binutils-gdb/sim/rx/mem.c
Andrew Burgess 73d4725f21 sim/rx: mark some functions as static
Some functions that should be marked static.

sim/rx/ChangeLog:

	* fpu.c (check_exceptions): Make static.
	* gdb-if.c (handle_step): Likewise.
	* mem.c (mem_put_byte): Likewise.
2021-02-08 11:01:07 +00:00

625 lines
13 KiB
C

/* mem.c --- memory for RX simulator.
Copyright (C) 2005-2021 Free Software Foundation, Inc.
Contributed by Red Hat, Inc.
This file is part of the GNU simulators.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This slows down the simulator and we get some false negatives from
gcc, like when it uses a long-sized hole to hold a byte-sized
variable, knowing that it doesn't care about the other bits. But,
if you need to track down a read-from-unitialized bug, set this to
1. */
#define RDCHECK 0
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "opcode/rx.h"
#include "mem.h"
#include "cpu.h"
#include "syscalls.h"
#include "misc.h"
#include "err.h"
#define L1_BITS (10)
#define L2_BITS (10)
#define OFF_BITS PAGE_BITS
#define L1_LEN (1 << L1_BITS)
#define L2_LEN (1 << L2_BITS)
#define OFF_LEN (1 << OFF_BITS)
static unsigned char **pt[L1_LEN];
static unsigned char **ptr[L1_LEN];
static RX_Opcode_Decoded ***ptdc[L1_LEN];
/* [ get=0/put=1 ][ byte size ] */
static unsigned int mem_counters[2][5];
#define COUNT(isput,bytes) \
if (verbose && enable_counting) mem_counters[isput][bytes]++
void
init_mem (void)
{
int i, j;
for (i = 0; i < L1_LEN; i++)
if (pt[i])
{
for (j = 0; j < L2_LEN; j++)
if (pt[i][j])
free (pt[i][j]);
free (pt[i]);
}
memset (pt, 0, sizeof (pt));
memset (ptr, 0, sizeof (ptr));
memset (mem_counters, 0, sizeof (mem_counters));
}
unsigned char *
rx_mem_ptr (unsigned long address, enum mem_ptr_action action)
{
int pt1 = (address >> (L2_BITS + OFF_BITS)) & ((1 << L1_BITS) - 1);
int pt2 = (address >> OFF_BITS) & ((1 << L2_BITS) - 1);
int pto = address & ((1 << OFF_BITS) - 1);
if (address == 0)
execution_error (SIM_ERR_NULL_POINTER_DEREFERENCE, 0);
if (pt[pt1] == 0)
{
pt[pt1] = (unsigned char **) calloc (L2_LEN, sizeof (char **));
ptr[pt1] = (unsigned char **) calloc (L2_LEN, sizeof (char **));
ptdc[pt1] = (RX_Opcode_Decoded ***) calloc (L2_LEN, sizeof (RX_Opcode_Decoded ***));
}
if (pt[pt1][pt2] == 0)
{
if (action == MPA_READING)
execution_error (SIM_ERR_READ_UNWRITTEN_PAGES, address);
pt[pt1][pt2] = (unsigned char *) calloc (OFF_LEN, 1);
ptr[pt1][pt2] = (unsigned char *) calloc (OFF_LEN, 1);
ptdc[pt1][pt2] = (RX_Opcode_Decoded **) calloc (OFF_LEN, sizeof(RX_Opcode_Decoded *));
}
else if (action == MPA_READING
&& ptr[pt1][pt2][pto] == MC_UNINIT)
execution_error (SIM_ERR_READ_UNWRITTEN_BYTES, address);
if (action == MPA_WRITING)
{
int pto_dc;
if (ptr[pt1][pt2][pto] == MC_PUSHED_PC)
execution_error (SIM_ERR_CORRUPT_STACK, address);
ptr[pt1][pt2][pto] = MC_DATA;
/* The instruction decoder doesn't store it's decoded instructions
at word swapped addresses. Therefore, when clearing the decode
cache, we have to account for that here. */
pto_dc = pto ^ (rx_big_endian ? 3 : 0);
if (ptdc[pt1][pt2][pto_dc])
{
free (ptdc[pt1][pt2][pto_dc]);
ptdc[pt1][pt2][pto_dc] = NULL;
}
}
if (action == MPA_CONTENT_TYPE)
return (unsigned char *) (ptr[pt1][pt2] + pto);
if (action == MPA_DECODE_CACHE)
return (unsigned char *) (ptdc[pt1][pt2] + pto);
return pt[pt1][pt2] + pto;
}
RX_Opcode_Decoded **
rx_mem_decode_cache (unsigned long address)
{
return (RX_Opcode_Decoded **) rx_mem_ptr (address, MPA_DECODE_CACHE);
}
static inline int
is_reserved_address (unsigned int address)
{
return (address >= 0x00020000 && address < 0x00080000)
|| (address >= 0x00100000 && address < 0x01000000)
|| (address >= 0x08000000 && address < 0xff000000);
}
static void
used (int rstart, int i, int j)
{
int rend = i << (L2_BITS + OFF_BITS);
rend += j << OFF_BITS;
if (rstart == 0xe0000 && rend == 0xe1000)
return;
printf ("mem: %08x - %08x (%dk bytes)\n", rstart, rend - 1,
(rend - rstart) / 1024);
}
static char *
mcs (int isput, int bytes)
{
return comma (mem_counters[isput][bytes]);
}
void
mem_usage_stats (void)
{
int i, j;
int rstart = 0;
int pending = 0;
for (i = 0; i < L1_LEN; i++)
if (pt[i])
{
for (j = 0; j < L2_LEN; j++)
if (pt[i][j])
{
if (!pending)
{
pending = 1;
rstart = (i << (L2_BITS + OFF_BITS)) + (j << OFF_BITS);
}
}
else if (pending)
{
pending = 0;
used (rstart, i, j);
}
}
else
{
if (pending)
{
pending = 0;
used (rstart, i, 0);
}
}
/* mem foo: 123456789012 123456789012 123456789012 123456789012
123456789012 */
printf (" byte short 3byte long"
" opcode\n");
if (verbose > 1)
{
/* Only use comma separated numbers when being very verbose.
Comma separated numbers are hard to parse in awk scripts. */
printf ("mem get: %12s %12s %12s %12s %12s\n", mcs (0, 1), mcs (0, 2),
mcs (0, 3), mcs (0, 4), mcs (0, 0));
printf ("mem put: %12s %12s %12s %12s\n", mcs (1, 1), mcs (1, 2),
mcs (1, 3), mcs (1, 4));
}
else
{
printf ("mem get: %12u %12u %12u %12u %12u\n",
mem_counters[0][1], mem_counters[0][2],
mem_counters[0][3], mem_counters[0][4],
mem_counters[0][0]);
printf ("mem put: %12u %12u %12u %12u\n",
mem_counters [1][1], mem_counters [1][2],
mem_counters [1][3], mem_counters [1][4]);
}
}
unsigned long
mem_usage_cycles (void)
{
unsigned long rv = mem_counters[0][0];
rv += mem_counters[0][1] * 1;
rv += mem_counters[0][2] * 2;
rv += mem_counters[0][3] * 3;
rv += mem_counters[0][4] * 4;
rv += mem_counters[1][1] * 1;
rv += mem_counters[1][2] * 2;
rv += mem_counters[1][3] * 3;
rv += mem_counters[1][4] * 4;
return rv;
}
static int tpr = 0;
static void
s (int address, char *dir)
{
if (tpr == 0)
printf ("MEM[%08x] %s", address, dir);
tpr++;
}
#define S(d) if (trace) s(address, d)
static void
e (void)
{
if (!trace)
return;
tpr--;
if (tpr == 0)
printf ("\n");
}
static char
mtypec (int address)
{
unsigned char *cp = rx_mem_ptr (address, MPA_CONTENT_TYPE);
return "udp"[*cp];
}
#define E() if (trace) e()
static void
mem_put_byte (unsigned int address, unsigned char value)
{
unsigned char *m;
char tc = ' ';
if (trace)
tc = mtypec (address);
m = rx_mem_ptr (address, MPA_WRITING);
if (trace)
printf (" %02x%c", value, tc);
*m = value;
switch (address)
{
case 0x0008c02a: /* PA.DR */
{
static int old_led = -1;
int red_on = 0;
int i;
if (old_led != value)
{
fputs (" ", stdout);
for (i = 0; i < 8; i++)
if (value & (1 << i))
{
if (! red_on)
{
fputs ("\033[31m", stdout);
red_on = 1;
}
fputs (" @", stdout);
}
else
{
if (red_on)
{
fputs ("\033[0m", stdout);
red_on = 0;
}
fputs (" *", stdout);
}
if (red_on)
fputs ("\033[0m", stdout);
fputs ("\r", stdout);
fflush (stdout);
old_led = value;
}
}
break;
#ifdef CYCLE_STATS
case 0x0008c02b: /* PB.DR */
{
if (value == 0)
halt_pipeline_stats ();
else
reset_pipeline_stats ();
}
#endif
case 0x00088263: /* SCI4.TDR */
{
static int pending_exit = 0;
if (pending_exit == 2)
{
step_result = RX_MAKE_EXITED(value);
longjmp (decode_jmp_buf, 1);
}
else if (value == 3)
pending_exit ++;
else
pending_exit = 0;
putchar(value);
}
break;
default:
if (is_reserved_address (address))
generate_access_exception ();
}
}
void
mem_put_qi (int address, unsigned char value)
{
S ("<=");
mem_put_byte (address, value & 0xff);
E ();
COUNT (1, 1);
}
#ifdef CYCLE_ACCURATE
static int tpu_base;
#endif
void
mem_put_hi (int address, unsigned short value)
{
S ("<=");
switch (address)
{
#ifdef CYCLE_ACCURATE
case 0x00088126: /* TPU1.TCNT */
tpu_base = regs.cycle_count;
break;
case 0x00088136: /* TPU2.TCNT */
tpu_base = regs.cycle_count;
break;
#endif
default:
if (rx_big_endian)
{
mem_put_byte (address, value >> 8);
mem_put_byte (address + 1, value & 0xff);
}
else
{
mem_put_byte (address, value & 0xff);
mem_put_byte (address + 1, value >> 8);
}
}
E ();
COUNT (1, 2);
}
void
mem_put_psi (int address, unsigned long value)
{
S ("<=");
if (rx_big_endian)
{
mem_put_byte (address, value >> 16);
mem_put_byte (address + 1, (value >> 8) & 0xff);
mem_put_byte (address + 2, value & 0xff);
}
else
{
mem_put_byte (address, value & 0xff);
mem_put_byte (address + 1, (value >> 8) & 0xff);
mem_put_byte (address + 2, value >> 16);
}
E ();
COUNT (1, 3);
}
void
mem_put_si (int address, unsigned long value)
{
S ("<=");
if (rx_big_endian)
{
mem_put_byte (address + 0, (value >> 24) & 0xff);
mem_put_byte (address + 1, (value >> 16) & 0xff);
mem_put_byte (address + 2, (value >> 8) & 0xff);
mem_put_byte (address + 3, value & 0xff);
}
else
{
mem_put_byte (address + 0, value & 0xff);
mem_put_byte (address + 1, (value >> 8) & 0xff);
mem_put_byte (address + 2, (value >> 16) & 0xff);
mem_put_byte (address + 3, (value >> 24) & 0xff);
}
E ();
COUNT (1, 4);
}
void
mem_put_blk (int address, void *bufptr, int nbytes)
{
S ("<=");
if (enable_counting)
mem_counters[1][1] += nbytes;
while (nbytes--)
mem_put_byte (address++, *(unsigned char *) bufptr++);
E ();
}
unsigned char
mem_get_pc (int address)
{
unsigned char *m = rx_mem_ptr (address, MPA_READING);
COUNT (0, 0);
return *m;
}
static unsigned char
mem_get_byte (unsigned int address)
{
unsigned char *m;
S ("=>");
m = rx_mem_ptr (address, MPA_READING);
switch (address)
{
case 0x00088264: /* SCI4.SSR */
E();
return 0x04; /* transmitter empty */
break;
default:
if (trace)
printf (" %02x%c", *m, mtypec (address));
if (is_reserved_address (address))
generate_access_exception ();
break;
}
E ();
return *m;
}
unsigned char
mem_get_qi (int address)
{
unsigned char rv;
S ("=>");
rv = mem_get_byte (address);
COUNT (0, 1);
E ();
return rv;
}
unsigned short
mem_get_hi (int address)
{
unsigned short rv;
S ("=>");
switch (address)
{
#ifdef CYCLE_ACCURATE
case 0x00088126: /* TPU1.TCNT */
rv = (regs.cycle_count - tpu_base) >> 16;
break;
case 0x00088136: /* TPU2.TCNT */
rv = (regs.cycle_count - tpu_base) >> 0;
break;
#endif
default:
if (rx_big_endian)
{
rv = mem_get_byte (address) << 8;
rv |= mem_get_byte (address + 1);
}
else
{
rv = mem_get_byte (address);
rv |= mem_get_byte (address + 1) << 8;
}
}
COUNT (0, 2);
E ();
return rv;
}
unsigned long
mem_get_psi (int address)
{
unsigned long rv;
S ("=>");
if (rx_big_endian)
{
rv = mem_get_byte (address + 2);
rv |= mem_get_byte (address + 1) << 8;
rv |= mem_get_byte (address) << 16;
}
else
{
rv = mem_get_byte (address);
rv |= mem_get_byte (address + 1) << 8;
rv |= mem_get_byte (address + 2) << 16;
}
COUNT (0, 3);
E ();
return rv;
}
unsigned long
mem_get_si (int address)
{
unsigned long rv;
S ("=>");
if (rx_big_endian)
{
rv = mem_get_byte (address + 3);
rv |= mem_get_byte (address + 2) << 8;
rv |= mem_get_byte (address + 1) << 16;
rv |= mem_get_byte (address) << 24;
}
else
{
rv = mem_get_byte (address);
rv |= mem_get_byte (address + 1) << 8;
rv |= mem_get_byte (address + 2) << 16;
rv |= mem_get_byte (address + 3) << 24;
}
COUNT (0, 4);
E ();
return rv;
}
void
mem_get_blk (int address, void *bufptr, int nbytes)
{
S ("=>");
if (enable_counting)
mem_counters[0][1] += nbytes;
while (nbytes--)
*(char *) bufptr++ = mem_get_byte (address++);
E ();
}
int
sign_ext (int v, int bits)
{
if (bits < 32)
{
v &= (1 << bits) - 1;
if (v & (1 << (bits - 1)))
v -= (1 << bits);
}
return v;
}
void
mem_set_content_type (int address, enum mem_content_type type)
{
unsigned char *mt = rx_mem_ptr (address, MPA_CONTENT_TYPE);
*mt = type;
}
void
mem_set_content_range (int start_address, int end_address, enum mem_content_type type)
{
while (start_address < end_address)
{
int sz, ofs;
unsigned char *mt;
sz = end_address - start_address;
ofs = start_address % L1_LEN;
if (sz + ofs > L1_LEN)
sz = L1_LEN - ofs;
mt = rx_mem_ptr (start_address, MPA_CONTENT_TYPE);
memset (mt, type, sz);
start_address += sz;
}
}
enum mem_content_type
mem_get_content_type (int address)
{
unsigned char *mt = rx_mem_ptr (address, MPA_CONTENT_TYPE);
return *mt;
}