORE_ADDR) list_old.data, buf, sizeof (buf));
|
||
|
||
target_read_string (extract_address (&buf[236], 4),
|
||
&so_list_ptr->so_name,
|
||
INT_MAX, &errcode);
|
||
if (errcode != 0)
|
||
memory_error (errcode, extract_address (&buf[236], 4));
|
||
|
||
LM_ADDR (so_list_ptr) = extract_address (&buf[196], 4);
|
||
LM_OFFSET (so_list_ptr) =
|
||
extract_address (&buf[196], 4) - extract_address (&buf[248], 4);
|
||
#else
|
||
struct obj obj_old;
|
||
|
||
read_memory ((CORE_ADDR) list_old.data, (char *) &obj_old,
|
||
sizeof (struct obj));
|
||
|
||
target_read_string ((CORE_ADDR) obj_old.o_path,
|
||
&so_list_ptr->so_name,
|
||
INT_MAX, &errcode);
|
||
if (errcode != 0)
|
||
memory_error (errcode, (CORE_ADDR) obj_old.o_path);
|
||
|
||
LM_ADDR (so_list_ptr) = (CORE_ADDR) obj_old.o_praw;
|
||
LM_OFFSET (so_list_ptr) =
|
||
(CORE_ADDR) obj_old.o_praw - obj_old.o_base_address;
|
||
#endif
|
||
}
|
||
|
||
catch_errors (solib_map_sections, (char *) so_list_ptr,
|
||
"Error while mapping shared library sections:\n",
|
||
RETURN_MASK_ALL);
|
||
}
|
||
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
find_solib -- step through list of shared objects
|
||
|
||
SYNOPSIS
|
||
|
||
struct so_list *find_solib (struct so_list *so_list_ptr)
|
||
|
||
DESCRIPTION
|
||
|
||
This module contains the routine which finds the names of any
|
||
loaded "images" in the current process. The argument in must be
|
||
NULL on the first call, and then the returned value must be passed
|
||
in on subsequent calls. This provides the capability to "step" down
|
||
the list of loaded objects. On the last object, a NULL value is
|
||
returned.
|
||
*/
|
||
|
||
static struct so_list *
|
||
find_solib (struct so_list *so_list_ptr)
|
||
{
|
||
struct so_list *so_list_next = NULL;
|
||
struct link_map *lm = NULL;
|
||
struct so_list *new;
|
||
|
||
if (so_list_ptr == NULL)
|
||
{
|
||
/* We are setting up for a new scan through the loaded images. */
|
||
if ((so_list_next = so_list_head) == NULL)
|
||
{
|
||
/* Find the first link map list member. */
|
||
lm = first_link_map_member ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We have been called before, and are in the process of walking
|
||
the shared library list. Advance to the next shared object. */
|
||
lm = next_link_map_member (so_list_ptr);
|
||
so_list_next = so_list_ptr->next;
|
||
}
|
||
if ((so_list_next == NULL) && (lm != NULL))
|
||
{
|
||
new = (struct so_list *) xmalloc (sizeof (struct so_list));
|
||
memset ((char *) new, 0, sizeof (struct so_list));
|
||
/* Add the new node as the next node in the list, or as the root
|
||
node if this is the first one. */
|
||
if (so_list_ptr != NULL)
|
||
{
|
||
so_list_ptr->next = new;
|
||
}
|
||
else
|
||
{
|
||
so_list_head = new;
|
||
}
|
||
so_list_next = new;
|
||
xfer_link_map_member (new, lm);
|
||
}
|
||
return (so_list_next);
|
||
}
|
||
|
||
/* A small stub to get us past the arg-passing pinhole of catch_errors. */
|
||
|
||
static int
|
||
symbol_add_stub (void *arg)
|
||
{
|
||
register struct so_list *so = (struct so_list *) arg; /* catch_errs bogon */
|
||
CORE_ADDR text_addr = 0;
|
||
struct section_addr_info section_addrs;
|
||
|
||
memset (§ion_addrs, 0, sizeof (section_addrs));
|
||
if (so->textsection)
|
||
text_addr = so->textsection->addr;
|
||
else if (so->abfd != NULL)
|
||
{
|
||
asection *lowest_sect;
|
||
|
||
/* If we didn't find a mapped non zero sized .text section, set up
|
||
text_addr so that the relocation in symbol_file_add does no harm. */
|
||
|
||
lowest_sect = bfd_get_section_by_name (so->abfd, ".text");
|
||
if (lowest_sect == NULL)
|
||
bfd_map_over_sections (so->abfd, find_lowest_section,
|
||
(PTR) &lowest_sect);
|
||
if (lowest_sect)
|
||
text_addr = bfd_section_vma (so->abfd, lowest_sect) + LM_OFFSET (so);
|
||
}
|
||
|
||
|
||
section_addrs.other[0].name = ".text";
|
||
section_addrs.other[0].addr = text_addr;
|
||
so->objfile = symbol_file_add (so->so_name, so->from_tty,
|
||
§ion_addrs, 0, 0);
|
||
/* must be non-zero */
|
||
return (1);
|
||
}
|
||
|
||
/*
|
||
|
||
GLOBAL FUNCTION
|
||
|
||
solib_add -- add a shared library file to the symtab and section list
|
||
|
||
SYNOPSIS
|
||
|
||
void solib_add (char *arg_string, int from_tty,
|
||
struct target_ops *target, int readsyms)
|
||
|
||
DESCRIPTION
|
||
|
||
*/
|
||
|
||
void
|
||
solib_add (char *arg_string, int from_tty, struct target_ops *target, int readsyms)
|
||
{
|
||
register struct so_list *so = NULL; /* link map state variable */
|
||
|
||
/* Last shared library that we read. */
|
||
struct so_list *so_last = NULL;
|
||
|
||
char *re_err;
|
||
int count;
|
||
int old;
|
||
|
||
if (!readsyms)
|
||
return;
|
||
|
||
if ((re_err = re_comp (arg_string ? arg_string : ".")) != NULL)
|
||
{
|
||
error ("Invalid regexp: %s", re_err);
|
||
}
|
||
|
||
/* Add the shared library sections to the section table of the
|
||
specified target, if any. */
|
||
if (target)
|
||
{
|
||
/* Count how many new section_table entries there are. */
|
||
so = NULL;
|
||
count = 0;
|
||
while ((so = find_solib (so)) != NULL)
|
||
{
|
||
if (so->so_name[0])
|
||
{
|
||
count += so->sections_end - so->sections;
|
||
}
|
||
}
|
||
|
||
if (count)
|
||
{
|
||
old = target_resize_to_sections (target, count);
|
||
|
||
/* Add these section table entries to the target's table. */
|
||
while ((so = find_solib (so)) != NULL)
|
||
{
|
||
if (so->so_name[0])
|
||
{
|
||
count = so->sections_end - so->sections;
|
||
memcpy ((char *) (target->to_sections + old),
|
||
so->sections,
|
||
(sizeof (struct section_table)) * count);
|
||
old += count;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Now add the symbol files. */
|
||
while ((so = find_solib (so)) != NULL)
|
||
{
|
||
if (so->so_name[0] && re_exec (so->so_name))
|
||
{
|
||
so->from_tty = from_tty;
|
||
if (so->symbols_loaded)
|
||
{
|
||
if (from_tty)
|
||
{
|
||
printf_unfiltered ("Symbols already loaded for %s\n", so->so_name);
|
||
}
|
||
}
|
||
else if (catch_errors
|
||
(symbol_add_stub, (char *) so,
|
||
"Error while reading shared library symbols:\n",
|
||
RETURN_MASK_ALL))
|
||
{
|
||
so_last = so;
|
||
so->symbols_loaded = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Getting new symbols may change our opinion about what is
|
||
frameless. */
|
||
if (so_last)
|
||
reinit_frame_cache ();
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
info_sharedlibrary_command -- code for "info sharedlibrary"
|
||
|
||
SYNOPSIS
|
||
|
||
static void info_sharedlibrary_command ()
|
||
|
||
DESCRIPTION
|
||
|
||
Walk through the shared library list and print information
|
||
about each attached library.
|
||
*/
|
||
|
||
static void
|
||
info_sharedlibrary_command (char *ignore, int from_tty)
|
||
{
|
||
register struct so_list *so = NULL; /* link map state variable */
|
||
int header_done = 0;
|
||
|
||
if (exec_bfd == NULL)
|
||
{
|
||
printf_unfiltered ("No executable file.\n");
|
||
return;
|
||
}
|
||
while ((so = find_solib (so)) != NULL)
|
||
{
|
||
if (so->so_name[0])
|
||
{
|
||
if (!header_done)
|
||
{
|
||
printf_unfiltered ("%-12s%-12s%-12s%s\n", "From", "To", "Syms Read",
|
||
"Shared Object Library");
|
||
header_done++;
|
||
}
|
||
printf_unfiltered ("%-12s",
|
||
local_hex_string_custom ((unsigned long) LM_ADDR (so),
|
||
"08l"));
|
||
printf_unfiltered ("%-12s",
|
||
local_hex_string_custom ((unsigned long) so->lmend,
|
||
"08l"));
|
||
printf_unfiltered ("%-12s", so->symbols_loaded ? "Yes" : "No");
|
||
printf_unfiltered ("%s\n", so->so_name);
|
||
}
|
||
}
|
||
if (so_list_head == NULL)
|
||
{
|
||
printf_unfiltered ("No shared libraries loaded at this time.\n");
|
||
}
|
||
}
|
||
|
||
/*
|
||
|
||
GLOBAL FUNCTION
|
||
|
||
solib_address -- check to see if an address is in a shared lib
|
||
|
||
SYNOPSIS
|
||
|
||
char *solib_address (CORE_ADDR address)
|
||
|
||
DESCRIPTION
|
||
|
||
Provides a hook for other gdb routines to discover whether or
|
||
not a particular address is within the mapped address space of
|
||
a shared library. Any address between the base mapping address
|
||
and the first address beyond the end of the last mapping, is
|
||
considered to be within the shared library address space, for
|
||
our purposes.
|
||
|
||
For example, this routine is called at one point to disable
|
||
breakpoints which are in shared libraries that are not currently
|
||
mapped in.
|
||
*/
|
||
|
||
char *
|
||
solib_address (CORE_ADDR address)
|
||
{
|
||
register struct so_list *so = 0; /* link map state variable */
|
||
|
||
while ((so = find_solib (so)) != NULL)
|
||
{
|
||
if (so->so_name[0])
|
||
{
|
||
if ((address >= (CORE_ADDR) LM_ADDR (so)) &&
|
||
(address < (CORE_ADDR) so->lmend))
|
||
return (so->so_name);
|
||
}
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
/* Called by free_all_symtabs */
|
||
|
||
void
|
||
clear_solib (void)
|
||
{
|
||
struct so_list *next;
|
||
char *bfd_filename;
|
||
|
||
disable_breakpoints_in_shlibs (1);
|
||
|
||
while (so_list_head)
|
||
{
|
||
if (so_list_head->sections)
|
||
{
|
||
xfree (so_list_head->sections);
|
||
}
|
||
if (so_list_head->abfd)
|
||
{
|
||
remove_target_sections (so_list_head->abfd);
|
||
bfd_filename = bfd_get_filename (so_list_head->abfd);
|
||
if (!bfd_close (so_list_head->abfd))
|
||
warning ("cannot close \"%s\": %s",
|
||
bfd_filename, bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
else
|
||
/* This happens for the executable on SVR4. */
|
||
bfd_filename = NULL;
|
||
|
||
next = so_list_head->next;
|
||
if (bfd_filename)
|
||
xfree (bfd_filename);
|
||
xfree (so_list_head->so_name);
|
||
xfree (so_list_head);
|
||
so_list_head = next;
|
||
}
|
||
debug_base = 0;
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
disable_break -- remove the "mapping changed" breakpoint
|
||
|
||
SYNOPSIS
|
||
|
||
static int disable_break ()
|
||
|
||
DESCRIPTION
|
||
|
||
Removes the breakpoint that gets hit when the dynamic linker
|
||
completes a mapping change.
|
||
|
||
*/
|
||
|
||
static int
|
||
disable_break (void)
|
||
{
|
||
int status = 1;
|
||
|
||
|
||
/* Note that breakpoint address and original contents are in our address
|
||
space, so we just need to write the original contents back. */
|
||
|
||
if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0)
|
||
{
|
||
status = 0;
|
||
}
|
||
|
||
/* For the SVR4 version, we always know the breakpoint address. For the
|
||
SunOS version we don't know it until the above code is executed.
|
||
Grumble if we are stopped anywhere besides the breakpoint address. */
|
||
|
||
if (stop_pc != breakpoint_addr)
|
||
{
|
||
warning ("stopped at unknown breakpoint while handling shared libraries");
|
||
}
|
||
|
||
return (status);
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
enable_break -- arrange for dynamic linker to hit breakpoint
|
||
|
||
SYNOPSIS
|
||
|
||
int enable_break (void)
|
||
|
||
DESCRIPTION
|
||
|
||
This functions inserts a breakpoint at the entry point of the
|
||
main executable, where all shared libraries are mapped in.
|
||
*/
|
||
|
||
static int
|
||
enable_break (void)
|
||
{
|
||
if (symfile_objfile != NULL
|
||
&& target_insert_breakpoint (symfile_objfile->ei.entry_point,
|
||
shadow_contents) == 0)
|
||
{
|
||
breakpoint_addr = symfile_objfile->ei.entry_point;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
|
||
GLOBAL FUNCTION
|
||
|
||
solib_create_inferior_hook -- shared library startup support
|
||
|
||
SYNOPSIS
|
||
|
||
void solib_create_inferior_hook()
|
||
|
||
DESCRIPTION
|
||
|
||
When gdb starts up the inferior, it nurses it along (through the
|
||
shell) until it is ready to execute it's first instruction. At this
|
||
point, this function gets called via expansion of the macro
|
||
SOLIB_CREATE_INFERIOR_HOOK.
|
||
|
||
For SunOS executables, this first instruction is typically the
|
||
one at "_start", or a similar text label, regardless of whether
|
||
the executable is statically or dynamically linked. The runtime
|
||
startup code takes care of dynamically linking in any shared
|
||
libraries, once gdb allows the inferior to continue.
|
||
|
||
For SVR4 executables, this first instruction is either the first
|
||
instruction in the dynamic linker (for dynamically linked
|
||
executables) or the instruction at "start" for statically linked
|
||
executables. For dynamically linked executables, the system
|
||
first exec's /lib/libc.so.N, which contains the dynamic linker,
|
||
and starts it running. The dynamic linker maps in any needed
|
||
shared libraries, maps in the actual user executable, and then
|
||
jumps to "start" in the user executable.
|
||
|
||
For both SunOS shared libraries, and SVR4 shared libraries, we
|
||
can arrange to cooperate with the dynamic linker to discover the
|
||
names of shared libraries that are dynamically linked, and the
|
||
base addresses to which they are linked.
|
||
|
||
This function is responsible for discovering those names and
|
||
addresses, and saving sufficient information about them to allow
|
||
their symbols to be read at a later time.
|
||
|
||
FIXME
|
||
|
||
Between enable_break() and disable_break(), this code does not
|
||
properly handle hitting breakpoints which the user might have
|
||
set in the startup code or in the dynamic linker itself. Proper
|
||
handling will probably have to wait until the implementation is
|
||
changed to use the "breakpoint handler function" method.
|
||
|
||
Also, what if child has exit()ed? Must exit loop somehow.
|
||
*/
|
||
|
||
void
|
||
solib_create_inferior_hook (void)
|
||
{
|
||
if (!enable_break ())
|
||
{
|
||
warning ("shared library handler failed to enable breakpoint");
|
||
return;
|
||
}
|
||
|
||
/* Now run the target. It will eventually hit the breakpoint, at
|
||
which point all of the libraries will have been mapped in and we
|
||
can go groveling around in the dynamic linker structures to find
|
||
out what we need to know about them. */
|
||
|
||
clear_proceed_status ();
|
||
stop_soon_quietly = 1;
|
||
stop_signal = TARGET_SIGNAL_0;
|
||
do
|
||
{
|
||
target_resume (pid_to_ptid (-1), 0, stop_signal);
|
||
wait_for_inferior ();
|
||
}
|
||
while (stop_signal != TARGET_SIGNAL_TRAP);
|
||
|
||
/* We are now either at the "mapping complete" breakpoint (or somewhere
|
||
else, a condition we aren't prepared to deal with anyway), so adjust
|
||
the PC as necessary after a breakpoint, disable the breakpoint, and
|
||
add any shared libraries that were mapped in. */
|
||
|
||
if (DECR_PC_AFTER_BREAK)
|
||
{
|
||
stop_pc -= DECR_PC_AFTER_BREAK;
|
||
write_register (PC_REGNUM, stop_pc);
|
||
}
|
||
|
||
if (!disable_break ())
|
||
{
|
||
warning ("shared library handler failed to disable breakpoint");
|
||
}
|
||
|
||
/* solib_add will call reinit_frame_cache.
|
||
But we are stopped in the startup code and we might not have symbols
|
||
for the startup code, so heuristic_proc_start could be called
|
||
and will put out an annoying warning.
|
||
Delaying the resetting of stop_soon_quietly until after symbol loading
|
||
suppresses the warning. */
|
||
solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
|
||
stop_soon_quietly = 0;
|
||
}
|
||
|
||
/*
|
||
|
||
LOCAL FUNCTION
|
||
|
||
sharedlibrary_command -- handle command to explicitly add library
|
||
|
||
SYNOPSIS
|
||
|
||
static void sharedlibrary_command (char *args, int from_tty)
|
||
|
||
DESCRIPTION
|
||
|
||
*/
|
||
|
||
static void
|
||
sharedlibrary_command (char *args, int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
solib_add (args, from_tty, (struct target_ops *) 0, 1);
|
||
}
|
||
|
||
void
|
||
_initialize_solib (void)
|
||
{
|
||
add_com ("sharedlibrary", class_files, sharedlibrary_command,
|
||
"Load shared object library symbols for files matching REGEXP.");
|
||
add_info ("sharedlibrary", info_sharedlibrary_command,
|
||
"Status of loaded shared object libraries.");
|
||
|
||
add_show_from_set
|
||
(add_set_cmd ("auto-solib-add", class_support, var_boolean,
|
||
(char *) &auto_solib_add,
|
||
"Set autoloading of shared library symbols.\n\
|
||
If \"on\", symbols from all shared object libraries will be loaded\n\
|
||
automatically when the inferior begins execution, when the dynamic linker\n\
|
||
informs gdb that a new library has been loaded, or when attaching to the\n\
|
||
inferior. Otherwise, symbols must be loaded manually, using `sharedlibrary'.",
|
||
&setlist),
|
||
&showlist);
|
||
}
|
||
|
||
|
||
/* Register that we are able to handle irix5 core file formats.
|
||
This really is bfd_target_unknown_flavour */
|
||
|
||
static struct core_fns irix5_core_fns =
|
||
{
|
||
bfd_target_unknown_flavour, /* core_flavour */
|
||
default_check_format, /* check_format */
|
||
default_core_sniffer, /* core_sniffer */
|
||
fetch_core_registers, /* core_read_registers */
|
||
NULL /* next */
|
||
};
|
||
|
||
void
|
||
_initialize_core_irix5 (void)
|
||
{
|
||
add_core_fns (&irix5_core_fns);
|
||
}
|