mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 11:04:18 +08:00
228e534f16
(struct elf_obj_tdata): Delete core_signal, core_pid, core_lwpid, core_program, and core_command. Add "core". * elf.c (bfd_elf_mkcorefile): Allocate "core" struct. Update all refs to tdata core fields. * elf32-am33lin.c, * elf32-arm.c, * elf32-cris.c, * elf32-frv.c, * elf32-hppa.c, * elf32-i386.c, * elf32-m68k.c, * elf32-mips.c, * elf32-nios2.c, * elf32-ppc.c, * elf32-s390.c, * elf32-score.c, * elf32-score7.c, * elf32-sh.c, * elf32-sparc.c, * elf32-tilegx.c, * elf32-tilepro.c, * elf32-xtensa.c, * elf64-aarch64.c, * elf64-hppa.c, * elf64-mips.c, * elf64-ppc.c, * elf64-tilegx.c, * elf64-x86-64.c, * elfcore.h, * elfn32-mips.c: Update all refs to tdata core fields.
5588 lines
162 KiB
C
5588 lines
162 KiB
C
/* X86-64 specific support for ELF
|
||
Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
|
||
2010, 2011, 2012
|
||
Free Software Foundation, Inc.
|
||
Contributed by Jan Hubicka <jh@suse.cz>.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
|
||
MA 02110-1301, USA. */
|
||
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
#include "bfdlink.h"
|
||
#include "libbfd.h"
|
||
#include "elf-bfd.h"
|
||
#include "elf-nacl.h"
|
||
#include "bfd_stdint.h"
|
||
#include "objalloc.h"
|
||
#include "hashtab.h"
|
||
#include "dwarf2.h"
|
||
#include "libiberty.h"
|
||
|
||
#include "elf/x86-64.h"
|
||
|
||
#ifdef CORE_HEADER
|
||
#include <stdarg.h>
|
||
#include CORE_HEADER
|
||
#endif
|
||
|
||
/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
|
||
#define MINUS_ONE (~ (bfd_vma) 0)
|
||
|
||
/* Since both 32-bit and 64-bit x86-64 encode relocation type in the
|
||
identical manner, we use ELF32_R_TYPE instead of ELF64_R_TYPE to get
|
||
relocation type. We also use ELF_ST_TYPE instead of ELF64_ST_TYPE
|
||
since they are the same. */
|
||
|
||
#define ABI_64_P(abfd) \
|
||
(get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
|
||
|
||
/* The relocation "howto" table. Order of fields:
|
||
type, rightshift, size, bitsize, pc_relative, bitpos, complain_on_overflow,
|
||
special_function, name, partial_inplace, src_mask, dst_mask, pcrel_offset. */
|
||
static reloc_howto_type x86_64_elf_howto_table[] =
|
||
{
|
||
HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
|
||
bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
|
||
FALSE),
|
||
HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
|
||
FALSE),
|
||
HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
|
||
TRUE),
|
||
HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE),
|
||
HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
|
||
TRUE),
|
||
HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE),
|
||
HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
|
||
0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
|
||
bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE),
|
||
HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE),
|
||
HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
|
||
HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
|
||
HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
|
||
HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
|
||
HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
|
||
0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
|
||
0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
|
||
0xffffffff, FALSE),
|
||
HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
|
||
0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
|
||
0xffffffff, FALSE),
|
||
HOWTO(R_X86_64_PC64, 0, 4, 64, TRUE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_PC64", FALSE, MINUS_ONE, MINUS_ONE,
|
||
TRUE),
|
||
HOWTO(R_X86_64_GOTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTOFF64",
|
||
FALSE, MINUS_ONE, MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_GOTPC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTPC32",
|
||
FALSE, 0xffffffff, 0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_GOT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOT64", FALSE, MINUS_ONE, MINUS_ONE,
|
||
FALSE),
|
||
HOWTO(R_X86_64_GOTPCREL64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTPCREL64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, TRUE),
|
||
HOWTO(R_X86_64_GOTPC64, 0, 4, 64, TRUE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTPC64",
|
||
FALSE, MINUS_ONE, MINUS_ONE, TRUE),
|
||
HOWTO(R_X86_64_GOTPLT64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_GOTPLT64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_PLTOFF64, 0, 4, 64, FALSE, 0, complain_overflow_signed,
|
||
bfd_elf_generic_reloc, "R_X86_64_PLTOFF64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_SIZE32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
|
||
bfd_elf_generic_reloc, "R_X86_64_SIZE32", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE),
|
||
HOWTO(R_X86_64_SIZE64, 0, 4, 64, FALSE, 0, complain_overflow_unsigned,
|
||
bfd_elf_generic_reloc, "R_X86_64_SIZE64", FALSE, MINUS_ONE, MINUS_ONE,
|
||
FALSE),
|
||
HOWTO(R_X86_64_GOTPC32_TLSDESC, 0, 2, 32, TRUE, 0,
|
||
complain_overflow_bitfield, bfd_elf_generic_reloc,
|
||
"R_X86_64_GOTPC32_TLSDESC",
|
||
FALSE, 0xffffffff, 0xffffffff, TRUE),
|
||
HOWTO(R_X86_64_TLSDESC_CALL, 0, 0, 0, FALSE, 0,
|
||
complain_overflow_dont, bfd_elf_generic_reloc,
|
||
"R_X86_64_TLSDESC_CALL",
|
||
FALSE, 0, 0, FALSE),
|
||
HOWTO(R_X86_64_TLSDESC, 0, 4, 64, FALSE, 0,
|
||
complain_overflow_bitfield, bfd_elf_generic_reloc,
|
||
"R_X86_64_TLSDESC",
|
||
FALSE, MINUS_ONE, MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_IRELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_IRELATIVE", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
HOWTO(R_X86_64_RELATIVE64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_RELATIVE64", FALSE, MINUS_ONE,
|
||
MINUS_ONE, FALSE),
|
||
|
||
/* We have a gap in the reloc numbers here.
|
||
R_X86_64_standard counts the number up to this point, and
|
||
R_X86_64_vt_offset is the value to subtract from a reloc type of
|
||
R_X86_64_GNU_VT* to form an index into this table. */
|
||
#define R_X86_64_standard (R_X86_64_RELATIVE64 + 1)
|
||
#define R_X86_64_vt_offset (R_X86_64_GNU_VTINHERIT - R_X86_64_standard)
|
||
|
||
/* GNU extension to record C++ vtable hierarchy. */
|
||
HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
|
||
NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
|
||
|
||
/* GNU extension to record C++ vtable member usage. */
|
||
HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
|
||
_bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
|
||
FALSE),
|
||
|
||
/* Use complain_overflow_bitfield on R_X86_64_32 for x32. */
|
||
HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
|
||
bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
|
||
FALSE)
|
||
};
|
||
|
||
#define IS_X86_64_PCREL_TYPE(TYPE) \
|
||
( ((TYPE) == R_X86_64_PC8) \
|
||
|| ((TYPE) == R_X86_64_PC16) \
|
||
|| ((TYPE) == R_X86_64_PC32) \
|
||
|| ((TYPE) == R_X86_64_PC64))
|
||
|
||
/* Map BFD relocs to the x86_64 elf relocs. */
|
||
struct elf_reloc_map
|
||
{
|
||
bfd_reloc_code_real_type bfd_reloc_val;
|
||
unsigned char elf_reloc_val;
|
||
};
|
||
|
||
static const struct elf_reloc_map x86_64_reloc_map[] =
|
||
{
|
||
{ BFD_RELOC_NONE, R_X86_64_NONE, },
|
||
{ BFD_RELOC_64, R_X86_64_64, },
|
||
{ BFD_RELOC_32_PCREL, R_X86_64_PC32, },
|
||
{ BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
|
||
{ BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
|
||
{ BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
|
||
{ BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
|
||
{ BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
|
||
{ BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
|
||
{ BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
|
||
{ BFD_RELOC_32, R_X86_64_32, },
|
||
{ BFD_RELOC_X86_64_32S, R_X86_64_32S, },
|
||
{ BFD_RELOC_16, R_X86_64_16, },
|
||
{ BFD_RELOC_16_PCREL, R_X86_64_PC16, },
|
||
{ BFD_RELOC_8, R_X86_64_8, },
|
||
{ BFD_RELOC_8_PCREL, R_X86_64_PC8, },
|
||
{ BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
|
||
{ BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
|
||
{ BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
|
||
{ BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
|
||
{ BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
|
||
{ BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
|
||
{ BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
|
||
{ BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
|
||
{ BFD_RELOC_64_PCREL, R_X86_64_PC64, },
|
||
{ BFD_RELOC_X86_64_GOTOFF64, R_X86_64_GOTOFF64, },
|
||
{ BFD_RELOC_X86_64_GOTPC32, R_X86_64_GOTPC32, },
|
||
{ BFD_RELOC_X86_64_GOT64, R_X86_64_GOT64, },
|
||
{ BFD_RELOC_X86_64_GOTPCREL64,R_X86_64_GOTPCREL64, },
|
||
{ BFD_RELOC_X86_64_GOTPC64, R_X86_64_GOTPC64, },
|
||
{ BFD_RELOC_X86_64_GOTPLT64, R_X86_64_GOTPLT64, },
|
||
{ BFD_RELOC_X86_64_PLTOFF64, R_X86_64_PLTOFF64, },
|
||
{ BFD_RELOC_SIZE32, R_X86_64_SIZE32, },
|
||
{ BFD_RELOC_SIZE64, R_X86_64_SIZE64, },
|
||
{ BFD_RELOC_X86_64_GOTPC32_TLSDESC, R_X86_64_GOTPC32_TLSDESC, },
|
||
{ BFD_RELOC_X86_64_TLSDESC_CALL, R_X86_64_TLSDESC_CALL, },
|
||
{ BFD_RELOC_X86_64_TLSDESC, R_X86_64_TLSDESC, },
|
||
{ BFD_RELOC_X86_64_IRELATIVE, R_X86_64_IRELATIVE, },
|
||
{ BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
|
||
{ BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
|
||
};
|
||
|
||
static reloc_howto_type *
|
||
elf_x86_64_rtype_to_howto (bfd *abfd, unsigned r_type)
|
||
{
|
||
unsigned i;
|
||
|
||
if (r_type == (unsigned int) R_X86_64_32)
|
||
{
|
||
if (ABI_64_P (abfd))
|
||
i = r_type;
|
||
else
|
||
i = ARRAY_SIZE (x86_64_elf_howto_table) - 1;
|
||
}
|
||
else if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT
|
||
|| r_type >= (unsigned int) R_X86_64_max)
|
||
{
|
||
if (r_type >= (unsigned int) R_X86_64_standard)
|
||
{
|
||
(*_bfd_error_handler) (_("%B: invalid relocation type %d"),
|
||
abfd, (int) r_type);
|
||
r_type = R_X86_64_NONE;
|
||
}
|
||
i = r_type;
|
||
}
|
||
else
|
||
i = r_type - (unsigned int) R_X86_64_vt_offset;
|
||
BFD_ASSERT (x86_64_elf_howto_table[i].type == r_type);
|
||
return &x86_64_elf_howto_table[i];
|
||
}
|
||
|
||
/* Given a BFD reloc type, return a HOWTO structure. */
|
||
static reloc_howto_type *
|
||
elf_x86_64_reloc_type_lookup (bfd *abfd,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
|
||
i++)
|
||
{
|
||
if (x86_64_reloc_map[i].bfd_reloc_val == code)
|
||
return elf_x86_64_rtype_to_howto (abfd,
|
||
x86_64_reloc_map[i].elf_reloc_val);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
elf_x86_64_reloc_name_lookup (bfd *abfd,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
if (!ABI_64_P (abfd) && strcasecmp (r_name, "R_X86_64_32") == 0)
|
||
{
|
||
/* Get x32 R_X86_64_32. */
|
||
reloc_howto_type *reloc
|
||
= &x86_64_elf_howto_table[ARRAY_SIZE (x86_64_elf_howto_table) - 1];
|
||
BFD_ASSERT (reloc->type == (unsigned int) R_X86_64_32);
|
||
return reloc;
|
||
}
|
||
|
||
for (i = 0; i < ARRAY_SIZE (x86_64_elf_howto_table); i++)
|
||
if (x86_64_elf_howto_table[i].name != NULL
|
||
&& strcasecmp (x86_64_elf_howto_table[i].name, r_name) == 0)
|
||
return &x86_64_elf_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Given an x86_64 ELF reloc type, fill in an arelent structure. */
|
||
|
||
static void
|
||
elf_x86_64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
|
||
Elf_Internal_Rela *dst)
|
||
{
|
||
unsigned r_type;
|
||
|
||
r_type = ELF32_R_TYPE (dst->r_info);
|
||
cache_ptr->howto = elf_x86_64_rtype_to_howto (abfd, r_type);
|
||
BFD_ASSERT (r_type == cache_ptr->howto->type);
|
||
}
|
||
|
||
/* Support for core dump NOTE sections. */
|
||
static bfd_boolean
|
||
elf_x86_64_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
int offset;
|
||
size_t size;
|
||
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 296: /* sizeof(istruct elf_prstatus) on Linux/x32 */
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
|
||
|
||
/* pr_reg */
|
||
offset = 72;
|
||
size = 216;
|
||
|
||
break;
|
||
|
||
case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
|
||
/* pr_cursig */
|
||
elf_tdata (abfd)->core->signal
|
||
= bfd_get_16 (abfd, note->descdata + 12);
|
||
|
||
/* pr_pid */
|
||
elf_tdata (abfd)->core->lwpid
|
||
= bfd_get_32 (abfd, note->descdata + 32);
|
||
|
||
/* pr_reg */
|
||
offset = 112;
|
||
size = 216;
|
||
|
||
break;
|
||
}
|
||
|
||
/* Make a ".reg/999" section. */
|
||
return _bfd_elfcore_make_pseudosection (abfd, ".reg",
|
||
size, note->descpos + offset);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
|
||
{
|
||
switch (note->descsz)
|
||
{
|
||
default:
|
||
return FALSE;
|
||
|
||
case 124: /* sizeof(struct elf_prpsinfo) on Linux/x32 */
|
||
elf_tdata (abfd)->core->pid
|
||
= bfd_get_32 (abfd, note->descdata + 12);
|
||
elf_tdata (abfd)->core->program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
|
||
elf_tdata (abfd)->core->command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
|
||
break;
|
||
|
||
case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
|
||
elf_tdata (abfd)->core->pid
|
||
= bfd_get_32 (abfd, note->descdata + 24);
|
||
elf_tdata (abfd)->core->program
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
|
||
elf_tdata (abfd)->core->command
|
||
= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
|
||
}
|
||
|
||
/* Note that for some reason, a spurious space is tacked
|
||
onto the end of the args in some (at least one anyway)
|
||
implementations, so strip it off if it exists. */
|
||
|
||
{
|
||
char *command = elf_tdata (abfd)->core->command;
|
||
int n = strlen (command);
|
||
|
||
if (0 < n && command[n - 1] == ' ')
|
||
command[n - 1] = '\0';
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
#ifdef CORE_HEADER
|
||
static char *
|
||
elf_x86_64_write_core_note (bfd *abfd, char *buf, int *bufsiz,
|
||
int note_type, ...)
|
||
{
|
||
const struct elf_backend_data *bed = get_elf_backend_data (abfd);
|
||
va_list ap;
|
||
const char *fname, *psargs;
|
||
long pid;
|
||
int cursig;
|
||
const void *gregs;
|
||
|
||
switch (note_type)
|
||
{
|
||
default:
|
||
return NULL;
|
||
|
||
case NT_PRPSINFO:
|
||
va_start (ap, note_type);
|
||
fname = va_arg (ap, const char *);
|
||
psargs = va_arg (ap, const char *);
|
||
va_end (ap);
|
||
|
||
if (bed->s->elfclass == ELFCLASS32)
|
||
{
|
||
prpsinfo32_t data;
|
||
memset (&data, 0, sizeof (data));
|
||
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
|
||
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
|
||
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
|
||
&data, sizeof (data));
|
||
}
|
||
else
|
||
{
|
||
prpsinfo64_t data;
|
||
memset (&data, 0, sizeof (data));
|
||
strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
|
||
strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
|
||
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
|
||
&data, sizeof (data));
|
||
}
|
||
/* NOTREACHED */
|
||
|
||
case NT_PRSTATUS:
|
||
va_start (ap, note_type);
|
||
pid = va_arg (ap, long);
|
||
cursig = va_arg (ap, int);
|
||
gregs = va_arg (ap, const void *);
|
||
va_end (ap);
|
||
|
||
if (bed->s->elfclass == ELFCLASS32)
|
||
{
|
||
if (bed->elf_machine_code == EM_X86_64)
|
||
{
|
||
prstatusx32_t prstat;
|
||
memset (&prstat, 0, sizeof (prstat));
|
||
prstat.pr_pid = pid;
|
||
prstat.pr_cursig = cursig;
|
||
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
|
||
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
|
||
&prstat, sizeof (prstat));
|
||
}
|
||
else
|
||
{
|
||
prstatus32_t prstat;
|
||
memset (&prstat, 0, sizeof (prstat));
|
||
prstat.pr_pid = pid;
|
||
prstat.pr_cursig = cursig;
|
||
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
|
||
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
|
||
&prstat, sizeof (prstat));
|
||
}
|
||
}
|
||
else
|
||
{
|
||
prstatus64_t prstat;
|
||
memset (&prstat, 0, sizeof (prstat));
|
||
prstat.pr_pid = pid;
|
||
prstat.pr_cursig = cursig;
|
||
memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
|
||
return elfcore_write_note (abfd, buf, bufsiz, "CORE", note_type,
|
||
&prstat, sizeof (prstat));
|
||
}
|
||
}
|
||
/* NOTREACHED */
|
||
}
|
||
#endif
|
||
|
||
/* Functions for the x86-64 ELF linker. */
|
||
|
||
/* The name of the dynamic interpreter. This is put in the .interp
|
||
section. */
|
||
|
||
#define ELF64_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
|
||
#define ELF32_DYNAMIC_INTERPRETER "/lib/ldx32.so.1"
|
||
|
||
/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
|
||
copying dynamic variables from a shared lib into an app's dynbss
|
||
section, and instead use a dynamic relocation to point into the
|
||
shared lib. */
|
||
#define ELIMINATE_COPY_RELOCS 1
|
||
|
||
/* The size in bytes of an entry in the global offset table. */
|
||
|
||
#define GOT_ENTRY_SIZE 8
|
||
|
||
/* The size in bytes of an entry in the procedure linkage table. */
|
||
|
||
#define PLT_ENTRY_SIZE 16
|
||
|
||
/* The first entry in a procedure linkage table looks like this. See the
|
||
SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
|
||
|
||
static const bfd_byte elf_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
|
||
0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
|
||
0x0f, 0x1f, 0x40, 0x00 /* nopl 0(%rax) */
|
||
};
|
||
|
||
/* Subsequent entries in a procedure linkage table look like this. */
|
||
|
||
static const bfd_byte elf_x86_64_plt_entry[PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
|
||
0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
|
||
0x68, /* pushq immediate */
|
||
0, 0, 0, 0, /* replaced with index into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0 /* replaced with offset to start of .plt0. */
|
||
};
|
||
|
||
/* .eh_frame covering the .plt section. */
|
||
|
||
static const bfd_byte elf_x86_64_eh_frame_plt[] =
|
||
{
|
||
#define PLT_CIE_LENGTH 20
|
||
#define PLT_FDE_LENGTH 36
|
||
#define PLT_FDE_START_OFFSET 4 + PLT_CIE_LENGTH + 8
|
||
#define PLT_FDE_LEN_OFFSET 4 + PLT_CIE_LENGTH + 12
|
||
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
|
||
0, 0, 0, 0, /* CIE ID */
|
||
1, /* CIE version */
|
||
'z', 'R', 0, /* Augmentation string */
|
||
1, /* Code alignment factor */
|
||
0x78, /* Data alignment factor */
|
||
16, /* Return address column */
|
||
1, /* Augmentation size */
|
||
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
|
||
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
|
||
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
|
||
DW_CFA_nop, DW_CFA_nop,
|
||
|
||
PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
|
||
PLT_CIE_LENGTH + 8, 0, 0, 0, /* CIE pointer */
|
||
0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
|
||
0, 0, 0, 0, /* .plt size goes here */
|
||
0, /* Augmentation size */
|
||
DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
|
||
DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
|
||
DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
|
||
DW_CFA_advance_loc + 10, /* DW_CFA_advance_loc: 10 to __PLT__+16 */
|
||
DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
|
||
11, /* Block length */
|
||
DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
|
||
DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
|
||
DW_OP_lit15, DW_OP_and, DW_OP_lit11, DW_OP_ge,
|
||
DW_OP_lit3, DW_OP_shl, DW_OP_plus,
|
||
DW_CFA_nop, DW_CFA_nop, DW_CFA_nop, DW_CFA_nop
|
||
};
|
||
|
||
/* Architecture-specific backend data for x86-64. */
|
||
|
||
struct elf_x86_64_backend_data
|
||
{
|
||
/* Templates for the initial PLT entry and for subsequent entries. */
|
||
const bfd_byte *plt0_entry;
|
||
const bfd_byte *plt_entry;
|
||
unsigned int plt_entry_size; /* Size of each PLT entry. */
|
||
|
||
/* Offsets into plt0_entry that are to be replaced with GOT[1] and GOT[2]. */
|
||
unsigned int plt0_got1_offset;
|
||
unsigned int plt0_got2_offset;
|
||
|
||
/* Offset of the end of the PC-relative instruction containing
|
||
plt0_got2_offset. */
|
||
unsigned int plt0_got2_insn_end;
|
||
|
||
/* Offsets into plt_entry that are to be replaced with... */
|
||
unsigned int plt_got_offset; /* ... address of this symbol in .got. */
|
||
unsigned int plt_reloc_offset; /* ... offset into relocation table. */
|
||
unsigned int plt_plt_offset; /* ... offset to start of .plt. */
|
||
|
||
/* Length of the PC-relative instruction containing plt_got_offset. */
|
||
unsigned int plt_got_insn_size;
|
||
|
||
/* Offset of the end of the PC-relative jump to plt0_entry. */
|
||
unsigned int plt_plt_insn_end;
|
||
|
||
/* Offset into plt_entry where the initial value of the GOT entry points. */
|
||
unsigned int plt_lazy_offset;
|
||
|
||
/* .eh_frame covering the .plt section. */
|
||
const bfd_byte *eh_frame_plt;
|
||
unsigned int eh_frame_plt_size;
|
||
};
|
||
|
||
#define get_elf_x86_64_backend_data(abfd) \
|
||
((const struct elf_x86_64_backend_data *) \
|
||
get_elf_backend_data (abfd)->arch_data)
|
||
|
||
#define GET_PLT_ENTRY_SIZE(abfd) \
|
||
get_elf_x86_64_backend_data (abfd)->plt_entry_size
|
||
|
||
/* These are the standard parameters. */
|
||
static const struct elf_x86_64_backend_data elf_x86_64_arch_bed =
|
||
{
|
||
elf_x86_64_plt0_entry, /* plt0_entry */
|
||
elf_x86_64_plt_entry, /* plt_entry */
|
||
sizeof (elf_x86_64_plt_entry), /* plt_entry_size */
|
||
2, /* plt0_got1_offset */
|
||
8, /* plt0_got2_offset */
|
||
12, /* plt0_got2_insn_end */
|
||
2, /* plt_got_offset */
|
||
7, /* plt_reloc_offset */
|
||
12, /* plt_plt_offset */
|
||
6, /* plt_got_insn_size */
|
||
PLT_ENTRY_SIZE, /* plt_plt_insn_end */
|
||
6, /* plt_lazy_offset */
|
||
elf_x86_64_eh_frame_plt, /* eh_frame_plt */
|
||
sizeof (elf_x86_64_eh_frame_plt), /* eh_frame_plt_size */
|
||
};
|
||
|
||
#define elf_backend_arch_data &elf_x86_64_arch_bed
|
||
|
||
/* x86-64 ELF linker hash entry. */
|
||
|
||
struct elf_x86_64_link_hash_entry
|
||
{
|
||
struct elf_link_hash_entry elf;
|
||
|
||
/* Track dynamic relocs copied for this symbol. */
|
||
struct elf_dyn_relocs *dyn_relocs;
|
||
|
||
#define GOT_UNKNOWN 0
|
||
#define GOT_NORMAL 1
|
||
#define GOT_TLS_GD 2
|
||
#define GOT_TLS_IE 3
|
||
#define GOT_TLS_GDESC 4
|
||
#define GOT_TLS_GD_BOTH_P(type) \
|
||
((type) == (GOT_TLS_GD | GOT_TLS_GDESC))
|
||
#define GOT_TLS_GD_P(type) \
|
||
((type) == GOT_TLS_GD || GOT_TLS_GD_BOTH_P (type))
|
||
#define GOT_TLS_GDESC_P(type) \
|
||
((type) == GOT_TLS_GDESC || GOT_TLS_GD_BOTH_P (type))
|
||
#define GOT_TLS_GD_ANY_P(type) \
|
||
(GOT_TLS_GD_P (type) || GOT_TLS_GDESC_P (type))
|
||
unsigned char tls_type;
|
||
|
||
/* Offset of the GOTPLT entry reserved for the TLS descriptor,
|
||
starting at the end of the jump table. */
|
||
bfd_vma tlsdesc_got;
|
||
};
|
||
|
||
#define elf_x86_64_hash_entry(ent) \
|
||
((struct elf_x86_64_link_hash_entry *)(ent))
|
||
|
||
struct elf_x86_64_obj_tdata
|
||
{
|
||
struct elf_obj_tdata root;
|
||
|
||
/* tls_type for each local got entry. */
|
||
char *local_got_tls_type;
|
||
|
||
/* GOTPLT entries for TLS descriptors. */
|
||
bfd_vma *local_tlsdesc_gotent;
|
||
};
|
||
|
||
#define elf_x86_64_tdata(abfd) \
|
||
((struct elf_x86_64_obj_tdata *) (abfd)->tdata.any)
|
||
|
||
#define elf_x86_64_local_got_tls_type(abfd) \
|
||
(elf_x86_64_tdata (abfd)->local_got_tls_type)
|
||
|
||
#define elf_x86_64_local_tlsdesc_gotent(abfd) \
|
||
(elf_x86_64_tdata (abfd)->local_tlsdesc_gotent)
|
||
|
||
#define is_x86_64_elf(bfd) \
|
||
(bfd_get_flavour (bfd) == bfd_target_elf_flavour \
|
||
&& elf_tdata (bfd) != NULL \
|
||
&& elf_object_id (bfd) == X86_64_ELF_DATA)
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_mkobject (bfd *abfd)
|
||
{
|
||
return bfd_elf_allocate_object (abfd, sizeof (struct elf_x86_64_obj_tdata),
|
||
X86_64_ELF_DATA);
|
||
}
|
||
|
||
/* x86-64 ELF linker hash table. */
|
||
|
||
struct elf_x86_64_link_hash_table
|
||
{
|
||
struct elf_link_hash_table elf;
|
||
|
||
/* Short-cuts to get to dynamic linker sections. */
|
||
asection *sdynbss;
|
||
asection *srelbss;
|
||
asection *plt_eh_frame;
|
||
|
||
union
|
||
{
|
||
bfd_signed_vma refcount;
|
||
bfd_vma offset;
|
||
} tls_ld_got;
|
||
|
||
/* The amount of space used by the jump slots in the GOT. */
|
||
bfd_vma sgotplt_jump_table_size;
|
||
|
||
/* Small local sym cache. */
|
||
struct sym_cache sym_cache;
|
||
|
||
bfd_vma (*r_info) (bfd_vma, bfd_vma);
|
||
bfd_vma (*r_sym) (bfd_vma);
|
||
unsigned int pointer_r_type;
|
||
const char *dynamic_interpreter;
|
||
int dynamic_interpreter_size;
|
||
|
||
/* _TLS_MODULE_BASE_ symbol. */
|
||
struct bfd_link_hash_entry *tls_module_base;
|
||
|
||
/* Used by local STT_GNU_IFUNC symbols. */
|
||
htab_t loc_hash_table;
|
||
void * loc_hash_memory;
|
||
|
||
/* The offset into splt of the PLT entry for the TLS descriptor
|
||
resolver. Special values are 0, if not necessary (or not found
|
||
to be necessary yet), and -1 if needed but not determined
|
||
yet. */
|
||
bfd_vma tlsdesc_plt;
|
||
/* The offset into sgot of the GOT entry used by the PLT entry
|
||
above. */
|
||
bfd_vma tlsdesc_got;
|
||
|
||
/* The index of the next R_X86_64_JUMP_SLOT entry in .rela.plt. */
|
||
bfd_vma next_jump_slot_index;
|
||
/* The index of the next R_X86_64_IRELATIVE entry in .rela.plt. */
|
||
bfd_vma next_irelative_index;
|
||
};
|
||
|
||
/* Get the x86-64 ELF linker hash table from a link_info structure. */
|
||
|
||
#define elf_x86_64_hash_table(p) \
|
||
(elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
|
||
== X86_64_ELF_DATA ? ((struct elf_x86_64_link_hash_table *) ((p)->hash)) : NULL)
|
||
|
||
#define elf_x86_64_compute_jump_table_size(htab) \
|
||
((htab)->elf.srelplt->reloc_count * GOT_ENTRY_SIZE)
|
||
|
||
/* Create an entry in an x86-64 ELF linker hash table. */
|
||
|
||
static struct bfd_hash_entry *
|
||
elf_x86_64_link_hash_newfunc (struct bfd_hash_entry *entry,
|
||
struct bfd_hash_table *table,
|
||
const char *string)
|
||
{
|
||
/* Allocate the structure if it has not already been allocated by a
|
||
subclass. */
|
||
if (entry == NULL)
|
||
{
|
||
entry = (struct bfd_hash_entry *)
|
||
bfd_hash_allocate (table,
|
||
sizeof (struct elf_x86_64_link_hash_entry));
|
||
if (entry == NULL)
|
||
return entry;
|
||
}
|
||
|
||
/* Call the allocation method of the superclass. */
|
||
entry = _bfd_elf_link_hash_newfunc (entry, table, string);
|
||
if (entry != NULL)
|
||
{
|
||
struct elf_x86_64_link_hash_entry *eh;
|
||
|
||
eh = (struct elf_x86_64_link_hash_entry *) entry;
|
||
eh->dyn_relocs = NULL;
|
||
eh->tls_type = GOT_UNKNOWN;
|
||
eh->tlsdesc_got = (bfd_vma) -1;
|
||
}
|
||
|
||
return entry;
|
||
}
|
||
|
||
/* Compute a hash of a local hash entry. We use elf_link_hash_entry
|
||
for local symbol so that we can handle local STT_GNU_IFUNC symbols
|
||
as global symbol. We reuse indx and dynstr_index for local symbol
|
||
hash since they aren't used by global symbols in this backend. */
|
||
|
||
static hashval_t
|
||
elf_x86_64_local_htab_hash (const void *ptr)
|
||
{
|
||
struct elf_link_hash_entry *h
|
||
= (struct elf_link_hash_entry *) ptr;
|
||
return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index);
|
||
}
|
||
|
||
/* Compare local hash entries. */
|
||
|
||
static int
|
||
elf_x86_64_local_htab_eq (const void *ptr1, const void *ptr2)
|
||
{
|
||
struct elf_link_hash_entry *h1
|
||
= (struct elf_link_hash_entry *) ptr1;
|
||
struct elf_link_hash_entry *h2
|
||
= (struct elf_link_hash_entry *) ptr2;
|
||
|
||
return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index;
|
||
}
|
||
|
||
/* Find and/or create a hash entry for local symbol. */
|
||
|
||
static struct elf_link_hash_entry *
|
||
elf_x86_64_get_local_sym_hash (struct elf_x86_64_link_hash_table *htab,
|
||
bfd *abfd, const Elf_Internal_Rela *rel,
|
||
bfd_boolean create)
|
||
{
|
||
struct elf_x86_64_link_hash_entry e, *ret;
|
||
asection *sec = abfd->sections;
|
||
hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id,
|
||
htab->r_sym (rel->r_info));
|
||
void **slot;
|
||
|
||
e.elf.indx = sec->id;
|
||
e.elf.dynstr_index = htab->r_sym (rel->r_info);
|
||
slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h,
|
||
create ? INSERT : NO_INSERT);
|
||
|
||
if (!slot)
|
||
return NULL;
|
||
|
||
if (*slot)
|
||
{
|
||
ret = (struct elf_x86_64_link_hash_entry *) *slot;
|
||
return &ret->elf;
|
||
}
|
||
|
||
ret = (struct elf_x86_64_link_hash_entry *)
|
||
objalloc_alloc ((struct objalloc *) htab->loc_hash_memory,
|
||
sizeof (struct elf_x86_64_link_hash_entry));
|
||
if (ret)
|
||
{
|
||
memset (ret, 0, sizeof (*ret));
|
||
ret->elf.indx = sec->id;
|
||
ret->elf.dynstr_index = htab->r_sym (rel->r_info);
|
||
ret->elf.dynindx = -1;
|
||
*slot = ret;
|
||
}
|
||
return &ret->elf;
|
||
}
|
||
|
||
/* Create an X86-64 ELF linker hash table. */
|
||
|
||
static struct bfd_link_hash_table *
|
||
elf_x86_64_link_hash_table_create (bfd *abfd)
|
||
{
|
||
struct elf_x86_64_link_hash_table *ret;
|
||
bfd_size_type amt = sizeof (struct elf_x86_64_link_hash_table);
|
||
|
||
ret = (struct elf_x86_64_link_hash_table *) bfd_zmalloc (amt);
|
||
if (ret == NULL)
|
||
return NULL;
|
||
|
||
if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
|
||
elf_x86_64_link_hash_newfunc,
|
||
sizeof (struct elf_x86_64_link_hash_entry),
|
||
X86_64_ELF_DATA))
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
if (ABI_64_P (abfd))
|
||
{
|
||
ret->r_info = elf64_r_info;
|
||
ret->r_sym = elf64_r_sym;
|
||
ret->pointer_r_type = R_X86_64_64;
|
||
ret->dynamic_interpreter = ELF64_DYNAMIC_INTERPRETER;
|
||
ret->dynamic_interpreter_size = sizeof ELF64_DYNAMIC_INTERPRETER;
|
||
}
|
||
else
|
||
{
|
||
ret->r_info = elf32_r_info;
|
||
ret->r_sym = elf32_r_sym;
|
||
ret->pointer_r_type = R_X86_64_32;
|
||
ret->dynamic_interpreter = ELF32_DYNAMIC_INTERPRETER;
|
||
ret->dynamic_interpreter_size = sizeof ELF32_DYNAMIC_INTERPRETER;
|
||
}
|
||
|
||
ret->loc_hash_table = htab_try_create (1024,
|
||
elf_x86_64_local_htab_hash,
|
||
elf_x86_64_local_htab_eq,
|
||
NULL);
|
||
ret->loc_hash_memory = objalloc_create ();
|
||
if (!ret->loc_hash_table || !ret->loc_hash_memory)
|
||
{
|
||
free (ret);
|
||
return NULL;
|
||
}
|
||
|
||
return &ret->elf.root;
|
||
}
|
||
|
||
/* Destroy an X86-64 ELF linker hash table. */
|
||
|
||
static void
|
||
elf_x86_64_link_hash_table_free (struct bfd_link_hash_table *hash)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab
|
||
= (struct elf_x86_64_link_hash_table *) hash;
|
||
|
||
if (htab->loc_hash_table)
|
||
htab_delete (htab->loc_hash_table);
|
||
if (htab->loc_hash_memory)
|
||
objalloc_free ((struct objalloc *) htab->loc_hash_memory);
|
||
_bfd_elf_link_hash_table_free (hash);
|
||
}
|
||
|
||
/* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
|
||
.rela.bss sections in DYNOBJ, and set up shortcuts to them in our
|
||
hash table. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_create_dynamic_sections (bfd *dynobj,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
|
||
if (!_bfd_elf_create_dynamic_sections (dynobj, info))
|
||
return FALSE;
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
|
||
if (!info->shared)
|
||
htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss");
|
||
|
||
if (!htab->sdynbss
|
||
|| (!info->shared && !htab->srelbss))
|
||
abort ();
|
||
|
||
if (!info->no_ld_generated_unwind_info
|
||
&& htab->plt_eh_frame == NULL
|
||
&& htab->elf.splt != NULL)
|
||
{
|
||
flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
|
||
| SEC_HAS_CONTENTS | SEC_IN_MEMORY
|
||
| SEC_LINKER_CREATED);
|
||
htab->plt_eh_frame
|
||
= bfd_make_section_anyway_with_flags (dynobj, ".eh_frame", flags);
|
||
if (htab->plt_eh_frame == NULL
|
||
|| !bfd_set_section_alignment (dynobj, htab->plt_eh_frame, 3))
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy the extra info we tack onto an elf_link_hash_entry. */
|
||
|
||
static void
|
||
elf_x86_64_copy_indirect_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *dir,
|
||
struct elf_link_hash_entry *ind)
|
||
{
|
||
struct elf_x86_64_link_hash_entry *edir, *eind;
|
||
|
||
edir = (struct elf_x86_64_link_hash_entry *) dir;
|
||
eind = (struct elf_x86_64_link_hash_entry *) ind;
|
||
|
||
if (eind->dyn_relocs != NULL)
|
||
{
|
||
if (edir->dyn_relocs != NULL)
|
||
{
|
||
struct elf_dyn_relocs **pp;
|
||
struct elf_dyn_relocs *p;
|
||
|
||
/* Add reloc counts against the indirect sym to the direct sym
|
||
list. Merge any entries against the same section. */
|
||
for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
struct elf_dyn_relocs *q;
|
||
|
||
for (q = edir->dyn_relocs; q != NULL; q = q->next)
|
||
if (q->sec == p->sec)
|
||
{
|
||
q->pc_count += p->pc_count;
|
||
q->count += p->count;
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
if (q == NULL)
|
||
pp = &p->next;
|
||
}
|
||
*pp = edir->dyn_relocs;
|
||
}
|
||
|
||
edir->dyn_relocs = eind->dyn_relocs;
|
||
eind->dyn_relocs = NULL;
|
||
}
|
||
|
||
if (ind->root.type == bfd_link_hash_indirect
|
||
&& dir->got.refcount <= 0)
|
||
{
|
||
edir->tls_type = eind->tls_type;
|
||
eind->tls_type = GOT_UNKNOWN;
|
||
}
|
||
|
||
if (ELIMINATE_COPY_RELOCS
|
||
&& ind->root.type != bfd_link_hash_indirect
|
||
&& dir->dynamic_adjusted)
|
||
{
|
||
/* If called to transfer flags for a weakdef during processing
|
||
of elf_adjust_dynamic_symbol, don't copy non_got_ref.
|
||
We clear it ourselves for ELIMINATE_COPY_RELOCS. */
|
||
dir->ref_dynamic |= ind->ref_dynamic;
|
||
dir->ref_regular |= ind->ref_regular;
|
||
dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
|
||
dir->needs_plt |= ind->needs_plt;
|
||
dir->pointer_equality_needed |= ind->pointer_equality_needed;
|
||
}
|
||
else
|
||
_bfd_elf_link_hash_copy_indirect (info, dir, ind);
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf64_x86_64_elf_object_p (bfd *abfd)
|
||
{
|
||
/* Set the right machine number for an x86-64 elf64 file. */
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf32_x86_64_elf_object_p (bfd *abfd)
|
||
{
|
||
/* Set the right machine number for an x86-64 elf32 file. */
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x64_32);
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if the TLS access code sequence support transition
|
||
from R_TYPE. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_check_tls_transition (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
asection *sec,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
struct elf_link_hash_entry **sym_hashes,
|
||
unsigned int r_type,
|
||
const Elf_Internal_Rela *rel,
|
||
const Elf_Internal_Rela *relend)
|
||
{
|
||
unsigned int val;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
bfd_vma offset;
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
|
||
/* Get the section contents. */
|
||
if (contents == NULL)
|
||
{
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
/* FIXME: How to better handle error condition? */
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
return FALSE;
|
||
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
offset = rel->r_offset;
|
||
switch (r_type)
|
||
{
|
||
case R_X86_64_TLSGD:
|
||
case R_X86_64_TLSLD:
|
||
if ((rel + 1) >= relend)
|
||
return FALSE;
|
||
|
||
if (r_type == R_X86_64_TLSGD)
|
||
{
|
||
/* Check transition from GD access model. For 64bit, only
|
||
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr
|
||
can transit to different access model. For 32bit, only
|
||
leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr
|
||
can transit to different access model. */
|
||
|
||
static const unsigned char call[] = { 0x66, 0x66, 0x48, 0xe8 };
|
||
static const unsigned char leaq[] = { 0x66, 0x48, 0x8d, 0x3d };
|
||
|
||
if ((offset + 12) > sec->size
|
||
|| memcmp (contents + offset + 4, call, 4) != 0)
|
||
return FALSE;
|
||
|
||
if (ABI_64_P (abfd))
|
||
{
|
||
if (offset < 4
|
||
|| memcmp (contents + offset - 4, leaq, 4) != 0)
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (offset < 3
|
||
|| memcmp (contents + offset - 3, leaq + 1, 3) != 0)
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Check transition from LD access model. Only
|
||
leaq foo@tlsld(%rip), %rdi;
|
||
call __tls_get_addr
|
||
can transit to different access model. */
|
||
|
||
static const unsigned char lea[] = { 0x48, 0x8d, 0x3d };
|
||
|
||
if (offset < 3 || (offset + 9) > sec->size)
|
||
return FALSE;
|
||
|
||
if (memcmp (contents + offset - 3, lea, 3) != 0
|
||
|| 0xe8 != *(contents + offset + 4))
|
||
return FALSE;
|
||
}
|
||
|
||
r_symndx = htab->r_sym (rel[1].r_info);
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
return FALSE;
|
||
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
/* Use strncmp to check __tls_get_addr since __tls_get_addr
|
||
may be versioned. */
|
||
return (h != NULL
|
||
&& h->root.root.string != NULL
|
||
&& (ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PC32
|
||
|| ELF32_R_TYPE (rel[1].r_info) == R_X86_64_PLT32)
|
||
&& (strncmp (h->root.root.string,
|
||
"__tls_get_addr", 14) == 0));
|
||
|
||
case R_X86_64_GOTTPOFF:
|
||
/* Check transition from IE access model:
|
||
mov foo@gottpoff(%rip), %reg
|
||
add foo@gottpoff(%rip), %reg
|
||
*/
|
||
|
||
/* Check REX prefix first. */
|
||
if (offset >= 3 && (offset + 4) <= sec->size)
|
||
{
|
||
val = bfd_get_8 (abfd, contents + offset - 3);
|
||
if (val != 0x48 && val != 0x4c)
|
||
{
|
||
/* X32 may have 0x44 REX prefix or no REX prefix. */
|
||
if (ABI_64_P (abfd))
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* X32 may not have any REX prefix. */
|
||
if (ABI_64_P (abfd))
|
||
return FALSE;
|
||
if (offset < 2 || (offset + 3) > sec->size)
|
||
return FALSE;
|
||
}
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 2);
|
||
if (val != 0x8b && val != 0x03)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
return (val & 0xc7) == 5;
|
||
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
/* Check transition from GDesc access model:
|
||
leaq x@tlsdesc(%rip), %rax
|
||
|
||
Make sure it's a leaq adding rip to a 32-bit offset
|
||
into any register, although it's probably almost always
|
||
going to be rax. */
|
||
|
||
if (offset < 3 || (offset + 4) > sec->size)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 3);
|
||
if ((val & 0xfb) != 0x48)
|
||
return FALSE;
|
||
|
||
if (bfd_get_8 (abfd, contents + offset - 2) != 0x8d)
|
||
return FALSE;
|
||
|
||
val = bfd_get_8 (abfd, contents + offset - 1);
|
||
return (val & 0xc7) == 0x05;
|
||
|
||
case R_X86_64_TLSDESC_CALL:
|
||
/* Check transition from GDesc access model:
|
||
call *x@tlsdesc(%rax)
|
||
*/
|
||
if (offset + 2 <= sec->size)
|
||
{
|
||
/* Make sure that it's a call *x@tlsdesc(%rax). */
|
||
static const unsigned char call[] = { 0xff, 0x10 };
|
||
return memcmp (contents + offset, call, 2) == 0;
|
||
}
|
||
|
||
return FALSE;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Return TRUE if the TLS access transition is OK or no transition
|
||
will be performed. Update R_TYPE if there is a transition. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_tls_transition (struct bfd_link_info *info, bfd *abfd,
|
||
asection *sec, bfd_byte *contents,
|
||
Elf_Internal_Shdr *symtab_hdr,
|
||
struct elf_link_hash_entry **sym_hashes,
|
||
unsigned int *r_type, int tls_type,
|
||
const Elf_Internal_Rela *rel,
|
||
const Elf_Internal_Rela *relend,
|
||
struct elf_link_hash_entry *h,
|
||
unsigned long r_symndx)
|
||
{
|
||
unsigned int from_type = *r_type;
|
||
unsigned int to_type = from_type;
|
||
bfd_boolean check = TRUE;
|
||
|
||
/* Skip TLS transition for functions. */
|
||
if (h != NULL
|
||
&& (h->type == STT_FUNC
|
||
|| h->type == STT_GNU_IFUNC))
|
||
return TRUE;
|
||
|
||
switch (from_type)
|
||
{
|
||
case R_X86_64_TLSGD:
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
case R_X86_64_TLSDESC_CALL:
|
||
case R_X86_64_GOTTPOFF:
|
||
if (info->executable)
|
||
{
|
||
if (h == NULL)
|
||
to_type = R_X86_64_TPOFF32;
|
||
else
|
||
to_type = R_X86_64_GOTTPOFF;
|
||
}
|
||
|
||
/* When we are called from elf_x86_64_relocate_section,
|
||
CONTENTS isn't NULL and there may be additional transitions
|
||
based on TLS_TYPE. */
|
||
if (contents != NULL)
|
||
{
|
||
unsigned int new_to_type = to_type;
|
||
|
||
if (info->executable
|
||
&& h != NULL
|
||
&& h->dynindx == -1
|
||
&& tls_type == GOT_TLS_IE)
|
||
new_to_type = R_X86_64_TPOFF32;
|
||
|
||
if (to_type == R_X86_64_TLSGD
|
||
|| to_type == R_X86_64_GOTPC32_TLSDESC
|
||
|| to_type == R_X86_64_TLSDESC_CALL)
|
||
{
|
||
if (tls_type == GOT_TLS_IE)
|
||
new_to_type = R_X86_64_GOTTPOFF;
|
||
}
|
||
|
||
/* We checked the transition before when we were called from
|
||
elf_x86_64_check_relocs. We only want to check the new
|
||
transition which hasn't been checked before. */
|
||
check = new_to_type != to_type && from_type == to_type;
|
||
to_type = new_to_type;
|
||
}
|
||
|
||
break;
|
||
|
||
case R_X86_64_TLSLD:
|
||
if (info->executable)
|
||
to_type = R_X86_64_TPOFF32;
|
||
break;
|
||
|
||
default:
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if there is no transition. */
|
||
if (from_type == to_type)
|
||
return TRUE;
|
||
|
||
/* Check if the transition can be performed. */
|
||
if (check
|
||
&& ! elf_x86_64_check_tls_transition (abfd, info, sec, contents,
|
||
symtab_hdr, sym_hashes,
|
||
from_type, rel, relend))
|
||
{
|
||
reloc_howto_type *from, *to;
|
||
const char *name;
|
||
|
||
from = elf_x86_64_rtype_to_howto (abfd, from_type);
|
||
to = elf_x86_64_rtype_to_howto (abfd, to_type);
|
||
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
name = "*unknown*";
|
||
else
|
||
{
|
||
Elf_Internal_Sym *isym;
|
||
|
||
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
||
abfd, r_symndx);
|
||
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
|
||
}
|
||
}
|
||
|
||
(*_bfd_error_handler)
|
||
(_("%B: TLS transition from %s to %s against `%s' at 0x%lx "
|
||
"in section `%A' failed"),
|
||
abfd, sec, from->name, to->name, name,
|
||
(unsigned long) rel->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
*r_type = to_type;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Look through the relocs for a section during the first phase, and
|
||
calculate needed space in the global offset table, procedure
|
||
linkage table, and dynamic reloc sections. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_check_relocs (bfd *abfd, struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
const Elf_Internal_Rela *rel;
|
||
const Elf_Internal_Rela *rel_end;
|
||
asection *sreloc;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
BFD_ASSERT (is_x86_64_elf (abfd));
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
symtab_hdr = &elf_symtab_hdr (abfd);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
|
||
sreloc = NULL;
|
||
|
||
rel_end = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < rel_end; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *isym;
|
||
const char *name;
|
||
bfd_boolean size_reloc;
|
||
|
||
r_symndx = htab->r_sym (rel->r_info);
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
|
||
if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
|
||
{
|
||
(*_bfd_error_handler) (_("%B: bad symbol index: %d"),
|
||
abfd, r_symndx);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
/* A local symbol. */
|
||
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
||
abfd, r_symndx);
|
||
if (isym == NULL)
|
||
return FALSE;
|
||
|
||
/* Check relocation against local STT_GNU_IFUNC symbol. */
|
||
if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
||
{
|
||
h = elf_x86_64_get_local_sym_hash (htab, abfd, rel,
|
||
TRUE);
|
||
if (h == NULL)
|
||
return FALSE;
|
||
|
||
/* Fake a STT_GNU_IFUNC symbol. */
|
||
h->type = STT_GNU_IFUNC;
|
||
h->def_regular = 1;
|
||
h->ref_regular = 1;
|
||
h->forced_local = 1;
|
||
h->root.type = bfd_link_hash_defined;
|
||
}
|
||
else
|
||
h = NULL;
|
||
}
|
||
else
|
||
{
|
||
isym = NULL;
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
|
||
/* Check invalid x32 relocations. */
|
||
if (!ABI_64_P (abfd))
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case R_X86_64_DTPOFF64:
|
||
case R_X86_64_TPOFF64:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_GOTOFF64:
|
||
case R_X86_64_GOT64:
|
||
case R_X86_64_GOTPCREL64:
|
||
case R_X86_64_GOTPC64:
|
||
case R_X86_64_GOTPLT64:
|
||
case R_X86_64_PLTOFF64:
|
||
{
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
|
||
NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against symbol `%s' isn't "
|
||
"supported in x32 mode"), abfd,
|
||
x86_64_elf_howto_table[r_type].name, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (h != NULL)
|
||
{
|
||
/* Create the ifunc sections for static executables. If we
|
||
never see an indirect function symbol nor we are building
|
||
a static executable, those sections will be empty and
|
||
won't appear in output. */
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
break;
|
||
|
||
case R_X86_64_32S:
|
||
case R_X86_64_32:
|
||
case R_X86_64_64:
|
||
case R_X86_64_PC32:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_PLT32:
|
||
case R_X86_64_GOTPCREL:
|
||
case R_X86_64_GOTPCREL64:
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
if (!_bfd_elf_create_ifunc_sections (htab->elf.dynobj, info))
|
||
return FALSE;
|
||
break;
|
||
}
|
||
|
||
/* It is referenced by a non-shared object. */
|
||
h->ref_regular = 1;
|
||
}
|
||
|
||
if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN,
|
||
rel, rel_end, h, r_symndx))
|
||
return FALSE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_X86_64_TLSLD:
|
||
htab->tls_ld_got.refcount += 1;
|
||
goto create_got;
|
||
|
||
case R_X86_64_TPOFF32:
|
||
if (!info->executable && ABI_64_P (abfd))
|
||
{
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (abfd, symtab_hdr, isym,
|
||
NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
|
||
abfd,
|
||
x86_64_elf_howto_table[r_type].name, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case R_X86_64_GOTTPOFF:
|
||
if (!info->executable)
|
||
info->flags |= DF_STATIC_TLS;
|
||
/* Fall through */
|
||
|
||
case R_X86_64_GOT32:
|
||
case R_X86_64_GOTPCREL:
|
||
case R_X86_64_TLSGD:
|
||
case R_X86_64_GOT64:
|
||
case R_X86_64_GOTPCREL64:
|
||
case R_X86_64_GOTPLT64:
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
case R_X86_64_TLSDESC_CALL:
|
||
/* This symbol requires a global offset table entry. */
|
||
{
|
||
int tls_type, old_tls_type;
|
||
|
||
switch (r_type)
|
||
{
|
||
default: tls_type = GOT_NORMAL; break;
|
||
case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
|
||
case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
case R_X86_64_TLSDESC_CALL:
|
||
tls_type = GOT_TLS_GDESC; break;
|
||
}
|
||
|
||
if (h != NULL)
|
||
{
|
||
if (r_type == R_X86_64_GOTPLT64)
|
||
{
|
||
/* This relocation indicates that we also need
|
||
a PLT entry, as this is a function. We don't need
|
||
a PLT entry for local symbols. */
|
||
h->needs_plt = 1;
|
||
h->plt.refcount += 1;
|
||
}
|
||
h->got.refcount += 1;
|
||
old_tls_type = elf_x86_64_hash_entry (h)->tls_type;
|
||
}
|
||
else
|
||
{
|
||
bfd_signed_vma *local_got_refcounts;
|
||
|
||
/* This is a global offset table entry for a local symbol. */
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
if (local_got_refcounts == NULL)
|
||
{
|
||
bfd_size_type size;
|
||
|
||
size = symtab_hdr->sh_info;
|
||
size *= sizeof (bfd_signed_vma)
|
||
+ sizeof (bfd_vma) + sizeof (char);
|
||
local_got_refcounts = ((bfd_signed_vma *)
|
||
bfd_zalloc (abfd, size));
|
||
if (local_got_refcounts == NULL)
|
||
return FALSE;
|
||
elf_local_got_refcounts (abfd) = local_got_refcounts;
|
||
elf_x86_64_local_tlsdesc_gotent (abfd)
|
||
= (bfd_vma *) (local_got_refcounts + symtab_hdr->sh_info);
|
||
elf_x86_64_local_got_tls_type (abfd)
|
||
= (char *) (local_got_refcounts + 2 * symtab_hdr->sh_info);
|
||
}
|
||
local_got_refcounts[r_symndx] += 1;
|
||
old_tls_type
|
||
= elf_x86_64_local_got_tls_type (abfd) [r_symndx];
|
||
}
|
||
|
||
/* If a TLS symbol is accessed using IE at least once,
|
||
there is no point to use dynamic model for it. */
|
||
if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
|
||
&& (! GOT_TLS_GD_ANY_P (old_tls_type)
|
||
|| tls_type != GOT_TLS_IE))
|
||
{
|
||
if (old_tls_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (tls_type))
|
||
tls_type = old_tls_type;
|
||
else if (GOT_TLS_GD_ANY_P (old_tls_type)
|
||
&& GOT_TLS_GD_ANY_P (tls_type))
|
||
tls_type |= old_tls_type;
|
||
else
|
||
{
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (abfd, symtab_hdr,
|
||
isym, NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: '%s' accessed both as normal and thread local symbol"),
|
||
abfd, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (old_tls_type != tls_type)
|
||
{
|
||
if (h != NULL)
|
||
elf_x86_64_hash_entry (h)->tls_type = tls_type;
|
||
else
|
||
elf_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
|
||
}
|
||
}
|
||
/* Fall through */
|
||
|
||
case R_X86_64_GOTOFF64:
|
||
case R_X86_64_GOTPC32:
|
||
case R_X86_64_GOTPC64:
|
||
create_got:
|
||
if (htab->elf.sgot == NULL)
|
||
{
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
if (!_bfd_elf_create_got_section (htab->elf.dynobj,
|
||
info))
|
||
return FALSE;
|
||
}
|
||
break;
|
||
|
||
case R_X86_64_PLT32:
|
||
/* This symbol requires a procedure linkage table entry. We
|
||
actually build the entry in adjust_dynamic_symbol,
|
||
because this might be a case of linking PIC code which is
|
||
never referenced by a dynamic object, in which case we
|
||
don't need to generate a procedure linkage table entry
|
||
after all. */
|
||
|
||
/* If this is a local symbol, we resolve it directly without
|
||
creating a procedure linkage table entry. */
|
||
if (h == NULL)
|
||
continue;
|
||
|
||
h->needs_plt = 1;
|
||
h->plt.refcount += 1;
|
||
break;
|
||
|
||
case R_X86_64_PLTOFF64:
|
||
/* This tries to form the 'address' of a function relative
|
||
to GOT. For global symbols we need a PLT entry. */
|
||
if (h != NULL)
|
||
{
|
||
h->needs_plt = 1;
|
||
h->plt.refcount += 1;
|
||
}
|
||
goto create_got;
|
||
|
||
case R_X86_64_SIZE32:
|
||
case R_X86_64_SIZE64:
|
||
size_reloc = TRUE;
|
||
goto do_size;
|
||
|
||
case R_X86_64_32:
|
||
if (!ABI_64_P (abfd))
|
||
goto pointer;
|
||
case R_X86_64_8:
|
||
case R_X86_64_16:
|
||
case R_X86_64_32S:
|
||
/* Let's help debug shared library creation. These relocs
|
||
cannot be used in shared libs. Don't error out for
|
||
sections we don't care about, such as debug sections or
|
||
non-constant sections. */
|
||
if (info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& (sec->flags & SEC_READONLY) != 0)
|
||
{
|
||
if (h)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (abfd, symtab_hdr, isym, NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
|
||
abfd, x86_64_elf_howto_table[r_type].name, name);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case R_X86_64_PC8:
|
||
case R_X86_64_PC16:
|
||
case R_X86_64_PC32:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_64:
|
||
pointer:
|
||
if (h != NULL && info->executable)
|
||
{
|
||
/* If this reloc is in a read-only section, we might
|
||
need a copy reloc. We can't check reliably at this
|
||
stage whether the section is read-only, as input
|
||
sections have not yet been mapped to output sections.
|
||
Tentatively set the flag for now, and correct in
|
||
adjust_dynamic_symbol. */
|
||
h->non_got_ref = 1;
|
||
|
||
/* We may need a .plt entry if the function this reloc
|
||
refers to is in a shared lib. */
|
||
h->plt.refcount += 1;
|
||
if (r_type != R_X86_64_PC32 && r_type != R_X86_64_PC64)
|
||
h->pointer_equality_needed = 1;
|
||
}
|
||
|
||
size_reloc = FALSE;
|
||
do_size:
|
||
/* If we are creating a shared library, and this is a reloc
|
||
against a global symbol, or a non PC relative reloc
|
||
against a local symbol, then we need to copy the reloc
|
||
into the shared library. However, if we are linking with
|
||
-Bsymbolic, we do not need to copy a reloc against a
|
||
global symbol which is defined in an object we are
|
||
including in the link (i.e., DEF_REGULAR is set). At
|
||
this point we have not seen all the input files, so it is
|
||
possible that DEF_REGULAR is not set now but will be set
|
||
later (it is never cleared). In case of a weak definition,
|
||
DEF_REGULAR may be cleared later by a strong definition in
|
||
a shared library. We account for that possibility below by
|
||
storing information in the relocs_copied field of the hash
|
||
table entry. A similar situation occurs when creating
|
||
shared libraries and symbol visibility changes render the
|
||
symbol local.
|
||
|
||
If on the other hand, we are creating an executable, we
|
||
may need to keep relocations for symbols satisfied by a
|
||
dynamic library if we manage to avoid copy relocs for the
|
||
symbol. */
|
||
if ((info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& (! IS_X86_64_PCREL_TYPE (r_type)
|
||
|| (h != NULL
|
||
&& (! SYMBOLIC_BIND (info, h)
|
||
|| h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular))))
|
||
|| (ELIMINATE_COPY_RELOCS
|
||
&& !info->shared
|
||
&& (sec->flags & SEC_ALLOC) != 0
|
||
&& h != NULL
|
||
&& (h->root.type == bfd_link_hash_defweak
|
||
|| !h->def_regular)))
|
||
{
|
||
struct elf_dyn_relocs *p;
|
||
struct elf_dyn_relocs **head;
|
||
|
||
/* We must copy these reloc types into the output file.
|
||
Create a reloc section in dynobj and make room for
|
||
this reloc. */
|
||
if (sreloc == NULL)
|
||
{
|
||
if (htab->elf.dynobj == NULL)
|
||
htab->elf.dynobj = abfd;
|
||
|
||
sreloc = _bfd_elf_make_dynamic_reloc_section
|
||
(sec, htab->elf.dynobj, ABI_64_P (abfd) ? 3 : 2,
|
||
abfd, /*rela?*/ TRUE);
|
||
|
||
if (sreloc == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
/* If this is a global symbol, we count the number of
|
||
relocations we need for this symbol. */
|
||
if (h != NULL)
|
||
{
|
||
head = &((struct elf_x86_64_link_hash_entry *) h)->dyn_relocs;
|
||
}
|
||
else
|
||
{
|
||
/* Track dynamic relocs needed for local syms too.
|
||
We really need local syms available to do this
|
||
easily. Oh well. */
|
||
asection *s;
|
||
void **vpp;
|
||
|
||
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
||
abfd, r_symndx);
|
||
if (isym == NULL)
|
||
return FALSE;
|
||
|
||
s = bfd_section_from_elf_index (abfd, isym->st_shndx);
|
||
if (s == NULL)
|
||
s = sec;
|
||
|
||
/* Beware of type punned pointers vs strict aliasing
|
||
rules. */
|
||
vpp = &(elf_section_data (s)->local_dynrel);
|
||
head = (struct elf_dyn_relocs **)vpp;
|
||
}
|
||
|
||
p = *head;
|
||
if (p == NULL || p->sec != sec)
|
||
{
|
||
bfd_size_type amt = sizeof *p;
|
||
|
||
p = ((struct elf_dyn_relocs *)
|
||
bfd_alloc (htab->elf.dynobj, amt));
|
||
if (p == NULL)
|
||
return FALSE;
|
||
p->next = *head;
|
||
*head = p;
|
||
p->sec = sec;
|
||
p->count = 0;
|
||
p->pc_count = 0;
|
||
}
|
||
|
||
p->count += 1;
|
||
/* Count size relocation as PC-relative relocation. */
|
||
if (IS_X86_64_PCREL_TYPE (r_type) || size_reloc)
|
||
p->pc_count += 1;
|
||
}
|
||
break;
|
||
|
||
/* This relocation describes the C++ object vtable hierarchy.
|
||
Reconstruct it for later use during GC. */
|
||
case R_X86_64_GNU_VTINHERIT:
|
||
if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
|
||
return FALSE;
|
||
break;
|
||
|
||
/* This relocation describes which C++ vtable entries are actually
|
||
used. Record for later use during GC. */
|
||
case R_X86_64_GNU_VTENTRY:
|
||
BFD_ASSERT (h != NULL);
|
||
if (h != NULL
|
||
&& !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
|
||
return FALSE;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the section that should be marked against GC for a given
|
||
relocation. */
|
||
|
||
static asection *
|
||
elf_x86_64_gc_mark_hook (asection *sec,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Rela *rel,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym)
|
||
{
|
||
if (h != NULL)
|
||
switch (ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
case R_X86_64_GNU_VTINHERIT:
|
||
case R_X86_64_GNU_VTENTRY:
|
||
return NULL;
|
||
}
|
||
|
||
return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
|
||
}
|
||
|
||
/* Update the got entry reference counts for the section being removed. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
|
||
asection *sec,
|
||
const Elf_Internal_Rela *relocs)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
const Elf_Internal_Rela *rel, *relend;
|
||
|
||
if (info->relocatable)
|
||
return TRUE;
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
elf_section_data (sec)->local_dynrel = NULL;
|
||
|
||
symtab_hdr = &elf_symtab_hdr (abfd);
|
||
sym_hashes = elf_sym_hashes (abfd);
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
relend = relocs + sec->reloc_count;
|
||
for (rel = relocs; rel < relend; rel++)
|
||
{
|
||
unsigned long r_symndx;
|
||
unsigned int r_type;
|
||
struct elf_link_hash_entry *h = NULL;
|
||
|
||
r_symndx = htab->r_sym (rel->r_info);
|
||
if (r_symndx >= symtab_hdr->sh_info)
|
||
{
|
||
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
}
|
||
else
|
||
{
|
||
/* A local symbol. */
|
||
Elf_Internal_Sym *isym;
|
||
|
||
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
||
abfd, r_symndx);
|
||
|
||
/* Check relocation against local STT_GNU_IFUNC symbol. */
|
||
if (isym != NULL
|
||
&& ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
|
||
{
|
||
h = elf_x86_64_get_local_sym_hash (htab, abfd, rel, FALSE);
|
||
if (h == NULL)
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
if (h)
|
||
{
|
||
struct elf_x86_64_link_hash_entry *eh;
|
||
struct elf_dyn_relocs **pp;
|
||
struct elf_dyn_relocs *p;
|
||
|
||
eh = (struct elf_x86_64_link_hash_entry *) h;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
|
||
if (p->sec == sec)
|
||
{
|
||
/* Everything must go for SEC. */
|
||
*pp = p->next;
|
||
break;
|
||
}
|
||
}
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (! elf_x86_64_tls_transition (info, abfd, sec, NULL,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN,
|
||
rel, relend, h, r_symndx))
|
||
return FALSE;
|
||
|
||
switch (r_type)
|
||
{
|
||
case R_X86_64_TLSLD:
|
||
if (htab->tls_ld_got.refcount > 0)
|
||
htab->tls_ld_got.refcount -= 1;
|
||
break;
|
||
|
||
case R_X86_64_TLSGD:
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
case R_X86_64_TLSDESC_CALL:
|
||
case R_X86_64_GOTTPOFF:
|
||
case R_X86_64_GOT32:
|
||
case R_X86_64_GOTPCREL:
|
||
case R_X86_64_GOT64:
|
||
case R_X86_64_GOTPCREL64:
|
||
case R_X86_64_GOTPLT64:
|
||
if (h != NULL)
|
||
{
|
||
if (r_type == R_X86_64_GOTPLT64 && h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
if (h->got.refcount > 0)
|
||
h->got.refcount -= 1;
|
||
if (h->type == STT_GNU_IFUNC)
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
}
|
||
}
|
||
else if (local_got_refcounts != NULL)
|
||
{
|
||
if (local_got_refcounts[r_symndx] > 0)
|
||
local_got_refcounts[r_symndx] -= 1;
|
||
}
|
||
break;
|
||
|
||
case R_X86_64_8:
|
||
case R_X86_64_16:
|
||
case R_X86_64_32:
|
||
case R_X86_64_64:
|
||
case R_X86_64_32S:
|
||
case R_X86_64_PC8:
|
||
case R_X86_64_PC16:
|
||
case R_X86_64_PC32:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_SIZE32:
|
||
case R_X86_64_SIZE64:
|
||
if (info->shared
|
||
&& (h == NULL || h->type != STT_GNU_IFUNC))
|
||
break;
|
||
/* Fall thru */
|
||
|
||
case R_X86_64_PLT32:
|
||
case R_X86_64_PLTOFF64:
|
||
if (h != NULL)
|
||
{
|
||
if (h->plt.refcount > 0)
|
||
h->plt.refcount -= 1;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Adjust a symbol defined by a dynamic object and referenced by a
|
||
regular object. The current definition is in some section of the
|
||
dynamic object, but we're not including those sections. We have to
|
||
change the definition to something the rest of the link can
|
||
understand. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_adjust_dynamic_symbol (struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
asection *s;
|
||
struct elf_x86_64_link_hash_entry *eh;
|
||
struct elf_dyn_relocs *p;
|
||
|
||
/* STT_GNU_IFUNC symbol must go through PLT. */
|
||
if (h->type == STT_GNU_IFUNC)
|
||
{
|
||
/* All local STT_GNU_IFUNC references must be treate as local
|
||
calls via local PLT. */
|
||
if (h->ref_regular
|
||
&& SYMBOL_CALLS_LOCAL (info, h))
|
||
{
|
||
bfd_size_type pc_count = 0, count = 0;
|
||
struct elf_dyn_relocs **pp;
|
||
|
||
eh = (struct elf_x86_64_link_hash_entry *) h;
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
pc_count += p->pc_count;
|
||
p->count -= p->pc_count;
|
||
p->pc_count = 0;
|
||
count += p->count;
|
||
if (p->count == 0)
|
||
*pp = p->next;
|
||
else
|
||
pp = &p->next;
|
||
}
|
||
|
||
if (pc_count || count)
|
||
{
|
||
h->needs_plt = 1;
|
||
h->non_got_ref = 1;
|
||
if (h->plt.refcount <= 0)
|
||
h->plt.refcount = 1;
|
||
else
|
||
h->plt.refcount += 1;
|
||
}
|
||
}
|
||
|
||
if (h->plt.refcount <= 0)
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* If this is a function, put it in the procedure linkage table. We
|
||
will fill in the contents of the procedure linkage table later,
|
||
when we know the address of the .got section. */
|
||
if (h->type == STT_FUNC
|
||
|| h->needs_plt)
|
||
{
|
||
if (h->plt.refcount <= 0
|
||
|| SYMBOL_CALLS_LOCAL (info, h)
|
||
|| (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* This case can occur if we saw a PLT32 reloc in an input
|
||
file, but the symbol was never referred to by a dynamic
|
||
object, or if all references were garbage collected. In
|
||
such a case, we don't actually need to build a procedure
|
||
linkage table, and we can just do a PC32 reloc instead. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
else
|
||
/* It's possible that we incorrectly decided a .plt reloc was
|
||
needed for an R_X86_64_PC32 reloc to a non-function sym in
|
||
check_relocs. We can't decide accurately between function and
|
||
non-function syms in check-relocs; Objects loaded later in
|
||
the link may change h->type. So fix it now. */
|
||
h->plt.offset = (bfd_vma) -1;
|
||
|
||
/* If this is a weak symbol, and there is a real definition, the
|
||
processor independent code will have arranged for us to see the
|
||
real definition first, and we can just use the same value. */
|
||
if (h->u.weakdef != NULL)
|
||
{
|
||
BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
|
||
|| h->u.weakdef->root.type == bfd_link_hash_defweak);
|
||
h->root.u.def.section = h->u.weakdef->root.u.def.section;
|
||
h->root.u.def.value = h->u.weakdef->root.u.def.value;
|
||
if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
|
||
h->non_got_ref = h->u.weakdef->non_got_ref;
|
||
return TRUE;
|
||
}
|
||
|
||
/* This is a reference to a symbol defined by a dynamic object which
|
||
is not a function. */
|
||
|
||
/* If we are creating a shared library, we must presume that the
|
||
only references to the symbol are via the global offset table.
|
||
For such cases we need not do anything here; the relocations will
|
||
be handled correctly by relocate_section. */
|
||
if (info->shared)
|
||
return TRUE;
|
||
|
||
/* If there are no references to this symbol that do not use the
|
||
GOT, we don't need to generate a copy reloc. */
|
||
if (!h->non_got_ref)
|
||
return TRUE;
|
||
|
||
/* If -z nocopyreloc was given, we won't generate them either. */
|
||
if (info->nocopyreloc)
|
||
{
|
||
h->non_got_ref = 0;
|
||
return TRUE;
|
||
}
|
||
|
||
if (ELIMINATE_COPY_RELOCS)
|
||
{
|
||
eh = (struct elf_x86_64_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
s = p->sec->output_section;
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
break;
|
||
}
|
||
|
||
/* If we didn't find any dynamic relocs in read-only sections, then
|
||
we'll be keeping the dynamic relocs and avoiding the copy reloc. */
|
||
if (p == NULL)
|
||
{
|
||
h->non_got_ref = 0;
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
/* We must allocate the symbol in our .dynbss section, which will
|
||
become part of the .bss section of the executable. There will be
|
||
an entry for this symbol in the .dynsym section. The dynamic
|
||
object will contain position independent code, so all references
|
||
from the dynamic object to this symbol will go through the global
|
||
offset table. The dynamic linker will use the .dynsym entry to
|
||
determine the address it must put in the global offset table, so
|
||
both the dynamic object and the regular object will refer to the
|
||
same memory location for the variable. */
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
/* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
|
||
to copy the initial value out of the dynamic object and into the
|
||
runtime process image. */
|
||
if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
|
||
{
|
||
const struct elf_backend_data *bed;
|
||
bed = get_elf_backend_data (info->output_bfd);
|
||
htab->srelbss->size += bed->s->sizeof_rela;
|
||
h->needs_copy = 1;
|
||
}
|
||
|
||
s = htab->sdynbss;
|
||
|
||
return _bfd_elf_adjust_dynamic_copy (h, s);
|
||
}
|
||
|
||
/* Allocate space in .plt, .got and associated reloc sections for
|
||
dynamic relocs. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
|
||
{
|
||
struct bfd_link_info *info;
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
struct elf_x86_64_link_hash_entry *eh;
|
||
struct elf_dyn_relocs *p;
|
||
const struct elf_backend_data *bed;
|
||
unsigned int plt_entry_size;
|
||
|
||
if (h->root.type == bfd_link_hash_indirect)
|
||
return TRUE;
|
||
|
||
eh = (struct elf_x86_64_link_hash_entry *) h;
|
||
|
||
info = (struct bfd_link_info *) inf;
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
bed = get_elf_backend_data (info->output_bfd);
|
||
plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
|
||
|
||
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle it
|
||
here if it is defined and referenced in a non-shared object. */
|
||
if (h->type == STT_GNU_IFUNC
|
||
&& h->def_regular)
|
||
return _bfd_elf_allocate_ifunc_dyn_relocs (info, h,
|
||
&eh->dyn_relocs,
|
||
plt_entry_size,
|
||
GOT_ENTRY_SIZE);
|
||
else if (htab->elf.dynamic_sections_created
|
||
&& h->plt.refcount > 0)
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
if (info->shared
|
||
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
|
||
{
|
||
asection *s = htab->elf.splt;
|
||
|
||
/* If this is the first .plt entry, make room for the special
|
||
first entry. */
|
||
if (s->size == 0)
|
||
s->size += plt_entry_size;
|
||
|
||
h->plt.offset = s->size;
|
||
|
||
/* If this symbol is not defined in a regular file, and we are
|
||
not generating a shared library, then set the symbol to this
|
||
location in the .plt. This is required to make function
|
||
pointers compare as equal between the normal executable and
|
||
the shared library. */
|
||
if (! info->shared
|
||
&& !h->def_regular)
|
||
{
|
||
h->root.u.def.section = s;
|
||
h->root.u.def.value = h->plt.offset;
|
||
}
|
||
|
||
/* Make room for this entry. */
|
||
s->size += plt_entry_size;
|
||
|
||
/* We also need to make an entry in the .got.plt section, which
|
||
will be placed in the .got section by the linker script. */
|
||
htab->elf.sgotplt->size += GOT_ENTRY_SIZE;
|
||
|
||
/* We also need to make an entry in the .rela.plt section. */
|
||
htab->elf.srelplt->size += bed->s->sizeof_rela;
|
||
htab->elf.srelplt->reloc_count++;
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
h->plt.offset = (bfd_vma) -1;
|
||
h->needs_plt = 0;
|
||
}
|
||
|
||
eh->tlsdesc_got = (bfd_vma) -1;
|
||
|
||
/* If R_X86_64_GOTTPOFF symbol is now local to the binary,
|
||
make it a R_X86_64_TPOFF32 requiring no GOT entry. */
|
||
if (h->got.refcount > 0
|
||
&& info->executable
|
||
&& h->dynindx == -1
|
||
&& elf_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
|
||
{
|
||
h->got.offset = (bfd_vma) -1;
|
||
}
|
||
else if (h->got.refcount > 0)
|
||
{
|
||
asection *s;
|
||
bfd_boolean dyn;
|
||
int tls_type = elf_x86_64_hash_entry (h)->tls_type;
|
||
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& !h->forced_local)
|
||
{
|
||
if (! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
{
|
||
eh->tlsdesc_got = htab->elf.sgotplt->size
|
||
- elf_x86_64_compute_jump_table_size (htab);
|
||
htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
|
||
h->got.offset = (bfd_vma) -2;
|
||
}
|
||
if (! GOT_TLS_GDESC_P (tls_type)
|
||
|| GOT_TLS_GD_P (tls_type))
|
||
{
|
||
s = htab->elf.sgot;
|
||
h->got.offset = s->size;
|
||
s->size += GOT_ENTRY_SIZE;
|
||
if (GOT_TLS_GD_P (tls_type))
|
||
s->size += GOT_ENTRY_SIZE;
|
||
}
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
/* R_X86_64_TLSGD needs one dynamic relocation if local symbol
|
||
and two if global.
|
||
R_X86_64_GOTTPOFF needs one dynamic relocation. */
|
||
if ((GOT_TLS_GD_P (tls_type) && h->dynindx == -1)
|
||
|| tls_type == GOT_TLS_IE)
|
||
htab->elf.srelgot->size += bed->s->sizeof_rela;
|
||
else if (GOT_TLS_GD_P (tls_type))
|
||
htab->elf.srelgot->size += 2 * bed->s->sizeof_rela;
|
||
else if (! GOT_TLS_GDESC_P (tls_type)
|
||
&& (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak)
|
||
&& (info->shared
|
||
|| WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
|
||
htab->elf.srelgot->size += bed->s->sizeof_rela;
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
{
|
||
htab->elf.srelplt->size += bed->s->sizeof_rela;
|
||
htab->tlsdesc_plt = (bfd_vma) -1;
|
||
}
|
||
}
|
||
else
|
||
h->got.offset = (bfd_vma) -1;
|
||
|
||
if (eh->dyn_relocs == NULL)
|
||
return TRUE;
|
||
|
||
/* In the shared -Bsymbolic case, discard space allocated for
|
||
dynamic pc-relative relocs against symbols which turn out to be
|
||
defined in regular objects. For the normal shared case, discard
|
||
space for pc-relative relocs that have become local due to symbol
|
||
visibility changes. */
|
||
|
||
if (info->shared)
|
||
{
|
||
/* Relocs that use pc_count are those that appear on a call
|
||
insn, or certain REL relocs that can generated via assembly.
|
||
We want calls to protected symbols to resolve directly to the
|
||
function rather than going via the plt. If people want
|
||
function pointer comparisons to work as expected then they
|
||
should avoid writing weird assembly. */
|
||
if (SYMBOL_CALLS_LOCAL (info, h))
|
||
{
|
||
struct elf_dyn_relocs **pp;
|
||
|
||
for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
|
||
{
|
||
p->count -= p->pc_count;
|
||
p->pc_count = 0;
|
||
if (p->count == 0)
|
||
*pp = p->next;
|
||
else
|
||
pp = &p->next;
|
||
}
|
||
}
|
||
|
||
/* Also discard relocs on undefined weak syms with non-default
|
||
visibility. */
|
||
if (eh->dyn_relocs != NULL
|
||
&& h->root.type == bfd_link_hash_undefweak)
|
||
{
|
||
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
||
eh->dyn_relocs = NULL;
|
||
|
||
/* Make sure undefined weak symbols are output as a dynamic
|
||
symbol in PIEs. */
|
||
else if (h->dynindx == -1
|
||
&& ! h->forced_local
|
||
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
}
|
||
|
||
}
|
||
else if (ELIMINATE_COPY_RELOCS)
|
||
{
|
||
/* For the non-shared case, discard space for relocs against
|
||
symbols which turn out to need copy relocs or are not
|
||
dynamic. */
|
||
|
||
if (!h->non_got_ref
|
||
&& ((h->def_dynamic
|
||
&& !h->def_regular)
|
||
|| (htab->elf.dynamic_sections_created
|
||
&& (h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined))))
|
||
{
|
||
/* Make sure this symbol is output as a dynamic symbol.
|
||
Undefined weak syms won't yet be marked as dynamic. */
|
||
if (h->dynindx == -1
|
||
&& ! h->forced_local
|
||
&& ! bfd_elf_link_record_dynamic_symbol (info, h))
|
||
return FALSE;
|
||
|
||
/* If that succeeded, we know we'll be keeping all the
|
||
relocs. */
|
||
if (h->dynindx != -1)
|
||
goto keep;
|
||
}
|
||
|
||
eh->dyn_relocs = NULL;
|
||
|
||
keep: ;
|
||
}
|
||
|
||
/* Finally, allocate space. */
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection * sreloc;
|
||
|
||
sreloc = elf_section_data (p->sec)->sreloc;
|
||
|
||
BFD_ASSERT (sreloc != NULL);
|
||
|
||
sreloc->size += p->count * bed->s->sizeof_rela;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Allocate space in .plt, .got and associated reloc sections for
|
||
local dynamic relocs. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_allocate_local_dynrelocs (void **slot, void *inf)
|
||
{
|
||
struct elf_link_hash_entry *h
|
||
= (struct elf_link_hash_entry *) *slot;
|
||
|
||
if (h->type != STT_GNU_IFUNC
|
||
|| !h->def_regular
|
||
|| !h->ref_regular
|
||
|| !h->forced_local
|
||
|| h->root.type != bfd_link_hash_defined)
|
||
abort ();
|
||
|
||
return elf_x86_64_allocate_dynrelocs (h, inf);
|
||
}
|
||
|
||
/* Find any dynamic relocs that apply to read-only sections. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_readonly_dynrelocs (struct elf_link_hash_entry *h,
|
||
void * inf)
|
||
{
|
||
struct elf_x86_64_link_hash_entry *eh;
|
||
struct elf_dyn_relocs *p;
|
||
|
||
/* Skip local IFUNC symbols. */
|
||
if (h->forced_local && h->type == STT_GNU_IFUNC)
|
||
return TRUE;
|
||
|
||
eh = (struct elf_x86_64_link_hash_entry *) h;
|
||
for (p = eh->dyn_relocs; p != NULL; p = p->next)
|
||
{
|
||
asection *s = p->sec->output_section;
|
||
|
||
if (s != NULL && (s->flags & SEC_READONLY) != 0)
|
||
{
|
||
struct bfd_link_info *info = (struct bfd_link_info *) inf;
|
||
|
||
info->flags |= DF_TEXTREL;
|
||
|
||
if (info->warn_shared_textrel && info->shared)
|
||
info->callbacks->einfo (_("%P: %B: warning: relocation against `%s' in readonly section `%A'.\n"),
|
||
p->sec->owner, h->root.root.string,
|
||
p->sec);
|
||
|
||
/* Not an error, just cut short the traversal. */
|
||
return FALSE;
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Convert
|
||
mov foo@GOTPCREL(%rip), %reg
|
||
to
|
||
lea foo(%rip), %reg
|
||
with the local symbol, foo. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_convert_mov_to_lea (bfd *abfd, asection *sec,
|
||
struct bfd_link_info *link_info)
|
||
{
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
Elf_Internal_Rela *internal_relocs;
|
||
Elf_Internal_Rela *irel, *irelend;
|
||
bfd_byte *contents;
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
bfd_boolean changed_contents;
|
||
bfd_boolean changed_relocs;
|
||
bfd_signed_vma *local_got_refcounts;
|
||
|
||
/* Don't even try to convert non-ELF outputs. */
|
||
if (!is_elf_hash_table (link_info->hash))
|
||
return FALSE;
|
||
|
||
/* Nothing to do if there are no codes, no relocations or no output. */
|
||
if ((sec->flags & (SEC_CODE | SEC_RELOC)) != (SEC_CODE | SEC_RELOC)
|
||
|| sec->reloc_count == 0
|
||
|| discarded_section (sec))
|
||
return TRUE;
|
||
|
||
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
|
||
|
||
/* Load the relocations for this section. */
|
||
internal_relocs = (_bfd_elf_link_read_relocs
|
||
(abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
|
||
link_info->keep_memory));
|
||
if (internal_relocs == NULL)
|
||
return FALSE;
|
||
|
||
htab = elf_x86_64_hash_table (link_info);
|
||
changed_contents = FALSE;
|
||
changed_relocs = FALSE;
|
||
local_got_refcounts = elf_local_got_refcounts (abfd);
|
||
|
||
/* Get the section contents. */
|
||
if (elf_section_data (sec)->this_hdr.contents != NULL)
|
||
contents = elf_section_data (sec)->this_hdr.contents;
|
||
else
|
||
{
|
||
if (!bfd_malloc_and_get_section (abfd, sec, &contents))
|
||
goto error_return;
|
||
}
|
||
|
||
irelend = internal_relocs + sec->reloc_count;
|
||
for (irel = internal_relocs; irel < irelend; irel++)
|
||
{
|
||
unsigned int r_type = ELF32_R_TYPE (irel->r_info);
|
||
unsigned int r_symndx = htab->r_sym (irel->r_info);
|
||
unsigned int indx;
|
||
struct elf_link_hash_entry *h;
|
||
|
||
if (r_type != R_X86_64_GOTPCREL)
|
||
continue;
|
||
|
||
/* Get the symbol referred to by the reloc. */
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
Elf_Internal_Sym *isym;
|
||
|
||
isym = bfd_sym_from_r_symndx (&htab->sym_cache,
|
||
abfd, r_symndx);
|
||
|
||
/* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. */
|
||
if (ELF_ST_TYPE (isym->st_info) != STT_GNU_IFUNC
|
||
&& bfd_get_8 (input_bfd,
|
||
contents + irel->r_offset - 2) == 0x8b)
|
||
{
|
||
bfd_put_8 (output_bfd, 0x8d,
|
||
contents + irel->r_offset - 2);
|
||
irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
|
||
if (local_got_refcounts != NULL
|
||
&& local_got_refcounts[r_symndx] > 0)
|
||
local_got_refcounts[r_symndx] -= 1;
|
||
changed_contents = TRUE;
|
||
changed_relocs = TRUE;
|
||
}
|
||
continue;
|
||
}
|
||
|
||
indx = r_symndx - symtab_hdr->sh_info;
|
||
h = elf_sym_hashes (abfd)[indx];
|
||
BFD_ASSERT (h != NULL);
|
||
|
||
while (h->root.type == bfd_link_hash_indirect
|
||
|| h->root.type == bfd_link_hash_warning)
|
||
h = (struct elf_link_hash_entry *) h->root.u.i.link;
|
||
|
||
/* STT_GNU_IFUNC must keep R_X86_64_GOTPCREL relocation. We also
|
||
avoid optimizing _DYNAMIC since ld.so may use its link-time
|
||
address. */
|
||
if (h->def_regular
|
||
&& h->type != STT_GNU_IFUNC
|
||
&& h != htab->elf.hdynamic
|
||
&& SYMBOL_REFERENCES_LOCAL (link_info, h)
|
||
&& bfd_get_8 (input_bfd,
|
||
contents + irel->r_offset - 2) == 0x8b)
|
||
{
|
||
bfd_put_8 (output_bfd, 0x8d,
|
||
contents + irel->r_offset - 2);
|
||
irel->r_info = htab->r_info (r_symndx, R_X86_64_PC32);
|
||
if (h->got.refcount > 0)
|
||
h->got.refcount -= 1;
|
||
changed_contents = TRUE;
|
||
changed_relocs = TRUE;
|
||
}
|
||
}
|
||
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
{
|
||
if (!changed_contents && !link_info->keep_memory)
|
||
free (contents);
|
||
else
|
||
{
|
||
/* Cache the section contents for elf_link_input_bfd. */
|
||
elf_section_data (sec)->this_hdr.contents = contents;
|
||
}
|
||
}
|
||
|
||
if (elf_section_data (sec)->relocs != internal_relocs)
|
||
{
|
||
if (!changed_relocs)
|
||
free (internal_relocs);
|
||
else
|
||
elf_section_data (sec)->relocs = internal_relocs;
|
||
}
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (contents != NULL
|
||
&& elf_section_data (sec)->this_hdr.contents != contents)
|
||
free (contents);
|
||
if (internal_relocs != NULL
|
||
&& elf_section_data (sec)->relocs != internal_relocs)
|
||
free (internal_relocs);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Set the sizes of the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_size_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *s;
|
||
bfd_boolean relocs;
|
||
bfd *ibfd;
|
||
const struct elf_backend_data *bed;
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
bed = get_elf_backend_data (output_bfd);
|
||
|
||
dynobj = htab->elf.dynobj;
|
||
if (dynobj == NULL)
|
||
abort ();
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Set the contents of the .interp section to the interpreter. */
|
||
if (info->executable)
|
||
{
|
||
s = bfd_get_linker_section (dynobj, ".interp");
|
||
if (s == NULL)
|
||
abort ();
|
||
s->size = htab->dynamic_interpreter_size;
|
||
s->contents = (unsigned char *) htab->dynamic_interpreter;
|
||
}
|
||
}
|
||
|
||
/* Set up .got offsets for local syms, and space for local dynamic
|
||
relocs. */
|
||
for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
|
||
{
|
||
bfd_signed_vma *local_got;
|
||
bfd_signed_vma *end_local_got;
|
||
char *local_tls_type;
|
||
bfd_vma *local_tlsdesc_gotent;
|
||
bfd_size_type locsymcount;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
asection *srel;
|
||
|
||
if (! is_x86_64_elf (ibfd))
|
||
continue;
|
||
|
||
for (s = ibfd->sections; s != NULL; s = s->next)
|
||
{
|
||
struct elf_dyn_relocs *p;
|
||
|
||
if (!elf_x86_64_convert_mov_to_lea (ibfd, s, info))
|
||
return FALSE;
|
||
|
||
for (p = (struct elf_dyn_relocs *)
|
||
(elf_section_data (s)->local_dynrel);
|
||
p != NULL;
|
||
p = p->next)
|
||
{
|
||
if (!bfd_is_abs_section (p->sec)
|
||
&& bfd_is_abs_section (p->sec->output_section))
|
||
{
|
||
/* Input section has been discarded, either because
|
||
it is a copy of a linkonce section or due to
|
||
linker script /DISCARD/, so we'll be discarding
|
||
the relocs too. */
|
||
}
|
||
else if (p->count != 0)
|
||
{
|
||
srel = elf_section_data (p->sec)->sreloc;
|
||
srel->size += p->count * bed->s->sizeof_rela;
|
||
if ((p->sec->output_section->flags & SEC_READONLY) != 0
|
||
&& (info->flags & DF_TEXTREL) == 0)
|
||
{
|
||
info->flags |= DF_TEXTREL;
|
||
if (info->warn_shared_textrel && info->shared)
|
||
info->callbacks->einfo (_("%P: %B: warning: relocation in readonly section `%A'.\n"),
|
||
p->sec->owner, p->sec);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
local_got = elf_local_got_refcounts (ibfd);
|
||
if (!local_got)
|
||
continue;
|
||
|
||
symtab_hdr = &elf_symtab_hdr (ibfd);
|
||
locsymcount = symtab_hdr->sh_info;
|
||
end_local_got = local_got + locsymcount;
|
||
local_tls_type = elf_x86_64_local_got_tls_type (ibfd);
|
||
local_tlsdesc_gotent = elf_x86_64_local_tlsdesc_gotent (ibfd);
|
||
s = htab->elf.sgot;
|
||
srel = htab->elf.srelgot;
|
||
for (; local_got < end_local_got;
|
||
++local_got, ++local_tls_type, ++local_tlsdesc_gotent)
|
||
{
|
||
*local_tlsdesc_gotent = (bfd_vma) -1;
|
||
if (*local_got > 0)
|
||
{
|
||
if (GOT_TLS_GDESC_P (*local_tls_type))
|
||
{
|
||
*local_tlsdesc_gotent = htab->elf.sgotplt->size
|
||
- elf_x86_64_compute_jump_table_size (htab);
|
||
htab->elf.sgotplt->size += 2 * GOT_ENTRY_SIZE;
|
||
*local_got = (bfd_vma) -2;
|
||
}
|
||
if (! GOT_TLS_GDESC_P (*local_tls_type)
|
||
|| GOT_TLS_GD_P (*local_tls_type))
|
||
{
|
||
*local_got = s->size;
|
||
s->size += GOT_ENTRY_SIZE;
|
||
if (GOT_TLS_GD_P (*local_tls_type))
|
||
s->size += GOT_ENTRY_SIZE;
|
||
}
|
||
if (info->shared
|
||
|| GOT_TLS_GD_ANY_P (*local_tls_type)
|
||
|| *local_tls_type == GOT_TLS_IE)
|
||
{
|
||
if (GOT_TLS_GDESC_P (*local_tls_type))
|
||
{
|
||
htab->elf.srelplt->size
|
||
+= bed->s->sizeof_rela;
|
||
htab->tlsdesc_plt = (bfd_vma) -1;
|
||
}
|
||
if (! GOT_TLS_GDESC_P (*local_tls_type)
|
||
|| GOT_TLS_GD_P (*local_tls_type))
|
||
srel->size += bed->s->sizeof_rela;
|
||
}
|
||
}
|
||
else
|
||
*local_got = (bfd_vma) -1;
|
||
}
|
||
}
|
||
|
||
if (htab->tls_ld_got.refcount > 0)
|
||
{
|
||
/* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
|
||
relocs. */
|
||
htab->tls_ld_got.offset = htab->elf.sgot->size;
|
||
htab->elf.sgot->size += 2 * GOT_ENTRY_SIZE;
|
||
htab->elf.srelgot->size += bed->s->sizeof_rela;
|
||
}
|
||
else
|
||
htab->tls_ld_got.offset = -1;
|
||
|
||
/* Allocate global sym .plt and .got entries, and space for global
|
||
sym dynamic relocs. */
|
||
elf_link_hash_traverse (&htab->elf, elf_x86_64_allocate_dynrelocs,
|
||
info);
|
||
|
||
/* Allocate .plt and .got entries, and space for local symbols. */
|
||
htab_traverse (htab->loc_hash_table,
|
||
elf_x86_64_allocate_local_dynrelocs,
|
||
info);
|
||
|
||
/* For every jump slot reserved in the sgotplt, reloc_count is
|
||
incremented. However, when we reserve space for TLS descriptors,
|
||
it's not incremented, so in order to compute the space reserved
|
||
for them, it suffices to multiply the reloc count by the jump
|
||
slot size.
|
||
|
||
PR ld/13302: We start next_irelative_index at the end of .rela.plt
|
||
so that R_X86_64_IRELATIVE entries come last. */
|
||
if (htab->elf.srelplt)
|
||
{
|
||
htab->sgotplt_jump_table_size
|
||
= elf_x86_64_compute_jump_table_size (htab);
|
||
htab->next_irelative_index = htab->elf.srelplt->reloc_count - 1;
|
||
}
|
||
else if (htab->elf.irelplt)
|
||
htab->next_irelative_index = htab->elf.irelplt->reloc_count - 1;
|
||
|
||
if (htab->tlsdesc_plt)
|
||
{
|
||
/* If we're not using lazy TLS relocations, don't generate the
|
||
PLT and GOT entries they require. */
|
||
if ((info->flags & DF_BIND_NOW))
|
||
htab->tlsdesc_plt = 0;
|
||
else
|
||
{
|
||
htab->tlsdesc_got = htab->elf.sgot->size;
|
||
htab->elf.sgot->size += GOT_ENTRY_SIZE;
|
||
/* Reserve room for the initial entry.
|
||
FIXME: we could probably do away with it in this case. */
|
||
if (htab->elf.splt->size == 0)
|
||
htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
|
||
htab->tlsdesc_plt = htab->elf.splt->size;
|
||
htab->elf.splt->size += GET_PLT_ENTRY_SIZE (output_bfd);
|
||
}
|
||
}
|
||
|
||
if (htab->elf.sgotplt)
|
||
{
|
||
/* Don't allocate .got.plt section if there are no GOT nor PLT
|
||
entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */
|
||
if ((htab->elf.hgot == NULL
|
||
|| !htab->elf.hgot->ref_regular_nonweak)
|
||
&& (htab->elf.sgotplt->size
|
||
== get_elf_backend_data (output_bfd)->got_header_size)
|
||
&& (htab->elf.splt == NULL
|
||
|| htab->elf.splt->size == 0)
|
||
&& (htab->elf.sgot == NULL
|
||
|| htab->elf.sgot->size == 0)
|
||
&& (htab->elf.iplt == NULL
|
||
|| htab->elf.iplt->size == 0)
|
||
&& (htab->elf.igotplt == NULL
|
||
|| htab->elf.igotplt->size == 0))
|
||
htab->elf.sgotplt->size = 0;
|
||
}
|
||
|
||
if (htab->plt_eh_frame != NULL
|
||
&& htab->elf.splt != NULL
|
||
&& htab->elf.splt->size != 0
|
||
&& !bfd_is_abs_section (htab->elf.splt->output_section)
|
||
&& _bfd_elf_eh_frame_present (info))
|
||
{
|
||
const struct elf_x86_64_backend_data *arch_data
|
||
= (const struct elf_x86_64_backend_data *) bed->arch_data;
|
||
htab->plt_eh_frame->size = arch_data->eh_frame_plt_size;
|
||
}
|
||
|
||
/* We now have determined the sizes of the various dynamic sections.
|
||
Allocate memory for them. */
|
||
relocs = FALSE;
|
||
for (s = dynobj->sections; s != NULL; s = s->next)
|
||
{
|
||
if ((s->flags & SEC_LINKER_CREATED) == 0)
|
||
continue;
|
||
|
||
if (s == htab->elf.splt
|
||
|| s == htab->elf.sgot
|
||
|| s == htab->elf.sgotplt
|
||
|| s == htab->elf.iplt
|
||
|| s == htab->elf.igotplt
|
||
|| s == htab->plt_eh_frame
|
||
|| s == htab->sdynbss)
|
||
{
|
||
/* Strip this section if we don't need it; see the
|
||
comment below. */
|
||
}
|
||
else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela"))
|
||
{
|
||
if (s->size != 0 && s != htab->elf.srelplt)
|
||
relocs = TRUE;
|
||
|
||
/* We use the reloc_count field as a counter if we need
|
||
to copy relocs into the output file. */
|
||
if (s != htab->elf.srelplt)
|
||
s->reloc_count = 0;
|
||
}
|
||
else
|
||
{
|
||
/* It's not one of our sections, so don't allocate space. */
|
||
continue;
|
||
}
|
||
|
||
if (s->size == 0)
|
||
{
|
||
/* If we don't need this section, strip it from the
|
||
output file. This is mostly to handle .rela.bss and
|
||
.rela.plt. We must create both sections in
|
||
create_dynamic_sections, because they must be created
|
||
before the linker maps input sections to output
|
||
sections. The linker does that before
|
||
adjust_dynamic_symbol is called, and it is that
|
||
function which decides whether anything needs to go
|
||
into these sections. */
|
||
|
||
s->flags |= SEC_EXCLUDE;
|
||
continue;
|
||
}
|
||
|
||
if ((s->flags & SEC_HAS_CONTENTS) == 0)
|
||
continue;
|
||
|
||
/* Allocate memory for the section contents. We use bfd_zalloc
|
||
here in case unused entries are not reclaimed before the
|
||
section's contents are written out. This should not happen,
|
||
but this way if it does, we get a R_X86_64_NONE reloc instead
|
||
of garbage. */
|
||
s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
|
||
if (s->contents == NULL)
|
||
return FALSE;
|
||
}
|
||
|
||
if (htab->plt_eh_frame != NULL
|
||
&& htab->plt_eh_frame->contents != NULL)
|
||
{
|
||
const struct elf_x86_64_backend_data *arch_data
|
||
= (const struct elf_x86_64_backend_data *) bed->arch_data;
|
||
|
||
memcpy (htab->plt_eh_frame->contents,
|
||
arch_data->eh_frame_plt, htab->plt_eh_frame->size);
|
||
bfd_put_32 (dynobj, htab->elf.splt->size,
|
||
htab->plt_eh_frame->contents + PLT_FDE_LEN_OFFSET);
|
||
}
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
/* Add some entries to the .dynamic section. We fill in the
|
||
values later, in elf_x86_64_finish_dynamic_sections, but we
|
||
must add the entries now so that we get the correct size for
|
||
the .dynamic section. The DT_DEBUG entry is filled in by the
|
||
dynamic linker and used by the debugger. */
|
||
#define add_dynamic_entry(TAG, VAL) \
|
||
_bfd_elf_add_dynamic_entry (info, TAG, VAL)
|
||
|
||
if (info->executable)
|
||
{
|
||
if (!add_dynamic_entry (DT_DEBUG, 0))
|
||
return FALSE;
|
||
}
|
||
|
||
if (htab->elf.splt->size != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_PLTGOT, 0)
|
||
|| !add_dynamic_entry (DT_PLTRELSZ, 0)
|
||
|| !add_dynamic_entry (DT_PLTREL, DT_RELA)
|
||
|| !add_dynamic_entry (DT_JMPREL, 0))
|
||
return FALSE;
|
||
|
||
if (htab->tlsdesc_plt
|
||
&& (!add_dynamic_entry (DT_TLSDESC_PLT, 0)
|
||
|| !add_dynamic_entry (DT_TLSDESC_GOT, 0)))
|
||
return FALSE;
|
||
}
|
||
|
||
if (relocs)
|
||
{
|
||
if (!add_dynamic_entry (DT_RELA, 0)
|
||
|| !add_dynamic_entry (DT_RELASZ, 0)
|
||
|| !add_dynamic_entry (DT_RELAENT, bed->s->sizeof_rela))
|
||
return FALSE;
|
||
|
||
/* If any dynamic relocs apply to a read-only section,
|
||
then we need a DT_TEXTREL entry. */
|
||
if ((info->flags & DF_TEXTREL) == 0)
|
||
elf_link_hash_traverse (&htab->elf,
|
||
elf_x86_64_readonly_dynrelocs,
|
||
info);
|
||
|
||
if ((info->flags & DF_TEXTREL) != 0)
|
||
{
|
||
if (!add_dynamic_entry (DT_TEXTREL, 0))
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
#undef add_dynamic_entry
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_always_size_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
asection *tls_sec = elf_hash_table (info)->tls_sec;
|
||
|
||
if (tls_sec)
|
||
{
|
||
struct elf_link_hash_entry *tlsbase;
|
||
|
||
tlsbase = elf_link_hash_lookup (elf_hash_table (info),
|
||
"_TLS_MODULE_BASE_",
|
||
FALSE, FALSE, FALSE);
|
||
|
||
if (tlsbase && tlsbase->type == STT_TLS)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
struct bfd_link_hash_entry *bh = NULL;
|
||
const struct elf_backend_data *bed
|
||
= get_elf_backend_data (output_bfd);
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
if (!(_bfd_generic_link_add_one_symbol
|
||
(info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
|
||
tls_sec, 0, NULL, FALSE,
|
||
bed->collect, &bh)))
|
||
return FALSE;
|
||
|
||
htab->tls_module_base = bh;
|
||
|
||
tlsbase = (struct elf_link_hash_entry *)bh;
|
||
tlsbase->def_regular = 1;
|
||
tlsbase->other = STV_HIDDEN;
|
||
(*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* _TLS_MODULE_BASE_ needs to be treated especially when linking
|
||
executables. Rather than setting it to the beginning of the TLS
|
||
section, we have to set it to the end. This function may be called
|
||
multiple times, it is idempotent. */
|
||
|
||
static void
|
||
elf_x86_64_set_tls_module_base (struct bfd_link_info *info)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
struct bfd_link_hash_entry *base;
|
||
|
||
if (!info->executable)
|
||
return;
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return;
|
||
|
||
base = htab->tls_module_base;
|
||
if (base == NULL)
|
||
return;
|
||
|
||
base->u.def.value = htab->elf.tls_size;
|
||
}
|
||
|
||
/* Return the base VMA address which should be subtracted from real addresses
|
||
when resolving @dtpoff relocation.
|
||
This is PT_TLS segment p_vaddr. */
|
||
|
||
static bfd_vma
|
||
elf_x86_64_dtpoff_base (struct bfd_link_info *info)
|
||
{
|
||
/* If tls_sec is NULL, we should have signalled an error already. */
|
||
if (elf_hash_table (info)->tls_sec == NULL)
|
||
return 0;
|
||
return elf_hash_table (info)->tls_sec->vma;
|
||
}
|
||
|
||
/* Return the relocation value for @tpoff relocation
|
||
if STT_TLS virtual address is ADDRESS. */
|
||
|
||
static bfd_vma
|
||
elf_x86_64_tpoff (struct bfd_link_info *info, bfd_vma address)
|
||
{
|
||
struct elf_link_hash_table *htab = elf_hash_table (info);
|
||
const struct elf_backend_data *bed = get_elf_backend_data (info->output_bfd);
|
||
bfd_vma static_tls_size;
|
||
|
||
/* If tls_segment is NULL, we should have signalled an error already. */
|
||
if (htab->tls_sec == NULL)
|
||
return 0;
|
||
|
||
/* Consider special static TLS alignment requirements. */
|
||
static_tls_size = BFD_ALIGN (htab->tls_size, bed->static_tls_alignment);
|
||
return address - static_tls_size - htab->tls_sec->vma;
|
||
}
|
||
|
||
/* Is the instruction before OFFSET in CONTENTS a 32bit relative
|
||
branch? */
|
||
|
||
static bfd_boolean
|
||
is_32bit_relative_branch (bfd_byte *contents, bfd_vma offset)
|
||
{
|
||
/* Opcode Instruction
|
||
0xe8 call
|
||
0xe9 jump
|
||
0x0f 0x8x conditional jump */
|
||
return ((offset > 0
|
||
&& (contents [offset - 1] == 0xe8
|
||
|| contents [offset - 1] == 0xe9))
|
||
|| (offset > 1
|
||
&& contents [offset - 2] == 0x0f
|
||
&& (contents [offset - 1] & 0xf0) == 0x80));
|
||
}
|
||
|
||
/* Relocate an x86_64 ELF section. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_relocate_section (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
bfd *input_bfd,
|
||
asection *input_section,
|
||
bfd_byte *contents,
|
||
Elf_Internal_Rela *relocs,
|
||
Elf_Internal_Sym *local_syms,
|
||
asection **local_sections)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
Elf_Internal_Shdr *symtab_hdr;
|
||
struct elf_link_hash_entry **sym_hashes;
|
||
bfd_vma *local_got_offsets;
|
||
bfd_vma *local_tlsdesc_gotents;
|
||
Elf_Internal_Rela *rel;
|
||
Elf_Internal_Rela *relend;
|
||
const unsigned int plt_entry_size = GET_PLT_ENTRY_SIZE (info->output_bfd);
|
||
|
||
BFD_ASSERT (is_x86_64_elf (input_bfd));
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
symtab_hdr = &elf_symtab_hdr (input_bfd);
|
||
sym_hashes = elf_sym_hashes (input_bfd);
|
||
local_got_offsets = elf_local_got_offsets (input_bfd);
|
||
local_tlsdesc_gotents = elf_x86_64_local_tlsdesc_gotent (input_bfd);
|
||
|
||
elf_x86_64_set_tls_module_base (info);
|
||
|
||
rel = relocs;
|
||
relend = relocs + input_section->reloc_count;
|
||
for (; rel < relend; rel++)
|
||
{
|
||
unsigned int r_type;
|
||
reloc_howto_type *howto;
|
||
unsigned long r_symndx;
|
||
struct elf_link_hash_entry *h;
|
||
Elf_Internal_Sym *sym;
|
||
asection *sec;
|
||
bfd_vma off, offplt;
|
||
bfd_vma relocation;
|
||
bfd_boolean unresolved_reloc;
|
||
bfd_reloc_status_type r;
|
||
int tls_type;
|
||
asection *base_got;
|
||
bfd_vma st_size;
|
||
|
||
r_type = ELF32_R_TYPE (rel->r_info);
|
||
if (r_type == (int) R_X86_64_GNU_VTINHERIT
|
||
|| r_type == (int) R_X86_64_GNU_VTENTRY)
|
||
continue;
|
||
|
||
if (r_type >= (int) R_X86_64_standard)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: unrecognized relocation (0x%x) in section `%A'"),
|
||
input_bfd, input_section, r_type);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (r_type != (int) R_X86_64_32
|
||
|| ABI_64_P (output_bfd))
|
||
howto = x86_64_elf_howto_table + r_type;
|
||
else
|
||
howto = (x86_64_elf_howto_table
|
||
+ ARRAY_SIZE (x86_64_elf_howto_table) - 1);
|
||
r_symndx = htab->r_sym (rel->r_info);
|
||
h = NULL;
|
||
sym = NULL;
|
||
sec = NULL;
|
||
unresolved_reloc = FALSE;
|
||
if (r_symndx < symtab_hdr->sh_info)
|
||
{
|
||
sym = local_syms + r_symndx;
|
||
sec = local_sections[r_symndx];
|
||
|
||
relocation = _bfd_elf_rela_local_sym (output_bfd, sym,
|
||
&sec, rel);
|
||
st_size = sym->st_size;
|
||
|
||
/* Relocate against local STT_GNU_IFUNC symbol. */
|
||
if (!info->relocatable
|
||
&& ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
|
||
{
|
||
h = elf_x86_64_get_local_sym_hash (htab, input_bfd,
|
||
rel, FALSE);
|
||
if (h == NULL)
|
||
abort ();
|
||
|
||
/* Set STT_GNU_IFUNC symbol value. */
|
||
h->root.u.def.value = sym->st_value;
|
||
h->root.u.def.section = sec;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bfd_boolean warned ATTRIBUTE_UNUSED;
|
||
|
||
RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
|
||
r_symndx, symtab_hdr, sym_hashes,
|
||
h, sec, relocation,
|
||
unresolved_reloc, warned);
|
||
st_size = h->size;
|
||
}
|
||
|
||
if (sec != NULL && discarded_section (sec))
|
||
RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
|
||
rel, 1, relend, howto, 0, contents);
|
||
|
||
if (info->relocatable)
|
||
continue;
|
||
|
||
if (rel->r_addend == 0 && !ABI_64_P (output_bfd))
|
||
{
|
||
if (r_type == R_X86_64_64)
|
||
{
|
||
/* For x32, treat R_X86_64_64 like R_X86_64_32 and
|
||
zero-extend it to 64bit if addend is zero. */
|
||
r_type = R_X86_64_32;
|
||
memset (contents + rel->r_offset + 4, 0, 4);
|
||
}
|
||
else if (r_type == R_X86_64_SIZE64)
|
||
{
|
||
/* For x32, treat R_X86_64_SIZE64 like R_X86_64_SIZE32 and
|
||
zero-extend it to 64bit if addend is zero. */
|
||
r_type = R_X86_64_SIZE32;
|
||
memset (contents + rel->r_offset + 4, 0, 4);
|
||
}
|
||
}
|
||
|
||
/* Since STT_GNU_IFUNC symbol must go through PLT, we handle
|
||
it here if it is defined in a non-shared object. */
|
||
if (h != NULL
|
||
&& h->type == STT_GNU_IFUNC
|
||
&& h->def_regular)
|
||
{
|
||
asection *plt;
|
||
bfd_vma plt_index;
|
||
const char *name;
|
||
|
||
if ((input_section->flags & SEC_ALLOC) == 0
|
||
|| h->plt.offset == (bfd_vma) -1)
|
||
abort ();
|
||
|
||
/* STT_GNU_IFUNC symbol must go through PLT. */
|
||
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
|
||
relocation = (plt->output_section->vma
|
||
+ plt->output_offset + h->plt.offset);
|
||
|
||
switch (r_type)
|
||
{
|
||
default:
|
||
if (h->root.root.string)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
|
||
NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against STT_GNU_IFUNC "
|
||
"symbol `%s' isn't handled by %s"), input_bfd,
|
||
x86_64_elf_howto_table[r_type].name,
|
||
name, __FUNCTION__);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
|
||
case R_X86_64_32S:
|
||
if (info->shared)
|
||
abort ();
|
||
goto do_relocation;
|
||
|
||
case R_X86_64_32:
|
||
if (ABI_64_P (output_bfd))
|
||
goto do_relocation;
|
||
/* FALLTHROUGH */
|
||
case R_X86_64_64:
|
||
if (rel->r_addend != 0)
|
||
{
|
||
if (h->root.root.string)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
|
||
sym, NULL);
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation %s against STT_GNU_IFUNC "
|
||
"symbol `%s' has non-zero addend: %d"),
|
||
input_bfd, x86_64_elf_howto_table[r_type].name,
|
||
name, rel->r_addend);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Generate dynamic relcoation only when there is a
|
||
non-GOT reference in a shared object. */
|
||
if (info->shared && h->non_got_ref)
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
asection *sreloc;
|
||
|
||
/* Need a dynamic relocation to get the real function
|
||
address. */
|
||
outrel.r_offset = _bfd_elf_section_offset (output_bfd,
|
||
info,
|
||
input_section,
|
||
rel->r_offset);
|
||
if (outrel.r_offset == (bfd_vma) -1
|
||
|| outrel.r_offset == (bfd_vma) -2)
|
||
abort ();
|
||
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (h->dynindx == -1
|
||
|| h->forced_local
|
||
|| info->executable)
|
||
{
|
||
/* This symbol is resolved locally. */
|
||
outrel.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
|
||
outrel.r_addend = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
outrel.r_info = htab->r_info (h->dynindx, r_type);
|
||
outrel.r_addend = 0;
|
||
}
|
||
|
||
sreloc = htab->elf.irelifunc;
|
||
elf_append_rela (output_bfd, sreloc, &outrel);
|
||
|
||
/* If this reloc is against an external symbol, we
|
||
do not want to fiddle with the addend. Otherwise,
|
||
we need to include the symbol value so that it
|
||
becomes an addend for the dynamic reloc. For an
|
||
internal symbol, we have updated addend. */
|
||
continue;
|
||
}
|
||
/* FALLTHROUGH */
|
||
case R_X86_64_PC32:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_PLT32:
|
||
goto do_relocation;
|
||
|
||
case R_X86_64_GOTPCREL:
|
||
case R_X86_64_GOTPCREL64:
|
||
base_got = htab->elf.sgot;
|
||
off = h->got.offset;
|
||
|
||
if (base_got == NULL)
|
||
abort ();
|
||
|
||
if (off == (bfd_vma) -1)
|
||
{
|
||
/* We can't use h->got.offset here to save state, or
|
||
even just remember the offset, as finish_dynamic_symbol
|
||
would use that as offset into .got. */
|
||
|
||
if (htab->elf.splt != NULL)
|
||
{
|
||
plt_index = h->plt.offset / plt_entry_size - 1;
|
||
off = (plt_index + 3) * GOT_ENTRY_SIZE;
|
||
base_got = htab->elf.sgotplt;
|
||
}
|
||
else
|
||
{
|
||
plt_index = h->plt.offset / plt_entry_size;
|
||
off = plt_index * GOT_ENTRY_SIZE;
|
||
base_got = htab->elf.igotplt;
|
||
}
|
||
|
||
if (h->dynindx == -1
|
||
|| h->forced_local
|
||
|| info->symbolic)
|
||
{
|
||
/* This references the local defitionion. We must
|
||
initialize this entry in the global offset table.
|
||
Since the offset must always be a multiple of 8,
|
||
we use the least significant bit to record
|
||
whether we have initialized it already.
|
||
|
||
When doing a dynamic link, we create a .rela.got
|
||
relocation entry to initialize the value. This
|
||
is done in the finish_dynamic_symbol routine. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_64 (output_bfd, relocation,
|
||
base_got->contents + off);
|
||
/* Note that this is harmless for the GOTPLT64
|
||
case, as -1 | 1 still is -1. */
|
||
h->got.offset |= 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
relocation = (base_got->output_section->vma
|
||
+ base_got->output_offset + off);
|
||
|
||
goto do_relocation;
|
||
}
|
||
}
|
||
|
||
/* When generating a shared object, the relocations handled here are
|
||
copied into the output file to be resolved at run time. */
|
||
switch (r_type)
|
||
{
|
||
case R_X86_64_GOT32:
|
||
case R_X86_64_GOT64:
|
||
/* Relocation is to the entry for this symbol in the global
|
||
offset table. */
|
||
case R_X86_64_GOTPCREL:
|
||
case R_X86_64_GOTPCREL64:
|
||
/* Use global offset table entry as symbol value. */
|
||
case R_X86_64_GOTPLT64:
|
||
/* This is the same as GOT64 for relocation purposes, but
|
||
indicates the existence of a PLT entry. The difficulty is,
|
||
that we must calculate the GOT slot offset from the PLT
|
||
offset, if this symbol got a PLT entry (it was global).
|
||
Additionally if it's computed from the PLT entry, then that
|
||
GOT offset is relative to .got.plt, not to .got. */
|
||
base_got = htab->elf.sgot;
|
||
|
||
if (htab->elf.sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
{
|
||
bfd_boolean dyn;
|
||
|
||
off = h->got.offset;
|
||
if (h->needs_plt
|
||
&& h->plt.offset != (bfd_vma)-1
|
||
&& off == (bfd_vma)-1)
|
||
{
|
||
/* We can't use h->got.offset here to save
|
||
state, or even just remember the offset, as
|
||
finish_dynamic_symbol would use that as offset into
|
||
.got. */
|
||
bfd_vma plt_index = h->plt.offset / plt_entry_size - 1;
|
||
off = (plt_index + 3) * GOT_ENTRY_SIZE;
|
||
base_got = htab->elf.sgotplt;
|
||
}
|
||
|
||
dyn = htab->elf.dynamic_sections_created;
|
||
|
||
if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
|
||
|| (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
|| (ELF_ST_VISIBILITY (h->other)
|
||
&& h->root.type == bfd_link_hash_undefweak))
|
||
{
|
||
/* This is actually a static link, or it is a -Bsymbolic
|
||
link and the symbol is defined locally, or the symbol
|
||
was forced to be local because of a version file. We
|
||
must initialize this entry in the global offset table.
|
||
Since the offset must always be a multiple of 8, we
|
||
use the least significant bit to record whether we
|
||
have initialized it already.
|
||
|
||
When doing a dynamic link, we create a .rela.got
|
||
relocation entry to initialize the value. This is
|
||
done in the finish_dynamic_symbol routine. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_64 (output_bfd, relocation,
|
||
base_got->contents + off);
|
||
/* Note that this is harmless for the GOTPLT64 case,
|
||
as -1 | 1 still is -1. */
|
||
h->got.offset |= 1;
|
||
}
|
||
}
|
||
else
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
|
||
/* The offset must always be a multiple of 8. We use
|
||
the least significant bit to record whether we have
|
||
already generated the necessary reloc. */
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
bfd_put_64 (output_bfd, relocation,
|
||
base_got->contents + off);
|
||
|
||
if (info->shared)
|
||
{
|
||
asection *s;
|
||
Elf_Internal_Rela outrel;
|
||
|
||
/* We need to generate a R_X86_64_RELATIVE reloc
|
||
for the dynamic linker. */
|
||
s = htab->elf.srelgot;
|
||
if (s == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (base_got->output_section->vma
|
||
+ base_got->output_offset
|
||
+ off);
|
||
outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
|
||
outrel.r_addend = relocation;
|
||
elf_append_rela (output_bfd, s, &outrel);
|
||
}
|
||
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2)
|
||
abort ();
|
||
|
||
relocation = base_got->output_section->vma
|
||
+ base_got->output_offset + off;
|
||
if (r_type != R_X86_64_GOTPCREL && r_type != R_X86_64_GOTPCREL64)
|
||
relocation -= htab->elf.sgotplt->output_section->vma
|
||
- htab->elf.sgotplt->output_offset;
|
||
|
||
break;
|
||
|
||
case R_X86_64_GOTOFF64:
|
||
/* Relocation is relative to the start of the global offset
|
||
table. */
|
||
|
||
/* Check to make sure it isn't a protected function symbol
|
||
for shared library since it may not be local when used
|
||
as function address. */
|
||
if (!info->executable
|
||
&& h
|
||
&& !SYMBOLIC_BIND (info, h)
|
||
&& h->def_regular
|
||
&& h->type == STT_FUNC
|
||
&& ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B: relocation R_X86_64_GOTOFF64 against protected function `%s' can not be used when making a shared object"),
|
||
input_bfd, h->root.root.string);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Note that sgot is not involved in this
|
||
calculation. We always want the start of .got.plt. If we
|
||
defined _GLOBAL_OFFSET_TABLE_ in a different way, as is
|
||
permitted by the ABI, we might have to change this
|
||
calculation. */
|
||
relocation -= htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset;
|
||
break;
|
||
|
||
case R_X86_64_GOTPC32:
|
||
case R_X86_64_GOTPC64:
|
||
/* Use global offset table as symbol value. */
|
||
relocation = htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset;
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_X86_64_PLTOFF64:
|
||
/* Relocation is PLT entry relative to GOT. For local
|
||
symbols it's the symbol itself relative to GOT. */
|
||
if (h != NULL
|
||
/* See PLT32 handling. */
|
||
&& h->plt.offset != (bfd_vma) -1
|
||
&& htab->elf.splt != NULL)
|
||
{
|
||
relocation = (htab->elf.splt->output_section->vma
|
||
+ htab->elf.splt->output_offset
|
||
+ h->plt.offset);
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
|
||
relocation -= htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset;
|
||
break;
|
||
|
||
case R_X86_64_PLT32:
|
||
/* Relocation is to the entry for this symbol in the
|
||
procedure linkage table. */
|
||
|
||
/* Resolve a PLT32 reloc against a local symbol directly,
|
||
without using the procedure linkage table. */
|
||
if (h == NULL)
|
||
break;
|
||
|
||
if (h->plt.offset == (bfd_vma) -1
|
||
|| htab->elf.splt == NULL)
|
||
{
|
||
/* We didn't make a PLT entry for this symbol. This
|
||
happens when statically linking PIC code, or when
|
||
using -Bsymbolic. */
|
||
break;
|
||
}
|
||
|
||
relocation = (htab->elf.splt->output_section->vma
|
||
+ htab->elf.splt->output_offset
|
||
+ h->plt.offset);
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_X86_64_SIZE32:
|
||
case R_X86_64_SIZE64:
|
||
/* Set to symbol size. */
|
||
relocation = st_size;
|
||
goto direct;
|
||
|
||
case R_X86_64_PC8:
|
||
case R_X86_64_PC16:
|
||
case R_X86_64_PC32:
|
||
if (info->shared
|
||
&& (input_section->flags & SEC_ALLOC) != 0
|
||
&& (input_section->flags & SEC_READONLY) != 0
|
||
&& h != NULL)
|
||
{
|
||
bfd_boolean fail = FALSE;
|
||
bfd_boolean branch
|
||
= (r_type == R_X86_64_PC32
|
||
&& is_32bit_relative_branch (contents, rel->r_offset));
|
||
|
||
if (SYMBOL_REFERENCES_LOCAL (info, h))
|
||
{
|
||
/* Symbol is referenced locally. Make sure it is
|
||
defined locally or for a branch. */
|
||
fail = !h->def_regular && !branch;
|
||
}
|
||
else
|
||
{
|
||
/* Symbol isn't referenced locally. We only allow
|
||
branch to symbol with non-default visibility. */
|
||
fail = (!branch
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT);
|
||
}
|
||
|
||
if (fail)
|
||
{
|
||
const char *fmt;
|
||
const char *v;
|
||
const char *pic = "";
|
||
|
||
switch (ELF_ST_VISIBILITY (h->other))
|
||
{
|
||
case STV_HIDDEN:
|
||
v = _("hidden symbol");
|
||
break;
|
||
case STV_INTERNAL:
|
||
v = _("internal symbol");
|
||
break;
|
||
case STV_PROTECTED:
|
||
v = _("protected symbol");
|
||
break;
|
||
default:
|
||
v = _("symbol");
|
||
pic = _("; recompile with -fPIC");
|
||
break;
|
||
}
|
||
|
||
if (h->def_regular)
|
||
fmt = _("%B: relocation %s against %s `%s' can not be used when making a shared object%s");
|
||
else
|
||
fmt = _("%B: relocation %s against undefined %s `%s' can not be used when making a shared object%s");
|
||
|
||
(*_bfd_error_handler) (fmt, input_bfd,
|
||
x86_64_elf_howto_table[r_type].name,
|
||
v, h->root.root.string, pic);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
/* Fall through. */
|
||
|
||
case R_X86_64_8:
|
||
case R_X86_64_16:
|
||
case R_X86_64_32:
|
||
case R_X86_64_PC64:
|
||
case R_X86_64_64:
|
||
/* FIXME: The ABI says the linker should make sure the value is
|
||
the same when it's zeroextended to 64 bit. */
|
||
|
||
direct:
|
||
if ((input_section->flags & SEC_ALLOC) == 0)
|
||
break;
|
||
|
||
if ((info->shared
|
||
&& (h == NULL
|
||
|| ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
|
||
|| h->root.type != bfd_link_hash_undefweak)
|
||
&& ((! IS_X86_64_PCREL_TYPE (r_type)
|
||
&& r_type != R_X86_64_SIZE32
|
||
&& r_type != R_X86_64_SIZE64)
|
||
|| ! SYMBOL_CALLS_LOCAL (info, h)))
|
||
|| (ELIMINATE_COPY_RELOCS
|
||
&& !info->shared
|
||
&& h != NULL
|
||
&& h->dynindx != -1
|
||
&& !h->non_got_ref
|
||
&& ((h->def_dynamic
|
||
&& !h->def_regular)
|
||
|| h->root.type == bfd_link_hash_undefweak
|
||
|| h->root.type == bfd_link_hash_undefined)))
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
bfd_boolean skip, relocate;
|
||
asection *sreloc;
|
||
|
||
/* When generating a shared object, these relocations
|
||
are copied into the output file to be resolved at run
|
||
time. */
|
||
skip = FALSE;
|
||
relocate = FALSE;
|
||
|
||
outrel.r_offset =
|
||
_bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset);
|
||
if (outrel.r_offset == (bfd_vma) -1)
|
||
skip = TRUE;
|
||
else if (outrel.r_offset == (bfd_vma) -2)
|
||
skip = TRUE, relocate = TRUE;
|
||
|
||
outrel.r_offset += (input_section->output_section->vma
|
||
+ input_section->output_offset);
|
||
|
||
if (skip)
|
||
memset (&outrel, 0, sizeof outrel);
|
||
|
||
/* h->dynindx may be -1 if this symbol was marked to
|
||
become local. */
|
||
else if (h != NULL
|
||
&& h->dynindx != -1
|
||
&& (IS_X86_64_PCREL_TYPE (r_type)
|
||
|| ! info->shared
|
||
|| ! SYMBOLIC_BIND (info, h)
|
||
|| ! h->def_regular))
|
||
{
|
||
outrel.r_info = htab->r_info (h->dynindx, r_type);
|
||
outrel.r_addend = rel->r_addend;
|
||
}
|
||
else
|
||
{
|
||
/* This symbol is local, or marked to become local. */
|
||
if (r_type == htab->pointer_r_type)
|
||
{
|
||
relocate = TRUE;
|
||
outrel.r_info = htab->r_info (0, R_X86_64_RELATIVE);
|
||
outrel.r_addend = relocation + rel->r_addend;
|
||
}
|
||
else if (r_type == R_X86_64_64
|
||
&& !ABI_64_P (output_bfd))
|
||
{
|
||
relocate = TRUE;
|
||
outrel.r_info = htab->r_info (0,
|
||
R_X86_64_RELATIVE64);
|
||
outrel.r_addend = relocation + rel->r_addend;
|
||
/* Check addend overflow. */
|
||
if ((outrel.r_addend & 0x80000000)
|
||
!= (rel->r_addend & 0x80000000))
|
||
{
|
||
const char *name;
|
||
int addend = rel->r_addend;
|
||
if (h && h->root.root.string)
|
||
name = h->root.root.string;
|
||
else
|
||
name = bfd_elf_sym_name (input_bfd, symtab_hdr,
|
||
sym, NULL);
|
||
if (addend < 0)
|
||
(*_bfd_error_handler)
|
||
(_("%B: addend -0x%x in relocation %s against "
|
||
"symbol `%s' at 0x%lx in section `%A' is "
|
||
"out of range"),
|
||
input_bfd, input_section, addend,
|
||
x86_64_elf_howto_table[r_type].name,
|
||
name, (unsigned long) rel->r_offset);
|
||
else
|
||
(*_bfd_error_handler)
|
||
(_("%B: addend 0x%x in relocation %s against "
|
||
"symbol `%s' at 0x%lx in section `%A' is "
|
||
"out of range"),
|
||
input_bfd, input_section, addend,
|
||
x86_64_elf_howto_table[r_type].name,
|
||
name, (unsigned long) rel->r_offset);
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
long sindx;
|
||
|
||
if (bfd_is_abs_section (sec))
|
||
sindx = 0;
|
||
else if (sec == NULL || sec->owner == NULL)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
asection *osec;
|
||
|
||
/* We are turning this relocation into one
|
||
against a section symbol. It would be
|
||
proper to subtract the symbol's value,
|
||
osec->vma, from the emitted reloc addend,
|
||
but ld.so expects buggy relocs. */
|
||
osec = sec->output_section;
|
||
sindx = elf_section_data (osec)->dynindx;
|
||
if (sindx == 0)
|
||
{
|
||
asection *oi = htab->elf.text_index_section;
|
||
sindx = elf_section_data (oi)->dynindx;
|
||
}
|
||
BFD_ASSERT (sindx != 0);
|
||
}
|
||
|
||
outrel.r_info = htab->r_info (sindx, r_type);
|
||
outrel.r_addend = relocation + rel->r_addend;
|
||
}
|
||
}
|
||
|
||
sreloc = elf_section_data (input_section)->sreloc;
|
||
|
||
if (sreloc == NULL || sreloc->contents == NULL)
|
||
{
|
||
r = bfd_reloc_notsupported;
|
||
goto check_relocation_error;
|
||
}
|
||
|
||
elf_append_rela (output_bfd, sreloc, &outrel);
|
||
|
||
/* If this reloc is against an external symbol, we do
|
||
not want to fiddle with the addend. Otherwise, we
|
||
need to include the symbol value so that it becomes
|
||
an addend for the dynamic reloc. */
|
||
if (! relocate)
|
||
continue;
|
||
}
|
||
|
||
break;
|
||
|
||
case R_X86_64_TLSGD:
|
||
case R_X86_64_GOTPC32_TLSDESC:
|
||
case R_X86_64_TLSDESC_CALL:
|
||
case R_X86_64_GOTTPOFF:
|
||
tls_type = GOT_UNKNOWN;
|
||
if (h == NULL && local_got_offsets)
|
||
tls_type = elf_x86_64_local_got_tls_type (input_bfd) [r_symndx];
|
||
else if (h != NULL)
|
||
tls_type = elf_x86_64_hash_entry (h)->tls_type;
|
||
|
||
if (! elf_x86_64_tls_transition (info, input_bfd,
|
||
input_section, contents,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, tls_type, rel,
|
||
relend, h, r_symndx))
|
||
return FALSE;
|
||
|
||
if (r_type == R_X86_64_TPOFF32)
|
||
{
|
||
bfd_vma roff = rel->r_offset;
|
||
|
||
BFD_ASSERT (! unresolved_reloc);
|
||
|
||
if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
|
||
{
|
||
/* GD->LE transition. For 64bit, change
|
||
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr
|
||
into:
|
||
movq %fs:0, %rax
|
||
leaq foo@tpoff(%rax), %rax
|
||
For 32bit, change
|
||
leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr
|
||
into:
|
||
movl %fs:0, %eax
|
||
leaq foo@tpoff(%rax), %rax */
|
||
if (ABI_64_P (output_bfd))
|
||
memcpy (contents + roff - 4,
|
||
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
|
||
16);
|
||
else
|
||
memcpy (contents + roff - 3,
|
||
"\x64\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
|
||
15);
|
||
bfd_put_32 (output_bfd,
|
||
elf_x86_64_tpoff (info, relocation),
|
||
contents + roff + 8);
|
||
/* Skip R_X86_64_PC32/R_X86_64_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
|
||
{
|
||
/* GDesc -> LE transition.
|
||
It's originally something like:
|
||
leaq x@tlsdesc(%rip), %rax
|
||
|
||
Change it to:
|
||
movl $x@tpoff, %rax. */
|
||
|
||
unsigned int val, type;
|
||
|
||
type = bfd_get_8 (input_bfd, contents + roff - 3);
|
||
val = bfd_get_8 (input_bfd, contents + roff - 1);
|
||
bfd_put_8 (output_bfd, 0x48 | ((type >> 2) & 1),
|
||
contents + roff - 3);
|
||
bfd_put_8 (output_bfd, 0xc7, contents + roff - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | ((val >> 3) & 7),
|
||
contents + roff - 1);
|
||
bfd_put_32 (output_bfd,
|
||
elf_x86_64_tpoff (info, relocation),
|
||
contents + roff);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
|
||
{
|
||
/* GDesc -> LE transition.
|
||
It's originally:
|
||
call *(%rax)
|
||
Turn it into:
|
||
xchg %ax,%ax. */
|
||
bfd_put_8 (output_bfd, 0x66, contents + roff);
|
||
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTTPOFF)
|
||
{
|
||
/* IE->LE transition:
|
||
Originally it can be one of:
|
||
movq foo@gottpoff(%rip), %reg
|
||
addq foo@gottpoff(%rip), %reg
|
||
We change it into:
|
||
movq $foo, %reg
|
||
leaq foo(%reg), %reg
|
||
addq $foo, %reg. */
|
||
|
||
unsigned int val, type, reg;
|
||
|
||
val = bfd_get_8 (input_bfd, contents + roff - 3);
|
||
type = bfd_get_8 (input_bfd, contents + roff - 2);
|
||
reg = bfd_get_8 (input_bfd, contents + roff - 1);
|
||
reg >>= 3;
|
||
if (type == 0x8b)
|
||
{
|
||
/* movq */
|
||
if (val == 0x4c)
|
||
bfd_put_8 (output_bfd, 0x49,
|
||
contents + roff - 3);
|
||
else if (!ABI_64_P (output_bfd) && val == 0x44)
|
||
bfd_put_8 (output_bfd, 0x41,
|
||
contents + roff - 3);
|
||
bfd_put_8 (output_bfd, 0xc7,
|
||
contents + roff - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | reg,
|
||
contents + roff - 1);
|
||
}
|
||
else if (reg == 4)
|
||
{
|
||
/* addq -> addq - addressing with %rsp/%r12 is
|
||
special */
|
||
if (val == 0x4c)
|
||
bfd_put_8 (output_bfd, 0x49,
|
||
contents + roff - 3);
|
||
else if (!ABI_64_P (output_bfd) && val == 0x44)
|
||
bfd_put_8 (output_bfd, 0x41,
|
||
contents + roff - 3);
|
||
bfd_put_8 (output_bfd, 0x81,
|
||
contents + roff - 2);
|
||
bfd_put_8 (output_bfd, 0xc0 | reg,
|
||
contents + roff - 1);
|
||
}
|
||
else
|
||
{
|
||
/* addq -> leaq */
|
||
if (val == 0x4c)
|
||
bfd_put_8 (output_bfd, 0x4d,
|
||
contents + roff - 3);
|
||
else if (!ABI_64_P (output_bfd) && val == 0x44)
|
||
bfd_put_8 (output_bfd, 0x45,
|
||
contents + roff - 3);
|
||
bfd_put_8 (output_bfd, 0x8d,
|
||
contents + roff - 2);
|
||
bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
|
||
contents + roff - 1);
|
||
}
|
||
bfd_put_32 (output_bfd,
|
||
elf_x86_64_tpoff (info, relocation),
|
||
contents + roff);
|
||
continue;
|
||
}
|
||
else
|
||
BFD_ASSERT (FALSE);
|
||
}
|
||
|
||
if (htab->elf.sgot == NULL)
|
||
abort ();
|
||
|
||
if (h != NULL)
|
||
{
|
||
off = h->got.offset;
|
||
offplt = elf_x86_64_hash_entry (h)->tlsdesc_got;
|
||
}
|
||
else
|
||
{
|
||
if (local_got_offsets == NULL)
|
||
abort ();
|
||
|
||
off = local_got_offsets[r_symndx];
|
||
offplt = local_tlsdesc_gotents[r_symndx];
|
||
}
|
||
|
||
if ((off & 1) != 0)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
int dr_type, indx;
|
||
asection *sreloc;
|
||
|
||
if (htab->elf.srelgot == NULL)
|
||
abort ();
|
||
|
||
indx = h && h->dynindx != -1 ? h->dynindx : 0;
|
||
|
||
if (GOT_TLS_GDESC_P (tls_type))
|
||
{
|
||
outrel.r_info = htab->r_info (indx, R_X86_64_TLSDESC);
|
||
BFD_ASSERT (htab->sgotplt_jump_table_size + offplt
|
||
+ 2 * GOT_ENTRY_SIZE <= htab->elf.sgotplt->size);
|
||
outrel.r_offset = (htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset
|
||
+ offplt
|
||
+ htab->sgotplt_jump_table_size);
|
||
sreloc = htab->elf.srelplt;
|
||
if (indx == 0)
|
||
outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
|
||
else
|
||
outrel.r_addend = 0;
|
||
elf_append_rela (output_bfd, sreloc, &outrel);
|
||
}
|
||
|
||
sreloc = htab->elf.srelgot;
|
||
|
||
outrel.r_offset = (htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off);
|
||
|
||
if (GOT_TLS_GD_P (tls_type))
|
||
dr_type = R_X86_64_DTPMOD64;
|
||
else if (GOT_TLS_GDESC_P (tls_type))
|
||
goto dr_done;
|
||
else
|
||
dr_type = R_X86_64_TPOFF64;
|
||
|
||
bfd_put_64 (output_bfd, 0, htab->elf.sgot->contents + off);
|
||
outrel.r_addend = 0;
|
||
if ((dr_type == R_X86_64_TPOFF64
|
||
|| dr_type == R_X86_64_TLSDESC) && indx == 0)
|
||
outrel.r_addend = relocation - elf_x86_64_dtpoff_base (info);
|
||
outrel.r_info = htab->r_info (indx, dr_type);
|
||
|
||
elf_append_rela (output_bfd, sreloc, &outrel);
|
||
|
||
if (GOT_TLS_GD_P (tls_type))
|
||
{
|
||
if (indx == 0)
|
||
{
|
||
BFD_ASSERT (! unresolved_reloc);
|
||
bfd_put_64 (output_bfd,
|
||
relocation - elf_x86_64_dtpoff_base (info),
|
||
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_64 (output_bfd, 0,
|
||
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
|
||
outrel.r_info = htab->r_info (indx,
|
||
R_X86_64_DTPOFF64);
|
||
outrel.r_offset += GOT_ENTRY_SIZE;
|
||
elf_append_rela (output_bfd, sreloc,
|
||
&outrel);
|
||
}
|
||
}
|
||
|
||
dr_done:
|
||
if (h != NULL)
|
||
h->got.offset |= 1;
|
||
else
|
||
local_got_offsets[r_symndx] |= 1;
|
||
}
|
||
|
||
if (off >= (bfd_vma) -2
|
||
&& ! GOT_TLS_GDESC_P (tls_type))
|
||
abort ();
|
||
if (r_type == ELF32_R_TYPE (rel->r_info))
|
||
{
|
||
if (r_type == R_X86_64_GOTPC32_TLSDESC
|
||
|| r_type == R_X86_64_TLSDESC_CALL)
|
||
relocation = htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset
|
||
+ offplt + htab->sgotplt_jump_table_size;
|
||
else
|
||
relocation = htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off;
|
||
unresolved_reloc = FALSE;
|
||
}
|
||
else
|
||
{
|
||
bfd_vma roff = rel->r_offset;
|
||
|
||
if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
|
||
{
|
||
/* GD->IE transition. For 64bit, change
|
||
.byte 0x66; leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr@plt
|
||
into:
|
||
movq %fs:0, %rax
|
||
addq foo@gottpoff(%rip), %rax
|
||
For 32bit, change
|
||
leaq foo@tlsgd(%rip), %rdi
|
||
.word 0x6666; rex64; call __tls_get_addr@plt
|
||
into:
|
||
movl %fs:0, %eax
|
||
addq foo@gottpoff(%rip), %rax */
|
||
if (ABI_64_P (output_bfd))
|
||
memcpy (contents + roff - 4,
|
||
"\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
|
||
16);
|
||
else
|
||
memcpy (contents + roff - 3,
|
||
"\x64\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
|
||
15);
|
||
|
||
relocation = (htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off
|
||
- roff
|
||
- input_section->output_section->vma
|
||
- input_section->output_offset
|
||
- 12);
|
||
bfd_put_32 (output_bfd, relocation,
|
||
contents + roff + 8);
|
||
/* Skip R_X86_64_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_GOTPC32_TLSDESC)
|
||
{
|
||
/* GDesc -> IE transition.
|
||
It's originally something like:
|
||
leaq x@tlsdesc(%rip), %rax
|
||
|
||
Change it to:
|
||
movq x@gottpoff(%rip), %rax # before xchg %ax,%ax. */
|
||
|
||
/* Now modify the instruction as appropriate. To
|
||
turn a leaq into a movq in the form we use it, it
|
||
suffices to change the second byte from 0x8d to
|
||
0x8b. */
|
||
bfd_put_8 (output_bfd, 0x8b, contents + roff - 2);
|
||
|
||
bfd_put_32 (output_bfd,
|
||
htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off
|
||
- rel->r_offset
|
||
- input_section->output_section->vma
|
||
- input_section->output_offset
|
||
- 4,
|
||
contents + roff);
|
||
continue;
|
||
}
|
||
else if (ELF32_R_TYPE (rel->r_info) == R_X86_64_TLSDESC_CALL)
|
||
{
|
||
/* GDesc -> IE transition.
|
||
It's originally:
|
||
call *(%rax)
|
||
|
||
Change it to:
|
||
xchg %ax, %ax. */
|
||
|
||
bfd_put_8 (output_bfd, 0x66, contents + roff);
|
||
bfd_put_8 (output_bfd, 0x90, contents + roff + 1);
|
||
continue;
|
||
}
|
||
else
|
||
BFD_ASSERT (FALSE);
|
||
}
|
||
break;
|
||
|
||
case R_X86_64_TLSLD:
|
||
if (! elf_x86_64_tls_transition (info, input_bfd,
|
||
input_section, contents,
|
||
symtab_hdr, sym_hashes,
|
||
&r_type, GOT_UNKNOWN,
|
||
rel, relend, h, r_symndx))
|
||
return FALSE;
|
||
|
||
if (r_type != R_X86_64_TLSLD)
|
||
{
|
||
/* LD->LE transition:
|
||
leaq foo@tlsld(%rip), %rdi; call __tls_get_addr.
|
||
For 64bit, we change it into:
|
||
.word 0x6666; .byte 0x66; movq %fs:0, %rax.
|
||
For 32bit, we change it into:
|
||
nopl 0x0(%rax); movl %fs:0, %eax. */
|
||
|
||
BFD_ASSERT (r_type == R_X86_64_TPOFF32);
|
||
if (ABI_64_P (output_bfd))
|
||
memcpy (contents + rel->r_offset - 3,
|
||
"\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
|
||
else
|
||
memcpy (contents + rel->r_offset - 3,
|
||
"\x0f\x1f\x40\x00\x64\x8b\x04\x25\0\0\0", 12);
|
||
/* Skip R_X86_64_PC32/R_X86_64_PLT32. */
|
||
rel++;
|
||
continue;
|
||
}
|
||
|
||
if (htab->elf.sgot == NULL)
|
||
abort ();
|
||
|
||
off = htab->tls_ld_got.offset;
|
||
if (off & 1)
|
||
off &= ~1;
|
||
else
|
||
{
|
||
Elf_Internal_Rela outrel;
|
||
|
||
if (htab->elf.srelgot == NULL)
|
||
abort ();
|
||
|
||
outrel.r_offset = (htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off);
|
||
|
||
bfd_put_64 (output_bfd, 0,
|
||
htab->elf.sgot->contents + off);
|
||
bfd_put_64 (output_bfd, 0,
|
||
htab->elf.sgot->contents + off + GOT_ENTRY_SIZE);
|
||
outrel.r_info = htab->r_info (0, R_X86_64_DTPMOD64);
|
||
outrel.r_addend = 0;
|
||
elf_append_rela (output_bfd, htab->elf.srelgot,
|
||
&outrel);
|
||
htab->tls_ld_got.offset |= 1;
|
||
}
|
||
relocation = htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset + off;
|
||
unresolved_reloc = FALSE;
|
||
break;
|
||
|
||
case R_X86_64_DTPOFF32:
|
||
if (!info->executable|| (input_section->flags & SEC_CODE) == 0)
|
||
relocation -= elf_x86_64_dtpoff_base (info);
|
||
else
|
||
relocation = elf_x86_64_tpoff (info, relocation);
|
||
break;
|
||
|
||
case R_X86_64_TPOFF32:
|
||
case R_X86_64_TPOFF64:
|
||
BFD_ASSERT (info->executable);
|
||
relocation = elf_x86_64_tpoff (info, relocation);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Dynamic relocs are not propagated for SEC_DEBUGGING sections
|
||
because such sections are not SEC_ALLOC and thus ld.so will
|
||
not process them. */
|
||
if (unresolved_reloc
|
||
&& !((input_section->flags & SEC_DEBUGGING) != 0
|
||
&& h->def_dynamic)
|
||
&& _bfd_elf_section_offset (output_bfd, info, input_section,
|
||
rel->r_offset) != (bfd_vma) -1)
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
|
||
input_bfd,
|
||
input_section,
|
||
(long) rel->r_offset,
|
||
howto->name,
|
||
h->root.root.string);
|
||
return FALSE;
|
||
}
|
||
|
||
do_relocation:
|
||
r = _bfd_final_link_relocate (howto, input_bfd, input_section,
|
||
contents, rel->r_offset,
|
||
relocation, rel->r_addend);
|
||
|
||
check_relocation_error:
|
||
if (r != bfd_reloc_ok)
|
||
{
|
||
const char *name;
|
||
|
||
if (h != NULL)
|
||
name = h->root.root.string;
|
||
else
|
||
{
|
||
name = bfd_elf_string_from_elf_section (input_bfd,
|
||
symtab_hdr->sh_link,
|
||
sym->st_name);
|
||
if (name == NULL)
|
||
return FALSE;
|
||
if (*name == '\0')
|
||
name = bfd_section_name (input_bfd, sec);
|
||
}
|
||
|
||
if (r == bfd_reloc_overflow)
|
||
{
|
||
if (! ((*info->callbacks->reloc_overflow)
|
||
(info, (h ? &h->root : NULL), name, howto->name,
|
||
(bfd_vma) 0, input_bfd, input_section,
|
||
rel->r_offset)))
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("%B(%A+0x%lx): reloc against `%s': error %d"),
|
||
input_bfd, input_section,
|
||
(long) rel->r_offset, name, (int) r);
|
||
return FALSE;
|
||
}
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up dynamic symbol handling. We set the contents of various
|
||
dynamic sections here. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_finish_dynamic_symbol (bfd *output_bfd,
|
||
struct bfd_link_info *info,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
const struct elf_x86_64_backend_data *const abed
|
||
= get_elf_x86_64_backend_data (output_bfd);
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
if (h->plt.offset != (bfd_vma) -1)
|
||
{
|
||
bfd_vma plt_index;
|
||
bfd_vma got_offset;
|
||
Elf_Internal_Rela rela;
|
||
bfd_byte *loc;
|
||
asection *plt, *gotplt, *relplt;
|
||
const struct elf_backend_data *bed;
|
||
|
||
/* When building a static executable, use .iplt, .igot.plt and
|
||
.rela.iplt sections for STT_GNU_IFUNC symbols. */
|
||
if (htab->elf.splt != NULL)
|
||
{
|
||
plt = htab->elf.splt;
|
||
gotplt = htab->elf.sgotplt;
|
||
relplt = htab->elf.srelplt;
|
||
}
|
||
else
|
||
{
|
||
plt = htab->elf.iplt;
|
||
gotplt = htab->elf.igotplt;
|
||
relplt = htab->elf.irelplt;
|
||
}
|
||
|
||
/* This symbol has an entry in the procedure linkage table. Set
|
||
it up. */
|
||
if ((h->dynindx == -1
|
||
&& !((h->forced_local || info->executable)
|
||
&& h->def_regular
|
||
&& h->type == STT_GNU_IFUNC))
|
||
|| plt == NULL
|
||
|| gotplt == NULL
|
||
|| relplt == NULL)
|
||
abort ();
|
||
|
||
/* Get the index in the procedure linkage table which
|
||
corresponds to this symbol. This is the index of this symbol
|
||
in all the symbols for which we are making plt entries. The
|
||
first entry in the procedure linkage table is reserved.
|
||
|
||
Get the offset into the .got table of the entry that
|
||
corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
|
||
bytes. The first three are reserved for the dynamic linker.
|
||
|
||
For static executables, we don't reserve anything. */
|
||
|
||
if (plt == htab->elf.splt)
|
||
{
|
||
got_offset = h->plt.offset / abed->plt_entry_size - 1;
|
||
got_offset = (got_offset + 3) * GOT_ENTRY_SIZE;
|
||
}
|
||
else
|
||
{
|
||
got_offset = h->plt.offset / abed->plt_entry_size;
|
||
got_offset = got_offset * GOT_ENTRY_SIZE;
|
||
}
|
||
|
||
/* Fill in the entry in the procedure linkage table. */
|
||
memcpy (plt->contents + h->plt.offset, abed->plt_entry,
|
||
abed->plt_entry_size);
|
||
|
||
/* Insert the relocation positions of the plt section. */
|
||
|
||
/* Put offset the PC-relative instruction referring to the GOT entry,
|
||
subtracting the size of that instruction. */
|
||
bfd_put_32 (output_bfd,
|
||
(gotplt->output_section->vma
|
||
+ gotplt->output_offset
|
||
+ got_offset
|
||
- plt->output_section->vma
|
||
- plt->output_offset
|
||
- h->plt.offset
|
||
- abed->plt_got_insn_size),
|
||
plt->contents + h->plt.offset + abed->plt_got_offset);
|
||
|
||
/* Fill in the entry in the global offset table, initially this
|
||
points to the second part of the PLT entry. */
|
||
bfd_put_64 (output_bfd, (plt->output_section->vma
|
||
+ plt->output_offset
|
||
+ h->plt.offset + abed->plt_lazy_offset),
|
||
gotplt->contents + got_offset);
|
||
|
||
/* Fill in the entry in the .rela.plt section. */
|
||
rela.r_offset = (gotplt->output_section->vma
|
||
+ gotplt->output_offset
|
||
+ got_offset);
|
||
if (h->dynindx == -1
|
||
|| ((info->executable
|
||
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
|
||
&& h->def_regular
|
||
&& h->type == STT_GNU_IFUNC))
|
||
{
|
||
/* If an STT_GNU_IFUNC symbol is locally defined, generate
|
||
R_X86_64_IRELATIVE instead of R_X86_64_JUMP_SLOT. */
|
||
rela.r_info = htab->r_info (0, R_X86_64_IRELATIVE);
|
||
rela.r_addend = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
/* R_X86_64_IRELATIVE comes last. */
|
||
plt_index = htab->next_irelative_index--;
|
||
}
|
||
else
|
||
{
|
||
rela.r_info = htab->r_info (h->dynindx, R_X86_64_JUMP_SLOT);
|
||
rela.r_addend = 0;
|
||
plt_index = htab->next_jump_slot_index++;
|
||
}
|
||
|
||
/* Don't fill PLT entry for static executables. */
|
||
if (plt == htab->elf.splt)
|
||
{
|
||
/* Put relocation index. */
|
||
bfd_put_32 (output_bfd, plt_index,
|
||
plt->contents + h->plt.offset + abed->plt_reloc_offset);
|
||
/* Put offset for jmp .PLT0. */
|
||
bfd_put_32 (output_bfd, - (h->plt.offset + abed->plt_plt_insn_end),
|
||
plt->contents + h->plt.offset + abed->plt_plt_offset);
|
||
}
|
||
|
||
bed = get_elf_backend_data (output_bfd);
|
||
loc = relplt->contents + plt_index * bed->s->sizeof_rela;
|
||
bed->s->swap_reloca_out (output_bfd, &rela, loc);
|
||
|
||
if (!h->def_regular)
|
||
{
|
||
/* Mark the symbol as undefined, rather than as defined in
|
||
the .plt section. Leave the value if there were any
|
||
relocations where pointer equality matters (this is a clue
|
||
for the dynamic linker, to make function pointer
|
||
comparisons work between an application and shared
|
||
library), otherwise set it to zero. If a function is only
|
||
called from a binary, there is no need to slow down
|
||
shared libraries because of that. */
|
||
sym->st_shndx = SHN_UNDEF;
|
||
if (!h->pointer_equality_needed)
|
||
sym->st_value = 0;
|
||
}
|
||
}
|
||
|
||
if (h->got.offset != (bfd_vma) -1
|
||
&& ! GOT_TLS_GD_ANY_P (elf_x86_64_hash_entry (h)->tls_type)
|
||
&& elf_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
|
||
{
|
||
Elf_Internal_Rela rela;
|
||
|
||
/* This symbol has an entry in the global offset table. Set it
|
||
up. */
|
||
if (htab->elf.sgot == NULL || htab->elf.srelgot == NULL)
|
||
abort ();
|
||
|
||
rela.r_offset = (htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset
|
||
+ (h->got.offset &~ (bfd_vma) 1));
|
||
|
||
/* If this is a static link, or it is a -Bsymbolic link and the
|
||
symbol is defined locally or was forced to be local because
|
||
of a version file, we just want to emit a RELATIVE reloc.
|
||
The entry in the global offset table will already have been
|
||
initialized in the relocate_section function. */
|
||
if (h->def_regular
|
||
&& h->type == STT_GNU_IFUNC)
|
||
{
|
||
if (info->shared)
|
||
{
|
||
/* Generate R_X86_64_GLOB_DAT. */
|
||
goto do_glob_dat;
|
||
}
|
||
else
|
||
{
|
||
asection *plt;
|
||
|
||
if (!h->pointer_equality_needed)
|
||
abort ();
|
||
|
||
/* For non-shared object, we can't use .got.plt, which
|
||
contains the real function addres if we need pointer
|
||
equality. We load the GOT entry with the PLT entry. */
|
||
plt = htab->elf.splt ? htab->elf.splt : htab->elf.iplt;
|
||
bfd_put_64 (output_bfd, (plt->output_section->vma
|
||
+ plt->output_offset
|
||
+ h->plt.offset),
|
||
htab->elf.sgot->contents + h->got.offset);
|
||
return TRUE;
|
||
}
|
||
}
|
||
else if (info->shared
|
||
&& SYMBOL_REFERENCES_LOCAL (info, h))
|
||
{
|
||
if (!h->def_regular)
|
||
return FALSE;
|
||
BFD_ASSERT((h->got.offset & 1) != 0);
|
||
rela.r_info = htab->r_info (0, R_X86_64_RELATIVE);
|
||
rela.r_addend = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
}
|
||
else
|
||
{
|
||
BFD_ASSERT((h->got.offset & 1) == 0);
|
||
do_glob_dat:
|
||
bfd_put_64 (output_bfd, (bfd_vma) 0,
|
||
htab->elf.sgot->contents + h->got.offset);
|
||
rela.r_info = htab->r_info (h->dynindx, R_X86_64_GLOB_DAT);
|
||
rela.r_addend = 0;
|
||
}
|
||
|
||
elf_append_rela (output_bfd, htab->elf.srelgot, &rela);
|
||
}
|
||
|
||
if (h->needs_copy)
|
||
{
|
||
Elf_Internal_Rela rela;
|
||
|
||
/* This symbol needs a copy reloc. Set it up. */
|
||
|
||
if (h->dynindx == -1
|
||
|| (h->root.type != bfd_link_hash_defined
|
||
&& h->root.type != bfd_link_hash_defweak)
|
||
|| htab->srelbss == NULL)
|
||
abort ();
|
||
|
||
rela.r_offset = (h->root.u.def.value
|
||
+ h->root.u.def.section->output_section->vma
|
||
+ h->root.u.def.section->output_offset);
|
||
rela.r_info = htab->r_info (h->dynindx, R_X86_64_COPY);
|
||
rela.r_addend = 0;
|
||
elf_append_rela (output_bfd, htab->srelbss, &rela);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finish up local dynamic symbol handling. We set the contents of
|
||
various dynamic sections here. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_finish_local_dynamic_symbol (void **slot, void *inf)
|
||
{
|
||
struct elf_link_hash_entry *h
|
||
= (struct elf_link_hash_entry *) *slot;
|
||
struct bfd_link_info *info
|
||
= (struct bfd_link_info *) inf;
|
||
|
||
return elf_x86_64_finish_dynamic_symbol (info->output_bfd,
|
||
info, h, NULL);
|
||
}
|
||
|
||
/* Used to decide how to sort relocs in an optimal manner for the
|
||
dynamic linker, before writing them out. */
|
||
|
||
static enum elf_reloc_type_class
|
||
elf_x86_64_reloc_type_class (const Elf_Internal_Rela *rela)
|
||
{
|
||
switch ((int) ELF32_R_TYPE (rela->r_info))
|
||
{
|
||
case R_X86_64_RELATIVE:
|
||
case R_X86_64_RELATIVE64:
|
||
return reloc_class_relative;
|
||
case R_X86_64_JUMP_SLOT:
|
||
return reloc_class_plt;
|
||
case R_X86_64_COPY:
|
||
return reloc_class_copy;
|
||
default:
|
||
return reloc_class_normal;
|
||
}
|
||
}
|
||
|
||
/* Finish up the dynamic sections. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_finish_dynamic_sections (bfd *output_bfd,
|
||
struct bfd_link_info *info)
|
||
{
|
||
struct elf_x86_64_link_hash_table *htab;
|
||
bfd *dynobj;
|
||
asection *sdyn;
|
||
const struct elf_x86_64_backend_data *const abed
|
||
= get_elf_x86_64_backend_data (output_bfd);
|
||
|
||
htab = elf_x86_64_hash_table (info);
|
||
if (htab == NULL)
|
||
return FALSE;
|
||
|
||
dynobj = htab->elf.dynobj;
|
||
sdyn = bfd_get_linker_section (dynobj, ".dynamic");
|
||
|
||
if (htab->elf.dynamic_sections_created)
|
||
{
|
||
bfd_byte *dyncon, *dynconend;
|
||
const struct elf_backend_data *bed;
|
||
bfd_size_type sizeof_dyn;
|
||
|
||
if (sdyn == NULL || htab->elf.sgot == NULL)
|
||
abort ();
|
||
|
||
bed = get_elf_backend_data (dynobj);
|
||
sizeof_dyn = bed->s->sizeof_dyn;
|
||
dyncon = sdyn->contents;
|
||
dynconend = sdyn->contents + sdyn->size;
|
||
for (; dyncon < dynconend; dyncon += sizeof_dyn)
|
||
{
|
||
Elf_Internal_Dyn dyn;
|
||
asection *s;
|
||
|
||
(*bed->s->swap_dyn_in) (dynobj, dyncon, &dyn);
|
||
|
||
switch (dyn.d_tag)
|
||
{
|
||
default:
|
||
continue;
|
||
|
||
case DT_PLTGOT:
|
||
s = htab->elf.sgotplt;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
|
||
break;
|
||
|
||
case DT_JMPREL:
|
||
dyn.d_un.d_ptr = htab->elf.srelplt->output_section->vma;
|
||
break;
|
||
|
||
case DT_PLTRELSZ:
|
||
s = htab->elf.srelplt->output_section;
|
||
dyn.d_un.d_val = s->size;
|
||
break;
|
||
|
||
case DT_RELASZ:
|
||
/* The procedure linkage table relocs (DT_JMPREL) should
|
||
not be included in the overall relocs (DT_RELA).
|
||
Therefore, we override the DT_RELASZ entry here to
|
||
make it not include the JMPREL relocs. Since the
|
||
linker script arranges for .rela.plt to follow all
|
||
other relocation sections, we don't have to worry
|
||
about changing the DT_RELA entry. */
|
||
if (htab->elf.srelplt != NULL)
|
||
{
|
||
s = htab->elf.srelplt->output_section;
|
||
dyn.d_un.d_val -= s->size;
|
||
}
|
||
break;
|
||
|
||
case DT_TLSDESC_PLT:
|
||
s = htab->elf.splt;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
|
||
+ htab->tlsdesc_plt;
|
||
break;
|
||
|
||
case DT_TLSDESC_GOT:
|
||
s = htab->elf.sgot;
|
||
dyn.d_un.d_ptr = s->output_section->vma + s->output_offset
|
||
+ htab->tlsdesc_got;
|
||
break;
|
||
}
|
||
|
||
(*bed->s->swap_dyn_out) (output_bfd, &dyn, dyncon);
|
||
}
|
||
|
||
/* Fill in the special first entry in the procedure linkage table. */
|
||
if (htab->elf.splt && htab->elf.splt->size > 0)
|
||
{
|
||
/* Fill in the first entry in the procedure linkage table. */
|
||
memcpy (htab->elf.splt->contents,
|
||
abed->plt0_entry, abed->plt_entry_size);
|
||
/* Add offset for pushq GOT+8(%rip), since the instruction
|
||
uses 6 bytes subtract this value. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset
|
||
+ 8
|
||
- htab->elf.splt->output_section->vma
|
||
- htab->elf.splt->output_offset
|
||
- 6),
|
||
htab->elf.splt->contents + abed->plt0_got1_offset);
|
||
/* Add offset for the PC-relative instruction accessing GOT+16,
|
||
subtracting the offset to the end of that instruction. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset
|
||
+ 16
|
||
- htab->elf.splt->output_section->vma
|
||
- htab->elf.splt->output_offset
|
||
- abed->plt0_got2_insn_end),
|
||
htab->elf.splt->contents + abed->plt0_got2_offset);
|
||
|
||
elf_section_data (htab->elf.splt->output_section)
|
||
->this_hdr.sh_entsize = abed->plt_entry_size;
|
||
|
||
if (htab->tlsdesc_plt)
|
||
{
|
||
bfd_put_64 (output_bfd, (bfd_vma) 0,
|
||
htab->elf.sgot->contents + htab->tlsdesc_got);
|
||
|
||
memcpy (htab->elf.splt->contents + htab->tlsdesc_plt,
|
||
abed->plt0_entry, abed->plt_entry_size);
|
||
|
||
/* Add offset for pushq GOT+8(%rip), since the
|
||
instruction uses 6 bytes subtract this value. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->elf.sgotplt->output_section->vma
|
||
+ htab->elf.sgotplt->output_offset
|
||
+ 8
|
||
- htab->elf.splt->output_section->vma
|
||
- htab->elf.splt->output_offset
|
||
- htab->tlsdesc_plt
|
||
- 6),
|
||
htab->elf.splt->contents
|
||
+ htab->tlsdesc_plt + abed->plt0_got1_offset);
|
||
/* Add offset for the PC-relative instruction accessing GOT+TDG,
|
||
where TGD stands for htab->tlsdesc_got, subtracting the offset
|
||
to the end of that instruction. */
|
||
bfd_put_32 (output_bfd,
|
||
(htab->elf.sgot->output_section->vma
|
||
+ htab->elf.sgot->output_offset
|
||
+ htab->tlsdesc_got
|
||
- htab->elf.splt->output_section->vma
|
||
- htab->elf.splt->output_offset
|
||
- htab->tlsdesc_plt
|
||
- abed->plt0_got2_insn_end),
|
||
htab->elf.splt->contents
|
||
+ htab->tlsdesc_plt + abed->plt0_got2_offset);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (htab->elf.sgotplt)
|
||
{
|
||
if (bfd_is_abs_section (htab->elf.sgotplt->output_section))
|
||
{
|
||
(*_bfd_error_handler)
|
||
(_("discarded output section: `%A'"), htab->elf.sgotplt);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Fill in the first three entries in the global offset table. */
|
||
if (htab->elf.sgotplt->size > 0)
|
||
{
|
||
/* Set the first entry in the global offset table to the address of
|
||
the dynamic section. */
|
||
if (sdyn == NULL)
|
||
bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents);
|
||
else
|
||
bfd_put_64 (output_bfd,
|
||
sdyn->output_section->vma + sdyn->output_offset,
|
||
htab->elf.sgotplt->contents);
|
||
/* Write GOT[1] and GOT[2], needed for the dynamic linker. */
|
||
bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE);
|
||
bfd_put_64 (output_bfd, (bfd_vma) 0, htab->elf.sgotplt->contents + GOT_ENTRY_SIZE*2);
|
||
}
|
||
|
||
elf_section_data (htab->elf.sgotplt->output_section)->this_hdr.sh_entsize =
|
||
GOT_ENTRY_SIZE;
|
||
}
|
||
|
||
/* Adjust .eh_frame for .plt section. */
|
||
if (htab->plt_eh_frame != NULL
|
||
&& htab->plt_eh_frame->contents != NULL)
|
||
{
|
||
if (htab->elf.splt != NULL
|
||
&& htab->elf.splt->size != 0
|
||
&& (htab->elf.splt->flags & SEC_EXCLUDE) == 0
|
||
&& htab->elf.splt->output_section != NULL
|
||
&& htab->plt_eh_frame->output_section != NULL)
|
||
{
|
||
bfd_vma plt_start = htab->elf.splt->output_section->vma;
|
||
bfd_vma eh_frame_start = htab->plt_eh_frame->output_section->vma
|
||
+ htab->plt_eh_frame->output_offset
|
||
+ PLT_FDE_START_OFFSET;
|
||
bfd_put_signed_32 (dynobj, plt_start - eh_frame_start,
|
||
htab->plt_eh_frame->contents
|
||
+ PLT_FDE_START_OFFSET);
|
||
}
|
||
if (htab->plt_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME)
|
||
{
|
||
if (! _bfd_elf_write_section_eh_frame (output_bfd, info,
|
||
htab->plt_eh_frame,
|
||
htab->plt_eh_frame->contents))
|
||
return FALSE;
|
||
}
|
||
}
|
||
|
||
if (htab->elf.sgot && htab->elf.sgot->size > 0)
|
||
elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
|
||
= GOT_ENTRY_SIZE;
|
||
|
||
/* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */
|
||
htab_traverse (htab->loc_hash_table,
|
||
elf_x86_64_finish_local_dynamic_symbol,
|
||
info);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return address for Ith PLT stub in section PLT, for relocation REL
|
||
or (bfd_vma) -1 if it should not be included. */
|
||
|
||
static bfd_vma
|
||
elf_x86_64_plt_sym_val (bfd_vma i, const asection *plt,
|
||
const arelent *rel ATTRIBUTE_UNUSED)
|
||
{
|
||
return plt->vma + (i + 1) * GET_PLT_ENTRY_SIZE (plt->owner);
|
||
}
|
||
|
||
/* Handle an x86-64 specific section when reading an object file. This
|
||
is called when elfcode.h finds a section with an unknown type. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_section_from_shdr (bfd *abfd,
|
||
Elf_Internal_Shdr *hdr,
|
||
const char *name,
|
||
int shindex)
|
||
{
|
||
if (hdr->sh_type != SHT_X86_64_UNWIND)
|
||
return FALSE;
|
||
|
||
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
|
||
return FALSE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Hook called by the linker routine which adds symbols from an object
|
||
file. We use it to put SHN_X86_64_LCOMMON items in .lbss, instead
|
||
of .bss. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_add_symbol_hook (bfd *abfd,
|
||
struct bfd_link_info *info,
|
||
Elf_Internal_Sym *sym,
|
||
const char **namep ATTRIBUTE_UNUSED,
|
||
flagword *flagsp ATTRIBUTE_UNUSED,
|
||
asection **secp,
|
||
bfd_vma *valp)
|
||
{
|
||
asection *lcomm;
|
||
|
||
switch (sym->st_shndx)
|
||
{
|
||
case SHN_X86_64_LCOMMON:
|
||
lcomm = bfd_get_section_by_name (abfd, "LARGE_COMMON");
|
||
if (lcomm == NULL)
|
||
{
|
||
lcomm = bfd_make_section_with_flags (abfd,
|
||
"LARGE_COMMON",
|
||
(SEC_ALLOC
|
||
| SEC_IS_COMMON
|
||
| SEC_LINKER_CREATED));
|
||
if (lcomm == NULL)
|
||
return FALSE;
|
||
elf_section_flags (lcomm) |= SHF_X86_64_LARGE;
|
||
}
|
||
*secp = lcomm;
|
||
*valp = sym->st_size;
|
||
return TRUE;
|
||
}
|
||
|
||
if ((abfd->flags & DYNAMIC) == 0
|
||
&& (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
|
||
|| ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
|
||
elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
|
||
/* Given a BFD section, try to locate the corresponding ELF section
|
||
index. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection *sec, int *index_return)
|
||
{
|
||
if (sec == &_bfd_elf_large_com_section)
|
||
{
|
||
*index_return = SHN_X86_64_LCOMMON;
|
||
return TRUE;
|
||
}
|
||
return FALSE;
|
||
}
|
||
|
||
/* Process a symbol. */
|
||
|
||
static void
|
||
elf_x86_64_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asymbol *asym)
|
||
{
|
||
elf_symbol_type *elfsym = (elf_symbol_type *) asym;
|
||
|
||
switch (elfsym->internal_elf_sym.st_shndx)
|
||
{
|
||
case SHN_X86_64_LCOMMON:
|
||
asym->section = &_bfd_elf_large_com_section;
|
||
asym->value = elfsym->internal_elf_sym.st_size;
|
||
/* Common symbol doesn't set BSF_GLOBAL. */
|
||
asym->flags &= ~BSF_GLOBAL;
|
||
break;
|
||
}
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_common_definition (Elf_Internal_Sym *sym)
|
||
{
|
||
return (sym->st_shndx == SHN_COMMON
|
||
|| sym->st_shndx == SHN_X86_64_LCOMMON);
|
||
}
|
||
|
||
static unsigned int
|
||
elf_x86_64_common_section_index (asection *sec)
|
||
{
|
||
if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
|
||
return SHN_COMMON;
|
||
else
|
||
return SHN_X86_64_LCOMMON;
|
||
}
|
||
|
||
static asection *
|
||
elf_x86_64_common_section (asection *sec)
|
||
{
|
||
if ((elf_section_flags (sec) & SHF_X86_64_LARGE) == 0)
|
||
return bfd_com_section_ptr;
|
||
else
|
||
return &_bfd_elf_large_com_section;
|
||
}
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_merge_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
|
||
struct elf_link_hash_entry **sym_hash ATTRIBUTE_UNUSED,
|
||
struct elf_link_hash_entry *h,
|
||
Elf_Internal_Sym *sym,
|
||
asection **psec,
|
||
bfd_vma *pvalue ATTRIBUTE_UNUSED,
|
||
unsigned int *pold_alignment ATTRIBUTE_UNUSED,
|
||
bfd_boolean *skip ATTRIBUTE_UNUSED,
|
||
bfd_boolean *override ATTRIBUTE_UNUSED,
|
||
bfd_boolean *type_change_ok ATTRIBUTE_UNUSED,
|
||
bfd_boolean *size_change_ok ATTRIBUTE_UNUSED,
|
||
bfd_boolean *newdyn ATTRIBUTE_UNUSED,
|
||
bfd_boolean *newdef,
|
||
bfd_boolean *newdyncommon ATTRIBUTE_UNUSED,
|
||
bfd_boolean *newweak ATTRIBUTE_UNUSED,
|
||
bfd *abfd ATTRIBUTE_UNUSED,
|
||
asection **sec,
|
||
bfd_boolean *olddyn ATTRIBUTE_UNUSED,
|
||
bfd_boolean *olddef,
|
||
bfd_boolean *olddyncommon ATTRIBUTE_UNUSED,
|
||
bfd_boolean *oldweak ATTRIBUTE_UNUSED,
|
||
bfd *oldbfd,
|
||
asection **oldsec)
|
||
{
|
||
/* A normal common symbol and a large common symbol result in a
|
||
normal common symbol. We turn the large common symbol into a
|
||
normal one. */
|
||
if (!*olddef
|
||
&& h->root.type == bfd_link_hash_common
|
||
&& !*newdef
|
||
&& bfd_is_com_section (*sec)
|
||
&& *oldsec != *sec)
|
||
{
|
||
if (sym->st_shndx == SHN_COMMON
|
||
&& (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) != 0)
|
||
{
|
||
h->root.u.c.p->section
|
||
= bfd_make_section_old_way (oldbfd, "COMMON");
|
||
h->root.u.c.p->section->flags = SEC_ALLOC;
|
||
}
|
||
else if (sym->st_shndx == SHN_X86_64_LCOMMON
|
||
&& (elf_section_flags (*oldsec) & SHF_X86_64_LARGE) == 0)
|
||
*psec = *sec = bfd_com_section_ptr;
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static int
|
||
elf_x86_64_additional_program_headers (bfd *abfd,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
asection *s;
|
||
int count = 0;
|
||
|
||
/* Check to see if we need a large readonly segment. */
|
||
s = bfd_get_section_by_name (abfd, ".lrodata");
|
||
if (s && (s->flags & SEC_LOAD))
|
||
count++;
|
||
|
||
/* Check to see if we need a large data segment. Since .lbss sections
|
||
is placed right after the .bss section, there should be no need for
|
||
a large data segment just because of .lbss. */
|
||
s = bfd_get_section_by_name (abfd, ".ldata");
|
||
if (s && (s->flags & SEC_LOAD))
|
||
count++;
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_hash_symbol (struct elf_link_hash_entry *h)
|
||
{
|
||
if (h->plt.offset != (bfd_vma) -1
|
||
&& !h->def_regular
|
||
&& !h->pointer_equality_needed)
|
||
return FALSE;
|
||
|
||
return _bfd_elf_hash_symbol (h);
|
||
}
|
||
|
||
/* Return TRUE iff relocations for INPUT are compatible with OUTPUT. */
|
||
|
||
static bfd_boolean
|
||
elf_x86_64_relocs_compatible (const bfd_target *input,
|
||
const bfd_target *output)
|
||
{
|
||
return ((xvec_get_elf_backend_data (input)->s->elfclass
|
||
== xvec_get_elf_backend_data (output)->s->elfclass)
|
||
&& _bfd_elf_relocs_compatible (input, output));
|
||
}
|
||
|
||
static const struct bfd_elf_special_section
|
||
elf_x86_64_special_sections[]=
|
||
{
|
||
{ STRING_COMMA_LEN (".gnu.linkonce.lb"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
|
||
{ STRING_COMMA_LEN (".gnu.linkonce.lr"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
|
||
{ STRING_COMMA_LEN (".gnu.linkonce.lt"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR + SHF_X86_64_LARGE},
|
||
{ STRING_COMMA_LEN (".lbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
|
||
{ STRING_COMMA_LEN (".ldata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_X86_64_LARGE},
|
||
{ STRING_COMMA_LEN (".lrodata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_X86_64_LARGE},
|
||
{ NULL, 0, 0, 0, 0 }
|
||
};
|
||
|
||
#define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
|
||
#define TARGET_LITTLE_NAME "elf64-x86-64"
|
||
#define ELF_ARCH bfd_arch_i386
|
||
#define ELF_TARGET_ID X86_64_ELF_DATA
|
||
#define ELF_MACHINE_CODE EM_X86_64
|
||
#define ELF_MAXPAGESIZE 0x200000
|
||
#define ELF_MINPAGESIZE 0x1000
|
||
#define ELF_COMMONPAGESIZE 0x1000
|
||
|
||
#define elf_backend_can_gc_sections 1
|
||
#define elf_backend_can_refcount 1
|
||
#define elf_backend_want_got_plt 1
|
||
#define elf_backend_plt_readonly 1
|
||
#define elf_backend_want_plt_sym 0
|
||
#define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
|
||
#define elf_backend_rela_normal 1
|
||
#define elf_backend_plt_alignment 4
|
||
|
||
#define elf_info_to_howto elf_x86_64_info_to_howto
|
||
|
||
#define bfd_elf64_bfd_link_hash_table_create \
|
||
elf_x86_64_link_hash_table_create
|
||
#define bfd_elf64_bfd_link_hash_table_free \
|
||
elf_x86_64_link_hash_table_free
|
||
#define bfd_elf64_bfd_reloc_type_lookup elf_x86_64_reloc_type_lookup
|
||
#define bfd_elf64_bfd_reloc_name_lookup \
|
||
elf_x86_64_reloc_name_lookup
|
||
|
||
#define elf_backend_adjust_dynamic_symbol elf_x86_64_adjust_dynamic_symbol
|
||
#define elf_backend_relocs_compatible elf_x86_64_relocs_compatible
|
||
#define elf_backend_check_relocs elf_x86_64_check_relocs
|
||
#define elf_backend_copy_indirect_symbol elf_x86_64_copy_indirect_symbol
|
||
#define elf_backend_create_dynamic_sections elf_x86_64_create_dynamic_sections
|
||
#define elf_backend_finish_dynamic_sections elf_x86_64_finish_dynamic_sections
|
||
#define elf_backend_finish_dynamic_symbol elf_x86_64_finish_dynamic_symbol
|
||
#define elf_backend_gc_mark_hook elf_x86_64_gc_mark_hook
|
||
#define elf_backend_gc_sweep_hook elf_x86_64_gc_sweep_hook
|
||
#define elf_backend_grok_prstatus elf_x86_64_grok_prstatus
|
||
#define elf_backend_grok_psinfo elf_x86_64_grok_psinfo
|
||
#ifdef CORE_HEADER
|
||
#define elf_backend_write_core_note elf_x86_64_write_core_note
|
||
#endif
|
||
#define elf_backend_reloc_type_class elf_x86_64_reloc_type_class
|
||
#define elf_backend_relocate_section elf_x86_64_relocate_section
|
||
#define elf_backend_size_dynamic_sections elf_x86_64_size_dynamic_sections
|
||
#define elf_backend_always_size_sections elf_x86_64_always_size_sections
|
||
#define elf_backend_init_index_section _bfd_elf_init_1_index_section
|
||
#define elf_backend_plt_sym_val elf_x86_64_plt_sym_val
|
||
#define elf_backend_object_p elf64_x86_64_elf_object_p
|
||
#define bfd_elf64_mkobject elf_x86_64_mkobject
|
||
|
||
#define elf_backend_section_from_shdr \
|
||
elf_x86_64_section_from_shdr
|
||
|
||
#define elf_backend_section_from_bfd_section \
|
||
elf_x86_64_elf_section_from_bfd_section
|
||
#define elf_backend_add_symbol_hook \
|
||
elf_x86_64_add_symbol_hook
|
||
#define elf_backend_symbol_processing \
|
||
elf_x86_64_symbol_processing
|
||
#define elf_backend_common_section_index \
|
||
elf_x86_64_common_section_index
|
||
#define elf_backend_common_section \
|
||
elf_x86_64_common_section
|
||
#define elf_backend_common_definition \
|
||
elf_x86_64_common_definition
|
||
#define elf_backend_merge_symbol \
|
||
elf_x86_64_merge_symbol
|
||
#define elf_backend_special_sections \
|
||
elf_x86_64_special_sections
|
||
#define elf_backend_additional_program_headers \
|
||
elf_x86_64_additional_program_headers
|
||
#define elf_backend_hash_symbol \
|
||
elf_x86_64_hash_symbol
|
||
|
||
#define elf_backend_post_process_headers _bfd_elf_set_osabi
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* FreeBSD support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_x86_64_freebsd_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-x86-64-freebsd"
|
||
|
||
#undef ELF_OSABI
|
||
#define ELF_OSABI ELFOSABI_FREEBSD
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_x86_64_fbsd_bed
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* Solaris 2 support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_x86_64_sol2_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-x86-64-sol2"
|
||
|
||
/* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
|
||
objects won't be recognized. */
|
||
#undef ELF_OSABI
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_x86_64_sol2_bed
|
||
|
||
/* The 64-bit static TLS arena size is rounded to the nearest 16-byte
|
||
boundary. */
|
||
#undef elf_backend_static_tls_alignment
|
||
#define elf_backend_static_tls_alignment 16
|
||
|
||
/* The Solaris 2 ABI requires a plt symbol on all platforms.
|
||
|
||
Cf. Linker and Libraries Guide, Ch. 2, Link-Editor, Generating the Output
|
||
File, p.63. */
|
||
#undef elf_backend_want_plt_sym
|
||
#define elf_backend_want_plt_sym 1
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* Native Client support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_x86_64_nacl_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-x86-64-nacl"
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_x86_64_nacl_bed
|
||
|
||
#undef ELF_MAXPAGESIZE
|
||
#undef ELF_MINPAGESIZE
|
||
#undef ELF_COMMONPAGESIZE
|
||
#define ELF_MAXPAGESIZE 0x10000
|
||
#define ELF_MINPAGESIZE 0x10000
|
||
#define ELF_COMMONPAGESIZE 0x10000
|
||
|
||
/* Restore defaults. */
|
||
#undef ELF_OSABI
|
||
#undef elf_backend_static_tls_alignment
|
||
#undef elf_backend_want_plt_sym
|
||
#define elf_backend_want_plt_sym 0
|
||
|
||
/* NaCl uses substantially different PLT entries for the same effects. */
|
||
|
||
#undef elf_backend_plt_alignment
|
||
#define elf_backend_plt_alignment 5
|
||
#define NACL_PLT_ENTRY_SIZE 64
|
||
#define NACLMASK 0xe0 /* 32-byte alignment mask. */
|
||
|
||
static const bfd_byte elf_x86_64_nacl_plt0_entry[NACL_PLT_ENTRY_SIZE] =
|
||
{
|
||
0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
|
||
0x4c, 0x8b, 0x1d, 16, 0, 0, 0, /* mov GOT+16(%rip), %r11 */
|
||
0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
|
||
0x4d, 0x01, 0xfb, /* add %r15, %r11 */
|
||
0x41, 0xff, 0xe3, /* jmpq *%r11 */
|
||
|
||
/* 9-byte nop sequence to pad out to the next 32-byte boundary. */
|
||
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopl %cs:0x0(%rax,%rax,1) */
|
||
|
||
/* 32 bytes of nop to pad out to the standard size. */
|
||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
|
||
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
|
||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
|
||
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
|
||
0x66, /* excess data32 prefix */
|
||
0x90 /* nop */
|
||
};
|
||
|
||
static const bfd_byte elf_x86_64_nacl_plt_entry[NACL_PLT_ENTRY_SIZE] =
|
||
{
|
||
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, /* mov name@GOTPCREL(%rip),%r11 */
|
||
0x41, 0x83, 0xe3, NACLMASK, /* and $-32, %r11d */
|
||
0x4d, 0x01, 0xfb, /* add %r15, %r11 */
|
||
0x41, 0xff, 0xe3, /* jmpq *%r11 */
|
||
|
||
/* 15-byte nop sequence to pad out to the next 32-byte boundary. */
|
||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
|
||
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
|
||
|
||
/* Lazy GOT entries point here (32-byte aligned). */
|
||
0x68, /* pushq immediate */
|
||
0, 0, 0, 0, /* replaced with index into relocation table. */
|
||
0xe9, /* jmp relative */
|
||
0, 0, 0, 0, /* replaced with offset to start of .plt0. */
|
||
|
||
/* 22 bytes of nop to pad out to the standard size. */
|
||
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, /* excess data32 prefixes */
|
||
0x2e, 0x0f, 0x1f, 0x84, 0, 0, 0, 0, 0, /* nopw %cs:0x0(%rax,%rax,1) */
|
||
0x0f, 0x1f, 0x80, 0, 0, 0, 0, /* nopl 0x0(%rax) */
|
||
};
|
||
|
||
/* .eh_frame covering the .plt section. */
|
||
|
||
static const bfd_byte elf_x86_64_nacl_eh_frame_plt[] =
|
||
{
|
||
#if (PLT_CIE_LENGTH != 20 \
|
||
|| PLT_FDE_LENGTH != 36 \
|
||
|| PLT_FDE_START_OFFSET != 4 + PLT_CIE_LENGTH + 8 \
|
||
|| PLT_FDE_LEN_OFFSET != 4 + PLT_CIE_LENGTH + 12)
|
||
# error "Need elf_x86_64_backend_data parameters for eh_frame_plt offsets!"
|
||
#endif
|
||
PLT_CIE_LENGTH, 0, 0, 0, /* CIE length */
|
||
0, 0, 0, 0, /* CIE ID */
|
||
1, /* CIE version */
|
||
'z', 'R', 0, /* Augmentation string */
|
||
1, /* Code alignment factor */
|
||
0x78, /* Data alignment factor */
|
||
16, /* Return address column */
|
||
1, /* Augmentation size */
|
||
DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding */
|
||
DW_CFA_def_cfa, 7, 8, /* DW_CFA_def_cfa: r7 (rsp) ofs 8 */
|
||
DW_CFA_offset + 16, 1, /* DW_CFA_offset: r16 (rip) at cfa-8 */
|
||
DW_CFA_nop, DW_CFA_nop,
|
||
|
||
PLT_FDE_LENGTH, 0, 0, 0, /* FDE length */
|
||
PLT_CIE_LENGTH + 8, 0, 0, 0,/* CIE pointer */
|
||
0, 0, 0, 0, /* R_X86_64_PC32 .plt goes here */
|
||
0, 0, 0, 0, /* .plt size goes here */
|
||
0, /* Augmentation size */
|
||
DW_CFA_def_cfa_offset, 16, /* DW_CFA_def_cfa_offset: 16 */
|
||
DW_CFA_advance_loc + 6, /* DW_CFA_advance_loc: 6 to __PLT__+6 */
|
||
DW_CFA_def_cfa_offset, 24, /* DW_CFA_def_cfa_offset: 24 */
|
||
DW_CFA_advance_loc + 58, /* DW_CFA_advance_loc: 58 to __PLT__+64 */
|
||
DW_CFA_def_cfa_expression, /* DW_CFA_def_cfa_expression */
|
||
13, /* Block length */
|
||
DW_OP_breg7, 8, /* DW_OP_breg7 (rsp): 8 */
|
||
DW_OP_breg16, 0, /* DW_OP_breg16 (rip): 0 */
|
||
DW_OP_const1u, 63, DW_OP_and, DW_OP_const1u, 37, DW_OP_ge,
|
||
DW_OP_lit3, DW_OP_shl, DW_OP_plus,
|
||
DW_CFA_nop, DW_CFA_nop
|
||
};
|
||
|
||
static const struct elf_x86_64_backend_data elf_x86_64_nacl_arch_bed =
|
||
{
|
||
elf_x86_64_nacl_plt0_entry, /* plt0_entry */
|
||
elf_x86_64_nacl_plt_entry, /* plt_entry */
|
||
NACL_PLT_ENTRY_SIZE, /* plt_entry_size */
|
||
2, /* plt0_got1_offset */
|
||
9, /* plt0_got2_offset */
|
||
13, /* plt0_got2_insn_end */
|
||
3, /* plt_got_offset */
|
||
33, /* plt_reloc_offset */
|
||
38, /* plt_plt_offset */
|
||
7, /* plt_got_insn_size */
|
||
42, /* plt_plt_insn_end */
|
||
32, /* plt_lazy_offset */
|
||
elf_x86_64_nacl_eh_frame_plt, /* eh_frame_plt */
|
||
sizeof (elf_x86_64_nacl_eh_frame_plt), /* eh_frame_plt_size */
|
||
};
|
||
|
||
#undef elf_backend_arch_data
|
||
#define elf_backend_arch_data &elf_x86_64_nacl_arch_bed
|
||
|
||
#undef elf_backend_modify_segment_map
|
||
#define elf_backend_modify_segment_map nacl_modify_segment_map
|
||
#undef elf_backend_modify_program_headers
|
||
#define elf_backend_modify_program_headers nacl_modify_program_headers
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* Native Client x32 support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf32_x86_64_nacl_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf32-x86-64-nacl"
|
||
#undef elf32_bed
|
||
#define elf32_bed elf32_x86_64_nacl_bed
|
||
|
||
#define bfd_elf32_bfd_link_hash_table_create \
|
||
elf_x86_64_link_hash_table_create
|
||
#define bfd_elf32_bfd_link_hash_table_free \
|
||
elf_x86_64_link_hash_table_free
|
||
#define bfd_elf32_bfd_reloc_type_lookup \
|
||
elf_x86_64_reloc_type_lookup
|
||
#define bfd_elf32_bfd_reloc_name_lookup \
|
||
elf_x86_64_reloc_name_lookup
|
||
#define bfd_elf32_mkobject \
|
||
elf_x86_64_mkobject
|
||
|
||
#undef elf_backend_object_p
|
||
#define elf_backend_object_p \
|
||
elf32_x86_64_elf_object_p
|
||
|
||
#undef elf_backend_bfd_from_remote_memory
|
||
#define elf_backend_bfd_from_remote_memory \
|
||
_bfd_elf32_bfd_from_remote_memory
|
||
|
||
#undef elf_backend_size_info
|
||
#define elf_backend_size_info \
|
||
_bfd_elf32_size_info
|
||
|
||
#include "elf32-target.h"
|
||
|
||
/* Restore defaults. */
|
||
#undef elf_backend_object_p
|
||
#define elf_backend_object_p elf64_x86_64_elf_object_p
|
||
#undef elf_backend_bfd_from_remote_memory
|
||
#undef elf_backend_size_info
|
||
#undef elf_backend_modify_segment_map
|
||
#undef elf_backend_modify_program_headers
|
||
|
||
/* Intel L1OM support. */
|
||
|
||
static bfd_boolean
|
||
elf64_l1om_elf_object_p (bfd *abfd)
|
||
{
|
||
/* Set the right machine number for an L1OM elf64 file. */
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_l1om, bfd_mach_l1om);
|
||
return TRUE;
|
||
}
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_l1om_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-l1om"
|
||
#undef ELF_ARCH
|
||
#define ELF_ARCH bfd_arch_l1om
|
||
|
||
#undef ELF_MACHINE_CODE
|
||
#define ELF_MACHINE_CODE EM_L1OM
|
||
|
||
#undef ELF_OSABI
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_l1om_bed
|
||
|
||
#undef elf_backend_object_p
|
||
#define elf_backend_object_p elf64_l1om_elf_object_p
|
||
|
||
/* Restore defaults. */
|
||
#undef ELF_MAXPAGESIZE
|
||
#undef ELF_MINPAGESIZE
|
||
#undef ELF_COMMONPAGESIZE
|
||
#define ELF_MAXPAGESIZE 0x200000
|
||
#define ELF_MINPAGESIZE 0x1000
|
||
#define ELF_COMMONPAGESIZE 0x1000
|
||
#undef elf_backend_plt_alignment
|
||
#define elf_backend_plt_alignment 4
|
||
#undef elf_backend_arch_data
|
||
#define elf_backend_arch_data &elf_x86_64_arch_bed
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* FreeBSD L1OM support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_l1om_freebsd_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-l1om-freebsd"
|
||
|
||
#undef ELF_OSABI
|
||
#define ELF_OSABI ELFOSABI_FREEBSD
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_l1om_fbsd_bed
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* Intel K1OM support. */
|
||
|
||
static bfd_boolean
|
||
elf64_k1om_elf_object_p (bfd *abfd)
|
||
{
|
||
/* Set the right machine number for an K1OM elf64 file. */
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_k1om, bfd_mach_k1om);
|
||
return TRUE;
|
||
}
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_k1om_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-k1om"
|
||
#undef ELF_ARCH
|
||
#define ELF_ARCH bfd_arch_k1om
|
||
|
||
#undef ELF_MACHINE_CODE
|
||
#define ELF_MACHINE_CODE EM_K1OM
|
||
|
||
#undef ELF_OSABI
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_k1om_bed
|
||
|
||
#undef elf_backend_object_p
|
||
#define elf_backend_object_p elf64_k1om_elf_object_p
|
||
|
||
#undef elf_backend_static_tls_alignment
|
||
|
||
#undef elf_backend_want_plt_sym
|
||
#define elf_backend_want_plt_sym 0
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* FreeBSD K1OM support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf64_k1om_freebsd_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf64-k1om-freebsd"
|
||
|
||
#undef ELF_OSABI
|
||
#define ELF_OSABI ELFOSABI_FREEBSD
|
||
|
||
#undef elf64_bed
|
||
#define elf64_bed elf64_k1om_fbsd_bed
|
||
|
||
#include "elf64-target.h"
|
||
|
||
/* 32bit x86-64 support. */
|
||
|
||
#undef TARGET_LITTLE_SYM
|
||
#define TARGET_LITTLE_SYM bfd_elf32_x86_64_vec
|
||
#undef TARGET_LITTLE_NAME
|
||
#define TARGET_LITTLE_NAME "elf32-x86-64"
|
||
#undef elf32_bed
|
||
|
||
#undef ELF_ARCH
|
||
#define ELF_ARCH bfd_arch_i386
|
||
|
||
#undef ELF_MACHINE_CODE
|
||
#define ELF_MACHINE_CODE EM_X86_64
|
||
|
||
#undef ELF_OSABI
|
||
|
||
#undef elf_backend_object_p
|
||
#define elf_backend_object_p \
|
||
elf32_x86_64_elf_object_p
|
||
|
||
#undef elf_backend_bfd_from_remote_memory
|
||
#define elf_backend_bfd_from_remote_memory \
|
||
_bfd_elf32_bfd_from_remote_memory
|
||
|
||
#undef elf_backend_size_info
|
||
#define elf_backend_size_info \
|
||
_bfd_elf32_size_info
|
||
|
||
#include "elf32-target.h"
|