binutils-gdb/gdb/inferior.h
Pedro Alves 5d5658a1d3 Per-inferior/Inferior-qualified thread IDs
This commit changes GDB to track thread numbers per-inferior.  Then,
if you're debugging multiple inferiors, GDB displays
"inferior-num.thread-num" instead of just "thread-num" whenever it
needs to display a thread:

 (gdb) info inferiors
   Num  Description       Executable
   1    process 6022     /home/pedro/gdb/tests/threads
 * 2    process 6037     /home/pedro/gdb/tests/threads
 (gdb) info threads
   Id   Target Id         Frame
   1.1  Thread 0x7ffff7fc2740 (LWP 6022) "threads" (running)
   1.2  Thread 0x7ffff77c0700 (LWP 6028) "threads" (running)
   1.3  Thread 0x7ffff7fc2740 (LWP 6032) "threads" (running)
   2.1  Thread 0x7ffff7fc1700 (LWP 6037) "threads" (running)
   2.2  Thread 0x7ffff77c0700 (LWP 6038) "threads" (running)
 * 2.3  Thread 0x7ffff7fc2740 (LWP 6039) "threads" (running)
 (gdb)
...
 (gdb) thread 1.1
 [Switching to thread 1.1 (Thread 0x7ffff7fc2740 (LWP 8155))]
 (gdb)
...

etc.

You can still use "thread NUM", in which case GDB infers you're
referring to thread NUM of the current inferior.

The $_thread convenience var and Python's InferiorThread.num attribute
are remapped to the new per-inferior thread number.  It's a backward
compatibility break, but since it only matters when debugging multiple
inferiors, I think it's worth doing.

Because MI thread IDs need to be a single integer, we keep giving
threads a global identifier, _in addition_ to the per-inferior number,
and make MI always refer to the global thread IDs.  IOW, nothing
changes from a MI frontend's perspective.

Similarly, since Python's Breakpoint.thread and Guile's
breakpoint-thread/set-breakpoint-thread breakpoint methods need to
work with integers, those are adjusted to work with global thread IDs
too.  Follow up patches will provide convenient means to access
threads' global IDs.

To avoid potencially confusing users (which also avoids updating much
of the testsuite), if there's only one inferior and its ID is "1",
IOW, the user hasn't done anything multi-process/inferior related,
then the "INF." part of thread IDs is not shown.  E.g,.:

 (gdb) info inferiors
   Num  Description       Executable
 * 1    process 15275     /home/pedro/gdb/tests/threads
 (gdb) info threads
   Id   Target Id         Frame
 * 1    Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
 (gdb) add-inferior
 Added inferior 2
 (gdb) info threads
   Id   Target Id         Frame
 * 1.1  Thread 0x7ffff7fc1740 (LWP 15275) "threads" main () at threads.c:40
 (gdb)

No regressions on x86_64 Fedora 20.

gdb/ChangeLog:
2016-01-13  Pedro Alves  <palves@redhat.com>

	* NEWS: Mention that thread IDs are now per inferior and global
	thread IDs.
	* Makefile.in (SFILES): Add tid-parse.c.
	(COMMON_OBS): Add tid-parse.o.
	(HFILES_NO_SRCDIR): Add tid-parse.h.
	* ada-tasks.c: Adjust to use ptid_to_global_thread_id.
	* breakpoint.c (insert_breakpoint_locations)
	(remove_threaded_breakpoints, bpstat_check_breakpoint_conditions)
	(print_one_breakpoint_location, set_longjmp_breakpoint)
	(check_longjmp_breakpoint_for_call_dummy)
	(set_momentary_breakpoint): Adjust to use global IDs.
	(find_condition_and_thread, watch_command_1): Use parse_thread_id.
	(until_break_command, longjmp_bkpt_dtor)
	(breakpoint_re_set_thread, insert_single_step_breakpoint): Adjust
	to use global IDs.
	* dummy-frame.c (pop_dummy_frame_bpt): Adjust to use
	ptid_to_global_thread_id.
	* elfread.c (elf_gnu_ifunc_resolver_stop): Likewise.
	* gdbthread.h (struct thread_info): Rename field 'num' to
	'global_num.  Add new fields 'per_inf_num' and 'inf'.
	(thread_id_to_pid): Rename thread_id_to_pid to
	global_thread_id_to_ptid.
	(pid_to_thread_id): Rename to ...
	(ptid_to_global_thread_id): ... this.
	(valid_thread_id): Rename to ...
	(valid_global_thread_id): ... this.
	(find_thread_id): Rename to ...
	(find_thread_global_id): ... this.
	(ALL_THREADS, ALL_THREADS_BY_INFERIOR): Declare.
	(print_thread_info): Add comment.
	* tid-parse.h: New file.
	* tid-parse.c: New file.
	* infcmd.c (step_command_fsm_prepare)
	(step_command_fsm_should_stop): Adjust to use the global thread
	ID.
	(until_next_command, until_next_command)
	(finish_command_fsm_should_stop): Adjust to use the global thread
	ID.
	(attach_post_wait): Adjust to check the inferior number too.
	* inferior.h (struct inferior) <highest_thread_num>: New field.
	* infrun.c (handle_signal_stop)
	(insert_exception_resume_breakpoint)
	(insert_exception_resume_from_probe): Adjust to use the global
	thread ID.
	* record-btrace.c (record_btrace_open): Use global thread IDs.
	* remote.c (process_initial_stop_replies): Also consider the
	inferior number.
	* target.c (target_pre_inferior): Clear the inferior's highest
	thread num.
	* thread.c (clear_thread_inferior_resources): Adjust to use the
	global thread ID.
	(new_thread): New inferior parameter.  Adjust to use it.  Set both
	the thread's global ID and the thread's per-inferior ID.
	(add_thread_silent): Adjust.
	(find_thread_global_id): New.
	(find_thread_id): Make static.  Adjust to rename.
	(valid_thread_id): Rename to ...
	(valid_global_thread_id): ... this.
	(pid_to_thread_id): Rename to ...
	(ptid_to_global_thread_id): ... this.
	(thread_id_to_pid): Rename to ...
	(global_thread_id_to_ptid): ... this.  Adjust.
	(first_thread_of_process): Adjust.
	(do_captured_list_thread_ids): Adjust to use global thread IDs.
	(should_print_thread): New function.
	(print_thread_info): Rename to ...
	(print_thread_info_1): ... this, and add new show_global_ids
	parameter.  Handle it.  Iterate over inferiors.
	(print_thread_info): Reimplement as wrapper around
	print_thread_info_1.
	(show_inferior_qualified_tids): New function.
	(print_thread_id): Use it.
	(tp_array_compar): Compare inferior numbers too.
	(thread_apply_command): Use tid_range_parser.
	(do_captured_thread_select): Use parse_thread_id.
	(thread_id_make_value): Adjust.
	(_initialize_thread): Adjust "info threads" help string.
	* varobj.c (struct varobj_root): Update comment.
	(varobj_create): Adjust to use global thread IDs.
	(value_of_root_1): Adjust to use global_thread_id_to_ptid.
	* windows-tdep.c (display_tib): No longer accept an argument.
	* cli/cli-utils.c (get_number_trailer): Make extern.
	* cli/cli-utils.h (get_number_trailer): Declare.
	(get_number_const): Adjust documentation.
	* mi/mi-cmd-var.c (mi_cmd_var_update_iter): Adjust to use global
	thread IDs.
	* mi/mi-interp.c (mi_new_thread, mi_thread_exit)
	(mi_on_normal_stop, mi_output_running_pid, mi_on_resume):
	* mi/mi-main.c (mi_execute_command, mi_cmd_execute): Likewise.
	* guile/scm-breakpoint.c (gdbscm_set_breakpoint_thread_x):
	Likewise.
	* python/py-breakpoint.c (bppy_set_thread): Likewise.
	* python/py-finishbreakpoint.c (bpfinishpy_init): Likewise.
	* python/py-infthread.c (thpy_get_num): Add comment and return the
	per-inferior thread ID.
	(thread_object_getset): Update comment of "num".

gdb/testsuite/ChangeLog:
2016-01-07  Pedro Alves  <palves@redhat.com>

	* gdb.base/break.exp: Adjust to output changes.
	* gdb.base/hbreak2.exp: Likewise.
	* gdb.base/sepdebug.exp: Likewise.
	* gdb.base/watch_thread_num.exp: Likewise.
	* gdb.linespec/keywords.exp: Likewise.
	* gdb.multi/info-threads.exp: Likewise.
	* gdb.threads/thread-find.exp: Likewise.
	* gdb.multi/tids.c: New file.
	* gdb.multi/tids.exp: New file.

gdb/doc/ChangeLog:
2016-01-07  Pedro Alves  <palves@redhat.com>

	* gdb.texinfo (Threads): Document per-inferior thread IDs,
	qualified thread IDs, global thread IDs and thread ID lists.
	(Set Watchpoints, Thread-Specific Breakpoints): Adjust to refer to
	thread IDs.
	(Convenience Vars): Document the $_thread convenience variable.
	(Ada Tasks): Adjust to refer to thread IDs.
	(GDB/MI Async Records, GDB/MI Thread Commands, GDB/MI Ada Tasking
	Commands, GDB/MI Variable Objects): Update to mention global
	thread IDs.
	* guile.texi (Breakpoints In Guile)
	<breakpoint-thread/set-breakpoint-thread breakpoint>: Mention
	global thread IDs instead of thread IDs.
	* python.texi (Threads In Python): Adjust documentation of
	InferiorThread.num.
	(Breakpoint.thread): Mention global thread IDs instead of thread
	IDs.
2016-01-13 10:59:43 +00:00

527 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Variables that describe the inferior process running under GDB:
Where it is, why it stopped, and how to step it.
Copyright (C) 1986-2016 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (INFERIOR_H)
#define INFERIOR_H 1
struct target_waitstatus;
struct frame_info;
struct ui_file;
struct type;
struct gdbarch;
struct regcache;
struct ui_out;
struct terminal_info;
struct target_desc_info;
/* For bpstat. */
#include "breakpoint.h"
/* For enum gdb_signal. */
#include "target.h"
/* For struct frame_id. */
#include "frame.h"
#include "progspace.h"
#include "registry.h"
struct infcall_suspend_state;
struct infcall_control_state;
extern struct infcall_suspend_state *save_infcall_suspend_state (void);
extern struct infcall_control_state *save_infcall_control_state (void);
extern void restore_infcall_suspend_state (struct infcall_suspend_state *);
extern void restore_infcall_control_state (struct infcall_control_state *);
extern struct cleanup *make_cleanup_restore_infcall_suspend_state
(struct infcall_suspend_state *);
extern struct cleanup *make_cleanup_restore_infcall_control_state
(struct infcall_control_state *);
extern void discard_infcall_suspend_state (struct infcall_suspend_state *);
extern void discard_infcall_control_state (struct infcall_control_state *);
extern struct regcache *
get_infcall_suspend_state_regcache (struct infcall_suspend_state *);
/* Save value of inferior_ptid so that it may be restored by
a later call to do_cleanups(). Returns the struct cleanup
pointer needed for later doing the cleanup. */
extern struct cleanup * save_inferior_ptid (void);
extern void set_sigint_trap (void);
extern void clear_sigint_trap (void);
/* Set/get file name for default use for standard in/out in the inferior. */
extern void set_inferior_io_terminal (const char *terminal_name);
extern const char *get_inferior_io_terminal (void);
/* Collected pid, tid, etc. of the debugged inferior. When there's
no inferior, ptid_get_pid (inferior_ptid) will be 0. */
extern ptid_t inferior_ptid;
extern void generic_mourn_inferior (void);
extern CORE_ADDR unsigned_pointer_to_address (struct gdbarch *gdbarch,
struct type *type,
const gdb_byte *buf);
extern void unsigned_address_to_pointer (struct gdbarch *gdbarch,
struct type *type, gdb_byte *buf,
CORE_ADDR addr);
extern CORE_ADDR signed_pointer_to_address (struct gdbarch *gdbarch,
struct type *type,
const gdb_byte *buf);
extern void address_to_signed_pointer (struct gdbarch *gdbarch,
struct type *type, gdb_byte *buf,
CORE_ADDR addr);
extern void reopen_exec_file (void);
/* From misc files */
extern void default_print_registers_info (struct gdbarch *gdbarch,
struct ui_file *file,
struct frame_info *frame,
int regnum, int all);
/* Default implementation of gdbarch_print_float_info. Print
the values of all floating point registers. */
extern void default_print_float_info (struct gdbarch *gdbarch,
struct ui_file *file,
struct frame_info *frame,
const char *args);
extern void child_terminal_info (struct target_ops *self, const char *, int);
extern void term_info (char *, int);
extern void child_terminal_ours (struct target_ops *self);
extern void child_terminal_ours_for_output (struct target_ops *self);
extern void child_terminal_inferior (struct target_ops *self);
extern void child_terminal_init (struct target_ops *self);
extern void child_terminal_init_with_pgrp (int pgrp);
/* From fork-child.c */
extern int fork_inferior (char *, char *, char **,
void (*)(void),
void (*)(int), void (*)(void), char *,
void (*)(const char *,
char * const *, char * const *));
extern void startup_inferior (int);
extern char *construct_inferior_arguments (int, char **);
/* From infcmd.c */
/* Initial inferior setup. Determines the exec file is not yet known,
takes any necessary post-attaching actions, fetches the target
description and syncs the shared library list. */
extern void setup_inferior (int from_tty);
extern void post_create_inferior (struct target_ops *, int);
extern void attach_command (char *, int);
extern char *get_inferior_args (void);
extern void set_inferior_args (char *);
extern void set_inferior_args_vector (int, char **);
extern void registers_info (char *, int);
extern void continue_1 (int all_threads);
extern void interrupt_target_1 (int all_threads);
extern void delete_longjmp_breakpoint_cleanup (void *arg);
extern void detach_command (char *, int);
extern void notice_new_inferior (ptid_t, int, int);
extern struct value *get_return_value (struct value *function,
struct type *value_type);
/* Prepare for execution command. TARGET is the target that will run
the command. BACKGROUND determines whether this is a foreground
(synchronous) or background (asynchronous) command. */
extern void prepare_execution_command (struct target_ops *target,
int background);
/* Whether to start up the debuggee under a shell.
If startup-with-shell is set, GDB's "run" will attempt to start up
the debuggee under a shell.
This is in order for argument-expansion to occur. E.g.,
(gdb) run *
The "*" gets expanded by the shell into a list of files.
While this is a nice feature, it may be handy to bypass the shell
in some cases. To disable this feature, do "set startup-with-shell
false".
The catch-exec traps expected during start-up will be one more if
the target is started up with a shell. */
extern int startup_with_shell;
/* Address at which inferior stopped. */
extern CORE_ADDR stop_pc;
/* Nonzero if stopped due to completion of a stack dummy routine. */
extern enum stop_stack_kind stop_stack_dummy;
/* Nonzero if program stopped due to a random (unexpected) signal in
inferior process. */
extern int stopped_by_random_signal;
/* STEP_OVER_ALL means step over all subroutine calls.
STEP_OVER_UNDEBUGGABLE means step over calls to undebuggable functions.
STEP_OVER_NONE means don't step over any subroutine calls. */
enum step_over_calls_kind
{
STEP_OVER_NONE,
STEP_OVER_ALL,
STEP_OVER_UNDEBUGGABLE
};
/* Anything but NO_STOP_QUIETLY means we expect a trap and the caller
will handle it themselves. STOP_QUIETLY is used when running in
the shell before the child program has been exec'd and when running
through shared library loading. STOP_QUIETLY_REMOTE is used when
setting up a remote connection; it is like STOP_QUIETLY_NO_SIGSTOP
except that there is no need to hide a signal. */
/* STOP_QUIETLY_NO_SIGSTOP is used to handle a tricky situation with attach.
When doing an attach, the kernel stops the debuggee with a SIGSTOP.
On newer GNU/Linux kernels (>= 2.5.61) the handling of SIGSTOP for
a ptraced process has changed. Earlier versions of the kernel
would ignore these SIGSTOPs, while now SIGSTOP is treated like any
other signal, i.e. it is not muffled.
If the gdb user does a 'continue' after the 'attach', gdb passes
the global variable stop_signal (which stores the signal from the
attach, SIGSTOP) to the ptrace(PTRACE_CONT,...) call. This is
problematic, because the kernel doesn't ignore such SIGSTOP
now. I.e. it is reported back to gdb, which in turn presents it
back to the user.
To avoid the problem, we use STOP_QUIETLY_NO_SIGSTOP, which allows
gdb to clear the value of stop_signal after the attach, so that it
is not passed back down to the kernel. */
enum stop_kind
{
NO_STOP_QUIETLY = 0,
STOP_QUIETLY,
STOP_QUIETLY_REMOTE,
STOP_QUIETLY_NO_SIGSTOP
};
/* Possible values for gdbarch_call_dummy_location. */
#define ON_STACK 1
#define AT_ENTRY_POINT 4
/* Number of traps that happen between exec'ing the shell to run an
inferior and when we finally get to the inferior code, not counting
the exec for the shell. This is 1 on all supported
implementations. */
#define START_INFERIOR_TRAPS_EXPECTED 1
struct private_inferior;
/* Inferior process specific part of `struct infcall_control_state'.
Inferior thread counterpart is `struct thread_control_state'. */
struct inferior_control_state
{
/* See the definition of stop_kind above. */
enum stop_kind stop_soon;
};
/* GDB represents the state of each program execution with an object
called an inferior. An inferior typically corresponds to a process
but is more general and applies also to targets that do not have a
notion of processes. Each run of an executable creates a new
inferior, as does each attachment to an existing process.
Inferiors have unique internal identifiers that are different from
target process ids. Each inferior may in turn have multiple
threads running in it. */
struct inferior
{
/* Pointer to next inferior in singly-linked list of inferiors. */
struct inferior *next;
/* Convenient handle (GDB inferior id). Unique across all
inferiors. */
int num;
/* Actual target inferior id, usually, a process id. This matches
the ptid_t.pid member of threads of this inferior. */
int pid;
/* True if the PID was actually faked by GDB. */
int fake_pid_p;
/* The highest thread number this inferior ever had. */
int highest_thread_num;
/* State of GDB control of inferior process execution.
See `struct inferior_control_state'. */
struct inferior_control_state control;
/* True if this was an auto-created inferior, e.g. created from
following a fork; false, if this inferior was manually added by
the user, and we should not attempt to prune it
automatically. */
int removable;
/* The address space bound to this inferior. */
struct address_space *aspace;
/* The program space bound to this inferior. */
struct program_space *pspace;
/* The arguments string to use when running. */
char *args;
/* The size of elements in argv. */
int argc;
/* The vector version of arguments. If ARGC is nonzero,
then we must compute ARGS from this (via the target).
This is always coming from main's argv and therefore
should never be freed. */
char **argv;
/* The name of terminal device to use for I/O. */
char *terminal;
/* Environment to use for running inferior,
in format described in environ.h. */
struct gdb_environ *environment;
/* Nonzero if this child process was attached rather than
forked. */
int attach_flag;
/* If this inferior is a vfork child, then this is the pointer to
its vfork parent, if GDB is still attached to it. */
struct inferior *vfork_parent;
/* If this process is a vfork parent, this is the pointer to the
child. Since a vfork parent is left frozen by the kernel until
the child execs or exits, a process can only have one vfork child
at a given time. */
struct inferior *vfork_child;
/* True if this inferior should be detached when it's vfork sibling
exits or execs. */
int pending_detach;
/* True if this inferior is a vfork parent waiting for a vfork child
not under our control to be done with the shared memory region,
either by exiting or execing. */
int waiting_for_vfork_done;
/* True if we're in the process of detaching from this inferior. */
int detaching;
/* What is left to do for an execution command after any thread of
this inferior stops. For continuations associated with a
specific thread, see `struct thread_info'. */
struct continuation *continuations;
/* True if setup_inferior wasn't called for this inferior yet.
Until that is done, we must not access inferior memory or
registers, as we haven't determined the target
architecture/description. */
int needs_setup;
/* Private data used by the target vector implementation. */
struct private_inferior *priv;
/* HAS_EXIT_CODE is true if the inferior exited with an exit code.
In this case, the EXIT_CODE field is also valid. */
int has_exit_code;
LONGEST exit_code;
/* Default flags to pass to the symbol reading functions. These are
used whenever a new objfile is created. The valid values come
from enum symfile_add_flags. */
int symfile_flags;
/* Info about an inferior's target description (if it's fetched; the
user supplied description's filename, if any; etc.). */
struct target_desc_info *tdesc_info;
/* The architecture associated with the inferior through the
connection to the target.
The architecture vector provides some information that is really
a property of the inferior, accessed through a particular target:
ptrace operations; the layout of certain RSP packets; the
solib_ops vector; etc. To differentiate architecture accesses to
per-inferior/target properties from
per-thread/per-frame/per-objfile properties, accesses to
per-inferior/target properties should be made through
this gdbarch. */
struct gdbarch *gdbarch;
/* Per inferior data-pointers required by other GDB modules. */
REGISTRY_FIELDS;
};
/* Keep a registry of per-inferior data-pointers required by other GDB
modules. */
DECLARE_REGISTRY (inferior);
/* Create an empty inferior list, or empty the existing one. */
extern void init_inferior_list (void);
/* Add an inferior to the inferior list, print a message that a new
inferior is found, and return the pointer to the new inferior.
Caller may use this pointer to initialize the private inferior
data. */
extern struct inferior *add_inferior (int pid);
/* Same as add_inferior, but don't print new inferior notifications to
the CLI. */
extern struct inferior *add_inferior_silent (int pid);
extern void delete_inferior (struct inferior *todel);
/* Delete an existing inferior list entry, due to inferior detaching. */
extern void detach_inferior (int pid);
extern void exit_inferior (int pid);
extern void exit_inferior_silent (int pid);
extern void exit_inferior_num_silent (int num);
extern void inferior_appeared (struct inferior *inf, int pid);
/* Get rid of all inferiors. */
extern void discard_all_inferiors (void);
/* Translate the integer inferior id (GDB's homegrown id, not the system's)
into a "pid" (which may be overloaded with extra inferior information). */
extern int gdb_inferior_id_to_pid (int);
/* Translate a target 'pid' into the integer inferior id (GDB's
homegrown id, not the system's). */
extern int pid_to_gdb_inferior_id (int pid);
/* Boolean test for an already-known pid. */
extern int in_inferior_list (int pid);
/* Boolean test for an already-known inferior id (GDB's homegrown id,
not the system's). */
extern int valid_gdb_inferior_id (int num);
/* Search function to lookup an inferior by target 'pid'. */
extern struct inferior *find_inferior_pid (int pid);
/* Search function to lookup an inferior whose pid is equal to 'ptid.pid'. */
extern struct inferior *find_inferior_ptid (ptid_t ptid);
/* Search function to lookup an inferior by GDB 'num'. */
extern struct inferior *find_inferior_id (int num);
/* Find an inferior bound to PSPACE, giving preference to the current
inferior. */
extern struct inferior *
find_inferior_for_program_space (struct program_space *pspace);
/* Inferior iterator function.
Calls a callback function once for each inferior, so long as the
callback function returns false. If the callback function returns
true, the iteration will end and the current inferior will be
returned. This can be useful for implementing a search for a
inferior with arbitrary attributes, or for applying some operation
to every inferior.
It is safe to delete the iterated inferior from the callback. */
extern struct inferior *iterate_over_inferiors (int (*) (struct inferior *,
void *),
void *);
/* Returns true if the inferior list is not empty. */
extern int have_inferiors (void);
/* Returns the number of live inferiors (real live processes). */
extern int number_of_live_inferiors (void);
/* Returns true if there are any live inferiors in the inferior list
(not cores, not executables, real live processes). */
extern int have_live_inferiors (void);
/* Return a pointer to the current inferior. It is an error to call
this if there is no current inferior. */
extern struct inferior *current_inferior (void);
extern void set_current_inferior (struct inferior *);
extern struct cleanup *save_current_inferior (void);
/* Traverse all inferiors. */
#define ALL_INFERIORS(I) \
for ((I) = inferior_list; (I); (I) = (I)->next)
extern struct inferior *inferior_list;
/* Prune away automatically added inferiors that aren't required
anymore. */
extern void prune_inferiors (void);
extern int number_of_inferiors (void);
extern struct inferior *add_inferior_with_spaces (void);
#endif /* !defined (INFERIOR_H) */