binutils-gdb/gdb/remote.c
Ulrich Weigand 06d3b283b1 doc/ChangeLog:
* observer.texi (GDB Observers): New observer "new_objfile".

ChangeLog:

	* observer.sh: Add "struct objfile" forward declaration.
	* target.h (deprecated_target_new_objfile_hook): Remove.
	* symfile.c (deprecated_target_new_objfile_hook): Remove.
	(clear_symtab_users): Call observer_notify_new_objfile.
	(symbol_file_add_with_addrs_or_offsets): Likewise.
	* rs6000-nat.c: Include "observer.h".
	(vmap_ldinfo): Call observer_notify_new_objfile.
	(xcoff_relocate_core): Likewise.
	* remote.c (remote_new_objfile_chain): Remove.
	(remote_new_objfile): Do not call remote_new_objfile_chain.
	(_initialize_remote): Use observer_attach_new_objfile.
	* tui/tui-hooks.c (tui_target_new_objfile_chain): Remove.
	(tui_new_objfile_hook): Do not call tui_target_new_objfile_chain.
	(_initialize_tui_hooks): Use observer_attach_new_objfile.
	* aix-thread.c: Include "observer.h".
	(target_new_objfile_chain): Remove.
	(new_objfile): Do not call target_new_objfile_chain.
	(_initialize_aix_thread): Use observer_attach_new_objfile.
	* hpux-thread.c: Include "observer.h"
	(target_new_objfile_chain): Remove.
	(hpux_thread_new_objfile): Make static.  Do not call
	target_new_objfile_chain.
	(_initialize_hpux_thread): Use observer_attach_new_objfile.
	* linux-thread-db.c: Include "observer.h".
	(target_new_objfile_chain): Remove.
	(thread_db_new_objfile): Do not call target_new_objfile_chain.
	(_initialize_thread_db): Use observer_attach_new_objfile.
	* sol-thread.c: Include "observer.h".
	(target_new_objfile_chain): Remove.
	(sol_thread_new_objfile): Make static.  Do not call
	target_new_objfile_chain.
	(_initialize_sol_thread): Use observer_attach_new_objfile.
	* Makefile.in (aix-thread.o, hpux-thread.o, linux-thread-db.o,
	rs6000-nat.o, sol-thread.o, tui-hooks.o): Add dependency on
	$(observer_h).
2007-05-11 19:55:20 +00:00

6562 lines
183 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Remote target communications for serial-line targets in custom GDB protocol
Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
/* See the GDB User Guide for details of the GDB remote protocol. */
#include "defs.h"
#include "gdb_string.h"
#include <ctype.h>
#include <fcntl.h>
#include "inferior.h"
#include "bfd.h"
#include "symfile.h"
#include "exceptions.h"
#include "target.h"
/*#include "terminal.h" */
#include "gdbcmd.h"
#include "objfiles.h"
#include "gdb-stabs.h"
#include "gdbthread.h"
#include "remote.h"
#include "regcache.h"
#include "value.h"
#include "gdb_assert.h"
#include "observer.h"
#include "solib.h"
#include "cli/cli-decode.h"
#include "cli/cli-setshow.h"
#include "target-descriptions.h"
#include <ctype.h>
#include <sys/time.h>
#include "event-loop.h"
#include "event-top.h"
#include "inf-loop.h"
#include <signal.h>
#include "serial.h"
#include "gdbcore.h" /* for exec_bfd */
#include "remote-fileio.h"
#include "memory-map.h"
/* The size to align memory write packets, when practical. The protocol
does not guarantee any alignment, and gdb will generate short
writes and unaligned writes, but even as a best-effort attempt this
can improve bulk transfers. For instance, if a write is misaligned
relative to the target's data bus, the stub may need to make an extra
round trip fetching data from the target. This doesn't make a
huge difference, but it's easy to do, so we try to be helpful.
The alignment chosen is arbitrary; usually data bus width is
important here, not the possibly larger cache line size. */
enum { REMOTE_ALIGN_WRITES = 16 };
/* Prototypes for local functions. */
static void cleanup_sigint_signal_handler (void *dummy);
static void initialize_sigint_signal_handler (void);
static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
static void handle_remote_sigint (int);
static void handle_remote_sigint_twice (int);
static void async_remote_interrupt (gdb_client_data);
void async_remote_interrupt_twice (gdb_client_data);
static void build_remote_gdbarch_data (void);
static void remote_files_info (struct target_ops *ignore);
static void remote_prepare_to_store (struct regcache *regcache);
static void remote_fetch_registers (struct regcache *regcache, int regno);
static void remote_resume (ptid_t ptid, int step,
enum target_signal siggnal);
static void remote_async_resume (ptid_t ptid, int step,
enum target_signal siggnal);
static void remote_open (char *name, int from_tty);
static void remote_async_open (char *name, int from_tty);
static void extended_remote_open (char *name, int from_tty);
static void extended_remote_async_open (char *name, int from_tty);
static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
int async_p);
static void remote_close (int quitting);
static void remote_store_registers (struct regcache *regcache, int regno);
static void remote_mourn (void);
static void remote_async_mourn (void);
static void extended_remote_restart (void);
static void extended_remote_mourn (void);
static void remote_mourn_1 (struct target_ops *);
static void remote_send (char **buf, long *sizeof_buf_p);
static int readchar (int timeout);
static ptid_t remote_wait (ptid_t ptid,
struct target_waitstatus *status);
static ptid_t remote_async_wait (ptid_t ptid,
struct target_waitstatus *status);
static void remote_kill (void);
static void remote_async_kill (void);
static int tohex (int nib);
static void remote_detach (char *args, int from_tty);
static void remote_interrupt (int signo);
static void remote_interrupt_twice (int signo);
static void interrupt_query (void);
static void set_thread (int, int);
static int remote_thread_alive (ptid_t);
static void get_offsets (void);
static void skip_frame (void);
static long read_frame (char **buf_p, long *sizeof_buf);
static int hexnumlen (ULONGEST num);
static void init_remote_ops (void);
static void init_extended_remote_ops (void);
static void remote_stop (void);
static int ishex (int ch, int *val);
static int stubhex (int ch);
static int hexnumstr (char *, ULONGEST);
static int hexnumnstr (char *, ULONGEST, int);
static CORE_ADDR remote_address_masked (CORE_ADDR);
static void print_packet (char *);
static unsigned long crc32 (unsigned char *, int, unsigned int);
static void compare_sections_command (char *, int);
static void packet_command (char *, int);
static int stub_unpack_int (char *buff, int fieldlength);
static ptid_t remote_current_thread (ptid_t oldptid);
static void remote_find_new_threads (void);
static void record_currthread (int currthread);
static int fromhex (int a);
static int hex2bin (const char *hex, gdb_byte *bin, int count);
static int bin2hex (const gdb_byte *bin, char *hex, int count);
static int putpkt_binary (char *buf, int cnt);
static void check_binary_download (CORE_ADDR addr);
struct packet_config;
static void show_packet_config_cmd (struct packet_config *config);
static void update_packet_config (struct packet_config *config);
static void set_remote_protocol_packet_cmd (char *args, int from_tty,
struct cmd_list_element *c);
static void show_remote_protocol_packet_cmd (struct ui_file *file,
int from_tty,
struct cmd_list_element *c,
const char *value);
void _initialize_remote (void);
/* For "set remote" and "show remote". */
static struct cmd_list_element *remote_set_cmdlist;
static struct cmd_list_element *remote_show_cmdlist;
/* Description of the remote protocol state for the currently
connected target. This is per-target state, and independent of the
selected architecture. */
struct remote_state
{
/* A buffer to use for incoming packets, and its current size. The
buffer is grown dynamically for larger incoming packets.
Outgoing packets may also be constructed in this buffer.
BUF_SIZE is always at least REMOTE_PACKET_SIZE;
REMOTE_PACKET_SIZE should be used to limit the length of outgoing
packets. */
char *buf;
long buf_size;
/* If we negotiated packet size explicitly (and thus can bypass
heuristics for the largest packet size that will not overflow
a buffer in the stub), this will be set to that packet size.
Otherwise zero, meaning to use the guessed size. */
long explicit_packet_size;
};
/* This data could be associated with a target, but we do not always
have access to the current target when we need it, so for now it is
static. This will be fine for as long as only one target is in use
at a time. */
static struct remote_state remote_state;
static struct remote_state *
get_remote_state_raw (void)
{
return &remote_state;
}
/* Description of the remote protocol for a given architecture. */
struct packet_reg
{
long offset; /* Offset into G packet. */
long regnum; /* GDB's internal register number. */
LONGEST pnum; /* Remote protocol register number. */
int in_g_packet; /* Always part of G packet. */
/* long size in bytes; == register_size (current_gdbarch, regnum);
at present. */
/* char *name; == REGISTER_NAME (regnum); at present. */
};
struct remote_arch_state
{
/* Description of the remote protocol registers. */
long sizeof_g_packet;
/* Description of the remote protocol registers indexed by REGNUM
(making an array NUM_REGS in size). */
struct packet_reg *regs;
/* This is the size (in chars) of the first response to the ``g''
packet. It is used as a heuristic when determining the maximum
size of memory-read and memory-write packets. A target will
typically only reserve a buffer large enough to hold the ``g''
packet. The size does not include packet overhead (headers and
trailers). */
long actual_register_packet_size;
/* This is the maximum size (in chars) of a non read/write packet.
It is also used as a cap on the size of read/write packets. */
long remote_packet_size;
};
/* Handle for retreving the remote protocol data from gdbarch. */
static struct gdbarch_data *remote_gdbarch_data_handle;
static struct remote_arch_state *
get_remote_arch_state (void)
{
return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
}
/* Fetch the global remote target state. */
static struct remote_state *
get_remote_state (void)
{
/* Make sure that the remote architecture state has been
initialized, because doing so might reallocate rs->buf. Any
function which calls getpkt also needs to be mindful of changes
to rs->buf, but this call limits the number of places which run
into trouble. */
get_remote_arch_state ();
return get_remote_state_raw ();
}
static int
compare_pnums (const void *lhs_, const void *rhs_)
{
const struct packet_reg * const *lhs = lhs_;
const struct packet_reg * const *rhs = rhs_;
if ((*lhs)->pnum < (*rhs)->pnum)
return -1;
else if ((*lhs)->pnum == (*rhs)->pnum)
return 0;
else
return 1;
}
static void *
init_remote_state (struct gdbarch *gdbarch)
{
int regnum, num_remote_regs, offset;
struct remote_state *rs = get_remote_state_raw ();
struct remote_arch_state *rsa;
struct packet_reg **remote_regs;
rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
/* Use the architecture to build a regnum<->pnum table, which will be
1:1 unless a feature set specifies otherwise. */
rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
struct packet_reg *r = &rsa->regs[regnum];
if (register_size (current_gdbarch, regnum) == 0)
/* Do not try to fetch zero-sized (placeholder) registers. */
r->pnum = -1;
else
r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
r->regnum = regnum;
}
/* Define the g/G packet format as the contents of each register
with a remote protocol number, in order of ascending protocol
number. */
remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
if (rsa->regs[regnum].pnum != -1)
remote_regs[num_remote_regs++] = &rsa->regs[regnum];
qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
compare_pnums);
for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
{
remote_regs[regnum]->in_g_packet = 1;
remote_regs[regnum]->offset = offset;
offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
}
/* Record the maximum possible size of the g packet - it may turn out
to be smaller. */
rsa->sizeof_g_packet = offset;
/* Default maximum number of characters in a packet body. Many
remote stubs have a hardwired buffer size of 400 bytes
(c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
as the maximum packet-size to ensure that the packet and an extra
NUL character can always fit in the buffer. This stops GDB
trashing stubs that try to squeeze an extra NUL into what is
already a full buffer (As of 1999-12-04 that was most stubs). */
rsa->remote_packet_size = 400 - 1;
/* This one is filled in when a ``g'' packet is received. */
rsa->actual_register_packet_size = 0;
/* Should rsa->sizeof_g_packet needs more space than the
default, adjust the size accordingly. Remember that each byte is
encoded as two characters. 32 is the overhead for the packet
header / footer. NOTE: cagney/1999-10-26: I suspect that 8
(``$NN:G...#NN'') is a better guess, the below has been padded a
little. */
if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
/* Make sure that the packet buffer is plenty big enough for
this architecture. */
if (rs->buf_size < rsa->remote_packet_size)
{
rs->buf_size = 2 * rsa->remote_packet_size;
rs->buf = xrealloc (rs->buf, rs->buf_size);
}
return rsa;
}
/* Return the current allowed size of a remote packet. This is
inferred from the current architecture, and should be used to
limit the length of outgoing packets. */
static long
get_remote_packet_size (void)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
if (rs->explicit_packet_size)
return rs->explicit_packet_size;
return rsa->remote_packet_size;
}
static struct packet_reg *
packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
{
if (regnum < 0 && regnum >= NUM_REGS)
return NULL;
else
{
struct packet_reg *r = &rsa->regs[regnum];
gdb_assert (r->regnum == regnum);
return r;
}
}
static struct packet_reg *
packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
{
int i;
for (i = 0; i < NUM_REGS; i++)
{
struct packet_reg *r = &rsa->regs[i];
if (r->pnum == pnum)
return r;
}
return NULL;
}
/* FIXME: graces/2002-08-08: These variables should eventually be
bound to an instance of the target object (as in gdbarch-tdep()),
when such a thing exists. */
/* This is set to the data address of the access causing the target
to stop for a watchpoint. */
static CORE_ADDR remote_watch_data_address;
/* This is non-zero if target stopped for a watchpoint. */
static int remote_stopped_by_watchpoint_p;
static struct target_ops remote_ops;
static struct target_ops extended_remote_ops;
/* Temporary target ops. Just like the remote_ops and
extended_remote_ops, but with asynchronous support. */
static struct target_ops remote_async_ops;
static struct target_ops extended_async_remote_ops;
/* FIXME: cagney/1999-09-23: Even though getpkt was called with
``forever'' still use the normal timeout mechanism. This is
currently used by the ASYNC code to guarentee that target reads
during the initial connect always time-out. Once getpkt has been
modified to return a timeout indication and, in turn
remote_wait()/wait_for_inferior() have gained a timeout parameter
this can go away. */
static int wait_forever_enabled_p = 1;
/* This variable chooses whether to send a ^C or a break when the user
requests program interruption. Although ^C is usually what remote
systems expect, and that is the default here, sometimes a break is
preferable instead. */
static int remote_break;
/* Descriptor for I/O to remote machine. Initialize it to NULL so that
remote_open knows that we don't have a file open when the program
starts. */
static struct serial *remote_desc = NULL;
/* This variable sets the number of bits in an address that are to be
sent in a memory ("M" or "m") packet. Normally, after stripping
leading zeros, the entire address would be sent. This variable
restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
initial implementation of remote.c restricted the address sent in
memory packets to ``host::sizeof long'' bytes - (typically 32
bits). Consequently, for 64 bit targets, the upper 32 bits of an
address was never sent. Since fixing this bug may cause a break in
some remote targets this variable is principly provided to
facilitate backward compatibility. */
static int remote_address_size;
/* Tempoary to track who currently owns the terminal. See
target_async_terminal_* for more details. */
static int remote_async_terminal_ours_p;
/* User configurable variables for the number of characters in a
memory read/write packet. MIN (rsa->remote_packet_size,
rsa->sizeof_g_packet) is the default. Some targets need smaller
values (fifo overruns, et.al.) and some users need larger values
(speed up transfers). The variables ``preferred_*'' (the user
request), ``current_*'' (what was actually set) and ``forced_*''
(Positive - a soft limit, negative - a hard limit). */
struct memory_packet_config
{
char *name;
long size;
int fixed_p;
};
/* Compute the current size of a read/write packet. Since this makes
use of ``actual_register_packet_size'' the computation is dynamic. */
static long
get_memory_packet_size (struct memory_packet_config *config)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
/* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
law?) that some hosts don't cope very well with large alloca()
calls. Eventually the alloca() code will be replaced by calls to
xmalloc() and make_cleanups() allowing this restriction to either
be lifted or removed. */
#ifndef MAX_REMOTE_PACKET_SIZE
#define MAX_REMOTE_PACKET_SIZE 16384
#endif
/* NOTE: 20 ensures we can write at least one byte. */
#ifndef MIN_REMOTE_PACKET_SIZE
#define MIN_REMOTE_PACKET_SIZE 20
#endif
long what_they_get;
if (config->fixed_p)
{
if (config->size <= 0)
what_they_get = MAX_REMOTE_PACKET_SIZE;
else
what_they_get = config->size;
}
else
{
what_they_get = get_remote_packet_size ();
/* Limit the packet to the size specified by the user. */
if (config->size > 0
&& what_they_get > config->size)
what_they_get = config->size;
/* Limit it to the size of the targets ``g'' response unless we have
permission from the stub to use a larger packet size. */
if (rs->explicit_packet_size == 0
&& rsa->actual_register_packet_size > 0
&& what_they_get > rsa->actual_register_packet_size)
what_they_get = rsa->actual_register_packet_size;
}
if (what_they_get > MAX_REMOTE_PACKET_SIZE)
what_they_get = MAX_REMOTE_PACKET_SIZE;
if (what_they_get < MIN_REMOTE_PACKET_SIZE)
what_they_get = MIN_REMOTE_PACKET_SIZE;
/* Make sure there is room in the global buffer for this packet
(including its trailing NUL byte). */
if (rs->buf_size < what_they_get + 1)
{
rs->buf_size = 2 * what_they_get;
rs->buf = xrealloc (rs->buf, 2 * what_they_get);
}
return what_they_get;
}
/* Update the size of a read/write packet. If they user wants
something really big then do a sanity check. */
static void
set_memory_packet_size (char *args, struct memory_packet_config *config)
{
int fixed_p = config->fixed_p;
long size = config->size;
if (args == NULL)
error (_("Argument required (integer, `fixed' or `limited')."));
else if (strcmp (args, "hard") == 0
|| strcmp (args, "fixed") == 0)
fixed_p = 1;
else if (strcmp (args, "soft") == 0
|| strcmp (args, "limit") == 0)
fixed_p = 0;
else
{
char *end;
size = strtoul (args, &end, 0);
if (args == end)
error (_("Invalid %s (bad syntax)."), config->name);
#if 0
/* Instead of explicitly capping the size of a packet to
MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
instead allowed to set the size to something arbitrarily
large. */
if (size > MAX_REMOTE_PACKET_SIZE)
error (_("Invalid %s (too large)."), config->name);
#endif
}
/* Extra checks? */
if (fixed_p && !config->fixed_p)
{
if (! query (_("The target may not be able to correctly handle a %s\n"
"of %ld bytes. Change the packet size? "),
config->name, size))
error (_("Packet size not changed."));
}
/* Update the config. */
config->fixed_p = fixed_p;
config->size = size;
}
static void
show_memory_packet_size (struct memory_packet_config *config)
{
printf_filtered (_("The %s is %ld. "), config->name, config->size);
if (config->fixed_p)
printf_filtered (_("Packets are fixed at %ld bytes.\n"),
get_memory_packet_size (config));
else
printf_filtered (_("Packets are limited to %ld bytes.\n"),
get_memory_packet_size (config));
}
static struct memory_packet_config memory_write_packet_config =
{
"memory-write-packet-size",
};
static void
set_memory_write_packet_size (char *args, int from_tty)
{
set_memory_packet_size (args, &memory_write_packet_config);
}
static void
show_memory_write_packet_size (char *args, int from_tty)
{
show_memory_packet_size (&memory_write_packet_config);
}
static long
get_memory_write_packet_size (void)
{
return get_memory_packet_size (&memory_write_packet_config);
}
static struct memory_packet_config memory_read_packet_config =
{
"memory-read-packet-size",
};
static void
set_memory_read_packet_size (char *args, int from_tty)
{
set_memory_packet_size (args, &memory_read_packet_config);
}
static void
show_memory_read_packet_size (char *args, int from_tty)
{
show_memory_packet_size (&memory_read_packet_config);
}
static long
get_memory_read_packet_size (void)
{
long size = get_memory_packet_size (&memory_read_packet_config);
/* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
extra buffer size argument before the memory read size can be
increased beyond this. */
if (size > get_remote_packet_size ())
size = get_remote_packet_size ();
return size;
}
/* Generic configuration support for packets the stub optionally
supports. Allows the user to specify the use of the packet as well
as allowing GDB to auto-detect support in the remote stub. */
enum packet_support
{
PACKET_SUPPORT_UNKNOWN = 0,
PACKET_ENABLE,
PACKET_DISABLE
};
struct packet_config
{
const char *name;
const char *title;
enum auto_boolean detect;
enum packet_support support;
};
/* Analyze a packet's return value and update the packet config
accordingly. */
enum packet_result
{
PACKET_ERROR,
PACKET_OK,
PACKET_UNKNOWN
};
static void
update_packet_config (struct packet_config *config)
{
switch (config->detect)
{
case AUTO_BOOLEAN_TRUE:
config->support = PACKET_ENABLE;
break;
case AUTO_BOOLEAN_FALSE:
config->support = PACKET_DISABLE;
break;
case AUTO_BOOLEAN_AUTO:
config->support = PACKET_SUPPORT_UNKNOWN;
break;
}
}
static void
show_packet_config_cmd (struct packet_config *config)
{
char *support = "internal-error";
switch (config->support)
{
case PACKET_ENABLE:
support = "enabled";
break;
case PACKET_DISABLE:
support = "disabled";
break;
case PACKET_SUPPORT_UNKNOWN:
support = "unknown";
break;
}
switch (config->detect)
{
case AUTO_BOOLEAN_AUTO:
printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
config->name, support);
break;
case AUTO_BOOLEAN_TRUE:
case AUTO_BOOLEAN_FALSE:
printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
config->name, support);
break;
}
}
static void
add_packet_config_cmd (struct packet_config *config, const char *name,
const char *title, int legacy)
{
char *set_doc;
char *show_doc;
char *cmd_name;
config->name = name;
config->title = title;
config->detect = AUTO_BOOLEAN_AUTO;
config->support = PACKET_SUPPORT_UNKNOWN;
set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
name, title);
show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
name, title);
/* set/show TITLE-packet {auto,on,off} */
cmd_name = xstrprintf ("%s-packet", title);
add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
&config->detect, set_doc, show_doc, NULL, /* help_doc */
set_remote_protocol_packet_cmd,
show_remote_protocol_packet_cmd,
&remote_set_cmdlist, &remote_show_cmdlist);
/* set/show remote NAME-packet {auto,on,off} -- legacy. */
if (legacy)
{
char *legacy_name;
legacy_name = xstrprintf ("%s-packet", name);
add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
&remote_set_cmdlist);
add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
&remote_show_cmdlist);
}
}
static enum packet_result
packet_check_result (const char *buf)
{
if (buf[0] != '\0')
{
/* The stub recognized the packet request. Check that the
operation succeeded. */
if (buf[0] == 'E'
&& isxdigit (buf[1]) && isxdigit (buf[2])
&& buf[3] == '\0')
/* "Enn" - definitly an error. */
return PACKET_ERROR;
/* Always treat "E." as an error. This will be used for
more verbose error messages, such as E.memtypes. */
if (buf[0] == 'E' && buf[1] == '.')
return PACKET_ERROR;
/* The packet may or may not be OK. Just assume it is. */
return PACKET_OK;
}
else
/* The stub does not support the packet. */
return PACKET_UNKNOWN;
}
static enum packet_result
packet_ok (const char *buf, struct packet_config *config)
{
enum packet_result result;
result = packet_check_result (buf);
switch (result)
{
case PACKET_OK:
case PACKET_ERROR:
/* The stub recognized the packet request. */
switch (config->support)
{
case PACKET_SUPPORT_UNKNOWN:
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"Packet %s (%s) is supported\n",
config->name, config->title);
config->support = PACKET_ENABLE;
break;
case PACKET_DISABLE:
internal_error (__FILE__, __LINE__,
_("packet_ok: attempt to use a disabled packet"));
break;
case PACKET_ENABLE:
break;
}
break;
case PACKET_UNKNOWN:
/* The stub does not support the packet. */
switch (config->support)
{
case PACKET_ENABLE:
if (config->detect == AUTO_BOOLEAN_AUTO)
/* If the stub previously indicated that the packet was
supported then there is a protocol error.. */
error (_("Protocol error: %s (%s) conflicting enabled responses."),
config->name, config->title);
else
/* The user set it wrong. */
error (_("Enabled packet %s (%s) not recognized by stub"),
config->name, config->title);
break;
case PACKET_SUPPORT_UNKNOWN:
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"Packet %s (%s) is NOT supported\n",
config->name, config->title);
config->support = PACKET_DISABLE;
break;
case PACKET_DISABLE:
break;
}
break;
}
return result;
}
enum {
PACKET_vCont = 0,
PACKET_X,
PACKET_qSymbol,
PACKET_P,
PACKET_p,
PACKET_Z0,
PACKET_Z1,
PACKET_Z2,
PACKET_Z3,
PACKET_Z4,
PACKET_qXfer_auxv,
PACKET_qXfer_features,
PACKET_qXfer_memory_map,
PACKET_qGetTLSAddr,
PACKET_qSupported,
PACKET_QPassSignals,
PACKET_MAX
};
static struct packet_config remote_protocol_packets[PACKET_MAX];
static void
set_remote_protocol_packet_cmd (char *args, int from_tty,
struct cmd_list_element *c)
{
struct packet_config *packet;
for (packet = remote_protocol_packets;
packet < &remote_protocol_packets[PACKET_MAX];
packet++)
{
if (&packet->detect == c->var)
{
update_packet_config (packet);
return;
}
}
internal_error (__FILE__, __LINE__, "Could not find config for %s",
c->name);
}
static void
show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
struct packet_config *packet;
for (packet = remote_protocol_packets;
packet < &remote_protocol_packets[PACKET_MAX];
packet++)
{
if (&packet->detect == c->var)
{
show_packet_config_cmd (packet);
return;
}
}
internal_error (__FILE__, __LINE__, "Could not find config for %s",
c->name);
}
/* Should we try one of the 'Z' requests? */
enum Z_packet_type
{
Z_PACKET_SOFTWARE_BP,
Z_PACKET_HARDWARE_BP,
Z_PACKET_WRITE_WP,
Z_PACKET_READ_WP,
Z_PACKET_ACCESS_WP,
NR_Z_PACKET_TYPES
};
/* For compatibility with older distributions. Provide a ``set remote
Z-packet ...'' command that updates all the Z packet types. */
static enum auto_boolean remote_Z_packet_detect;
static void
set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
struct cmd_list_element *c)
{
int i;
for (i = 0; i < NR_Z_PACKET_TYPES; i++)
{
remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
}
}
static void
show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
struct cmd_list_element *c,
const char *value)
{
int i;
for (i = 0; i < NR_Z_PACKET_TYPES; i++)
{
show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
}
}
/* Should we try the 'ThreadInfo' query packet?
This variable (NOT available to the user: auto-detect only!)
determines whether GDB will use the new, simpler "ThreadInfo"
query or the older, more complex syntax for thread queries.
This is an auto-detect variable (set to true at each connect,
and set to false when the target fails to recognize it). */
static int use_threadinfo_query;
static int use_threadextra_query;
/* Tokens for use by the asynchronous signal handlers for SIGINT. */
static struct async_signal_handler *sigint_remote_twice_token;
static struct async_signal_handler *sigint_remote_token;
/* These are pointers to hook functions that may be set in order to
modify resume/wait behavior for a particular architecture. */
void (*deprecated_target_resume_hook) (void);
void (*deprecated_target_wait_loop_hook) (void);
/* These are the threads which we last sent to the remote system.
-1 for all or -2 for not sent yet. */
static int general_thread;
static int continue_thread;
/* Call this function as a result of
1) A halt indication (T packet) containing a thread id
2) A direct query of currthread
3) Successful execution of set thread
*/
static void
record_currthread (int currthread)
{
general_thread = currthread;
/* If this is a new thread, add it to GDB's thread list.
If we leave it up to WFI to do this, bad things will happen. */
if (!in_thread_list (pid_to_ptid (currthread)))
{
add_thread (pid_to_ptid (currthread));
ui_out_text (uiout, "[New ");
ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
ui_out_text (uiout, "]\n");
}
}
static char *last_pass_packet;
/* If 'QPassSignals' is supported, tell the remote stub what signals
it can simply pass through to the inferior without reporting. */
static void
remote_pass_signals (void)
{
if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
{
char *pass_packet, *p;
int numsigs = (int) TARGET_SIGNAL_LAST;
int count = 0, i;
gdb_assert (numsigs < 256);
for (i = 0; i < numsigs; i++)
{
if (signal_stop_state (i) == 0
&& signal_print_state (i) == 0
&& signal_pass_state (i) == 1)
count++;
}
pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
strcpy (pass_packet, "QPassSignals:");
p = pass_packet + strlen (pass_packet);
for (i = 0; i < numsigs; i++)
{
if (signal_stop_state (i) == 0
&& signal_print_state (i) == 0
&& signal_pass_state (i) == 1)
{
if (i >= 16)
*p++ = tohex (i >> 4);
*p++ = tohex (i & 15);
if (count)
*p++ = ';';
else
break;
count--;
}
}
*p = 0;
if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
{
struct remote_state *rs = get_remote_state ();
char *buf = rs->buf;
putpkt (pass_packet);
getpkt (&rs->buf, &rs->buf_size, 0);
packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
if (last_pass_packet)
xfree (last_pass_packet);
last_pass_packet = pass_packet;
}
else
xfree (pass_packet);
}
}
#define MAGIC_NULL_PID 42000
static void
set_thread (int th, int gen)
{
struct remote_state *rs = get_remote_state ();
char *buf = rs->buf;
int state = gen ? general_thread : continue_thread;
if (state == th)
return;
buf[0] = 'H';
buf[1] = gen ? 'g' : 'c';
if (th == MAGIC_NULL_PID)
{
buf[2] = '0';
buf[3] = '\0';
}
else if (th < 0)
xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
else
xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
putpkt (buf);
getpkt (&rs->buf, &rs->buf_size, 0);
if (gen)
general_thread = th;
else
continue_thread = th;
}
/* Return nonzero if the thread TH is still alive on the remote system. */
static int
remote_thread_alive (ptid_t ptid)
{
struct remote_state *rs = get_remote_state ();
int tid = PIDGET (ptid);
if (tid < 0)
xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
else
xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
}
/* About these extended threadlist and threadinfo packets. They are
variable length packets but, the fields within them are often fixed
length. They are redundent enough to send over UDP as is the
remote protocol in general. There is a matching unit test module
in libstub. */
#define OPAQUETHREADBYTES 8
/* a 64 bit opaque identifier */
typedef unsigned char threadref[OPAQUETHREADBYTES];
/* WARNING: This threadref data structure comes from the remote O.S.,
libstub protocol encoding, and remote.c. it is not particularly
changable. */
/* Right now, the internal structure is int. We want it to be bigger.
Plan to fix this.
*/
typedef int gdb_threadref; /* Internal GDB thread reference. */
/* gdb_ext_thread_info is an internal GDB data structure which is
equivalent to the reply of the remote threadinfo packet. */
struct gdb_ext_thread_info
{
threadref threadid; /* External form of thread reference. */
int active; /* Has state interesting to GDB?
regs, stack. */
char display[256]; /* Brief state display, name,
blocked/suspended. */
char shortname[32]; /* To be used to name threads. */
char more_display[256]; /* Long info, statistics, queue depth,
whatever. */
};
/* The volume of remote transfers can be limited by submitting
a mask containing bits specifying the desired information.
Use a union of these values as the 'selection' parameter to
get_thread_info. FIXME: Make these TAG names more thread specific.
*/
#define TAG_THREADID 1
#define TAG_EXISTS 2
#define TAG_DISPLAY 4
#define TAG_THREADNAME 8
#define TAG_MOREDISPLAY 16
#define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
char *unpack_varlen_hex (char *buff, ULONGEST *result);
static char *unpack_nibble (char *buf, int *val);
static char *pack_nibble (char *buf, int nibble);
static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
static char *unpack_byte (char *buf, int *value);
static char *pack_int (char *buf, int value);
static char *unpack_int (char *buf, int *value);
static char *unpack_string (char *src, char *dest, int length);
static char *pack_threadid (char *pkt, threadref *id);
static char *unpack_threadid (char *inbuf, threadref *id);
void int_to_threadref (threadref *id, int value);
static int threadref_to_int (threadref *ref);
static void copy_threadref (threadref *dest, threadref *src);
static int threadmatch (threadref *dest, threadref *src);
static char *pack_threadinfo_request (char *pkt, int mode,
threadref *id);
static int remote_unpack_thread_info_response (char *pkt,
threadref *expectedref,
struct gdb_ext_thread_info
*info);
static int remote_get_threadinfo (threadref *threadid,
int fieldset, /*TAG mask */
struct gdb_ext_thread_info *info);
static char *pack_threadlist_request (char *pkt, int startflag,
int threadcount,
threadref *nextthread);
static int parse_threadlist_response (char *pkt,
int result_limit,
threadref *original_echo,
threadref *resultlist,
int *doneflag);
static int remote_get_threadlist (int startflag,
threadref *nextthread,
int result_limit,
int *done,
int *result_count,
threadref *threadlist);
typedef int (*rmt_thread_action) (threadref *ref, void *context);
static int remote_threadlist_iterator (rmt_thread_action stepfunction,
void *context, int looplimit);
static int remote_newthread_step (threadref *ref, void *context);
/* Encode 64 bits in 16 chars of hex. */
static const char hexchars[] = "0123456789abcdef";
static int
ishex (int ch, int *val)
{
if ((ch >= 'a') && (ch <= 'f'))
{
*val = ch - 'a' + 10;
return 1;
}
if ((ch >= 'A') && (ch <= 'F'))
{
*val = ch - 'A' + 10;
return 1;
}
if ((ch >= '0') && (ch <= '9'))
{
*val = ch - '0';
return 1;
}
return 0;
}
static int
stubhex (int ch)
{
if (ch >= 'a' && ch <= 'f')
return ch - 'a' + 10;
if (ch >= '0' && ch <= '9')
return ch - '0';
if (ch >= 'A' && ch <= 'F')
return ch - 'A' + 10;
return -1;
}
static int
stub_unpack_int (char *buff, int fieldlength)
{
int nibble;
int retval = 0;
while (fieldlength)
{
nibble = stubhex (*buff++);
retval |= nibble;
fieldlength--;
if (fieldlength)
retval = retval << 4;
}
return retval;
}
char *
unpack_varlen_hex (char *buff, /* packet to parse */
ULONGEST *result)
{
int nibble;
ULONGEST retval = 0;
while (ishex (*buff, &nibble))
{
buff++;
retval = retval << 4;
retval |= nibble & 0x0f;
}
*result = retval;
return buff;
}
static char *
unpack_nibble (char *buf, int *val)
{
ishex (*buf++, val);
return buf;
}
static char *
pack_nibble (char *buf, int nibble)
{
*buf++ = hexchars[(nibble & 0x0f)];
return buf;
}
static char *
pack_hex_byte (char *pkt, int byte)
{
*pkt++ = hexchars[(byte >> 4) & 0xf];
*pkt++ = hexchars[(byte & 0xf)];
return pkt;
}
static char *
unpack_byte (char *buf, int *value)
{
*value = stub_unpack_int (buf, 2);
return buf + 2;
}
static char *
pack_int (char *buf, int value)
{
buf = pack_hex_byte (buf, (value >> 24) & 0xff);
buf = pack_hex_byte (buf, (value >> 16) & 0xff);
buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
buf = pack_hex_byte (buf, (value & 0xff));
return buf;
}
static char *
unpack_int (char *buf, int *value)
{
*value = stub_unpack_int (buf, 8);
return buf + 8;
}
#if 0 /* Currently unused, uncomment when needed. */
static char *pack_string (char *pkt, char *string);
static char *
pack_string (char *pkt, char *string)
{
char ch;
int len;
len = strlen (string);
if (len > 200)
len = 200; /* Bigger than most GDB packets, junk??? */
pkt = pack_hex_byte (pkt, len);
while (len-- > 0)
{
ch = *string++;
if ((ch == '\0') || (ch == '#'))
ch = '*'; /* Protect encapsulation. */
*pkt++ = ch;
}
return pkt;
}
#endif /* 0 (unused) */
static char *
unpack_string (char *src, char *dest, int length)
{
while (length--)
*dest++ = *src++;
*dest = '\0';
return src;
}
static char *
pack_threadid (char *pkt, threadref *id)
{
char *limit;
unsigned char *altid;
altid = (unsigned char *) id;
limit = pkt + BUF_THREAD_ID_SIZE;
while (pkt < limit)
pkt = pack_hex_byte (pkt, *altid++);
return pkt;
}
static char *
unpack_threadid (char *inbuf, threadref *id)
{
char *altref;
char *limit = inbuf + BUF_THREAD_ID_SIZE;
int x, y;
altref = (char *) id;
while (inbuf < limit)
{
x = stubhex (*inbuf++);
y = stubhex (*inbuf++);
*altref++ = (x << 4) | y;
}
return inbuf;
}
/* Externally, threadrefs are 64 bits but internally, they are still
ints. This is due to a mismatch of specifications. We would like
to use 64bit thread references internally. This is an adapter
function. */
void
int_to_threadref (threadref *id, int value)
{
unsigned char *scan;
scan = (unsigned char *) id;
{
int i = 4;
while (i--)
*scan++ = 0;
}
*scan++ = (value >> 24) & 0xff;
*scan++ = (value >> 16) & 0xff;
*scan++ = (value >> 8) & 0xff;
*scan++ = (value & 0xff);
}
static int
threadref_to_int (threadref *ref)
{
int i, value = 0;
unsigned char *scan;
scan = *ref;
scan += 4;
i = 4;
while (i-- > 0)
value = (value << 8) | ((*scan++) & 0xff);
return value;
}
static void
copy_threadref (threadref *dest, threadref *src)
{
int i;
unsigned char *csrc, *cdest;
csrc = (unsigned char *) src;
cdest = (unsigned char *) dest;
i = 8;
while (i--)
*cdest++ = *csrc++;
}
static int
threadmatch (threadref *dest, threadref *src)
{
/* Things are broken right now, so just assume we got a match. */
#if 0
unsigned char *srcp, *destp;
int i, result;
srcp = (char *) src;
destp = (char *) dest;
result = 1;
while (i-- > 0)
result &= (*srcp++ == *destp++) ? 1 : 0;
return result;
#endif
return 1;
}
/*
threadid:1, # always request threadid
context_exists:2,
display:4,
unique_name:8,
more_display:16
*/
/* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
static char *
pack_threadinfo_request (char *pkt, int mode, threadref *id)
{
*pkt++ = 'q'; /* Info Query */
*pkt++ = 'P'; /* process or thread info */
pkt = pack_int (pkt, mode); /* mode */
pkt = pack_threadid (pkt, id); /* threadid */
*pkt = '\0'; /* terminate */
return pkt;
}
/* These values tag the fields in a thread info response packet. */
/* Tagging the fields allows us to request specific fields and to
add more fields as time goes by. */
#define TAG_THREADID 1 /* Echo the thread identifier. */
#define TAG_EXISTS 2 /* Is this process defined enough to
fetch registers and its stack? */
#define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
#define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
#define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
the process. */
static int
remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
struct gdb_ext_thread_info *info)
{
struct remote_state *rs = get_remote_state ();
int mask, length;
int tag;
threadref ref;
char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
int retval = 1;
/* info->threadid = 0; FIXME: implement zero_threadref. */
info->active = 0;
info->display[0] = '\0';
info->shortname[0] = '\0';
info->more_display[0] = '\0';
/* Assume the characters indicating the packet type have been
stripped. */
pkt = unpack_int (pkt, &mask); /* arg mask */
pkt = unpack_threadid (pkt, &ref);
if (mask == 0)
warning (_("Incomplete response to threadinfo request."));
if (!threadmatch (&ref, expectedref))
{ /* This is an answer to a different request. */
warning (_("ERROR RMT Thread info mismatch."));
return 0;
}
copy_threadref (&info->threadid, &ref);
/* Loop on tagged fields , try to bail if somthing goes wrong. */
/* Packets are terminated with nulls. */
while ((pkt < limit) && mask && *pkt)
{
pkt = unpack_int (pkt, &tag); /* tag */
pkt = unpack_byte (pkt, &length); /* length */
if (!(tag & mask)) /* Tags out of synch with mask. */
{
warning (_("ERROR RMT: threadinfo tag mismatch."));
retval = 0;
break;
}
if (tag == TAG_THREADID)
{
if (length != 16)
{
warning (_("ERROR RMT: length of threadid is not 16."));
retval = 0;
break;
}
pkt = unpack_threadid (pkt, &ref);
mask = mask & ~TAG_THREADID;
continue;
}
if (tag == TAG_EXISTS)
{
info->active = stub_unpack_int (pkt, length);
pkt += length;
mask = mask & ~(TAG_EXISTS);
if (length > 8)
{
warning (_("ERROR RMT: 'exists' length too long."));
retval = 0;
break;
}
continue;
}
if (tag == TAG_THREADNAME)
{
pkt = unpack_string (pkt, &info->shortname[0], length);
mask = mask & ~TAG_THREADNAME;
continue;
}
if (tag == TAG_DISPLAY)
{
pkt = unpack_string (pkt, &info->display[0], length);
mask = mask & ~TAG_DISPLAY;
continue;
}
if (tag == TAG_MOREDISPLAY)
{
pkt = unpack_string (pkt, &info->more_display[0], length);
mask = mask & ~TAG_MOREDISPLAY;
continue;
}
warning (_("ERROR RMT: unknown thread info tag."));
break; /* Not a tag we know about. */
}
return retval;
}
static int
remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
struct gdb_ext_thread_info *info)
{
struct remote_state *rs = get_remote_state ();
int result;
pack_threadinfo_request (rs->buf, fieldset, threadid);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
result = remote_unpack_thread_info_response (rs->buf + 2,
threadid, info);
return result;
}
/* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
static char *
pack_threadlist_request (char *pkt, int startflag, int threadcount,
threadref *nextthread)
{
*pkt++ = 'q'; /* info query packet */
*pkt++ = 'L'; /* Process LIST or threadLIST request */
pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
*pkt = '\0';
return pkt;
}
/* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
static int
parse_threadlist_response (char *pkt, int result_limit,
threadref *original_echo, threadref *resultlist,
int *doneflag)
{
struct remote_state *rs = get_remote_state ();
char *limit;
int count, resultcount, done;
resultcount = 0;
/* Assume the 'q' and 'M chars have been stripped. */
limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
/* done parse past here */
pkt = unpack_byte (pkt, &count); /* count field */
pkt = unpack_nibble (pkt, &done);
/* The first threadid is the argument threadid. */
pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
while ((count-- > 0) && (pkt < limit))
{
pkt = unpack_threadid (pkt, resultlist++);
if (resultcount++ >= result_limit)
break;
}
if (doneflag)
*doneflag = done;
return resultcount;
}
static int
remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
int *done, int *result_count, threadref *threadlist)
{
struct remote_state *rs = get_remote_state ();
static threadref echo_nextthread;
int result = 1;
/* Trancate result limit to be smaller than the packet size. */
if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
*result_count =
parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
threadlist, done);
if (!threadmatch (&echo_nextthread, nextthread))
{
/* FIXME: This is a good reason to drop the packet. */
/* Possably, there is a duplicate response. */
/* Possabilities :
retransmit immediatly - race conditions
retransmit after timeout - yes
exit
wait for packet, then exit
*/
warning (_("HMM: threadlist did not echo arg thread, dropping it."));
return 0; /* I choose simply exiting. */
}
if (*result_count <= 0)
{
if (*done != 1)
{
warning (_("RMT ERROR : failed to get remote thread list."));
result = 0;
}
return result; /* break; */
}
if (*result_count > result_limit)
{
*result_count = 0;
warning (_("RMT ERROR: threadlist response longer than requested."));
return 0;
}
return result;
}
/* This is the interface between remote and threads, remotes upper
interface. */
/* remote_find_new_threads retrieves the thread list and for each
thread in the list, looks up the thread in GDB's internal list,
ading the thread if it does not already exist. This involves
getting partial thread lists from the remote target so, polling the
quit_flag is required. */
/* About this many threadisds fit in a packet. */
#define MAXTHREADLISTRESULTS 32
static int
remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
int looplimit)
{
int done, i, result_count;
int startflag = 1;
int result = 1;
int loopcount = 0;
static threadref nextthread;
static threadref resultthreadlist[MAXTHREADLISTRESULTS];
done = 0;
while (!done)
{
if (loopcount++ > looplimit)
{
result = 0;
warning (_("Remote fetch threadlist -infinite loop-."));
break;
}
if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
&done, &result_count, resultthreadlist))
{
result = 0;
break;
}
/* Clear for later iterations. */
startflag = 0;
/* Setup to resume next batch of thread references, set nextthread. */
if (result_count >= 1)
copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
i = 0;
while (result_count--)
if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
break;
}
return result;
}
static int
remote_newthread_step (threadref *ref, void *context)
{
ptid_t ptid;
ptid = pid_to_ptid (threadref_to_int (ref));
if (!in_thread_list (ptid))
add_thread (ptid);
return 1; /* continue iterator */
}
#define CRAZY_MAX_THREADS 1000
static ptid_t
remote_current_thread (ptid_t oldpid)
{
struct remote_state *rs = get_remote_state ();
putpkt ("qC");
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
/* Use strtoul here, so we'll correctly parse values whose highest
bit is set. The protocol carries them as a simple series of
hex digits; in the absence of a sign, strtol will see such
values as positive numbers out of range for signed 'long', and
return LONG_MAX to indicate an overflow. */
return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
else
return oldpid;
}
/* Find new threads for info threads command.
* Original version, using John Metzler's thread protocol.
*/
static void
remote_find_new_threads (void)
{
remote_threadlist_iterator (remote_newthread_step, 0,
CRAZY_MAX_THREADS);
if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
inferior_ptid = remote_current_thread (inferior_ptid);
}
/*
* Find all threads for info threads command.
* Uses new thread protocol contributed by Cisco.
* Falls back and attempts to use the older method (above)
* if the target doesn't respond to the new method.
*/
static void
remote_threads_info (void)
{
struct remote_state *rs = get_remote_state ();
char *bufp;
int tid;
if (remote_desc == 0) /* paranoia */
error (_("Command can only be used when connected to the remote target."));
if (use_threadinfo_query)
{
putpkt ("qfThreadInfo");
getpkt (&rs->buf, &rs->buf_size, 0);
bufp = rs->buf;
if (bufp[0] != '\0') /* q packet recognized */
{
while (*bufp++ == 'm') /* reply contains one or more TID */
{
do
{
/* Use strtoul here, so we'll correctly parse values
whose highest bit is set. The protocol carries
them as a simple series of hex digits; in the
absence of a sign, strtol will see such values as
positive numbers out of range for signed 'long',
and return LONG_MAX to indicate an overflow. */
tid = strtoul (bufp, &bufp, 16);
if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
add_thread (pid_to_ptid (tid));
}
while (*bufp++ == ','); /* comma-separated list */
putpkt ("qsThreadInfo");
getpkt (&rs->buf, &rs->buf_size, 0);
bufp = rs->buf;
}
return; /* done */
}
}
/* Else fall back to old method based on jmetzler protocol. */
use_threadinfo_query = 0;
remote_find_new_threads ();
return;
}
/*
* Collect a descriptive string about the given thread.
* The target may say anything it wants to about the thread
* (typically info about its blocked / runnable state, name, etc.).
* This string will appear in the info threads display.
*
* Optional: targets are not required to implement this function.
*/
static char *
remote_threads_extra_info (struct thread_info *tp)
{
struct remote_state *rs = get_remote_state ();
int result;
int set;
threadref id;
struct gdb_ext_thread_info threadinfo;
static char display_buf[100]; /* arbitrary... */
int n = 0; /* position in display_buf */
if (remote_desc == 0) /* paranoia */
internal_error (__FILE__, __LINE__,
_("remote_threads_extra_info"));
if (use_threadextra_query)
{
xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
PIDGET (tp->ptid));
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] != 0)
{
n = min (strlen (rs->buf) / 2, sizeof (display_buf));
result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
display_buf [result] = '\0';
return display_buf;
}
}
/* If the above query fails, fall back to the old method. */
use_threadextra_query = 0;
set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
| TAG_MOREDISPLAY | TAG_DISPLAY;
int_to_threadref (&id, PIDGET (tp->ptid));
if (remote_get_threadinfo (&id, set, &threadinfo))
if (threadinfo.active)
{
if (*threadinfo.shortname)
n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
" Name: %s,", threadinfo.shortname);
if (*threadinfo.display)
n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
" State: %s,", threadinfo.display);
if (*threadinfo.more_display)
n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
" Priority: %s", threadinfo.more_display);
if (n > 0)
{
/* For purely cosmetic reasons, clear up trailing commas. */
if (',' == display_buf[n-1])
display_buf[n-1] = ' ';
return display_buf;
}
}
return NULL;
}
/* Restart the remote side; this is an extended protocol operation. */
static void
extended_remote_restart (void)
{
struct remote_state *rs = get_remote_state ();
/* Send the restart command; for reasons I don't understand the
remote side really expects a number after the "R". */
xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
putpkt (rs->buf);
remote_fileio_reset ();
/* Now query for status so this looks just like we restarted
gdbserver from scratch. */
putpkt ("?");
getpkt (&rs->buf, &rs->buf_size, 0);
}
/* Clean up connection to a remote debugger. */
static void
remote_close (int quitting)
{
if (remote_desc)
serial_close (remote_desc);
remote_desc = NULL;
}
/* Query the remote side for the text, data and bss offsets. */
static void
get_offsets (void)
{
struct remote_state *rs = get_remote_state ();
char *buf;
char *ptr;
int lose;
CORE_ADDR text_addr, data_addr, bss_addr;
struct section_offsets *offs;
putpkt ("qOffsets");
getpkt (&rs->buf, &rs->buf_size, 0);
buf = rs->buf;
if (buf[0] == '\000')
return; /* Return silently. Stub doesn't support
this command. */
if (buf[0] == 'E')
{
warning (_("Remote failure reply: %s"), buf);
return;
}
/* Pick up each field in turn. This used to be done with scanf, but
scanf will make trouble if CORE_ADDR size doesn't match
conversion directives correctly. The following code will work
with any size of CORE_ADDR. */
text_addr = data_addr = bss_addr = 0;
ptr = buf;
lose = 0;
if (strncmp (ptr, "Text=", 5) == 0)
{
ptr += 5;
/* Don't use strtol, could lose on big values. */
while (*ptr && *ptr != ';')
text_addr = (text_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (!lose && strncmp (ptr, ";Data=", 6) == 0)
{
ptr += 6;
while (*ptr && *ptr != ';')
data_addr = (data_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
{
ptr += 5;
while (*ptr && *ptr != ';')
bss_addr = (bss_addr << 4) + fromhex (*ptr++);
}
else
lose = 1;
if (lose)
error (_("Malformed response to offset query, %s"), buf);
if (symfile_objfile == NULL)
return;
offs = ((struct section_offsets *)
alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
memcpy (offs, symfile_objfile->section_offsets,
SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
/* This is a temporary kludge to force data and bss to use the same offsets
because that's what nlmconv does now. The real solution requires changes
to the stub and remote.c that I don't have time to do right now. */
offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
objfile_relocate (symfile_objfile, offs);
}
/* Stub for catch_exception. */
static void
remote_start_remote (struct ui_out *uiout, void *from_tty_p)
{
int from_tty = * (int *) from_tty_p;
immediate_quit++; /* Allow user to interrupt it. */
/* Ack any packet which the remote side has already sent. */
serial_write (remote_desc, "+", 1);
/* Let the stub know that we want it to return the thread. */
set_thread (-1, 0);
inferior_ptid = remote_current_thread (inferior_ptid);
get_offsets (); /* Get text, data & bss offsets. */
putpkt ("?"); /* Initiate a query from remote machine. */
immediate_quit--;
start_remote (from_tty); /* Initialize gdb process mechanisms. */
}
/* Open a connection to a remote debugger.
NAME is the filename used for communication. */
static void
remote_open (char *name, int from_tty)
{
remote_open_1 (name, from_tty, &remote_ops, 0, 0);
}
/* Just like remote_open, but with asynchronous support. */
static void
remote_async_open (char *name, int from_tty)
{
remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
}
/* Open a connection to a remote debugger using the extended
remote gdb protocol. NAME is the filename used for communication. */
static void
extended_remote_open (char *name, int from_tty)
{
remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
0 /* async_p */);
}
/* Just like extended_remote_open, but with asynchronous support. */
static void
extended_remote_async_open (char *name, int from_tty)
{
remote_open_1 (name, from_tty, &extended_async_remote_ops,
1 /*extended_p */, 1 /* async_p */);
}
/* Generic code for opening a connection to a remote target. */
static void
init_all_packet_configs (void)
{
int i;
for (i = 0; i < PACKET_MAX; i++)
update_packet_config (&remote_protocol_packets[i]);
}
/* Symbol look-up. */
static void
remote_check_symbols (struct objfile *objfile)
{
struct remote_state *rs = get_remote_state ();
char *msg, *reply, *tmp;
struct minimal_symbol *sym;
int end;
if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
return;
/* Allocate a message buffer. We can't reuse the input buffer in RS,
because we need both at the same time. */
msg = alloca (get_remote_packet_size ());
/* Invite target to request symbol lookups. */
putpkt ("qSymbol::");
getpkt (&rs->buf, &rs->buf_size, 0);
packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
reply = rs->buf;
while (strncmp (reply, "qSymbol:", 8) == 0)
{
tmp = &reply[8];
end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
msg[end] = '\0';
sym = lookup_minimal_symbol (msg, NULL, NULL);
if (sym == NULL)
xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
else
xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
&reply[8]);
putpkt (msg);
getpkt (&rs->buf, &rs->buf_size, 0);
reply = rs->buf;
}
}
static struct serial *
remote_serial_open (char *name)
{
static int udp_warning = 0;
/* FIXME: Parsing NAME here is a hack. But we want to warn here instead
of in ser-tcp.c, because it is the remote protocol assuming that the
serial connection is reliable and not the serial connection promising
to be. */
if (!udp_warning && strncmp (name, "udp:", 4) == 0)
{
warning (_("\
The remote protocol may be unreliable over UDP.\n\
Some events may be lost, rendering further debugging impossible."));
udp_warning = 1;
}
return serial_open (name);
}
/* This type describes each known response to the qSupported
packet. */
struct protocol_feature
{
/* The name of this protocol feature. */
const char *name;
/* The default for this protocol feature. */
enum packet_support default_support;
/* The function to call when this feature is reported, or after
qSupported processing if the feature is not supported.
The first argument points to this structure. The second
argument indicates whether the packet requested support be
enabled, disabled, or probed (or the default, if this function
is being called at the end of processing and this feature was
not reported). The third argument may be NULL; if not NULL, it
is a NUL-terminated string taken from the packet following
this feature's name and an equals sign. */
void (*func) (const struct protocol_feature *, enum packet_support,
const char *);
/* The corresponding packet for this feature. Only used if
FUNC is remote_supported_packet. */
int packet;
};
static void
remote_supported_packet (const struct protocol_feature *feature,
enum packet_support support,
const char *argument)
{
if (argument)
{
warning (_("Remote qSupported response supplied an unexpected value for"
" \"%s\"."), feature->name);
return;
}
if (remote_protocol_packets[feature->packet].support
== PACKET_SUPPORT_UNKNOWN)
remote_protocol_packets[feature->packet].support = support;
}
static void
remote_packet_size (const struct protocol_feature *feature,
enum packet_support support, const char *value)
{
struct remote_state *rs = get_remote_state ();
int packet_size;
char *value_end;
if (support != PACKET_ENABLE)
return;
if (value == NULL || *value == '\0')
{
warning (_("Remote target reported \"%s\" without a size."),
feature->name);
return;
}
errno = 0;
packet_size = strtol (value, &value_end, 16);
if (errno != 0 || *value_end != '\0' || packet_size < 0)
{
warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
feature->name, value);
return;
}
if (packet_size > MAX_REMOTE_PACKET_SIZE)
{
warning (_("limiting remote suggested packet size (%d bytes) to %d"),
packet_size, MAX_REMOTE_PACKET_SIZE);
packet_size = MAX_REMOTE_PACKET_SIZE;
}
/* Record the new maximum packet size. */
rs->explicit_packet_size = packet_size;
}
static struct protocol_feature remote_protocol_features[] = {
{ "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
{ "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
PACKET_qXfer_auxv },
{ "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
PACKET_qXfer_features },
{ "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
PACKET_qXfer_memory_map },
{ "QPassSignals", PACKET_DISABLE, remote_supported_packet,
PACKET_QPassSignals },
};
static void
remote_query_supported (void)
{
struct remote_state *rs = get_remote_state ();
char *next;
int i;
unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
/* The packet support flags are handled differently for this packet
than for most others. We treat an error, a disabled packet, and
an empty response identically: any features which must be reported
to be used will be automatically disabled. An empty buffer
accomplishes this, since that is also the representation for a list
containing no features. */
rs->buf[0] = 0;
if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
{
putpkt ("qSupported");
getpkt (&rs->buf, &rs->buf_size, 0);
/* If an error occured, warn, but do not return - just reset the
buffer to empty and go on to disable features. */
if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
== PACKET_ERROR)
{
warning (_("Remote failure reply: %s"), rs->buf);
rs->buf[0] = 0;
}
}
memset (seen, 0, sizeof (seen));
next = rs->buf;
while (*next)
{
enum packet_support is_supported;
char *p, *end, *name_end, *value;
/* First separate out this item from the rest of the packet. If
there's another item after this, we overwrite the separator
(terminated strings are much easier to work with). */
p = next;
end = strchr (p, ';');
if (end == NULL)
{
end = p + strlen (p);
next = end;
}
else
{
*end = '\0';
next = end + 1;
if (end == p)
{
warning (_("empty item in \"qSupported\" response"));
continue;
}
}
name_end = strchr (p, '=');
if (name_end)
{
/* This is a name=value entry. */
is_supported = PACKET_ENABLE;
value = name_end + 1;
*name_end = '\0';
}
else
{
value = NULL;
switch (end[-1])
{
case '+':
is_supported = PACKET_ENABLE;
break;
case '-':
is_supported = PACKET_DISABLE;
break;
case '?':
is_supported = PACKET_SUPPORT_UNKNOWN;
break;
default:
warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
continue;
}
end[-1] = '\0';
}
for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
if (strcmp (remote_protocol_features[i].name, p) == 0)
{
const struct protocol_feature *feature;
seen[i] = 1;
feature = &remote_protocol_features[i];
feature->func (feature, is_supported, value);
break;
}
}
/* If we increased the packet size, make sure to increase the global
buffer size also. We delay this until after parsing the entire
qSupported packet, because this is the same buffer we were
parsing. */
if (rs->buf_size < rs->explicit_packet_size)
{
rs->buf_size = rs->explicit_packet_size;
rs->buf = xrealloc (rs->buf, rs->buf_size);
}
/* Handle the defaults for unmentioned features. */
for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
if (!seen[i])
{
const struct protocol_feature *feature;
feature = &remote_protocol_features[i];
feature->func (feature, feature->default_support, NULL);
}
}
static void
remote_open_1 (char *name, int from_tty, struct target_ops *target,
int extended_p, int async_p)
{
struct remote_state *rs = get_remote_state ();
if (name == 0)
error (_("To open a remote debug connection, you need to specify what\n"
"serial device is attached to the remote system\n"
"(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
/* See FIXME above. */
if (!async_p)
wait_forever_enabled_p = 1;
target_preopen (from_tty);
unpush_target (target);
/* Make sure we send the passed signals list the next time we resume. */
xfree (last_pass_packet);
last_pass_packet = NULL;
remote_fileio_reset ();
reopen_exec_file ();
reread_symbols ();
remote_desc = remote_serial_open (name);
if (!remote_desc)
perror_with_name (name);
if (baud_rate != -1)
{
if (serial_setbaudrate (remote_desc, baud_rate))
{
/* The requested speed could not be set. Error out to
top level after closing remote_desc. Take care to
set remote_desc to NULL to avoid closing remote_desc
more than once. */
serial_close (remote_desc);
remote_desc = NULL;
perror_with_name (name);
}
}
serial_raw (remote_desc);
/* If there is something sitting in the buffer we might take it as a
response to a command, which would be bad. */
serial_flush_input (remote_desc);
if (from_tty)
{
puts_filtered ("Remote debugging using ");
puts_filtered (name);
puts_filtered ("\n");
}
push_target (target); /* Switch to using remote target now. */
/* Reset the target state; these things will be queried either by
remote_query_supported or as they are needed. */
init_all_packet_configs ();
rs->explicit_packet_size = 0;
general_thread = -2;
continue_thread = -2;
/* Probe for ability to use "ThreadInfo" query, as required. */
use_threadinfo_query = 1;
use_threadextra_query = 1;
/* The first packet we send to the target is the optional "supported
packets" request. If the target can answer this, it will tell us
which later probes to skip. */
remote_query_supported ();
/* Next, if the target can specify a description, read it. We do
this before anything involving memory or registers. */
target_find_description ();
/* Without this, some commands which require an active target (such
as kill) won't work. This variable serves (at least) double duty
as both the pid of the target process (if it has such), and as a
flag indicating that a target is active. These functions should
be split out into seperate variables, especially since GDB will
someday have a notion of debugging several processes. */
inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
if (async_p)
{
/* With this target we start out by owning the terminal. */
remote_async_terminal_ours_p = 1;
/* FIXME: cagney/1999-09-23: During the initial connection it is
assumed that the target is already ready and able to respond to
requests. Unfortunately remote_start_remote() eventually calls
wait_for_inferior() with no timeout. wait_forever_enabled_p gets
around this. Eventually a mechanism that allows
wait_for_inferior() to expect/get timeouts will be
implemented. */
wait_forever_enabled_p = 0;
}
/* First delete any symbols previously loaded from shared libraries. */
no_shared_libraries (NULL, 0);
/* Start the remote connection. If error() or QUIT, discard this
target (we'd otherwise be in an inconsistent state) and then
propogate the error on up the exception chain. This ensures that
the caller doesn't stumble along blindly assuming that the
function succeeded. The CLI doesn't have this problem but other
UI's, such as MI do.
FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
this function should return an error indication letting the
caller restore the previous state. Unfortunately the command
``target remote'' is directly wired to this function making that
impossible. On a positive note, the CLI side of this problem has
been fixed - the function set_cmd_context() makes it possible for
all the ``target ....'' commands to share a common callback
function. See cli-dump.c. */
{
struct gdb_exception ex
= catch_exception (uiout, remote_start_remote, &from_tty,
RETURN_MASK_ALL);
if (ex.reason < 0)
{
pop_target ();
if (async_p)
wait_forever_enabled_p = 1;
throw_exception (ex);
}
}
if (async_p)
wait_forever_enabled_p = 1;
if (extended_p)
{
/* Tell the remote that we are using the extended protocol. */
putpkt ("!");
getpkt (&rs->buf, &rs->buf_size, 0);
}
if (exec_bfd) /* No use without an exec file. */
remote_check_symbols (symfile_objfile);
}
/* This takes a program previously attached to and detaches it. After
this is done, GDB can be used to debug some other program. We
better not have left any breakpoints in the target program or it'll
die when it hits one. */
static void
remote_detach (char *args, int from_tty)
{
struct remote_state *rs = get_remote_state ();
if (args)
error (_("Argument given to \"detach\" when remotely debugging."));
/* Tell the remote target to detach. */
strcpy (rs->buf, "D");
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == 'E')
error (_("Can't detach process."));
/* Unregister the file descriptor from the event loop. */
if (target_is_async_p ())
serial_async (remote_desc, NULL, 0);
target_mourn_inferior ();
if (from_tty)
puts_filtered ("Ending remote debugging.\n");
}
/* Same as remote_detach, but don't send the "D" packet; just disconnect. */
static void
remote_disconnect (struct target_ops *target, char *args, int from_tty)
{
if (args)
error (_("Argument given to \"detach\" when remotely debugging."));
/* Unregister the file descriptor from the event loop. */
if (target_is_async_p ())
serial_async (remote_desc, NULL, 0);
target_mourn_inferior ();
if (from_tty)
puts_filtered ("Ending remote debugging.\n");
}
/* Convert hex digit A to a number. */
static int
fromhex (int a)
{
if (a >= '0' && a <= '9')
return a - '0';
else if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
else if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else
error (_("Reply contains invalid hex digit %d"), a);
}
static int
hex2bin (const char *hex, gdb_byte *bin, int count)
{
int i;
for (i = 0; i < count; i++)
{
if (hex[0] == 0 || hex[1] == 0)
{
/* Hex string is short, or of uneven length.
Return the count that has been converted so far. */
return i;
}
*bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
hex += 2;
}
return i;
}
/* Convert number NIB to a hex digit. */
static int
tohex (int nib)
{
if (nib < 10)
return '0' + nib;
else
return 'a' + nib - 10;
}
static int
bin2hex (const gdb_byte *bin, char *hex, int count)
{
int i;
/* May use a length, or a nul-terminated string as input. */
if (count == 0)
count = strlen ((char *) bin);
for (i = 0; i < count; i++)
{
*hex++ = tohex ((*bin >> 4) & 0xf);
*hex++ = tohex (*bin++ & 0xf);
}
*hex = 0;
return i;
}
/* Check for the availability of vCont. This function should also check
the response. */
static void
remote_vcont_probe (struct remote_state *rs)
{
char *buf;
strcpy (rs->buf, "vCont?");
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
buf = rs->buf;
/* Make sure that the features we assume are supported. */
if (strncmp (buf, "vCont", 5) == 0)
{
char *p = &buf[5];
int support_s, support_S, support_c, support_C;
support_s = 0;
support_S = 0;
support_c = 0;
support_C = 0;
while (p && *p == ';')
{
p++;
if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
support_s = 1;
else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
support_S = 1;
else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
support_c = 1;
else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
support_C = 1;
p = strchr (p, ';');
}
/* If s, S, c, and C are not all supported, we can't use vCont. Clearing
BUF will make packet_ok disable the packet. */
if (!support_s || !support_S || !support_c || !support_C)
buf[0] = 0;
}
packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
}
/* Resume the remote inferior by using a "vCont" packet. The thread
to be resumed is PTID; STEP and SIGGNAL indicate whether the
resumed thread should be single-stepped and/or signalled. If PTID's
PID is -1, then all threads are resumed; the thread to be stepped and/or
signalled is given in the global INFERIOR_PTID. This function returns
non-zero iff it resumes the inferior.
This function issues a strict subset of all possible vCont commands at the
moment. */
static int
remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
{
struct remote_state *rs = get_remote_state ();
int pid = PIDGET (ptid);
char *buf = NULL, *outbuf;
struct cleanup *old_cleanup;
if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
remote_vcont_probe (rs);
if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
return 0;
/* If we could generate a wider range of packets, we'd have to worry
about overflowing BUF. Should there be a generic
"multi-part-packet" packet? */
if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
{
/* MAGIC_NULL_PTID means that we don't have any active threads, so we
don't have any PID numbers the inferior will understand. Make sure
to only send forms that do not specify a PID. */
if (step && siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;S%02x", siggnal);
else if (step)
outbuf = xstrprintf ("vCont;s");
else if (siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;C%02x", siggnal);
else
outbuf = xstrprintf ("vCont;c");
}
else if (pid == -1)
{
/* Resume all threads, with preference for INFERIOR_PTID. */
if (step && siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
PIDGET (inferior_ptid));
else if (step)
outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
else if (siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
PIDGET (inferior_ptid));
else
outbuf = xstrprintf ("vCont;c");
}
else
{
/* Scheduler locking; resume only PTID. */
if (step && siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
else if (step)
outbuf = xstrprintf ("vCont;s:%x", pid);
else if (siggnal != TARGET_SIGNAL_0)
outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
else
outbuf = xstrprintf ("vCont;c:%x", pid);
}
gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
old_cleanup = make_cleanup (xfree, outbuf);
putpkt (outbuf);
do_cleanups (old_cleanup);
return 1;
}
/* Tell the remote machine to resume. */
static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
static int last_sent_step;
static void
remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
{
struct remote_state *rs = get_remote_state ();
char *buf;
int pid = PIDGET (ptid);
last_sent_signal = siggnal;
last_sent_step = step;
/* A hook for when we need to do something at the last moment before
resumption. */
if (deprecated_target_resume_hook)
(*deprecated_target_resume_hook) ();
/* Update the inferior on signals to silently pass, if they've changed. */
remote_pass_signals ();
/* The vCont packet doesn't need to specify threads via Hc. */
if (remote_vcont_resume (ptid, step, siggnal))
return;
/* All other supported resume packets do use Hc, so call set_thread. */
if (pid == -1)
set_thread (0, 0); /* Run any thread. */
else
set_thread (pid, 0); /* Run this thread. */
buf = rs->buf;
if (siggnal != TARGET_SIGNAL_0)
{
buf[0] = step ? 'S' : 'C';
buf[1] = tohex (((int) siggnal >> 4) & 0xf);
buf[2] = tohex (((int) siggnal) & 0xf);
buf[3] = '\0';
}
else
strcpy (buf, step ? "s" : "c");
putpkt (buf);
}
/* Same as remote_resume, but with async support. */
static void
remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
{
remote_resume (ptid, step, siggnal);
/* We are about to start executing the inferior, let's register it
with the event loop. NOTE: this is the one place where all the
execution commands end up. We could alternatively do this in each
of the execution commands in infcmd.c. */
/* FIXME: ezannoni 1999-09-28: We may need to move this out of here
into infcmd.c in order to allow inferior function calls to work
NOT asynchronously. */
if (target_can_async_p ())
target_async (inferior_event_handler, 0);
/* Tell the world that the target is now executing. */
/* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
this? Instead, should the client of target just assume (for
async targets) that the target is going to start executing? Is
this information already found in the continuation block? */
if (target_is_async_p ())
target_executing = 1;
}
/* Set up the signal handler for SIGINT, while the target is
executing, ovewriting the 'regular' SIGINT signal handler. */
static void
initialize_sigint_signal_handler (void)
{
sigint_remote_token =
create_async_signal_handler (async_remote_interrupt, NULL);
signal (SIGINT, handle_remote_sigint);
}
/* Signal handler for SIGINT, while the target is executing. */
static void
handle_remote_sigint (int sig)
{
signal (sig, handle_remote_sigint_twice);
sigint_remote_twice_token =
create_async_signal_handler (async_remote_interrupt_twice, NULL);
mark_async_signal_handler_wrapper (sigint_remote_token);
}
/* Signal handler for SIGINT, installed after SIGINT has already been
sent once. It will take effect the second time that the user sends
a ^C. */
static void
handle_remote_sigint_twice (int sig)
{
signal (sig, handle_sigint);
sigint_remote_twice_token =
create_async_signal_handler (inferior_event_handler_wrapper, NULL);
mark_async_signal_handler_wrapper (sigint_remote_twice_token);
}
/* Perform the real interruption of the target execution, in response
to a ^C. */
static void
async_remote_interrupt (gdb_client_data arg)
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
target_stop ();
}
/* Perform interrupt, if the first attempt did not succeed. Just give
up on the target alltogether. */
void
async_remote_interrupt_twice (gdb_client_data arg)
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
/* Do something only if the target was not killed by the previous
cntl-C. */
if (target_executing)
{
interrupt_query ();
signal (SIGINT, handle_remote_sigint);
}
}
/* Reinstall the usual SIGINT handlers, after the target has
stopped. */
static void
cleanup_sigint_signal_handler (void *dummy)
{
signal (SIGINT, handle_sigint);
if (sigint_remote_twice_token)
delete_async_signal_handler (&sigint_remote_twice_token);
if (sigint_remote_token)
delete_async_signal_handler (&sigint_remote_token);
}
/* Send ^C to target to halt it. Target will respond, and send us a
packet. */
static void (*ofunc) (int);
/* The command line interface's stop routine. This function is installed
as a signal handler for SIGINT. The first time a user requests a
stop, we call remote_stop to send a break or ^C. If there is no
response from the target (it didn't stop when the user requested it),
we ask the user if he'd like to detach from the target. */
static void
remote_interrupt (int signo)
{
/* If this doesn't work, try more severe steps. */
signal (signo, remote_interrupt_twice);
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
target_stop ();
}
/* The user typed ^C twice. */
static void
remote_interrupt_twice (int signo)
{
signal (signo, ofunc);
interrupt_query ();
signal (signo, remote_interrupt);
}
/* This is the generic stop called via the target vector. When a target
interrupt is requested, either by the command line or the GUI, we
will eventually end up here. */
static void
remote_stop (void)
{
/* Send a break or a ^C, depending on user preference. */
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
if (remote_break)
serial_send_break (remote_desc);
else
serial_write (remote_desc, "\003", 1);
}
/* Ask the user what to do when an interrupt is received. */
static void
interrupt_query (void)
{
target_terminal_ours ();
if (query ("Interrupted while waiting for the program.\n\
Give up (and stop debugging it)? "))
{
target_mourn_inferior ();
deprecated_throw_reason (RETURN_QUIT);
}
target_terminal_inferior ();
}
/* Enable/disable target terminal ownership. Most targets can use
terminal groups to control terminal ownership. Remote targets are
different in that explicit transfer of ownership to/from GDB/target
is required. */
static void
remote_async_terminal_inferior (void)
{
/* FIXME: cagney/1999-09-27: Shouldn't need to test for
sync_execution here. This function should only be called when
GDB is resuming the inferior in the forground. A background
resume (``run&'') should leave GDB in control of the terminal and
consequently should not call this code. */
if (!sync_execution)
return;
/* FIXME: cagney/1999-09-27: Closely related to the above. Make
calls target_terminal_*() idenpotent. The event-loop GDB talking
to an asynchronous target with a synchronous command calls this
function from both event-top.c and infrun.c/infcmd.c. Once GDB
stops trying to transfer the terminal to the target when it
shouldn't this guard can go away. */
if (!remote_async_terminal_ours_p)
return;
delete_file_handler (input_fd);
remote_async_terminal_ours_p = 0;
initialize_sigint_signal_handler ();
/* NOTE: At this point we could also register our selves as the
recipient of all input. Any characters typed could then be
passed on down to the target. */
}
static void
remote_async_terminal_ours (void)
{
/* See FIXME in remote_async_terminal_inferior. */
if (!sync_execution)
return;
/* See FIXME in remote_async_terminal_inferior. */
if (remote_async_terminal_ours_p)
return;
cleanup_sigint_signal_handler (NULL);
add_file_handler (input_fd, stdin_event_handler, 0);
remote_async_terminal_ours_p = 1;
}
/* If nonzero, ignore the next kill. */
int kill_kludge;
void
remote_console_output (char *msg)
{
char *p;
for (p = msg; p[0] && p[1]; p += 2)
{
char tb[2];
char c = fromhex (p[0]) * 16 + fromhex (p[1]);
tb[0] = c;
tb[1] = 0;
fputs_unfiltered (tb, gdb_stdtarg);
}
gdb_flush (gdb_stdtarg);
}
/* Wait until the remote machine stops, then return,
storing status in STATUS just as `wait' would.
Returns "pid", which in the case of a multi-threaded
remote OS, is the thread-id. */
static ptid_t
remote_wait (ptid_t ptid, struct target_waitstatus *status)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
ULONGEST thread_num = -1;
ULONGEST addr;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
while (1)
{
char *buf, *p;
ofunc = signal (SIGINT, remote_interrupt);
getpkt (&rs->buf, &rs->buf_size, 1);
signal (SIGINT, ofunc);
buf = rs->buf;
/* This is a hook for when we need to do something (perhaps the
collection of trace data) every time the target stops. */
if (deprecated_target_wait_loop_hook)
(*deprecated_target_wait_loop_hook) ();
remote_stopped_by_watchpoint_p = 0;
switch (buf[0])
{
case 'E': /* Error of some sort. */
warning (_("Remote failure reply: %s"), buf);
continue;
case 'F': /* File-I/O request. */
remote_fileio_request (buf);
continue;
case 'T': /* Status with PC, SP, FP, ... */
{
gdb_byte regs[MAX_REGISTER_SIZE];
/* Expedited reply, containing Signal, {regno, reg} repeat. */
/* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
ss = signal number
n... = register number
r... = register contents
*/
p = &buf[3]; /* after Txx */
while (*p)
{
char *p1;
char *p_temp;
int fieldsize;
LONGEST pnum = 0;
/* If the packet contains a register number save it in
pnum and set p1 to point to the character following
it. Otherwise p1 points to p. */
/* If this packet is an awatch packet, don't parse the
'a' as a register number. */
if (strncmp (p, "awatch", strlen("awatch")) != 0)
{
/* Read the ``P'' register number. */
pnum = strtol (p, &p_temp, 16);
p1 = p_temp;
}
else
p1 = p;
if (p1 == p) /* No register number present here. */
{
p1 = strchr (p, ':');
if (p1 == NULL)
error (_("Malformed packet(a) (missing colon): %s\n\
Packet: '%s'\n"),
p, buf);
if (strncmp (p, "thread", p1 - p) == 0)
{
p_temp = unpack_varlen_hex (++p1, &thread_num);
record_currthread (thread_num);
p = p_temp;
}
else if ((strncmp (p, "watch", p1 - p) == 0)
|| (strncmp (p, "rwatch", p1 - p) == 0)
|| (strncmp (p, "awatch", p1 - p) == 0))
{
remote_stopped_by_watchpoint_p = 1;
p = unpack_varlen_hex (++p1, &addr);
remote_watch_data_address = (CORE_ADDR)addr;
}
else
{
/* Silently skip unknown optional info. */
p_temp = strchr (p1 + 1, ';');
if (p_temp)
p = p_temp;
}
}
else
{
struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
p = p1;
if (*p++ != ':')
error (_("Malformed packet(b) (missing colon): %s\n\
Packet: '%s'\n"),
p, buf);
if (reg == NULL)
error (_("Remote sent bad register number %s: %s\n\
Packet: '%s'\n"),
phex_nz (pnum, 0), p, buf);
fieldsize = hex2bin (p, regs,
register_size (current_gdbarch,
reg->regnum));
p += 2 * fieldsize;
if (fieldsize < register_size (current_gdbarch,
reg->regnum))
warning (_("Remote reply is too short: %s"), buf);
regcache_raw_supply (current_regcache,
reg->regnum, regs);
}
if (*p++ != ';')
error (_("Remote register badly formatted: %s\nhere: %s"),
buf, p);
}
}
/* fall through */
case 'S': /* Old style status, just signal only. */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (buf[3] == 'p')
{
thread_num = strtol ((const char *) &buf[4], NULL, 16);
record_currthread (thread_num);
}
goto got_status;
case 'W': /* Target exited. */
{
/* The remote process exited. */
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
goto got_status;
}
case 'X':
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
kill_kludge = 1;
goto got_status;
case 'O': /* Console output. */
remote_console_output (buf + 1);
continue;
case '\0':
if (last_sent_signal != TARGET_SIGNAL_0)
{
/* Zero length reply means that we tried 'S' or 'C' and
the remote system doesn't support it. */
target_terminal_ours_for_output ();
printf_filtered
("Can't send signals to this remote system. %s not sent.\n",
target_signal_to_name (last_sent_signal));
last_sent_signal = TARGET_SIGNAL_0;
target_terminal_inferior ();
strcpy ((char *) buf, last_sent_step ? "s" : "c");
putpkt ((char *) buf);
continue;
}
/* else fallthrough */
default:
warning (_("Invalid remote reply: %s"), buf);
continue;
}
}
got_status:
if (thread_num != -1)
{
return pid_to_ptid (thread_num);
}
return inferior_ptid;
}
/* Async version of remote_wait. */
static ptid_t
remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
ULONGEST thread_num = -1;
ULONGEST addr;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
remote_stopped_by_watchpoint_p = 0;
while (1)
{
char *buf, *p;
if (!target_is_async_p ())
ofunc = signal (SIGINT, remote_interrupt);
/* FIXME: cagney/1999-09-27: If we're in async mode we should
_never_ wait for ever -> test on target_is_async_p().
However, before we do that we need to ensure that the caller
knows how to take the target into/out of async mode. */
getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
if (!target_is_async_p ())
signal (SIGINT, ofunc);
buf = rs->buf;
/* This is a hook for when we need to do something (perhaps the
collection of trace data) every time the target stops. */
if (deprecated_target_wait_loop_hook)
(*deprecated_target_wait_loop_hook) ();
switch (buf[0])
{
case 'E': /* Error of some sort. */
warning (_("Remote failure reply: %s"), buf);
continue;
case 'F': /* File-I/O request. */
remote_fileio_request (buf);
continue;
case 'T': /* Status with PC, SP, FP, ... */
{
gdb_byte regs[MAX_REGISTER_SIZE];
/* Expedited reply, containing Signal, {regno, reg} repeat. */
/* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
ss = signal number
n... = register number
r... = register contents
*/
p = &buf[3]; /* after Txx */
while (*p)
{
char *p1;
char *p_temp;
int fieldsize;
long pnum = 0;
/* If the packet contains a register number, save it
in pnum and set p1 to point to the character
following it. Otherwise p1 points to p. */
/* If this packet is an awatch packet, don't parse the 'a'
as a register number. */
if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
{
/* Read the register number. */
pnum = strtol (p, &p_temp, 16);
p1 = p_temp;
}
else
p1 = p;
if (p1 == p) /* No register number present here. */
{
p1 = strchr (p, ':');
if (p1 == NULL)
error (_("Malformed packet(a) (missing colon): %s\n\
Packet: '%s'\n"),
p, buf);
if (strncmp (p, "thread", p1 - p) == 0)
{
p_temp = unpack_varlen_hex (++p1, &thread_num);
record_currthread (thread_num);
p = p_temp;
}
else if ((strncmp (p, "watch", p1 - p) == 0)
|| (strncmp (p, "rwatch", p1 - p) == 0)
|| (strncmp (p, "awatch", p1 - p) == 0))
{
remote_stopped_by_watchpoint_p = 1;
p = unpack_varlen_hex (++p1, &addr);
remote_watch_data_address = (CORE_ADDR)addr;
}
else
{
/* Silently skip unknown optional info. */
p_temp = strchr (p1 + 1, ';');
if (p_temp)
p = p_temp;
}
}
else
{
struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
p = p1;
if (*p++ != ':')
error (_("Malformed packet(b) (missing colon): %s\n\
Packet: '%s'\n"),
p, buf);
if (reg == NULL)
error (_("Remote sent bad register number %ld: %s\n\
Packet: '%s'\n"),
pnum, p, buf);
fieldsize = hex2bin (p, regs,
register_size (current_gdbarch,
reg->regnum));
p += 2 * fieldsize;
if (fieldsize < register_size (current_gdbarch,
reg->regnum))
warning (_("Remote reply is too short: %s"), buf);
regcache_raw_supply (current_regcache, reg->regnum, regs);
}
if (*p++ != ';')
error (_("Remote register badly formatted: %s\nhere: %s"),
buf, p);
}
}
/* fall through */
case 'S': /* Old style status, just signal only. */
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
if (buf[3] == 'p')
{
thread_num = strtol ((const char *) &buf[4], NULL, 16);
record_currthread (thread_num);
}
goto got_status;
case 'W': /* Target exited. */
{
/* The remote process exited. */
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
goto got_status;
}
case 'X':
status->kind = TARGET_WAITKIND_SIGNALLED;
status->value.sig = (enum target_signal)
(((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
kill_kludge = 1;
goto got_status;
case 'O': /* Console output. */
remote_console_output (buf + 1);
/* Return immediately to the event loop. The event loop will
still be waiting on the inferior afterwards. */
status->kind = TARGET_WAITKIND_IGNORE;
goto got_status;
case '\0':
if (last_sent_signal != TARGET_SIGNAL_0)
{
/* Zero length reply means that we tried 'S' or 'C' and
the remote system doesn't support it. */
target_terminal_ours_for_output ();
printf_filtered
("Can't send signals to this remote system. %s not sent.\n",
target_signal_to_name (last_sent_signal));
last_sent_signal = TARGET_SIGNAL_0;
target_terminal_inferior ();
strcpy ((char *) buf, last_sent_step ? "s" : "c");
putpkt ((char *) buf);
continue;
}
/* else fallthrough */
default:
warning (_("Invalid remote reply: %s"), buf);
continue;
}
}
got_status:
if (thread_num != -1)
{
return pid_to_ptid (thread_num);
}
return inferior_ptid;
}
/* Fetch a single register using a 'p' packet. */
static int
fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
{
struct remote_state *rs = get_remote_state ();
char *buf, *p;
char regp[MAX_REGISTER_SIZE];
int i;
if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
return 0;
if (reg->pnum == -1)
return 0;
p = rs->buf;
*p++ = 'p';
p += hexnumstr (p, reg->pnum);
*p++ = '\0';
remote_send (&rs->buf, &rs->buf_size);
buf = rs->buf;
switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
{
case PACKET_OK:
break;
case PACKET_UNKNOWN:
return 0;
case PACKET_ERROR:
error (_("Could not fetch register \"%s\""),
gdbarch_register_name (current_gdbarch, reg->regnum));
}
/* If this register is unfetchable, tell the regcache. */
if (buf[0] == 'x')
{
regcache_raw_supply (regcache, reg->regnum, NULL);
return 1;
}
/* Otherwise, parse and supply the value. */
p = buf;
i = 0;
while (p[0] != 0)
{
if (p[1] == 0)
error (_("fetch_register_using_p: early buf termination"));
regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
regcache_raw_supply (regcache, reg->regnum, regp);
return 1;
}
/* Fetch the registers included in the target's 'g' packet. */
static int
send_g_packet (void)
{
struct remote_state *rs = get_remote_state ();
int i, buf_len;
char *p;
char *regs;
sprintf (rs->buf, "g");
remote_send (&rs->buf, &rs->buf_size);
/* We can get out of synch in various cases. If the first character
in the buffer is not a hex character, assume that has happened
and try to fetch another packet to read. */
while ((rs->buf[0] < '0' || rs->buf[0] > '9')
&& (rs->buf[0] < 'A' || rs->buf[0] > 'F')
&& (rs->buf[0] < 'a' || rs->buf[0] > 'f')
&& rs->buf[0] != 'x') /* New: unavailable register value. */
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"Bad register packet; fetching a new packet\n");
getpkt (&rs->buf, &rs->buf_size, 0);
}
buf_len = strlen (rs->buf);
/* Sanity check the received packet. */
if (buf_len % 2 != 0)
error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
return buf_len / 2;
}
static void
process_g_packet (struct regcache *regcache)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
int i, buf_len;
char *p;
char *regs;
buf_len = strlen (rs->buf);
/* Further sanity checks, with knowledge of the architecture. */
if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
if (buf_len > 2 * rsa->sizeof_g_packet)
error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
/* Save the size of the packet sent to us by the target. It is used
as a heuristic when determining the max size of packets that the
target can safely receive. */
if (rsa->actual_register_packet_size == 0)
rsa->actual_register_packet_size = buf_len;
/* If this is smaller than we guessed the 'g' packet would be,
update our records. A 'g' reply that doesn't include a register's
value implies either that the register is not available, or that
the 'p' packet must be used. */
if (buf_len < 2 * rsa->sizeof_g_packet)
{
rsa->sizeof_g_packet = buf_len / 2;
for (i = 0; i < NUM_REGS; i++)
{
if (rsa->regs[i].pnum == -1)
continue;
if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
rsa->regs[i].in_g_packet = 0;
else
rsa->regs[i].in_g_packet = 1;
}
}
regs = alloca (rsa->sizeof_g_packet);
/* Unimplemented registers read as all bits zero. */
memset (regs, 0, rsa->sizeof_g_packet);
/* Reply describes registers byte by byte, each byte encoded as two
hex characters. Suck them all up, then supply them to the
register cacheing/storage mechanism. */
p = rs->buf;
for (i = 0; i < rsa->sizeof_g_packet; i++)
{
if (p[0] == 0 || p[1] == 0)
/* This shouldn't happen - we adjusted sizeof_g_packet above. */
internal_error (__FILE__, __LINE__,
"unexpected end of 'g' packet reply");
if (p[0] == 'x' && p[1] == 'x')
regs[i] = 0; /* 'x' */
else
regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
p += 2;
}
{
int i;
for (i = 0; i < NUM_REGS; i++)
{
struct packet_reg *r = &rsa->regs[i];
if (r->in_g_packet)
{
if (r->offset * 2 >= strlen (rs->buf))
/* This shouldn't happen - we adjusted in_g_packet above. */
internal_error (__FILE__, __LINE__,
"unexpected end of 'g' packet reply");
else if (rs->buf[r->offset * 2] == 'x')
{
gdb_assert (r->offset * 2 < strlen (rs->buf));
/* The register isn't available, mark it as such (at
the same time setting the value to zero). */
regcache_raw_supply (regcache, r->regnum, NULL);
}
else
regcache_raw_supply (regcache, r->regnum,
regs + r->offset);
}
}
}
}
static void
fetch_registers_using_g (struct regcache *regcache)
{
send_g_packet ();
process_g_packet (regcache);
}
static void
remote_fetch_registers (struct regcache *regcache, int regnum)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
int i;
set_thread (PIDGET (inferior_ptid), 1);
if (regnum >= 0)
{
struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
gdb_assert (reg != NULL);
/* If this register might be in the 'g' packet, try that first -
we are likely to read more than one register. If this is the
first 'g' packet, we might be overly optimistic about its
contents, so fall back to 'p'. */
if (reg->in_g_packet)
{
fetch_registers_using_g (regcache);
if (reg->in_g_packet)
return;
}
if (fetch_register_using_p (regcache, reg))
return;
/* This register is not available. */
regcache_raw_supply (regcache, reg->regnum, NULL);
return;
}
fetch_registers_using_g (regcache);
for (i = 0; i < NUM_REGS; i++)
if (!rsa->regs[i].in_g_packet)
if (!fetch_register_using_p (regcache, &rsa->regs[i]))
{
/* This register is not available. */
regcache_raw_supply (regcache, i, NULL);
}
}
/* Prepare to store registers. Since we may send them all (using a
'G' request), we have to read out the ones we don't want to change
first. */
static void
remote_prepare_to_store (struct regcache *regcache)
{
struct remote_arch_state *rsa = get_remote_arch_state ();
int i;
gdb_byte buf[MAX_REGISTER_SIZE];
/* Make sure the entire registers array is valid. */
switch (remote_protocol_packets[PACKET_P].support)
{
case PACKET_DISABLE:
case PACKET_SUPPORT_UNKNOWN:
/* Make sure all the necessary registers are cached. */
for (i = 0; i < NUM_REGS; i++)
if (rsa->regs[i].in_g_packet)
regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
break;
case PACKET_ENABLE:
break;
}
}
/* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
packet was not recognized. */
static int
store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
/* Try storing a single register. */
char *buf = rs->buf;
gdb_byte regp[MAX_REGISTER_SIZE];
char *p;
if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
return 0;
if (reg->pnum == -1)
return 0;
xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
p = buf + strlen (buf);
regcache_raw_collect (regcache, reg->regnum, regp);
bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
remote_send (&rs->buf, &rs->buf_size);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
{
case PACKET_OK:
return 1;
case PACKET_ERROR:
error (_("Could not write register \"%s\""),
gdbarch_register_name (current_gdbarch, reg->regnum));
case PACKET_UNKNOWN:
return 0;
default:
internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
}
}
/* Store register REGNUM, or all registers if REGNUM == -1, from the
contents of the register cache buffer. FIXME: ignores errors. */
static void
store_registers_using_G (const struct regcache *regcache)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
gdb_byte *regs;
char *p;
/* Extract all the registers in the regcache copying them into a
local buffer. */
{
int i;
regs = alloca (rsa->sizeof_g_packet);
memset (regs, 0, rsa->sizeof_g_packet);
for (i = 0; i < NUM_REGS; i++)
{
struct packet_reg *r = &rsa->regs[i];
if (r->in_g_packet)
regcache_raw_collect (regcache, r->regnum, regs + r->offset);
}
}
/* Command describes registers byte by byte,
each byte encoded as two hex characters. */
p = rs->buf;
*p++ = 'G';
/* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
updated. */
bin2hex (regs, p, rsa->sizeof_g_packet);
remote_send (&rs->buf, &rs->buf_size);
}
/* Store register REGNUM, or all registers if REGNUM == -1, from the contents
of the register cache buffer. FIXME: ignores errors. */
static void
remote_store_registers (struct regcache *regcache, int regnum)
{
struct remote_state *rs = get_remote_state ();
struct remote_arch_state *rsa = get_remote_arch_state ();
int i;
set_thread (PIDGET (inferior_ptid), 1);
if (regnum >= 0)
{
struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
gdb_assert (reg != NULL);
/* Always prefer to store registers using the 'P' packet if
possible; we often change only a small number of registers.
Sometimes we change a larger number; we'd need help from a
higher layer to know to use 'G'. */
if (store_register_using_P (regcache, reg))
return;
/* For now, don't complain if we have no way to write the
register. GDB loses track of unavailable registers too
easily. Some day, this may be an error. We don't have
any way to read the register, either... */
if (!reg->in_g_packet)
return;
store_registers_using_G (regcache);
return;
}
store_registers_using_G (regcache);
for (i = 0; i < NUM_REGS; i++)
if (!rsa->regs[i].in_g_packet)
if (!store_register_using_P (regcache, &rsa->regs[i]))
/* See above for why we do not issue an error here. */
continue;
}
/* Return the number of hex digits in num. */
static int
hexnumlen (ULONGEST num)
{
int i;
for (i = 0; num != 0; i++)
num >>= 4;
return max (i, 1);
}
/* Set BUF to the minimum number of hex digits representing NUM. */
static int
hexnumstr (char *buf, ULONGEST num)
{
int len = hexnumlen (num);
return hexnumnstr (buf, num, len);
}
/* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
static int
hexnumnstr (char *buf, ULONGEST num, int width)
{
int i;
buf[width] = '\0';
for (i = width - 1; i >= 0; i--)
{
buf[i] = "0123456789abcdef"[(num & 0xf)];
num >>= 4;
}
return width;
}
/* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
static CORE_ADDR
remote_address_masked (CORE_ADDR addr)
{
if (remote_address_size > 0
&& remote_address_size < (sizeof (ULONGEST) * 8))
{
/* Only create a mask when that mask can safely be constructed
in a ULONGEST variable. */
ULONGEST mask = 1;
mask = (mask << remote_address_size) - 1;
addr &= mask;
}
return addr;
}
/* Convert BUFFER, binary data at least LEN bytes long, into escaped
binary data in OUT_BUF. Set *OUT_LEN to the length of the data
encoded in OUT_BUF, and return the number of bytes in OUT_BUF
(which may be more than *OUT_LEN due to escape characters). The
total number of bytes in the output buffer will be at most
OUT_MAXLEN. */
static int
remote_escape_output (const gdb_byte *buffer, int len,
gdb_byte *out_buf, int *out_len,
int out_maxlen)
{
int input_index, output_index;
output_index = 0;
for (input_index = 0; input_index < len; input_index++)
{
gdb_byte b = buffer[input_index];
if (b == '$' || b == '#' || b == '}')
{
/* These must be escaped. */
if (output_index + 2 > out_maxlen)
break;
out_buf[output_index++] = '}';
out_buf[output_index++] = b ^ 0x20;
}
else
{
if (output_index + 1 > out_maxlen)
break;
out_buf[output_index++] = b;
}
}
*out_len = input_index;
return output_index;
}
/* Convert BUFFER, escaped data LEN bytes long, into binary data
in OUT_BUF. Return the number of bytes written to OUT_BUF.
Raise an error if the total number of bytes exceeds OUT_MAXLEN.
This function reverses remote_escape_output. It allows more
escaped characters than that function does, in particular because
'*' must be escaped to avoid the run-length encoding processing
in reading packets. */
static int
remote_unescape_input (const gdb_byte *buffer, int len,
gdb_byte *out_buf, int out_maxlen)
{
int input_index, output_index;
int escaped;
output_index = 0;
escaped = 0;
for (input_index = 0; input_index < len; input_index++)
{
gdb_byte b = buffer[input_index];
if (output_index + 1 > out_maxlen)
{
warning (_("Received too much data from remote target;"
" ignoring overflow."));
return output_index;
}
if (escaped)
{
out_buf[output_index++] = b ^ 0x20;
escaped = 0;
}
else if (b == '}')
escaped = 1;
else
out_buf[output_index++] = b;
}
if (escaped)
error (_("Unmatched escape character in target response."));
return output_index;
}
/* Determine whether the remote target supports binary downloading.
This is accomplished by sending a no-op memory write of zero length
to the target at the specified address. It does not suffice to send
the whole packet, since many stubs strip the eighth bit and
subsequently compute a wrong checksum, which causes real havoc with
remote_write_bytes.
NOTE: This can still lose if the serial line is not eight-bit
clean. In cases like this, the user should clear "remote
X-packet". */
static void
check_binary_download (CORE_ADDR addr)
{
struct remote_state *rs = get_remote_state ();
switch (remote_protocol_packets[PACKET_X].support)
{
case PACKET_DISABLE:
break;
case PACKET_ENABLE:
break;
case PACKET_SUPPORT_UNKNOWN:
{
char *p;
p = rs->buf;
*p++ = 'X';
p += hexnumstr (p, (ULONGEST) addr);
*p++ = ',';
p += hexnumstr (p, (ULONGEST) 0);
*p++ = ':';
*p = '\0';
putpkt_binary (rs->buf, (int) (p - rs->buf));
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == '\0')
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"binary downloading NOT suppported by target\n");
remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
}
else
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"binary downloading suppported by target\n");
remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
}
break;
}
}
}
/* Write memory data directly to the remote machine.
This does not inform the data cache; the data cache uses this.
HEADER is the starting part of the packet.
MEMADDR is the address in the remote memory space.
MYADDR is the address of the buffer in our space.
LEN is the number of bytes.
PACKET_FORMAT should be either 'X' or 'M', and indicates if we
should send data as binary ('X'), or hex-encoded ('M').
The function creates packet of the form
<HEADER><ADDRESS>,<LENGTH>:<DATA>
where encoding of <DATA> is termined by PACKET_FORMAT.
If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
are omitted.
Returns the number of bytes transferred, or 0 (setting errno) for
error. Only transfer a single packet. */
static int
remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
const gdb_byte *myaddr, int len,
char packet_format, int use_length)
{
struct remote_state *rs = get_remote_state ();
char *p;
char *plen = NULL;
int plenlen = 0;
int todo;
int nr_bytes;
int payload_size;
int payload_length;
int header_length;
if (packet_format != 'X' && packet_format != 'M')
internal_error (__FILE__, __LINE__,
"remote_write_bytes_aux: bad packet format");
if (len <= 0)
return 0;
payload_size = get_memory_write_packet_size ();
/* The packet buffer will be large enough for the payload;
get_memory_packet_size ensures this. */
rs->buf[0] = '\0';
/* Compute the size of the actual payload by subtracting out the
packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
*/
payload_size -= strlen ("$,:#NN");
if (!use_length)
/* The comma won't be used. */
payload_size += 1;
header_length = strlen (header);
payload_size -= header_length;
payload_size -= hexnumlen (memaddr);
/* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
strcat (rs->buf, header);
p = rs->buf + strlen (header);
/* Compute a best guess of the number of bytes actually transfered. */
if (packet_format == 'X')
{
/* Best guess at number of bytes that will fit. */
todo = min (len, payload_size);
if (use_length)
payload_size -= hexnumlen (todo);
todo = min (todo, payload_size);
}
else
{
/* Num bytes that will fit. */
todo = min (len, payload_size / 2);
if (use_length)
payload_size -= hexnumlen (todo);
todo = min (todo, payload_size / 2);
}
if (todo <= 0)
internal_error (__FILE__, __LINE__,
_("minumum packet size too small to write data"));
/* If we already need another packet, then try to align the end
of this packet to a useful boundary. */
if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
/* Append "<memaddr>". */
memaddr = remote_address_masked (memaddr);
p += hexnumstr (p, (ULONGEST) memaddr);
if (use_length)
{
/* Append ",". */
*p++ = ',';
/* Append <len>. Retain the location/size of <len>. It may need to
be adjusted once the packet body has been created. */
plen = p;
plenlen = hexnumstr (p, (ULONGEST) todo);
p += plenlen;
}
/* Append ":". */
*p++ = ':';
*p = '\0';
/* Append the packet body. */
if (packet_format == 'X')
{
/* Binary mode. Send target system values byte by byte, in
increasing byte addresses. Only escape certain critical
characters. */
payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
payload_size);
/* If not all TODO bytes fit, then we'll need another packet. Make
a second try to keep the end of the packet aligned. Don't do
this if the packet is tiny. */
if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
{
int new_nr_bytes;
new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
- memaddr);
if (new_nr_bytes != nr_bytes)
payload_length = remote_escape_output (myaddr, new_nr_bytes,
p, &nr_bytes,
payload_size);
}
p += payload_length;
if (use_length && nr_bytes < todo)
{
/* Escape chars have filled up the buffer prematurely,
and we have actually sent fewer bytes than planned.
Fix-up the length field of the packet. Use the same
number of characters as before. */
plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
*plen = ':'; /* overwrite \0 from hexnumnstr() */
}
}
else
{
/* Normal mode: Send target system values byte by byte, in
increasing byte addresses. Each byte is encoded as a two hex
value. */
nr_bytes = bin2hex (myaddr, p, todo);
p += 2 * nr_bytes;
}
putpkt_binary (rs->buf, (int) (p - rs->buf));
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == 'E')
{
/* There is no correspondance between what the remote protocol
uses for errors and errno codes. We would like a cleaner way
of representing errors (big enough to include errno codes,
bfd_error codes, and others). But for now just return EIO. */
errno = EIO;
return 0;
}
/* Return NR_BYTES, not TODO, in case escape chars caused us to send
fewer bytes than we'd planned. */
return nr_bytes;
}
/* Write memory data directly to the remote machine.
This does not inform the data cache; the data cache uses this.
MEMADDR is the address in the remote memory space.
MYADDR is the address of the buffer in our space.
LEN is the number of bytes.
Returns number of bytes transferred, or 0 (setting errno) for
error. Only transfer a single packet. */
int
remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
{
char *packet_format = 0;
/* Check whether the target supports binary download. */
check_binary_download (memaddr);
switch (remote_protocol_packets[PACKET_X].support)
{
case PACKET_ENABLE:
packet_format = "X";
break;
case PACKET_DISABLE:
packet_format = "M";
break;
case PACKET_SUPPORT_UNKNOWN:
internal_error (__FILE__, __LINE__,
_("remote_write_bytes: bad internal state"));
default:
internal_error (__FILE__, __LINE__, _("bad switch"));
}
return remote_write_bytes_aux (packet_format,
memaddr, myaddr, len, packet_format[0], 1);
}
/* Read memory data directly from the remote machine.
This does not use the data cache; the data cache uses this.
MEMADDR is the address in the remote memory space.
MYADDR is the address of the buffer in our space.
LEN is the number of bytes.
Returns number of bytes transferred, or 0 for error. */
/* NOTE: cagney/1999-10-18: This function (and its siblings in other
remote targets) shouldn't attempt to read the entire buffer.
Instead it should read a single packet worth of data and then
return the byte size of that packet to the caller. The caller (its
caller and its callers caller ;-) already contains code for
handling partial reads. */
int
remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
{
struct remote_state *rs = get_remote_state ();
int max_buf_size; /* Max size of packet output buffer. */
int origlen;
if (len <= 0)
return 0;
max_buf_size = get_memory_read_packet_size ();
/* The packet buffer will be large enough for the payload;
get_memory_packet_size ensures this. */
origlen = len;
while (len > 0)
{
char *p;
int todo;
int i;
todo = min (len, max_buf_size / 2); /* num bytes that will fit */
/* construct "m"<memaddr>","<len>" */
/* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
memaddr = remote_address_masked (memaddr);
p = rs->buf;
*p++ = 'm';
p += hexnumstr (p, (ULONGEST) memaddr);
*p++ = ',';
p += hexnumstr (p, (ULONGEST) todo);
*p = '\0';
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == 'E'
&& isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
&& rs->buf[3] == '\0')
{
/* There is no correspondance between what the remote
protocol uses for errors and errno codes. We would like
a cleaner way of representing errors (big enough to
include errno codes, bfd_error codes, and others). But
for now just return EIO. */
errno = EIO;
return 0;
}
/* Reply describes memory byte by byte,
each byte encoded as two hex characters. */
p = rs->buf;
if ((i = hex2bin (p, myaddr, todo)) < todo)
{
/* Reply is short. This means that we were able to read
only part of what we wanted to. */
return i + (origlen - len);
}
myaddr += todo;
memaddr += todo;
len -= todo;
}
return origlen;
}
/* Read or write LEN bytes from inferior memory at MEMADDR,
transferring to or from debugger address BUFFER. Write to inferior
if SHOULD_WRITE is nonzero. Returns length of data written or
read; 0 for error. TARGET is unused. */
static int
remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
int should_write, struct mem_attrib *attrib,
struct target_ops *target)
{
int res;
if (should_write)
res = remote_write_bytes (mem_addr, buffer, mem_len);
else
res = remote_read_bytes (mem_addr, buffer, mem_len);
return res;
}
/* Sends a packet with content determined by the printf format string
FORMAT and the remaining arguments, then gets the reply. Returns
whether the packet was a success, a failure, or unknown. */
enum packet_result
remote_send_printf (const char *format, ...)
{
struct remote_state *rs = get_remote_state ();
int max_size = get_remote_packet_size ();
va_list ap;
va_start (ap, format);
rs->buf[0] = '\0';
if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
internal_error (__FILE__, __LINE__, "Too long remote packet.");
if (putpkt (rs->buf) < 0)
error (_("Communication problem with target."));
rs->buf[0] = '\0';
getpkt (&rs->buf, &rs->buf_size, 0);
return packet_check_result (rs->buf);
}
static void
restore_remote_timeout (void *p)
{
int value = *(int *)p;
remote_timeout = value;
}
/* Flash writing can take quite some time. We'll set
effectively infinite timeout for flash operations.
In future, we'll need to decide on a better approach. */
static const int remote_flash_timeout = 1000;
static void
remote_flash_erase (struct target_ops *ops,
ULONGEST address, LONGEST length)
{
int saved_remote_timeout = remote_timeout;
enum packet_result ret;
struct cleanup *back_to = make_cleanup (restore_remote_timeout,
&saved_remote_timeout);
remote_timeout = remote_flash_timeout;
ret = remote_send_printf ("vFlashErase:%s,%s",
paddr (address),
phex (length, 4));
switch (ret)
{
case PACKET_UNKNOWN:
error (_("Remote target does not support flash erase"));
case PACKET_ERROR:
error (_("Error erasing flash with vFlashErase packet"));
default:
break;
}
do_cleanups (back_to);
}
static LONGEST
remote_flash_write (struct target_ops *ops,
ULONGEST address, LONGEST length,
const gdb_byte *data)
{
int saved_remote_timeout = remote_timeout;
int ret;
struct cleanup *back_to = make_cleanup (restore_remote_timeout,
&saved_remote_timeout);
remote_timeout = remote_flash_timeout;
ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
do_cleanups (back_to);
return ret;
}
static void
remote_flash_done (struct target_ops *ops)
{
int saved_remote_timeout = remote_timeout;
int ret;
struct cleanup *back_to = make_cleanup (restore_remote_timeout,
&saved_remote_timeout);
remote_timeout = remote_flash_timeout;
ret = remote_send_printf ("vFlashDone");
do_cleanups (back_to);
switch (ret)
{
case PACKET_UNKNOWN:
error (_("Remote target does not support vFlashDone"));
case PACKET_ERROR:
error (_("Error finishing flash operation"));
default:
break;
}
}
static void
remote_files_info (struct target_ops *ignore)
{
puts_filtered ("Debugging a target over a serial line.\n");
}
/* Stuff for dealing with the packets which are part of this protocol.
See comment at top of file for details. */
/* Read a single character from the remote end. */
static int
readchar (int timeout)
{
int ch;
ch = serial_readchar (remote_desc, timeout);
if (ch >= 0)
return ch;
switch ((enum serial_rc) ch)
{
case SERIAL_EOF:
target_mourn_inferior ();
error (_("Remote connection closed"));
/* no return */
case SERIAL_ERROR:
perror_with_name (_("Remote communication error"));
/* no return */
case SERIAL_TIMEOUT:
break;
}
return ch;
}
/* Send the command in *BUF to the remote machine, and read the reply
into *BUF. Report an error if we get an error reply. Resize
*BUF using xrealloc if necessary to hold the result, and update
*SIZEOF_BUF. */
static void
remote_send (char **buf,
long *sizeof_buf)
{
putpkt (*buf);
getpkt (buf, sizeof_buf, 0);
if ((*buf)[0] == 'E')
error (_("Remote failure reply: %s"), *buf);
}
/* Display a null-terminated packet on stdout, for debugging, using C
string notation. */
static void
print_packet (char *buf)
{
puts_filtered ("\"");
fputstr_filtered (buf, '"', gdb_stdout);
puts_filtered ("\"");
}
int
putpkt (char *buf)
{
return putpkt_binary (buf, strlen (buf));
}
/* Send a packet to the remote machine, with error checking. The data
of the packet is in BUF. The string in BUF can be at most
get_remote_packet_size () - 5 to account for the $, # and checksum,
and for a possible /0 if we are debugging (remote_debug) and want
to print the sent packet as a string. */
static int
putpkt_binary (char *buf, int cnt)
{
int i;
unsigned char csum = 0;
char *buf2 = alloca (cnt + 6);
int ch;
int tcount = 0;
char *p;
/* Copy the packet into buffer BUF2, encapsulating it
and giving it a checksum. */
p = buf2;
*p++ = '$';
for (i = 0; i < cnt; i++)
{
csum += buf[i];
*p++ = buf[i];
}
*p++ = '#';
*p++ = tohex ((csum >> 4) & 0xf);
*p++ = tohex (csum & 0xf);
/* Send it over and over until we get a positive ack. */
while (1)
{
int started_error_output = 0;
if (remote_debug)
{
*p = '\0';
fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
fprintf_unfiltered (gdb_stdlog, "...");
gdb_flush (gdb_stdlog);
}
if (serial_write (remote_desc, buf2, p - buf2))
perror_with_name (_("putpkt: write failed"));
/* Read until either a timeout occurs (-2) or '+' is read. */
while (1)
{
ch = readchar (remote_timeout);
if (remote_debug)
{
switch (ch)
{
case '+':
case '-':
case SERIAL_TIMEOUT:
case '$':
if (started_error_output)
{
putchar_unfiltered ('\n');
started_error_output = 0;
}
}
}
switch (ch)
{
case '+':
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "Ack\n");
return 1;
case '-':
if (remote_debug)
fprintf_unfiltered (gdb_stdlog, "Nak\n");
case SERIAL_TIMEOUT:
tcount++;
if (tcount > 3)
return 0;
break; /* Retransmit buffer. */
case '$':
{
if (remote_debug)
fprintf_unfiltered (gdb_stdlog,
"Packet instead of Ack, ignoring it\n");
/* It's probably an old response sent because an ACK
was lost. Gobble up the packet and ack it so it
doesn't get retransmitted when we resend this
packet. */
skip_frame ();
serial_write (remote_desc, "+", 1);
continue; /* Now, go look for +. */
}
default:
if (remote_debug)
{
if (!started_error_output)
{
started_error_output = 1;
fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
}
fputc_unfiltered (ch & 0177, gdb_stdlog);
}
continue;
}
break; /* Here to retransmit. */
}
#if 0
/* This is wrong. If doing a long backtrace, the user should be
able to get out next time we call QUIT, without anything as
violent as interrupt_query. If we want to provide a way out of
here without getting to the next QUIT, it should be based on
hitting ^C twice as in remote_wait. */
if (quit_flag)
{
quit_flag = 0;
interrupt_query ();
}
#endif
}
}
/* Come here after finding the start of a frame when we expected an
ack. Do our best to discard the rest of this packet. */
static void
skip_frame (void)
{
int c;
while (1)
{
c = readchar (remote_timeout);
switch (c)
{
case SERIAL_TIMEOUT:
/* Nothing we can do. */
return;
case '#':
/* Discard the two bytes of checksum and stop. */
c = readchar (remote_timeout);
if (c >= 0)
c = readchar (remote_timeout);
return;
case '*': /* Run length encoding. */
/* Discard the repeat count. */
c = readchar (remote_timeout);
if (c < 0)
return;
break;
default:
/* A regular character. */
break;
}
}
}
/* Come here after finding the start of the frame. Collect the rest
into *BUF, verifying the checksum, length, and handling run-length
compression. NUL terminate the buffer. If there is not enough room,
expand *BUF using xrealloc.
Returns -1 on error, number of characters in buffer (ignoring the
trailing NULL) on success. (could be extended to return one of the
SERIAL status indications). */
static long
read_frame (char **buf_p,
long *sizeof_buf)
{
unsigned char csum;
long bc;
int c;
char *buf = *buf_p;
csum = 0;
bc = 0;
while (1)
{
c = readchar (remote_timeout);
switch (c)
{
case SERIAL_TIMEOUT:
if (remote_debug)
fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
return -1;
case '$':
if (remote_debug)
fputs_filtered ("Saw new packet start in middle of old one\n",
gdb_stdlog);
return -1; /* Start a new packet, count retries. */
case '#':
{
unsigned char pktcsum;
int check_0 = 0;
int check_1 = 0;
buf[bc] = '\0';
check_0 = readchar (remote_timeout);
if (check_0 >= 0)
check_1 = readchar (remote_timeout);
if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
{
if (remote_debug)
fputs_filtered ("Timeout in checksum, retrying\n",
gdb_stdlog);
return -1;
}
else if (check_0 < 0 || check_1 < 0)
{
if (remote_debug)
fputs_filtered ("Communication error in checksum\n",
gdb_stdlog);
return -1;
}
pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
if (csum == pktcsum)
return bc;
if (remote_debug)
{
fprintf_filtered (gdb_stdlog,
"Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
pktcsum, csum);
fputstrn_filtered (buf, bc, 0, gdb_stdlog);
fputs_filtered ("\n", gdb_stdlog);
}
/* Number of characters in buffer ignoring trailing
NULL. */
return -1;
}
case '*': /* Run length encoding. */
{
int repeat;
csum += c;
c = readchar (remote_timeout);
csum += c;
repeat = c - ' ' + 3; /* Compute repeat count. */
/* The character before ``*'' is repeated. */
if (repeat > 0 && repeat <= 255 && bc > 0)
{
if (bc + repeat - 1 >= *sizeof_buf - 1)
{
/* Make some more room in the buffer. */
*sizeof_buf += repeat;
*buf_p = xrealloc (*buf_p, *sizeof_buf);
buf = *buf_p;
}
memset (&buf[bc], buf[bc - 1], repeat);
bc += repeat;
continue;
}
buf[bc] = '\0';
printf_filtered (_("Invalid run length encoding: %s\n"), buf);
return -1;
}
default:
if (bc >= *sizeof_buf - 1)
{
/* Make some more room in the buffer. */
*sizeof_buf *= 2;
*buf_p = xrealloc (*buf_p, *sizeof_buf);
buf = *buf_p;
}
buf[bc++] = c;
csum += c;
continue;
}
}
}
/* Read a packet from the remote machine, with error checking, and
store it in *BUF. Resize *BUF using xrealloc if necessary to hold
the result, and update *SIZEOF_BUF. If FOREVER, wait forever
rather than timing out; this is used (in synchronous mode) to wait
for a target that is is executing user code to stop. */
/* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
don't have to change all the calls to getpkt to deal with the
return value, because at the moment I don't know what the right
thing to do it for those. */
void
getpkt (char **buf,
long *sizeof_buf,
int forever)
{
int timed_out;
timed_out = getpkt_sane (buf, sizeof_buf, forever);
}
/* Read a packet from the remote machine, with error checking, and
store it in *BUF. Resize *BUF using xrealloc if necessary to hold
the result, and update *SIZEOF_BUF. If FOREVER, wait forever
rather than timing out; this is used (in synchronous mode) to wait
for a target that is is executing user code to stop. If FOREVER ==
0, this function is allowed to time out gracefully and return an
indication of this to the caller. Otherwise return the number
of bytes read. */
static int
getpkt_sane (char **buf, long *sizeof_buf, int forever)
{
int c;
int tries;
int timeout;
int val;
strcpy (*buf, "timeout");
if (forever)
{
timeout = watchdog > 0 ? watchdog : -1;
}
else
timeout = remote_timeout;
#define MAX_TRIES 3
for (tries = 1; tries <= MAX_TRIES; tries++)
{
/* This can loop forever if the remote side sends us characters
continuously, but if it pauses, we'll get a zero from
readchar because of timeout. Then we'll count that as a
retry. */
/* Note that we will only wait forever prior to the start of a
packet. After that, we expect characters to arrive at a
brisk pace. They should show up within remote_timeout
intervals. */
do
{
c = readchar (timeout);
if (c == SERIAL_TIMEOUT)
{
if (forever) /* Watchdog went off? Kill the target. */
{
QUIT;
target_mourn_inferior ();
error (_("Watchdog has expired. Target detached."));
}
if (remote_debug)
fputs_filtered ("Timed out.\n", gdb_stdlog);
goto retry;
}
}
while (c != '$');
/* We've found the start of a packet, now collect the data. */
val = read_frame (buf, sizeof_buf);
if (val >= 0)
{
if (remote_debug)
{
fprintf_unfiltered (gdb_stdlog, "Packet received: ");
fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
fprintf_unfiltered (gdb_stdlog, "\n");
}
serial_write (remote_desc, "+", 1);
return val;
}
/* Try the whole thing again. */
retry:
serial_write (remote_desc, "-", 1);
}
/* We have tried hard enough, and just can't receive the packet.
Give up. */
printf_unfiltered (_("Ignoring packet error, continuing...\n"));
serial_write (remote_desc, "+", 1);
return -1;
}
static void
remote_kill (void)
{
/* For some mysterious reason, wait_for_inferior calls kill instead of
mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
if (kill_kludge)
{
kill_kludge = 0;
target_mourn_inferior ();
return;
}
/* Use catch_errors so the user can quit from gdb even when we aren't on
speaking terms with the remote system. */
catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
/* Don't wait for it to die. I'm not really sure it matters whether
we do or not. For the existing stubs, kill is a noop. */
target_mourn_inferior ();
}
/* Async version of remote_kill. */
static void
remote_async_kill (void)
{
/* Unregister the file descriptor from the event loop. */
if (target_is_async_p ())
serial_async (remote_desc, NULL, 0);
/* For some mysterious reason, wait_for_inferior calls kill instead of
mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
if (kill_kludge)
{
kill_kludge = 0;
target_mourn_inferior ();
return;
}
/* Use catch_errors so the user can quit from gdb even when we
aren't on speaking terms with the remote system. */
catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
/* Don't wait for it to die. I'm not really sure it matters whether
we do or not. For the existing stubs, kill is a noop. */
target_mourn_inferior ();
}
static void
remote_mourn (void)
{
remote_mourn_1 (&remote_ops);
}
static void
remote_async_mourn (void)
{
remote_mourn_1 (&remote_async_ops);
}
static void
extended_remote_mourn (void)
{
/* We do _not_ want to mourn the target like this; this will
remove the extended remote target from the target stack,
and the next time the user says "run" it'll fail.
FIXME: What is the right thing to do here? */
#if 0
remote_mourn_1 (&extended_remote_ops);
#endif
}
/* Worker function for remote_mourn. */
static void
remote_mourn_1 (struct target_ops *target)
{
unpush_target (target);
generic_mourn_inferior ();
}
/* In the extended protocol we want to be able to do things like
"run" and have them basically work as expected. So we need
a special create_inferior function.
FIXME: One day add support for changing the exec file
we're debugging, arguments and an environment. */
static void
extended_remote_create_inferior (char *exec_file, char *args,
char **env, int from_tty)
{
/* Rip out the breakpoints; we'll reinsert them after restarting
the remote server. */
remove_breakpoints ();
/* Now restart the remote server. */
extended_remote_restart ();
/* NOTE: We don't need to recheck for a target description here; but
if we gain the ability to switch the remote executable we may
need to, if for instance we are running a process which requested
different emulated hardware from the operating system. A
concrete example of this is ARM GNU/Linux, where some binaries
will have a legacy FPA coprocessor emulated and others may have
access to a hardware VFP unit. */
/* Now put the breakpoints back in. This way we're safe if the
restart function works via a unix fork on the remote side. */
insert_breakpoints ();
/* Clean up from the last time we were running. */
clear_proceed_status ();
}
/* Async version of extended_remote_create_inferior. */
static void
extended_remote_async_create_inferior (char *exec_file, char *args,
char **env, int from_tty)
{
/* Rip out the breakpoints; we'll reinsert them after restarting
the remote server. */
remove_breakpoints ();
/* If running asynchronously, register the target file descriptor
with the event loop. */
if (target_can_async_p ())
target_async (inferior_event_handler, 0);
/* Now restart the remote server. */
extended_remote_restart ();
/* NOTE: We don't need to recheck for a target description here; but
if we gain the ability to switch the remote executable we may
need to, if for instance we are running a process which requested
different emulated hardware from the operating system. A
concrete example of this is ARM GNU/Linux, where some binaries
will have a legacy FPA coprocessor emulated and others may have
access to a hardware VFP unit. */
/* Now put the breakpoints back in. This way we're safe if the
restart function works via a unix fork on the remote side. */
insert_breakpoints ();
/* Clean up from the last time we were running. */
clear_proceed_status ();
}
/* Insert a breakpoint. On targets that have software breakpoint
support, we ask the remote target to do the work; on targets
which don't, we insert a traditional memory breakpoint. */
static int
remote_insert_breakpoint (struct bp_target_info *bp_tgt)
{
CORE_ADDR addr = bp_tgt->placed_address;
struct remote_state *rs = get_remote_state ();
/* Try the "Z" s/w breakpoint packet if it is not already disabled.
If it succeeds, then set the support to PACKET_ENABLE. If it
fails, and the user has explicitly requested the Z support then
report an error, otherwise, mark it disabled and go on. */
if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
{
char *p = rs->buf;
*(p++) = 'Z';
*(p++) = '0';
*(p++) = ',';
BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
p += hexnumstr (p, addr);
sprintf (p, ",%d", bp_tgt->placed_size);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
{
case PACKET_ERROR:
return -1;
case PACKET_OK:
return 0;
case PACKET_UNKNOWN:
break;
}
}
return memory_insert_breakpoint (bp_tgt);
}
static int
remote_remove_breakpoint (struct bp_target_info *bp_tgt)
{
CORE_ADDR addr = bp_tgt->placed_address;
struct remote_state *rs = get_remote_state ();
int bp_size;
if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
{
char *p = rs->buf;
*(p++) = 'z';
*(p++) = '0';
*(p++) = ',';
addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
p += hexnumstr (p, addr);
sprintf (p, ",%d", bp_tgt->placed_size);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
return (rs->buf[0] == 'E');
}
return memory_remove_breakpoint (bp_tgt);
}
static int
watchpoint_to_Z_packet (int type)
{
switch (type)
{
case hw_write:
return Z_PACKET_WRITE_WP;
break;
case hw_read:
return Z_PACKET_READ_WP;
break;
case hw_access:
return Z_PACKET_ACCESS_WP;
break;
default:
internal_error (__FILE__, __LINE__,
_("hw_bp_to_z: bad watchpoint type %d"), type);
}
}
static int
remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
{
struct remote_state *rs = get_remote_state ();
char *p;
enum Z_packet_type packet = watchpoint_to_Z_packet (type);
if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
return -1;
sprintf (rs->buf, "Z%x,", packet);
p = strchr (rs->buf, '\0');
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", len);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
{
case PACKET_ERROR:
case PACKET_UNKNOWN:
return -1;
case PACKET_OK:
return 0;
}
internal_error (__FILE__, __LINE__,
_("remote_insert_watchpoint: reached end of function"));
}
static int
remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
{
struct remote_state *rs = get_remote_state ();
char *p;
enum Z_packet_type packet = watchpoint_to_Z_packet (type);
if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
return -1;
sprintf (rs->buf, "z%x,", packet);
p = strchr (rs->buf, '\0');
addr = remote_address_masked (addr);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", len);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
{
case PACKET_ERROR:
case PACKET_UNKNOWN:
return -1;
case PACKET_OK:
return 0;
}
internal_error (__FILE__, __LINE__,
_("remote_remove_watchpoint: reached end of function"));
}
int remote_hw_watchpoint_limit = -1;
int remote_hw_breakpoint_limit = -1;
static int
remote_check_watch_resources (int type, int cnt, int ot)
{
if (type == bp_hardware_breakpoint)
{
if (remote_hw_breakpoint_limit == 0)
return 0;
else if (remote_hw_breakpoint_limit < 0)
return 1;
else if (cnt <= remote_hw_breakpoint_limit)
return 1;
}
else
{
if (remote_hw_watchpoint_limit == 0)
return 0;
else if (remote_hw_watchpoint_limit < 0)
return 1;
else if (ot)
return -1;
else if (cnt <= remote_hw_watchpoint_limit)
return 1;
}
return -1;
}
static int
remote_stopped_by_watchpoint (void)
{
return remote_stopped_by_watchpoint_p;
}
extern int stepped_after_stopped_by_watchpoint;
static int
remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
{
int rc = 0;
if (remote_stopped_by_watchpoint ()
|| stepped_after_stopped_by_watchpoint)
{
*addr_p = remote_watch_data_address;
rc = 1;
}
return rc;
}
static int
remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
{
CORE_ADDR addr;
struct remote_state *rs = get_remote_state ();
char *p = rs->buf;
/* The length field should be set to the size of a breakpoint
instruction, even though we aren't inserting one ourselves. */
BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
return -1;
*(p++) = 'Z';
*(p++) = '1';
*(p++) = ',';
addr = remote_address_masked (bp_tgt->placed_address);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", bp_tgt->placed_size);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
{
case PACKET_ERROR:
case PACKET_UNKNOWN:
return -1;
case PACKET_OK:
return 0;
}
internal_error (__FILE__, __LINE__,
_("remote_insert_hw_breakpoint: reached end of function"));
}
static int
remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
{
CORE_ADDR addr;
struct remote_state *rs = get_remote_state ();
char *p = rs->buf;
if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
return -1;
*(p++) = 'z';
*(p++) = '1';
*(p++) = ',';
addr = remote_address_masked (bp_tgt->placed_address);
p += hexnumstr (p, (ULONGEST) addr);
sprintf (p, ",%x", bp_tgt->placed_size);
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
{
case PACKET_ERROR:
case PACKET_UNKNOWN:
return -1;
case PACKET_OK:
return 0;
}
internal_error (__FILE__, __LINE__,
_("remote_remove_hw_breakpoint: reached end of function"));
}
/* Some targets are only capable of doing downloads, and afterwards
they switch to the remote serial protocol. This function provides
a clean way to get from the download target to the remote target.
It's basically just a wrapper so that we don't have to expose any
of the internal workings of remote.c.
Prior to calling this routine, you should shutdown the current
target code, else you will get the "A program is being debugged
already..." message. Usually a call to pop_target() suffices. */
void
push_remote_target (char *name, int from_tty)
{
printf_filtered (_("Switching to remote protocol\n"));
remote_open (name, from_tty);
}
/* Table used by the crc32 function to calcuate the checksum. */
static unsigned long crc32_table[256] =
{0, 0};
static unsigned long
crc32 (unsigned char *buf, int len, unsigned int crc)
{
if (!crc32_table[1])
{
/* Initialize the CRC table and the decoding table. */
int i, j;
unsigned int c;
for (i = 0; i < 256; i++)
{
for (c = i << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
crc32_table[i] = c;
}
}
while (len--)
{
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
buf++;
}
return crc;
}
/* compare-sections command
With no arguments, compares each loadable section in the exec bfd
with the same memory range on the target, and reports mismatches.
Useful for verifying the image on the target against the exec file.
Depends on the target understanding the new "qCRC:" request. */
/* FIXME: cagney/1999-10-26: This command should be broken down into a
target method (target verify memory) and generic version of the
actual command. This will allow other high-level code (especially
generic_load()) to make use of this target functionality. */
static void
compare_sections_command (char *args, int from_tty)
{
struct remote_state *rs = get_remote_state ();
asection *s;
unsigned long host_crc, target_crc;
extern bfd *exec_bfd;
struct cleanup *old_chain;
char *tmp;
char *sectdata;
const char *sectname;
bfd_size_type size;
bfd_vma lma;
int matched = 0;
int mismatched = 0;
if (!exec_bfd)
error (_("command cannot be used without an exec file"));
if (!current_target.to_shortname ||
strcmp (current_target.to_shortname, "remote") != 0)
error (_("command can only be used with remote target"));
for (s = exec_bfd->sections; s; s = s->next)
{
if (!(s->flags & SEC_LOAD))
continue; /* skip non-loadable section */
size = bfd_get_section_size (s);
if (size == 0)
continue; /* skip zero-length section */
sectname = bfd_get_section_name (exec_bfd, s);
if (args && strcmp (args, sectname) != 0)
continue; /* not the section selected by user */
matched = 1; /* do this section */
lma = s->lma;
/* FIXME: assumes lma can fit into long. */
xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
(long) lma, (long) size);
putpkt (rs->buf);
/* Be clever; compute the host_crc before waiting for target
reply. */
sectdata = xmalloc (size);
old_chain = make_cleanup (xfree, sectdata);
bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
getpkt (&rs->buf, &rs->buf_size, 0);
if (rs->buf[0] == 'E')
error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
sectname, paddr (lma), paddr (lma + size));
if (rs->buf[0] != 'C')
error (_("remote target does not support this operation"));
for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
target_crc = target_crc * 16 + fromhex (*tmp);
printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
sectname, paddr (lma), paddr (lma + size));
if (host_crc == target_crc)
printf_filtered ("matched.\n");
else
{
printf_filtered ("MIS-MATCHED!\n");
mismatched++;
}
do_cleanups (old_chain);
}
if (mismatched > 0)
warning (_("One or more sections of the remote executable does not match\n\
the loaded file\n"));
if (args && !matched)
printf_filtered (_("No loaded section named '%s'.\n"), args);
}
/* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
Data at OFFSET, of up to LEN bytes, is read into READBUF; the
number of bytes read is returned, or 0 for EOF, or -1 for error.
The number of bytes read may be less than LEN without indicating an
EOF. PACKET is checked and updated to indicate whether the remote
target supports this object. */
static LONGEST
remote_read_qxfer (struct target_ops *ops, const char *object_name,
const char *annex,
gdb_byte *readbuf, ULONGEST offset, LONGEST len,
struct packet_config *packet)
{
static char *finished_object;
static char *finished_annex;
static ULONGEST finished_offset;
struct remote_state *rs = get_remote_state ();
unsigned int total = 0;
LONGEST i, n, packet_len;
if (packet->support == PACKET_DISABLE)
return -1;
/* Check whether we've cached an end-of-object packet that matches
this request. */
if (finished_object)
{
if (strcmp (object_name, finished_object) == 0
&& strcmp (annex ? annex : "", finished_annex) == 0
&& offset == finished_offset)
return 0;
/* Otherwise, we're now reading something different. Discard
the cache. */
xfree (finished_object);
xfree (finished_annex);
finished_object = NULL;
finished_annex = NULL;
}
/* Request only enough to fit in a single packet. The actual data
may not, since we don't know how much of it will need to be escaped;
the target is free to respond with slightly less data. We subtract
five to account for the response type and the protocol frame. */
n = min (get_remote_packet_size () - 5, len);
snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
object_name, annex ? annex : "",
phex_nz (offset, sizeof offset),
phex_nz (n, sizeof n));
i = putpkt (rs->buf);
if (i < 0)
return -1;
rs->buf[0] = '\0';
packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
return -1;
if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
error (_("Unknown remote qXfer reply: %s"), rs->buf);
/* 'm' means there is (or at least might be) more data after this
batch. That does not make sense unless there's at least one byte
of data in this reply. */
if (rs->buf[0] == 'm' && packet_len == 1)
error (_("Remote qXfer reply contained no data."));
/* Got some data. */
i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
/* 'l' is an EOF marker, possibly including a final block of data,
or possibly empty. Record it to bypass the next read, if one is
issued. */
if (rs->buf[0] == 'l')
{
finished_object = xstrdup (object_name);
finished_annex = xstrdup (annex ? annex : "");
finished_offset = offset + i;
}
return i;
}
static LONGEST
remote_xfer_partial (struct target_ops *ops, enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
{
struct remote_state *rs = get_remote_state ();
int i;
char *p2;
char query_type;
/* Handle memory using the standard memory routines. */
if (object == TARGET_OBJECT_MEMORY)
{
int xfered;
errno = 0;
if (writebuf != NULL)
xfered = remote_write_bytes (offset, writebuf, len);
else
xfered = remote_read_bytes (offset, readbuf, len);
if (xfered > 0)
return xfered;
else if (xfered == 0 && errno == 0)
return 0;
else
return -1;
}
/* Only handle flash writes. */
if (writebuf != NULL)
{
LONGEST xfered;
switch (object)
{
case TARGET_OBJECT_FLASH:
xfered = remote_flash_write (ops, offset, len, writebuf);
if (xfered > 0)
return xfered;
else if (xfered == 0 && errno == 0)
return 0;
else
return -1;
default:
return -1;
}
}
/* Map pre-existing objects onto letters. DO NOT do this for new
objects!!! Instead specify new query packets. */
switch (object)
{
case TARGET_OBJECT_AVR:
query_type = 'R';
break;
case TARGET_OBJECT_AUXV:
gdb_assert (annex == NULL);
return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
&remote_protocol_packets[PACKET_qXfer_auxv]);
case TARGET_OBJECT_AVAILABLE_FEATURES:
return remote_read_qxfer
(ops, "features", annex, readbuf, offset, len,
&remote_protocol_packets[PACKET_qXfer_features]);
case TARGET_OBJECT_MEMORY_MAP:
gdb_assert (annex == NULL);
return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
&remote_protocol_packets[PACKET_qXfer_memory_map]);
default:
return -1;
}
/* Note: a zero OFFSET and LEN can be used to query the minimum
buffer size. */
if (offset == 0 && len == 0)
return (get_remote_packet_size ());
/* Minimum outbuf size is get_remote_packet_size (). If LEN is not
large enough let the caller deal with it. */
if (len < get_remote_packet_size ())
return -1;
len = get_remote_packet_size ();
/* Except for querying the minimum buffer size, target must be open. */
if (!remote_desc)
error (_("remote query is only available after target open"));
gdb_assert (annex != NULL);
gdb_assert (readbuf != NULL);
p2 = rs->buf;
*p2++ = 'q';
*p2++ = query_type;
/* We used one buffer char for the remote protocol q command and
another for the query type. As the remote protocol encapsulation
uses 4 chars plus one extra in case we are debugging
(remote_debug), we have PBUFZIZ - 7 left to pack the query
string. */
i = 0;
while (annex[i] && (i < (get_remote_packet_size () - 8)))
{
/* Bad caller may have sent forbidden characters. */
gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
*p2++ = annex[i];
i++;
}
*p2 = '\0';
gdb_assert (annex[i] == '\0');
i = putpkt (rs->buf);
if (i < 0)
return i;
getpkt (&rs->buf, &rs->buf_size, 0);
strcpy ((char *) readbuf, rs->buf);
return strlen ((char *) readbuf);
}
static void
remote_rcmd (char *command,
struct ui_file *outbuf)
{
struct remote_state *rs = get_remote_state ();
char *p = rs->buf;
if (!remote_desc)
error (_("remote rcmd is only available after target open"));
/* Send a NULL command across as an empty command. */
if (command == NULL)
command = "";
/* The query prefix. */
strcpy (rs->buf, "qRcmd,");
p = strchr (rs->buf, '\0');
if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
error (_("\"monitor\" command ``%s'' is too long."), command);
/* Encode the actual command. */
bin2hex ((gdb_byte *) command, p, 0);
if (putpkt (rs->buf) < 0)
error (_("Communication problem with target."));
/* get/display the response */
while (1)
{
char *buf;
/* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
rs->buf[0] = '\0';
getpkt (&rs->buf, &rs->buf_size, 0);
buf = rs->buf;
if (buf[0] == '\0')
error (_("Target does not support this command."));
if (buf[0] == 'O' && buf[1] != 'K')
{
remote_console_output (buf + 1); /* 'O' message from stub. */
continue;
}
if (strcmp (buf, "OK") == 0)
break;
if (strlen (buf) == 3 && buf[0] == 'E'
&& isdigit (buf[1]) && isdigit (buf[2]))
{
error (_("Protocol error with Rcmd"));
}
for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
{
char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
fputc_unfiltered (c, outbuf);
}
break;
}
}
static VEC(mem_region_s) *
remote_memory_map (struct target_ops *ops)
{
VEC(mem_region_s) *result = NULL;
char *text = target_read_stralloc (&current_target,
TARGET_OBJECT_MEMORY_MAP, NULL);
if (text)
{
struct cleanup *back_to = make_cleanup (xfree, text);
result = parse_memory_map (text);
do_cleanups (back_to);
}
return result;
}
static void
packet_command (char *args, int from_tty)
{
struct remote_state *rs = get_remote_state ();
if (!remote_desc)
error (_("command can only be used with remote target"));
if (!args)
error (_("remote-packet command requires packet text as argument"));
puts_filtered ("sending: ");
print_packet (args);
puts_filtered ("\n");
putpkt (args);
getpkt (&rs->buf, &rs->buf_size, 0);
puts_filtered ("received: ");
print_packet (rs->buf);
puts_filtered ("\n");
}
#if 0
/* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
static void display_thread_info (struct gdb_ext_thread_info *info);
static void threadset_test_cmd (char *cmd, int tty);
static void threadalive_test (char *cmd, int tty);
static void threadlist_test_cmd (char *cmd, int tty);
int get_and_display_threadinfo (threadref *ref);
static void threadinfo_test_cmd (char *cmd, int tty);
static int thread_display_step (threadref *ref, void *context);
static void threadlist_update_test_cmd (char *cmd, int tty);
static void init_remote_threadtests (void);
#define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
static void
threadset_test_cmd (char *cmd, int tty)
{
int sample_thread = SAMPLE_THREAD;
printf_filtered (_("Remote threadset test\n"));
set_thread (sample_thread, 1);
}
static void
threadalive_test (char *cmd, int tty)
{
int sample_thread = SAMPLE_THREAD;
if (remote_thread_alive (pid_to_ptid (sample_thread)))
printf_filtered ("PASS: Thread alive test\n");
else
printf_filtered ("FAIL: Thread alive test\n");
}
void output_threadid (char *title, threadref *ref);
void
output_threadid (char *title, threadref *ref)
{
char hexid[20];
pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
hexid[16] = 0;
printf_filtered ("%s %s\n", title, (&hexid[0]));
}
static void
threadlist_test_cmd (char *cmd, int tty)
{
int startflag = 1;
threadref nextthread;
int done, result_count;
threadref threadlist[3];
printf_filtered ("Remote Threadlist test\n");
if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
&result_count, &threadlist[0]))
printf_filtered ("FAIL: threadlist test\n");
else
{
threadref *scan = threadlist;
threadref *limit = scan + result_count;
while (scan < limit)
output_threadid (" thread ", scan++);
}
}
void
display_thread_info (struct gdb_ext_thread_info *info)
{
output_threadid ("Threadid: ", &info->threadid);
printf_filtered ("Name: %s\n ", info->shortname);
printf_filtered ("State: %s\n", info->display);
printf_filtered ("other: %s\n\n", info->more_display);
}
int
get_and_display_threadinfo (threadref *ref)
{
int result;
int set;
struct gdb_ext_thread_info threadinfo;
set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
| TAG_MOREDISPLAY | TAG_DISPLAY;
if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
display_thread_info (&threadinfo);
return result;
}
static void
threadinfo_test_cmd (char *cmd, int tty)
{
int athread = SAMPLE_THREAD;
threadref thread;
int set;
int_to_threadref (&thread, athread);
printf_filtered ("Remote Threadinfo test\n");
if (!get_and_display_threadinfo (&thread))
printf_filtered ("FAIL cannot get thread info\n");
}
static int
thread_display_step (threadref *ref, void *context)
{
/* output_threadid(" threadstep ",ref); *//* simple test */
return get_and_display_threadinfo (ref);
}
static void
threadlist_update_test_cmd (char *cmd, int tty)
{
printf_filtered ("Remote Threadlist update test\n");
remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
}
static void
init_remote_threadtests (void)
{
add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
Fetch and print the remote list of thread identifiers, one pkt only"));
add_com ("tinfo", class_obscure, threadinfo_test_cmd,
_("Fetch and display info about one thread"));
add_com ("tset", class_obscure, threadset_test_cmd,
_("Test setting to a different thread"));
add_com ("tupd", class_obscure, threadlist_update_test_cmd,
_("Iterate through updating all remote thread info"));
add_com ("talive", class_obscure, threadalive_test,
_(" Remote thread alive test "));
}
#endif /* 0 */
/* Convert a thread ID to a string. Returns the string in a static
buffer. */
static char *
remote_pid_to_str (ptid_t ptid)
{
static char buf[32];
xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
return buf;
}
/* Get the address of the thread local variable in OBJFILE which is
stored at OFFSET within the thread local storage for thread PTID. */
static CORE_ADDR
remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
{
if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
{
struct remote_state *rs = get_remote_state ();
char *p = rs->buf;
enum packet_result result;
strcpy (p, "qGetTLSAddr:");
p += strlen (p);
p += hexnumstr (p, PIDGET (ptid));
*p++ = ',';
p += hexnumstr (p, offset);
*p++ = ',';
p += hexnumstr (p, lm);
*p++ = '\0';
putpkt (rs->buf);
getpkt (&rs->buf, &rs->buf_size, 0);
result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
if (result == PACKET_OK)
{
ULONGEST result;
unpack_varlen_hex (rs->buf, &result);
return result;
}
else if (result == PACKET_UNKNOWN)
throw_error (TLS_GENERIC_ERROR,
_("Remote target doesn't support qGetTLSAddr packet"));
else
throw_error (TLS_GENERIC_ERROR,
_("Remote target failed to process qGetTLSAddr request"));
}
else
throw_error (TLS_GENERIC_ERROR,
_("TLS not supported or disabled on this target"));
/* Not reached. */
return 0;
}
/* Support for inferring a target description based on the current
architecture and the size of a 'g' packet. While the 'g' packet
can have any size (since optional registers can be left off the
end), some sizes are easily recognizable given knowledge of the
approximate architecture. */
struct remote_g_packet_guess
{
int bytes;
const struct target_desc *tdesc;
};
typedef struct remote_g_packet_guess remote_g_packet_guess_s;
DEF_VEC_O(remote_g_packet_guess_s);
struct remote_g_packet_data
{
VEC(remote_g_packet_guess_s) *guesses;
};
static struct gdbarch_data *remote_g_packet_data_handle;
static void *
remote_g_packet_data_init (struct obstack *obstack)
{
return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
}
void
register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
const struct target_desc *tdesc)
{
struct remote_g_packet_data *data
= gdbarch_data (gdbarch, remote_g_packet_data_handle);
struct remote_g_packet_guess new_guess, *guess;
int ix;
gdb_assert (tdesc != NULL);
for (ix = 0;
VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
ix++)
if (guess->bytes == bytes)
internal_error (__FILE__, __LINE__,
"Duplicate g packet description added for size %d",
bytes);
new_guess.bytes = bytes;
new_guess.tdesc = tdesc;
VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
}
static const struct target_desc *
remote_read_description (struct target_ops *target)
{
struct remote_g_packet_data *data
= gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
{
struct remote_g_packet_guess *guess;
int ix;
int bytes = send_g_packet ();
for (ix = 0;
VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
ix++)
if (guess->bytes == bytes)
return guess->tdesc;
/* We discard the g packet. A minor optimization would be to
hold on to it, and fill the register cache once we have selected
an architecture, but it's too tricky to do safely. */
}
return NULL;
}
static void
init_remote_ops (void)
{
remote_ops.to_shortname = "remote";
remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
remote_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to\n\
(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
remote_ops.to_open = remote_open;
remote_ops.to_close = remote_close;
remote_ops.to_detach = remote_detach;
remote_ops.to_disconnect = remote_disconnect;
remote_ops.to_resume = remote_resume;
remote_ops.to_wait = remote_wait;
remote_ops.to_fetch_registers = remote_fetch_registers;
remote_ops.to_store_registers = remote_store_registers;
remote_ops.to_prepare_to_store = remote_prepare_to_store;
remote_ops.deprecated_xfer_memory = remote_xfer_memory;
remote_ops.to_files_info = remote_files_info;
remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
remote_ops.to_stopped_data_address = remote_stopped_data_address;
remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
remote_ops.to_kill = remote_kill;
remote_ops.to_load = generic_load;
remote_ops.to_mourn_inferior = remote_mourn;
remote_ops.to_thread_alive = remote_thread_alive;
remote_ops.to_find_new_threads = remote_threads_info;
remote_ops.to_pid_to_str = remote_pid_to_str;
remote_ops.to_extra_thread_info = remote_threads_extra_info;
remote_ops.to_stop = remote_stop;
remote_ops.to_xfer_partial = remote_xfer_partial;
remote_ops.to_rcmd = remote_rcmd;
remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
remote_ops.to_stratum = process_stratum;
remote_ops.to_has_all_memory = 1;
remote_ops.to_has_memory = 1;
remote_ops.to_has_stack = 1;
remote_ops.to_has_registers = 1;
remote_ops.to_has_execution = 1;
remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
remote_ops.to_magic = OPS_MAGIC;
remote_ops.to_memory_map = remote_memory_map;
remote_ops.to_flash_erase = remote_flash_erase;
remote_ops.to_flash_done = remote_flash_done;
remote_ops.to_read_description = remote_read_description;
}
/* Set up the extended remote vector by making a copy of the standard
remote vector and adding to it. */
static void
init_extended_remote_ops (void)
{
extended_remote_ops = remote_ops;
extended_remote_ops.to_shortname = "extended-remote";
extended_remote_ops.to_longname =
"Extended remote serial target in gdb-specific protocol";
extended_remote_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).",
extended_remote_ops.to_open = extended_remote_open;
extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
}
static int
remote_can_async_p (void)
{
/* We're async whenever the serial device is. */
return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
}
static int
remote_is_async_p (void)
{
/* We're async whenever the serial device is. */
return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
}
/* Pass the SERIAL event on and up to the client. One day this code
will be able to delay notifying the client of an event until the
point where an entire packet has been received. */
static void (*async_client_callback) (enum inferior_event_type event_type,
void *context);
static void *async_client_context;
static serial_event_ftype remote_async_serial_handler;
static void
remote_async_serial_handler (struct serial *scb, void *context)
{
/* Don't propogate error information up to the client. Instead let
the client find out about the error by querying the target. */
async_client_callback (INF_REG_EVENT, async_client_context);
}
static void
remote_async (void (*callback) (enum inferior_event_type event_type,
void *context), void *context)
{
if (current_target.to_async_mask_value == 0)
internal_error (__FILE__, __LINE__,
_("Calling remote_async when async is masked"));
if (callback != NULL)
{
serial_async (remote_desc, remote_async_serial_handler, NULL);
async_client_callback = callback;
async_client_context = context;
}
else
serial_async (remote_desc, NULL, NULL);
}
/* Target async and target extended-async.
This are temporary targets, until it is all tested. Eventually
async support will be incorporated int the usual 'remote'
target. */
static void
init_remote_async_ops (void)
{
remote_async_ops.to_shortname = "async";
remote_async_ops.to_longname =
"Remote serial target in async version of the gdb-specific protocol";
remote_async_ops.to_doc =
"Use a remote computer via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).";
remote_async_ops.to_open = remote_async_open;
remote_async_ops.to_close = remote_close;
remote_async_ops.to_detach = remote_detach;
remote_async_ops.to_disconnect = remote_disconnect;
remote_async_ops.to_resume = remote_async_resume;
remote_async_ops.to_wait = remote_async_wait;
remote_async_ops.to_fetch_registers = remote_fetch_registers;
remote_async_ops.to_store_registers = remote_store_registers;
remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
remote_async_ops.to_files_info = remote_files_info;
remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
remote_async_ops.to_kill = remote_async_kill;
remote_async_ops.to_load = generic_load;
remote_async_ops.to_mourn_inferior = remote_async_mourn;
remote_async_ops.to_thread_alive = remote_thread_alive;
remote_async_ops.to_find_new_threads = remote_threads_info;
remote_async_ops.to_pid_to_str = remote_pid_to_str;
remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
remote_async_ops.to_stop = remote_stop;
remote_async_ops.to_xfer_partial = remote_xfer_partial;
remote_async_ops.to_rcmd = remote_rcmd;
remote_async_ops.to_stratum = process_stratum;
remote_async_ops.to_has_all_memory = 1;
remote_async_ops.to_has_memory = 1;
remote_async_ops.to_has_stack = 1;
remote_async_ops.to_has_registers = 1;
remote_async_ops.to_has_execution = 1;
remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
remote_async_ops.to_can_async_p = remote_can_async_p;
remote_async_ops.to_is_async_p = remote_is_async_p;
remote_async_ops.to_async = remote_async;
remote_async_ops.to_async_mask_value = 1;
remote_async_ops.to_magic = OPS_MAGIC;
remote_async_ops.to_memory_map = remote_memory_map;
remote_async_ops.to_flash_erase = remote_flash_erase;
remote_async_ops.to_flash_done = remote_flash_done;
remote_ops.to_read_description = remote_read_description;
}
/* Set up the async extended remote vector by making a copy of the standard
remote vector and adding to it. */
static void
init_extended_async_remote_ops (void)
{
extended_async_remote_ops = remote_async_ops;
extended_async_remote_ops.to_shortname = "extended-async";
extended_async_remote_ops.to_longname =
"Extended remote serial target in async gdb-specific protocol";
extended_async_remote_ops.to_doc =
"Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).",
extended_async_remote_ops.to_open = extended_remote_async_open;
extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
}
static void
set_remote_cmd (char *args, int from_tty)
{
help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
}
static void
show_remote_cmd (char *args, int from_tty)
{
/* We can't just use cmd_show_list here, because we want to skip
the redundant "show remote Z-packet" and the legacy aliases. */
struct cleanup *showlist_chain;
struct cmd_list_element *list = remote_show_cmdlist;
showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
for (; list != NULL; list = list->next)
if (strcmp (list->name, "Z-packet") == 0)
continue;
else if (list->type == not_set_cmd)
/* Alias commands are exactly like the original, except they
don't have the normal type. */
continue;
else
{
struct cleanup *option_chain
= make_cleanup_ui_out_tuple_begin_end (uiout, "option");
ui_out_field_string (uiout, "name", list->name);
ui_out_text (uiout, ": ");
if (list->type == show_cmd)
do_setshow_command ((char *) NULL, from_tty, list);
else
cmd_func (list, NULL, from_tty);
/* Close the tuple. */
do_cleanups (option_chain);
}
/* Close the tuple. */
do_cleanups (showlist_chain);
}
static void
build_remote_gdbarch_data (void)
{
remote_address_size = TARGET_ADDR_BIT;
}
/* Function to be called whenever a new objfile (shlib) is detected. */
static void
remote_new_objfile (struct objfile *objfile)
{
if (remote_desc != 0) /* Have a remote connection. */
remote_check_symbols (objfile);
}
void
_initialize_remote (void)
{
struct remote_state *rs;
/* architecture specific data */
remote_gdbarch_data_handle =
gdbarch_data_register_post_init (init_remote_state);
remote_g_packet_data_handle =
gdbarch_data_register_pre_init (remote_g_packet_data_init);
/* Old tacky stuff. NOTE: This comes after the remote protocol so
that the remote protocol has been initialized. */
DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
/* Initialize the per-target state. At the moment there is only one
of these, not one per target. Only one target is active at a
time. The default buffer size is unimportant; it will be expanded
whenever a larger buffer is needed. */
rs = get_remote_state_raw ();
rs->buf_size = 400;
rs->buf = xmalloc (rs->buf_size);
init_remote_ops ();
add_target (&remote_ops);
init_extended_remote_ops ();
add_target (&extended_remote_ops);
init_remote_async_ops ();
add_target (&remote_async_ops);
init_extended_async_remote_ops ();
add_target (&extended_async_remote_ops);
/* Hook into new objfile notification. */
observer_attach_new_objfile (remote_new_objfile);
#if 0
init_remote_threadtests ();
#endif
/* set/show remote ... */
add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
Remote protocol specific variables\n\
Configure various remote-protocol specific variables such as\n\
the packets being used"),
&remote_set_cmdlist, "set remote ",
0 /* allow-unknown */, &setlist);
add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
Remote protocol specific variables\n\
Configure various remote-protocol specific variables such as\n\
the packets being used"),
&remote_show_cmdlist, "show remote ",
0 /* allow-unknown */, &showlist);
add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
Compare section data on target to the exec file.\n\
Argument is a single section name (default: all loaded sections)."),
&cmdlist);
add_cmd ("packet", class_maintenance, packet_command, _("\
Send an arbitrary packet to a remote target.\n\
maintenance packet TEXT\n\
If GDB is talking to an inferior via the GDB serial protocol, then\n\
this command sends the string TEXT to the inferior, and displays the\n\
response packet. GDB supplies the initial `$' character, and the\n\
terminating `#' character and checksum."),
&maintenancelist);
add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
Set whether to send break if interrupted."), _("\
Show whether to send break if interrupted."), _("\
If set, a break, instead of a cntrl-c, is sent to the remote target."),
NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
&setlist, &showlist);
/* Install commands for configuring memory read/write packets. */
add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
Set the maximum number of bytes per memory write packet (deprecated)."),
&setlist);
add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
Show the maximum number of bytes per memory write packet (deprecated)."),
&showlist);
add_cmd ("memory-write-packet-size", no_class,
set_memory_write_packet_size, _("\
Set the maximum number of bytes per memory-write packet.\n\
Specify the number of bytes in a packet or 0 (zero) for the\n\
default packet size. The actual limit is further reduced\n\
dependent on the target. Specify ``fixed'' to disable the\n\
further restriction and ``limit'' to enable that restriction."),
&remote_set_cmdlist);
add_cmd ("memory-read-packet-size", no_class,
set_memory_read_packet_size, _("\
Set the maximum number of bytes per memory-read packet.\n\
Specify the number of bytes in a packet or 0 (zero) for the\n\
default packet size. The actual limit is further reduced\n\
dependent on the target. Specify ``fixed'' to disable the\n\
further restriction and ``limit'' to enable that restriction."),
&remote_set_cmdlist);
add_cmd ("memory-write-packet-size", no_class,
show_memory_write_packet_size,
_("Show the maximum number of bytes per memory-write packet."),
&remote_show_cmdlist);
add_cmd ("memory-read-packet-size", no_class,
show_memory_read_packet_size,
_("Show the maximum number of bytes per memory-read packet."),
&remote_show_cmdlist);
add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
&remote_hw_watchpoint_limit, _("\
Set the maximum number of target hardware watchpoints."), _("\
Show the maximum number of target hardware watchpoints."), _("\
Specify a negative limit for unlimited."),
NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
&remote_set_cmdlist, &remote_show_cmdlist);
add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
&remote_hw_breakpoint_limit, _("\
Set the maximum number of target hardware breakpoints."), _("\
Show the maximum number of target hardware breakpoints."), _("\
Specify a negative limit for unlimited."),
NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
&remote_set_cmdlist, &remote_show_cmdlist);
add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
&remote_address_size, _("\
Set the maximum size of the address (in bits) in a memory packet."), _("\
Show the maximum size of the address (in bits) in a memory packet."), NULL,
NULL,
NULL, /* FIXME: i18n: */
&setlist, &showlist);
add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
"X", "binary-download", 1);
add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
"vCont", "verbose-resume", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
"QPassSignals", "pass-signals", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
"qSymbol", "symbol-lookup", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
"P", "set-register", 1);
add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
"p", "fetch-register", 1);
add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
"Z0", "software-breakpoint", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
"Z1", "hardware-breakpoint", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
"Z2", "write-watchpoint", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
"Z3", "read-watchpoint", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
"Z4", "access-watchpoint", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
"qXfer:auxv:read", "read-aux-vector", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
"qXfer:features:read", "target-features", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
"qXfer:memory-map:read", "memory-map", 0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
"qGetTLSAddr", "get-thread-local-storage-address",
0);
add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
"qSupported", "supported-packets", 0);
/* Keep the old ``set remote Z-packet ...'' working. Each individual
Z sub-packet has its own set and show commands, but users may
have sets to this variable in their .gdbinit files (or in their
documentation). */
add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
&remote_Z_packet_detect, _("\
Set use of remote protocol `Z' packets"), _("\
Show use of remote protocol `Z' packets "), _("\
When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
packets."),
set_remote_protocol_Z_packet_cmd,
show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
&remote_set_cmdlist, &remote_show_cmdlist);
/* Eventually initialize fileio. See fileio.c */
initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
}