mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-03 23:34:02 +08:00
6e1e1966ba
The to_detach target_ops method implementations are currently expected to work on current_inferior/inferior_ptid. In order to make things more explicit, and remove some "shadow" parameter passing through globals, this patch adds an "inferior" parameter to to_detach. Implementations will be expected to use this instead of relying on the global. However, to keep things simple, this patch only does the minimum that is necessary to add the parameter. The following patch gives an example of how one such implementation would be adapted. If the approach is deemed good, we can then look into adapting more implementations. Until then, they'll continue to work as they do currently. gdb/ChangeLog: * target.h (struct target_ops) <to_detach>: Add inferior parameter. (target_detach): Likewise. * target.c (dispose_inferior): Pass inferior down. (target_detach): Pass inferior down. Assert that it is equal to the current inferior. * aix-thread.c (aix_thread_detach): Pass inferior down. * corefile.c (core_file_command): Pass current_inferior() down. * corelow.c (core_detach): Add inferior parameter. * darwin-nat.c (darwin_detach): Likewise. * gnu-nat.c (gnu_detach): Likewise. * inf-ptrace.c (inf_ptrace_detach): Likewise. * infcmd.c (detach_command): Pass current_inferior() down to target_detach. * infrun.c (follow_fork_inferior): Pass parent_inf to target_detach. (handle_vfork_child_exec_or_exit): Pass inf->vfork_parent to target_detach. * linux-nat.c (linux_nat_detach): Add inferior parameter. * linux-thread-db.c (thread_db_detach): Likewise. * nto-procfs.c (procfs_detach): Likewise. * procfs.c (procfs_detach): Likewise. * record.c (record_detach): Likewise. * record.h (struct inferior): Forward-declare. (record_detach): Add inferior parameter. * remote-sim.c (gdbsim_detach): Likewise. * remote.c (remote_detach_1): Likewise. (remote_detach): Likewise. (extended_remote_detach): Likewise. * sol-thread.c (sol_thread_detach): Likewise. * target-debug.h (target_debug_print_inferior_p): New macro. * target-delegates.c: Re-generate. * top.c (kill_or_detach): Pass inferior down to target_detach. * windows-nat.c (windows_detach): Add inferior parameter.
1042 lines
28 KiB
C
1042 lines
28 KiB
C
/* Core dump and executable file functions below target vector, for GDB.
|
||
|
||
Copyright (C) 1986-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include <signal.h>
|
||
#include <fcntl.h>
|
||
#ifdef HAVE_SYS_FILE_H
|
||
#include <sys/file.h> /* needed for F_OK and friends */
|
||
#endif
|
||
#include "frame.h" /* required by inferior.h */
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "symtab.h"
|
||
#include "command.h"
|
||
#include "bfd.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbthread.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
#include "exec.h"
|
||
#include "readline/readline.h"
|
||
#include "solib.h"
|
||
#include "filenames.h"
|
||
#include "progspace.h"
|
||
#include "objfiles.h"
|
||
#include "gdb_bfd.h"
|
||
#include "completer.h"
|
||
#include "filestuff.h"
|
||
|
||
#ifndef O_LARGEFILE
|
||
#define O_LARGEFILE 0
|
||
#endif
|
||
|
||
/* List of all available core_fns. On gdb startup, each core file
|
||
register reader calls deprecated_add_core_fns() to register
|
||
information on each core format it is prepared to read. */
|
||
|
||
static struct core_fns *core_file_fns = NULL;
|
||
|
||
/* The core_fns for a core file handler that is prepared to read the
|
||
core file currently open on core_bfd. */
|
||
|
||
static struct core_fns *core_vec = NULL;
|
||
|
||
/* FIXME: kettenis/20031023: Eventually this variable should
|
||
disappear. */
|
||
|
||
static struct gdbarch *core_gdbarch = NULL;
|
||
|
||
/* Per-core data. Currently, only the section table. Note that these
|
||
target sections are *not* mapped in the current address spaces' set
|
||
of target sections --- those should come only from pure executable
|
||
or shared library bfds. The core bfd sections are an
|
||
implementation detail of the core target, just like ptrace is for
|
||
unix child targets. */
|
||
static struct target_section_table *core_data;
|
||
|
||
static void core_files_info (struct target_ops *);
|
||
|
||
static struct core_fns *sniff_core_bfd (bfd *);
|
||
|
||
static int gdb_check_format (bfd *);
|
||
|
||
static void core_close (struct target_ops *self);
|
||
|
||
static void core_close_cleanup (void *ignore);
|
||
|
||
static void add_to_thread_list (bfd *, asection *, void *);
|
||
|
||
static void init_core_ops (void);
|
||
|
||
static struct target_ops core_ops;
|
||
|
||
/* An arbitrary identifier for the core inferior. */
|
||
#define CORELOW_PID 1
|
||
|
||
/* Link a new core_fns into the global core_file_fns list. Called on
|
||
gdb startup by the _initialize routine in each core file register
|
||
reader, to register information about each format the reader is
|
||
prepared to handle. */
|
||
|
||
void
|
||
deprecated_add_core_fns (struct core_fns *cf)
|
||
{
|
||
cf->next = core_file_fns;
|
||
core_file_fns = cf;
|
||
}
|
||
|
||
/* The default function that core file handlers can use to examine a
|
||
core file BFD and decide whether or not to accept the job of
|
||
reading the core file. */
|
||
|
||
int
|
||
default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
|
||
{
|
||
int result;
|
||
|
||
result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
|
||
return (result);
|
||
}
|
||
|
||
/* Walk through the list of core functions to find a set that can
|
||
handle the core file open on ABFD. Returns pointer to set that is
|
||
selected. */
|
||
|
||
static struct core_fns *
|
||
sniff_core_bfd (bfd *abfd)
|
||
{
|
||
struct core_fns *cf;
|
||
struct core_fns *yummy = NULL;
|
||
int matches = 0;
|
||
|
||
/* Don't sniff if we have support for register sets in
|
||
CORE_GDBARCH. */
|
||
if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
|
||
return NULL;
|
||
|
||
for (cf = core_file_fns; cf != NULL; cf = cf->next)
|
||
{
|
||
if (cf->core_sniffer (cf, abfd))
|
||
{
|
||
yummy = cf;
|
||
matches++;
|
||
}
|
||
}
|
||
if (matches > 1)
|
||
{
|
||
warning (_("\"%s\": ambiguous core format, %d handlers match"),
|
||
bfd_get_filename (abfd), matches);
|
||
}
|
||
else if (matches == 0)
|
||
error (_("\"%s\": no core file handler recognizes format"),
|
||
bfd_get_filename (abfd));
|
||
|
||
return (yummy);
|
||
}
|
||
|
||
/* The default is to reject every core file format we see. Either
|
||
BFD has to recognize it, or we have to provide a function in the
|
||
core file handler that recognizes it. */
|
||
|
||
int
|
||
default_check_format (bfd *abfd)
|
||
{
|
||
return (0);
|
||
}
|
||
|
||
/* Attempt to recognize core file formats that BFD rejects. */
|
||
|
||
static int
|
||
gdb_check_format (bfd *abfd)
|
||
{
|
||
struct core_fns *cf;
|
||
|
||
for (cf = core_file_fns; cf != NULL; cf = cf->next)
|
||
{
|
||
if (cf->check_format (abfd))
|
||
{
|
||
return (1);
|
||
}
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
/* Discard all vestiges of any previous core file and mark data and
|
||
stack spaces as empty. */
|
||
|
||
static void
|
||
core_close (struct target_ops *self)
|
||
{
|
||
if (core_bfd)
|
||
{
|
||
int pid = ptid_get_pid (inferior_ptid);
|
||
inferior_ptid = null_ptid; /* Avoid confusion from thread
|
||
stuff. */
|
||
if (pid != 0)
|
||
exit_inferior_silent (pid);
|
||
|
||
/* Clear out solib state while the bfd is still open. See
|
||
comments in clear_solib in solib.c. */
|
||
clear_solib ();
|
||
|
||
if (core_data)
|
||
{
|
||
xfree (core_data->sections);
|
||
xfree (core_data);
|
||
core_data = NULL;
|
||
}
|
||
|
||
gdb_bfd_unref (core_bfd);
|
||
core_bfd = NULL;
|
||
}
|
||
core_vec = NULL;
|
||
core_gdbarch = NULL;
|
||
}
|
||
|
||
static void
|
||
core_close_cleanup (void *ignore)
|
||
{
|
||
core_close (NULL);
|
||
}
|
||
|
||
/* Look for sections whose names start with `.reg/' so that we can
|
||
extract the list of threads in a core file. */
|
||
|
||
static void
|
||
add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
|
||
{
|
||
ptid_t ptid;
|
||
int core_tid;
|
||
int pid, lwpid;
|
||
asection *reg_sect = (asection *) reg_sect_arg;
|
||
int fake_pid_p = 0;
|
||
struct inferior *inf;
|
||
|
||
if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
|
||
return;
|
||
|
||
core_tid = atoi (bfd_section_name (abfd, asect) + 5);
|
||
|
||
pid = bfd_core_file_pid (core_bfd);
|
||
if (pid == 0)
|
||
{
|
||
fake_pid_p = 1;
|
||
pid = CORELOW_PID;
|
||
}
|
||
|
||
lwpid = core_tid;
|
||
|
||
inf = current_inferior ();
|
||
if (inf->pid == 0)
|
||
{
|
||
inferior_appeared (inf, pid);
|
||
inf->fake_pid_p = fake_pid_p;
|
||
}
|
||
|
||
ptid = ptid_build (pid, lwpid, 0);
|
||
|
||
add_thread (ptid);
|
||
|
||
/* Warning, Will Robinson, looking at BFD private data! */
|
||
|
||
if (reg_sect != NULL
|
||
&& asect->filepos == reg_sect->filepos) /* Did we find .reg? */
|
||
inferior_ptid = ptid; /* Yes, make it current. */
|
||
}
|
||
|
||
/* This routine opens and sets up the core file bfd. */
|
||
|
||
static void
|
||
core_open (const char *arg, int from_tty)
|
||
{
|
||
const char *p;
|
||
int siggy;
|
||
struct cleanup *old_chain;
|
||
int scratch_chan;
|
||
int flags;
|
||
|
||
target_preopen (from_tty);
|
||
if (!arg)
|
||
{
|
||
if (core_bfd)
|
||
error (_("No core file specified. (Use `detach' "
|
||
"to stop debugging a core file.)"));
|
||
else
|
||
error (_("No core file specified."));
|
||
}
|
||
|
||
gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
|
||
if (!IS_ABSOLUTE_PATH (filename.get ()))
|
||
filename.reset (concat (current_directory, "/",
|
||
filename.get (), (char *) NULL));
|
||
|
||
flags = O_BINARY | O_LARGEFILE;
|
||
if (write_files)
|
||
flags |= O_RDWR;
|
||
else
|
||
flags |= O_RDONLY;
|
||
scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
|
||
if (scratch_chan < 0)
|
||
perror_with_name (filename.get ());
|
||
|
||
gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
|
||
write_files ? FOPEN_RUB : FOPEN_RB,
|
||
scratch_chan));
|
||
if (temp_bfd == NULL)
|
||
perror_with_name (filename.get ());
|
||
|
||
if (!bfd_check_format (temp_bfd.get (), bfd_core)
|
||
&& !gdb_check_format (temp_bfd.get ()))
|
||
{
|
||
/* Do it after the err msg */
|
||
/* FIXME: should be checking for errors from bfd_close (for one
|
||
thing, on error it does not free all the storage associated
|
||
with the bfd). */
|
||
error (_("\"%s\" is not a core dump: %s"),
|
||
filename.get (), bfd_errmsg (bfd_get_error ()));
|
||
}
|
||
|
||
/* Looks semi-reasonable. Toss the old core file and work on the
|
||
new. */
|
||
|
||
unpush_target (&core_ops);
|
||
core_bfd = temp_bfd.release ();
|
||
old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
|
||
|
||
core_gdbarch = gdbarch_from_bfd (core_bfd);
|
||
|
||
/* Find a suitable core file handler to munch on core_bfd */
|
||
core_vec = sniff_core_bfd (core_bfd);
|
||
|
||
validate_files ();
|
||
|
||
core_data = XCNEW (struct target_section_table);
|
||
|
||
/* Find the data section */
|
||
if (build_section_table (core_bfd,
|
||
&core_data->sections,
|
||
&core_data->sections_end))
|
||
error (_("\"%s\": Can't find sections: %s"),
|
||
bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
|
||
|
||
/* If we have no exec file, try to set the architecture from the
|
||
core file. We don't do this unconditionally since an exec file
|
||
typically contains more information that helps us determine the
|
||
architecture than a core file. */
|
||
if (!exec_bfd)
|
||
set_gdbarch_from_file (core_bfd);
|
||
|
||
push_target (&core_ops);
|
||
discard_cleanups (old_chain);
|
||
|
||
/* Do this before acknowledging the inferior, so if
|
||
post_create_inferior throws (can happen easilly if you're loading
|
||
a core file with the wrong exec), we aren't left with threads
|
||
from the previous inferior. */
|
||
init_thread_list ();
|
||
|
||
inferior_ptid = null_ptid;
|
||
|
||
/* Need to flush the register cache (and the frame cache) from a
|
||
previous debug session. If inferior_ptid ends up the same as the
|
||
last debug session --- e.g., b foo; run; gcore core1; step; gcore
|
||
core2; core core1; core core2 --- then there's potential for
|
||
get_current_regcache to return the cached regcache of the
|
||
previous session, and the frame cache being stale. */
|
||
registers_changed ();
|
||
|
||
/* Build up thread list from BFD sections, and possibly set the
|
||
current thread to the .reg/NN section matching the .reg
|
||
section. */
|
||
bfd_map_over_sections (core_bfd, add_to_thread_list,
|
||
bfd_get_section_by_name (core_bfd, ".reg"));
|
||
|
||
if (ptid_equal (inferior_ptid, null_ptid))
|
||
{
|
||
/* Either we found no .reg/NN section, and hence we have a
|
||
non-threaded core (single-threaded, from gdb's perspective),
|
||
or for some reason add_to_thread_list couldn't determine
|
||
which was the "main" thread. The latter case shouldn't
|
||
usually happen, but we're dealing with input here, which can
|
||
always be broken in different ways. */
|
||
struct thread_info *thread = first_thread_of_process (-1);
|
||
|
||
if (thread == NULL)
|
||
{
|
||
inferior_appeared (current_inferior (), CORELOW_PID);
|
||
inferior_ptid = pid_to_ptid (CORELOW_PID);
|
||
add_thread_silent (inferior_ptid);
|
||
}
|
||
else
|
||
switch_to_thread (thread->ptid);
|
||
}
|
||
|
||
post_create_inferior (&core_ops, from_tty);
|
||
|
||
/* Now go through the target stack looking for threads since there
|
||
may be a thread_stratum target loaded on top of target core by
|
||
now. The layer above should claim threads found in the BFD
|
||
sections. */
|
||
TRY
|
||
{
|
||
target_update_thread_list ();
|
||
}
|
||
|
||
CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
END_CATCH
|
||
|
||
p = bfd_core_file_failing_command (core_bfd);
|
||
if (p)
|
||
printf_filtered (_("Core was generated by `%s'.\n"), p);
|
||
|
||
/* Clearing any previous state of convenience variables. */
|
||
clear_exit_convenience_vars ();
|
||
|
||
siggy = bfd_core_file_failing_signal (core_bfd);
|
||
if (siggy > 0)
|
||
{
|
||
/* If we don't have a CORE_GDBARCH to work with, assume a native
|
||
core (map gdb_signal from host signals). If we do have
|
||
CORE_GDBARCH to work with, but no gdb_signal_from_target
|
||
implementation for that gdbarch, as a fallback measure,
|
||
assume the host signal mapping. It'll be correct for native
|
||
cores, but most likely incorrect for cross-cores. */
|
||
enum gdb_signal sig = (core_gdbarch != NULL
|
||
&& gdbarch_gdb_signal_from_target_p (core_gdbarch)
|
||
? gdbarch_gdb_signal_from_target (core_gdbarch,
|
||
siggy)
|
||
: gdb_signal_from_host (siggy));
|
||
|
||
printf_filtered (_("Program terminated with signal %s, %s.\n"),
|
||
gdb_signal_to_name (sig), gdb_signal_to_string (sig));
|
||
|
||
/* Set the value of the internal variable $_exitsignal,
|
||
which holds the signal uncaught by the inferior. */
|
||
set_internalvar_integer (lookup_internalvar ("_exitsignal"),
|
||
siggy);
|
||
}
|
||
|
||
/* Fetch all registers from core file. */
|
||
target_fetch_registers (get_current_regcache (), -1);
|
||
|
||
/* Now, set up the frame cache, and print the top of stack. */
|
||
reinit_frame_cache ();
|
||
print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
|
||
|
||
/* Current thread should be NUM 1 but the user does not know that.
|
||
If a program is single threaded gdb in general does not mention
|
||
anything about threads. That is why the test is >= 2. */
|
||
if (thread_count () >= 2)
|
||
{
|
||
TRY
|
||
{
|
||
thread_command (NULL, from_tty);
|
||
}
|
||
CATCH (except, RETURN_MASK_ERROR)
|
||
{
|
||
exception_print (gdb_stderr, except);
|
||
}
|
||
END_CATCH
|
||
}
|
||
}
|
||
|
||
static void
|
||
core_detach (struct target_ops *ops, inferior *inf, int from_tty)
|
||
{
|
||
unpush_target (ops);
|
||
reinit_frame_cache ();
|
||
if (from_tty)
|
||
printf_filtered (_("No core file now.\n"));
|
||
}
|
||
|
||
/* Try to retrieve registers from a section in core_bfd, and supply
|
||
them to core_vec->core_read_registers, as the register set numbered
|
||
WHICH.
|
||
|
||
If ptid's lwp member is zero, do the single-threaded
|
||
thing: look for a section named NAME. If ptid's lwp
|
||
member is non-zero, do the multi-threaded thing: look for a section
|
||
named "NAME/LWP", where LWP is the shortest ASCII decimal
|
||
representation of ptid's lwp member.
|
||
|
||
HUMAN_NAME is a human-readable name for the kind of registers the
|
||
NAME section contains, for use in error messages.
|
||
|
||
If REQUIRED is non-zero, print an error if the core file doesn't
|
||
have a section by the appropriate name. Otherwise, just do
|
||
nothing. */
|
||
|
||
static void
|
||
get_core_register_section (struct regcache *regcache,
|
||
const struct regset *regset,
|
||
const char *name,
|
||
int min_size,
|
||
int which,
|
||
const char *human_name,
|
||
int required)
|
||
{
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
char *contents;
|
||
bool variable_size_section = (regset != NULL
|
||
&& regset->flags & REGSET_VARIABLE_SIZE);
|
||
|
||
thread_section_name section_name (name, regcache->ptid ());
|
||
|
||
section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
|
||
if (! section)
|
||
{
|
||
if (required)
|
||
warning (_("Couldn't find %s registers in core file."),
|
||
human_name);
|
||
return;
|
||
}
|
||
|
||
size = bfd_section_size (core_bfd, section);
|
||
if (size < min_size)
|
||
{
|
||
warning (_("Section `%s' in core file too small."),
|
||
section_name.c_str ());
|
||
return;
|
||
}
|
||
if (size != min_size && !variable_size_section)
|
||
{
|
||
warning (_("Unexpected size of section `%s' in core file."),
|
||
section_name.c_str ());
|
||
}
|
||
|
||
contents = (char *) alloca (size);
|
||
if (! bfd_get_section_contents (core_bfd, section, contents,
|
||
(file_ptr) 0, size))
|
||
{
|
||
warning (_("Couldn't read %s registers from `%s' section in core file."),
|
||
human_name, section_name.c_str ());
|
||
return;
|
||
}
|
||
|
||
if (regset != NULL)
|
||
{
|
||
regset->supply_regset (regset, regcache, -1, contents, size);
|
||
return;
|
||
}
|
||
|
||
gdb_assert (core_vec);
|
||
core_vec->core_read_registers (regcache, contents, size, which,
|
||
((CORE_ADDR)
|
||
bfd_section_vma (core_bfd, section)));
|
||
}
|
||
|
||
/* Callback for get_core_registers that handles a single core file
|
||
register note section. */
|
||
|
||
static void
|
||
get_core_registers_cb (const char *sect_name, int size,
|
||
const struct regset *regset,
|
||
const char *human_name, void *cb_data)
|
||
{
|
||
struct regcache *regcache = (struct regcache *) cb_data;
|
||
int required = 0;
|
||
|
||
if (strcmp (sect_name, ".reg") == 0)
|
||
{
|
||
required = 1;
|
||
if (human_name == NULL)
|
||
human_name = "general-purpose";
|
||
}
|
||
else if (strcmp (sect_name, ".reg2") == 0)
|
||
{
|
||
if (human_name == NULL)
|
||
human_name = "floating-point";
|
||
}
|
||
|
||
/* The 'which' parameter is only used when no regset is provided.
|
||
Thus we just set it to -1. */
|
||
get_core_register_section (regcache, regset, sect_name,
|
||
size, -1, human_name, required);
|
||
}
|
||
|
||
/* Get the registers out of a core file. This is the machine-
|
||
independent part. Fetch_core_registers is the machine-dependent
|
||
part, typically implemented in the xm-file for each
|
||
architecture. */
|
||
|
||
/* We just get all the registers, so we don't use regno. */
|
||
|
||
static void
|
||
get_core_registers (struct target_ops *ops,
|
||
struct regcache *regcache, int regno)
|
||
{
|
||
int i;
|
||
struct gdbarch *gdbarch;
|
||
|
||
if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
|
||
&& (core_vec == NULL || core_vec->core_read_registers == NULL))
|
||
{
|
||
fprintf_filtered (gdb_stderr,
|
||
"Can't fetch registers from this type of core file\n");
|
||
return;
|
||
}
|
||
|
||
gdbarch = regcache->arch ();
|
||
if (gdbarch_iterate_over_regset_sections_p (gdbarch))
|
||
gdbarch_iterate_over_regset_sections (gdbarch,
|
||
get_core_registers_cb,
|
||
(void *) regcache, NULL);
|
||
else
|
||
{
|
||
get_core_register_section (regcache, NULL,
|
||
".reg", 0, 0, "general-purpose", 1);
|
||
get_core_register_section (regcache, NULL,
|
||
".reg2", 0, 2, "floating-point", 0);
|
||
}
|
||
|
||
/* Mark all registers not found in the core as unavailable. */
|
||
for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
|
||
if (regcache_register_status (regcache, i) == REG_UNKNOWN)
|
||
regcache_raw_supply (regcache, i, NULL);
|
||
}
|
||
|
||
static void
|
||
core_files_info (struct target_ops *t)
|
||
{
|
||
print_section_info (core_data, core_bfd);
|
||
}
|
||
|
||
struct spuid_list
|
||
{
|
||
gdb_byte *buf;
|
||
ULONGEST offset;
|
||
LONGEST len;
|
||
ULONGEST pos;
|
||
ULONGEST written;
|
||
};
|
||
|
||
static void
|
||
add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
|
||
{
|
||
struct spuid_list *list = (struct spuid_list *) list_p;
|
||
enum bfd_endian byte_order
|
||
= bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
|
||
int fd, pos = 0;
|
||
|
||
sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
|
||
if (pos == 0)
|
||
return;
|
||
|
||
if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
|
||
{
|
||
store_unsigned_integer (list->buf + list->pos - list->offset,
|
||
4, byte_order, fd);
|
||
list->written += 4;
|
||
}
|
||
list->pos += 4;
|
||
}
|
||
|
||
static enum target_xfer_status
|
||
core_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
const char *annex, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf, ULONGEST offset,
|
||
ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
switch (object)
|
||
{
|
||
case TARGET_OBJECT_MEMORY:
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
offset, len, xfered_len,
|
||
core_data->sections,
|
||
core_data->sections_end,
|
||
NULL);
|
||
|
||
case TARGET_OBJECT_AUXV:
|
||
if (readbuf)
|
||
{
|
||
/* When the aux vector is stored in core file, BFD
|
||
represents this with a fake section called ".auxv". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".auxv");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (core_bfd, section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read NT_AUXV note in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_WCOOKIE:
|
||
if (readbuf)
|
||
{
|
||
/* When the StackGhost cookie is stored in core file, BFD
|
||
represents this with a fake section called
|
||
".wcookie". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
|
||
section = bfd_get_section_by_name (core_bfd, ".wcookie");
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (core_bfd, section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read StackGhost cookie in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_LIBRARIES:
|
||
if (core_gdbarch
|
||
&& gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
|
||
readbuf,
|
||
offset, len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
/* FALL THROUGH */
|
||
|
||
case TARGET_OBJECT_LIBRARIES_AIX:
|
||
if (core_gdbarch
|
||
&& gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
|
||
{
|
||
if (writebuf)
|
||
return TARGET_XFER_E_IO;
|
||
else
|
||
{
|
||
*xfered_len
|
||
= gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
|
||
readbuf, offset,
|
||
len);
|
||
|
||
if (*xfered_len == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
/* FALL THROUGH */
|
||
|
||
case TARGET_OBJECT_SPU:
|
||
if (readbuf && annex)
|
||
{
|
||
/* When the SPU contexts are stored in a core file, BFD
|
||
represents this with a fake section called
|
||
"SPU/<annex>". */
|
||
|
||
struct bfd_section *section;
|
||
bfd_size_type size;
|
||
char sectionstr[100];
|
||
|
||
xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
|
||
|
||
section = bfd_get_section_by_name (core_bfd, sectionstr);
|
||
if (section == NULL)
|
||
return TARGET_XFER_E_IO;
|
||
|
||
size = bfd_section_size (core_bfd, section);
|
||
if (offset >= size)
|
||
return TARGET_XFER_EOF;
|
||
size -= offset;
|
||
if (size > len)
|
||
size = len;
|
||
|
||
if (size == 0)
|
||
return TARGET_XFER_EOF;
|
||
if (!bfd_get_section_contents (core_bfd, section, readbuf,
|
||
(file_ptr) offset, size))
|
||
{
|
||
warning (_("Couldn't read SPU section in core file."));
|
||
return TARGET_XFER_E_IO;
|
||
}
|
||
|
||
*xfered_len = (ULONGEST) size;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
else if (readbuf)
|
||
{
|
||
/* NULL annex requests list of all present spuids. */
|
||
struct spuid_list list;
|
||
|
||
list.buf = readbuf;
|
||
list.offset = offset;
|
||
list.len = len;
|
||
list.pos = 0;
|
||
list.written = 0;
|
||
bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
|
||
|
||
if (list.written == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
{
|
||
*xfered_len = (ULONGEST) list.written;
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
case TARGET_OBJECT_SIGNAL_INFO:
|
||
if (readbuf)
|
||
{
|
||
if (core_gdbarch
|
||
&& gdbarch_core_xfer_siginfo_p (core_gdbarch))
|
||
{
|
||
LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
|
||
offset, len);
|
||
|
||
if (l >= 0)
|
||
{
|
||
*xfered_len = l;
|
||
if (l == 0)
|
||
return TARGET_XFER_EOF;
|
||
else
|
||
return TARGET_XFER_OK;
|
||
}
|
||
}
|
||
}
|
||
return TARGET_XFER_E_IO;
|
||
|
||
default:
|
||
return ops->beneath->to_xfer_partial (ops->beneath, object,
|
||
annex, readbuf,
|
||
writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
}
|
||
|
||
|
||
/* If mourn is being called in all the right places, this could be say
|
||
`gdb internal error' (since generic_mourn calls
|
||
breakpoint_init_inferior). */
|
||
|
||
static int
|
||
ignore (struct target_ops *ops, struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
/* Implement the to_remove_breakpoint method. */
|
||
|
||
static int
|
||
core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt,
|
||
enum remove_bp_reason reason)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Okay, let's be honest: threads gleaned from a core file aren't
|
||
exactly lively, are they? On the other hand, if we don't claim
|
||
that each & every one is alive, then we don't get any of them
|
||
to appear in an "info thread" command, which is quite a useful
|
||
behaviour.
|
||
*/
|
||
static int
|
||
core_thread_alive (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Ask the current architecture what it knows about this core file.
|
||
That will be used, in turn, to pick a better architecture. This
|
||
wrapper could be avoided if targets got a chance to specialize
|
||
core_ops. */
|
||
|
||
static const struct target_desc *
|
||
core_read_description (struct target_ops *target)
|
||
{
|
||
if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
|
||
{
|
||
const struct target_desc *result;
|
||
|
||
result = gdbarch_core_read_description (core_gdbarch,
|
||
target, core_bfd);
|
||
if (result != NULL)
|
||
return result;
|
||
}
|
||
|
||
return target->beneath->to_read_description (target->beneath);
|
||
}
|
||
|
||
static const char *
|
||
core_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
static char buf[64];
|
||
struct inferior *inf;
|
||
int pid;
|
||
|
||
/* The preferred way is to have a gdbarch/OS specific
|
||
implementation. */
|
||
if (core_gdbarch
|
||
&& gdbarch_core_pid_to_str_p (core_gdbarch))
|
||
return gdbarch_core_pid_to_str (core_gdbarch, ptid);
|
||
|
||
/* Otherwise, if we don't have one, we'll just fallback to
|
||
"process", with normal_pid_to_str. */
|
||
|
||
/* Try the LWPID field first. */
|
||
pid = ptid_get_lwp (ptid);
|
||
if (pid != 0)
|
||
return normal_pid_to_str (pid_to_ptid (pid));
|
||
|
||
/* Otherwise, this isn't a "threaded" core -- use the PID field, but
|
||
only if it isn't a fake PID. */
|
||
inf = find_inferior_ptid (ptid);
|
||
if (inf != NULL && !inf->fake_pid_p)
|
||
return normal_pid_to_str (ptid);
|
||
|
||
/* No luck. We simply don't have a valid PID to print. */
|
||
xsnprintf (buf, sizeof buf, "<main task>");
|
||
return buf;
|
||
}
|
||
|
||
static const char *
|
||
core_thread_name (struct target_ops *self, struct thread_info *thr)
|
||
{
|
||
if (core_gdbarch
|
||
&& gdbarch_core_thread_name_p (core_gdbarch))
|
||
return gdbarch_core_thread_name (core_gdbarch, thr);
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
core_has_memory (struct target_ops *ops)
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
static int
|
||
core_has_stack (struct target_ops *ops)
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
static int
|
||
core_has_registers (struct target_ops *ops)
|
||
{
|
||
return (core_bfd != NULL);
|
||
}
|
||
|
||
/* Implement the to_info_proc method. */
|
||
|
||
static void
|
||
core_info_proc (struct target_ops *ops, const char *args,
|
||
enum info_proc_what request)
|
||
{
|
||
struct gdbarch *gdbarch = get_current_arch ();
|
||
|
||
/* Since this is the core file target, call the 'core_info_proc'
|
||
method on gdbarch, not 'info_proc'. */
|
||
if (gdbarch_core_info_proc_p (gdbarch))
|
||
gdbarch_core_info_proc (gdbarch, args, request);
|
||
}
|
||
|
||
/* Fill in core_ops with its defined operations and properties. */
|
||
|
||
static void
|
||
init_core_ops (void)
|
||
{
|
||
core_ops.to_shortname = "core";
|
||
core_ops.to_longname = "Local core dump file";
|
||
core_ops.to_doc =
|
||
"Use a core file as a target. Specify the filename of the core file.";
|
||
core_ops.to_open = core_open;
|
||
core_ops.to_close = core_close;
|
||
core_ops.to_detach = core_detach;
|
||
core_ops.to_fetch_registers = get_core_registers;
|
||
core_ops.to_xfer_partial = core_xfer_partial;
|
||
core_ops.to_files_info = core_files_info;
|
||
core_ops.to_insert_breakpoint = ignore;
|
||
core_ops.to_remove_breakpoint = core_remove_breakpoint;
|
||
core_ops.to_thread_alive = core_thread_alive;
|
||
core_ops.to_read_description = core_read_description;
|
||
core_ops.to_pid_to_str = core_pid_to_str;
|
||
core_ops.to_thread_name = core_thread_name;
|
||
core_ops.to_stratum = process_stratum;
|
||
core_ops.to_has_memory = core_has_memory;
|
||
core_ops.to_has_stack = core_has_stack;
|
||
core_ops.to_has_registers = core_has_registers;
|
||
core_ops.to_info_proc = core_info_proc;
|
||
core_ops.to_magic = OPS_MAGIC;
|
||
|
||
if (core_target)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("init_core_ops: core target already exists (\"%s\")."),
|
||
core_target->to_longname);
|
||
core_target = &core_ops;
|
||
}
|
||
|
||
void
|
||
_initialize_corelow (void)
|
||
{
|
||
init_core_ops ();
|
||
|
||
add_target_with_completer (&core_ops, filename_completer);
|
||
}
|