mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
56be38147c
(struct target_ops): Add REGCACHE parameter to to_fetch_registers and to_store_registers target operations. (target_fetch_registers, target_store_registers): Update. * regcache.c (regcache_raw_read): Replace register_cached by regcache_valid_p. Pass regcache to target_fetch_registers. (regcache_raw_write): Pass regcache to target_store_registers. * arm-linux-nat.c (store_fpregister, store_fpregs, store_register, store_regs, store_wmmx_regs): Replace register_cached by regcache_valid_p. * bsd-kvm.c (bsd_kvm_open, bsd_kvm_proc_cmd): Pass current_regcache to target_fetch_registers calls. * corelow.c (core_open): Likewise. * linux-nat.c (linux_nat_corefile_thread_callback): Likewise. * proc-service.c (ps_lgetregs, ps_lsetregs, ps_lgetfpregs, ps_lsetfpregs): Likewise. * sol-thread.c (ps_lgetregs, ps_lsetregs, ps_lgetfpregs, ps_lsetfpregs): Likewise. * win32-nat.c (win32_resume): Likewise. * ia64-tdep.c (ia64_store_return_value): Pass current_regcache to target_store_registers call. * rs6000-tdep.c (rs6000_push_dummy_call): Likewise. * inferior.h (store_inferior_registers): Update prototype. (fetch_inferior_registers): Likewise. * gnu-nat.c (gnu_store_registers, gnu_fetch_registers): Likewise. * mips-linux-nat.c (super_fetch_registers, super_store_registers): Update function pointer signatures. * aix-thread.c (aix_thread_fetch_registers): Add REGCACHE parameter, use it instead of current_regcache, update calls. (aix_thread_store_registers): Likewise. * alphabsd-nat.c (alphabsd_fetch_inferior_registers): Likewise. (alphabsd_store_inferior_registers): Likewise. * amd64bsd-nat.c (amd64bsd_fetch_inferior_registers): Likewise. (amd64bsd_store_inferior_registers): Likewise. * amd64-linux-nat.c (amd64_linux_fetch_inferior_registers): Likewise. (amd64_linux_store_inferior_registers): Likewise. * arm-linux-nat.c (fetch_fpregister, fetch_fpregs, store_fpregister, store_fpregs, fetch_register, fetch_regs, store_register, store_regs, fetch_wmmx_regs, store_wmmx_regs): Likewise. (arm_linux_fetch_inferior_registers): Likewise. (arm_linux_store_inferior_registers): Likewise. * armnbsd-nat.c (fetch_register, fetch_regs, fetch_fp_register, fetch_fp_regs, armnbsd_fetch_registers): Likewise. (store_register, store_regs, store_fp_register, store_fp_regs, armnbsd_store_registers): Likewise. * bsd-kvm.c (bsd_kvm_fetch_pcb, bsd_kvm_fetch_registers): Likewise. * bsd-uthread.c (bsd_uthread_fetch_registers): Likewise. (bsd_uthread_store_registers): Likewise. * corelow.c (get_core_registers): Likewise. * go32-nat.c (fetch_register, go32_fetch_registers, store_register, go32_store_registers): Likewise. * hppabsd-nat.c (hppabsd_fetch_registers): Likewise. (hppabsd_store_registers): Likewise. * hppa-hpux-nat.c (hppa_hpux_fetch_register): Likewise. (hppa_hpux_fetch_inferior_registers): Likewise. (hppa_hpux_store_register): Likewise. (hppa_hpux_store_inferior_registers): Likewise. * hppa-linux-nat.c (fetch_register, store_register): Likewise. (hppa_linux_fetch_inferior_registers): Likewise. (hppa_linux_store_inferior_registers): Likewise. * hpux-thread.c (hpux_thread_fetch_registers): Likewise. (hpux_thread_store_registers): Likewise. * i386bsd-nat.c (i386bsd_fetch_inferior_registers): Likewise. (i386bsd_store_inferior_registers): Likewise. * i386gnu-nat.c (fetch_fpregs, gnu_fetch_registers, store_fpregs, gnu_store_registers): Likewise. * i386-linux-nat.c (fetch_register, store_register, fetch_regs, store_regs, fetch_fpregs, store_fpregs, fetch_fpxregs, store_fpxregs): Likewise. (i386_linux_fetch_inferior_registers): Likewise. (i386_linux_store_inferior_registers): Likewise. * ia64-linux-nat.c (ia64_linux_fetch_register): Likewise. (ia64_linux_fetch_registers): Likewise. (ia64_linux_store_register): Likewise. (ia64_linux_store_registers): Likewise. * inf-child.c (inf_child_fetch_inferior_registers): Likewise. (inf_child_store_inferior_registers): Likewise. * inf-ptrace.c (inf_ptrace_fetch_register): Likewise. (inf_ptrace_fetch_registers): Likewise. (inf_ptrace_store_register): Likewise. (inf_ptrace_store_registers): Likewise. * infptrace.c (fetch_register, store_register): Likewise. (fetch_inferior_registers, store_inferior_registers): Likewise. * m32r-linux-nat.c (fetch_regs, store_regs): Likewise. (m32r_linux_fetch_inferior_registers): Likewise. (m32r_linux_store_inferior_registers): Likewise. * m68kbsd-nat.c (m68kbsd_fetch_inferior_registers): Likewise. (m68kbsd_store_inferior_registers): Likewise. * m68klinux-nat.c (fetch_register, old_fetch_inferior_registers, store_register, old_store_inferior_registers, fetch_regs, store_regs, fetch_fpregs, store_fpregs): Likewise. (m68k_linux_fetch_inferior_registers): Likewise. (m68k_linux_store_inferior_registers): Likewise. * m88kbsd-nat.c (m88kbsd_fetch_inferior_registers): Likewise. (m88kbsd_store_inferior_registers): Likewise. * mips64obsd-nat.c (mips64obsd_fetch_inferior_registers): Likewise. (mips64obsd_store_inferior_registers): Likewise. * mips-linux-nat.c (mips64_linux_regsets_fetch_registers): Likewise. (mips64_linux_regsets_store_registers): Likewise. (mips64_linux_fetch_registers): Likewise. (mips64_linux_store_registers): Likewise. * mipsnbsd-nat.c (mipsnbsd_fetch_inferior_registers): Likewise. (mipsnbsd_store_inferior_registers): Likewise. * monitor.c (monitor_fetch_register, monitor_store_register): Likewise. (monitor_fetch_registers, monitor_store_registers): Likewise. * nto-procfs.c (procfs_fetch_registers): Likewise. (procfs_store_registers): Likewise. * ppc-linux-nat.c (fetch_altivec_register, fetch_spe_register, fetch_register, supply_vrregset, fetch_altivec_registers, fetch_ppc_registers, ppc_linux_fetch_inferior_registers): Likewise. (store_altivec_register, store_spe_register, store_register, fill_vrregset, store_altivec_registers, store_ppc_registers, ppc_linux_store_inferior_registers): Likewise. * ppcnbsd-nat.c (ppcnbsd_fetch_inferior_registers): Likewise. (ppcnbsd_store_inferior_registers): Likewise. * ppcobsd-nat.c (ppcobsd_fetch_registers): Likewise. (ppcobsd_store_registers): Likewise. * procfs.c (procfs_fetch_registers, procfs_store_registers): Likewise. * remote.c (fetch_register_using_p, process_g_packet, fetch_registers_using_g, remote_fetch_registers): Likewise. (store_register_using_P, store_registers_using_G, remote_store_registers): Likewise. * remote-m32r-sdi.c (m32r_fetch_registers, m32r_fetch_register, m32r_store_register, m32r_store_register): Likewise. * remote-mips.c (mips_fetch_registers, mips_store_registers): Likewise. * remote-sim.c (gdbsim_fetch_register): Likewise. (gdbsim_store_register): Likewise. * rs6000-nat.c (fetch_register, store_register): Likewise. (rs6000_fetch_inferior_registers): Likewise. (rs6000_store_inferior_registers): Likewise. * s390-nat.c (fetch_regs, store_regs): Likewise. (fetch_fpregs, store_fpregs): Likewise. (s390_linux_fetch_inferior_registers): Likewise. (s390_linux_store_inferior_registers): Likewise. * shnbsd-nat.c (shnbsd_fetch_inferior_registers): Likewise. (shnbsd_store_inferior_registers): Likewise. * sol-thread.c (sol_thread_fetch_registers): Likewise. (sol_thread_store_registers): Likewise. * sparc-nat.c (fetch_inferior_registers): Likewise. (store_inferior_registers): Likewise. * spu-linux-nat.c (spu_fetch_inferior_registers): Likewise. (spu_store_inferior_registers): Likewise. * target.c (debug_print_register): Likewise. (debug_to_fetch_registers, debug_to_store_registers): Likewise. * vaxbsd-nat.c (vaxbsd_fetch_inferior_registers): Likewise. (vaxbsd_store_inferior_registers): Likewise. * win32-nat.c (do_win32_fetch_inferior_registers): Likewise. (win32_fetch_inferior_registers): Likewise. (win32_store_inferior_registers): Likewise.
1027 lines
33 KiB
C
1027 lines
33 KiB
C
/* PPC GNU/Linux native support.
|
|
|
|
Copyright (C) 1988, 1989, 1991, 1992, 1994, 1996, 2000, 2001, 2002, 2003,
|
|
2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
|
Boston, MA 02110-1301, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "gdbcore.h"
|
|
#include "regcache.h"
|
|
#include "gdb_assert.h"
|
|
#include "target.h"
|
|
#include "linux-nat.h"
|
|
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <signal.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ioctl.h>
|
|
#include "gdb_wait.h"
|
|
#include <fcntl.h>
|
|
#include <sys/procfs.h>
|
|
#include <sys/ptrace.h>
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
#include "ppc-tdep.h"
|
|
|
|
/* Glibc's headers don't define PTRACE_GETVRREGS so we cannot use a
|
|
configure time check. Some older glibc's (for instance 2.2.1)
|
|
don't have a specific powerpc version of ptrace.h, and fall back on
|
|
a generic one. In such cases, sys/ptrace.h defines
|
|
PTRACE_GETFPXREGS and PTRACE_SETFPXREGS to the same numbers that
|
|
ppc kernel's asm/ptrace.h defines PTRACE_GETVRREGS and
|
|
PTRACE_SETVRREGS to be. This also makes a configury check pretty
|
|
much useless. */
|
|
|
|
/* These definitions should really come from the glibc header files,
|
|
but Glibc doesn't know about the vrregs yet. */
|
|
#ifndef PTRACE_GETVRREGS
|
|
#define PTRACE_GETVRREGS 18
|
|
#define PTRACE_SETVRREGS 19
|
|
#endif
|
|
|
|
|
|
/* Similarly for the ptrace requests for getting / setting the SPE
|
|
registers (ev0 -- ev31, acc, and spefscr). See the description of
|
|
gdb_evrregset_t for details. */
|
|
#ifndef PTRACE_GETEVRREGS
|
|
#define PTRACE_GETEVRREGS 20
|
|
#define PTRACE_SETEVRREGS 21
|
|
#endif
|
|
|
|
/* Similarly for the hardware watchpoint support. */
|
|
#ifndef PTRACE_GET_DEBUGREG
|
|
#define PTRACE_GET_DEBUGREG 25
|
|
#endif
|
|
#ifndef PTRACE_SET_DEBUGREG
|
|
#define PTRACE_SET_DEBUGREG 26
|
|
#endif
|
|
#ifndef PTRACE_GETSIGINFO
|
|
#define PTRACE_GETSIGINFO 0x4202
|
|
#endif
|
|
|
|
/* This oddity is because the Linux kernel defines elf_vrregset_t as
|
|
an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
|
|
However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
|
|
the vrsave as an extra 4 bytes at the end. I opted for creating a
|
|
flat array of chars, so that it is easier to manipulate for gdb.
|
|
|
|
There are 32 vector registers 16 bytes longs, plus a VSCR register
|
|
which is only 4 bytes long, but is fetched as a 16 bytes
|
|
quantity. Up to here we have the elf_vrregset_t structure.
|
|
Appended to this there is space for the VRSAVE register: 4 bytes.
|
|
Even though this vrsave register is not included in the regset
|
|
typedef, it is handled by the ptrace requests.
|
|
|
|
Note that GNU/Linux doesn't support little endian PPC hardware,
|
|
therefore the offset at which the real value of the VSCR register
|
|
is located will be always 12 bytes.
|
|
|
|
The layout is like this (where x is the actual value of the vscr reg): */
|
|
|
|
/* *INDENT-OFF* */
|
|
/*
|
|
|.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
|
|
<-------> <-------><-------><->
|
|
VR0 VR31 VSCR VRSAVE
|
|
*/
|
|
/* *INDENT-ON* */
|
|
|
|
#define SIZEOF_VRREGS 33*16+4
|
|
|
|
typedef char gdb_vrregset_t[SIZEOF_VRREGS];
|
|
|
|
|
|
/* On PPC processors that support the the Signal Processing Extension
|
|
(SPE) APU, the general-purpose registers are 64 bits long.
|
|
However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
|
|
ptrace calls only access the lower half of each register, to allow
|
|
them to behave the same way they do on non-SPE systems. There's a
|
|
separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
|
|
read and write the top halves of all the general-purpose registers
|
|
at once, along with some SPE-specific registers.
|
|
|
|
GDB itself continues to claim the general-purpose registers are 32
|
|
bits long. It has unnamed raw registers that hold the upper halves
|
|
of the gprs, and the the full 64-bit SIMD views of the registers,
|
|
'ev0' -- 'ev31', are pseudo-registers that splice the top and
|
|
bottom halves together.
|
|
|
|
This is the structure filled in by PTRACE_GETEVRREGS and written to
|
|
the inferior's registers by PTRACE_SETEVRREGS. */
|
|
struct gdb_evrregset_t
|
|
{
|
|
unsigned long evr[32];
|
|
unsigned long long acc;
|
|
unsigned long spefscr;
|
|
};
|
|
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
|
|
PTRACE_SETVRREGS requests, for reading and writing the Altivec
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getvrregs = 1;
|
|
|
|
static CORE_ADDR last_stopped_data_address = 0;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests, for reading and writing the SPE
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getsetevrregs = 1;
|
|
|
|
/* *INDENT-OFF* */
|
|
/* registers layout, as presented by the ptrace interface:
|
|
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
|
|
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
|
|
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
|
|
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
|
|
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
|
|
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
|
|
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
|
|
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
|
|
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
|
|
/* *INDENT_ON * */
|
|
|
|
static int
|
|
ppc_register_u_addr (int regno)
|
|
{
|
|
int u_addr = -1;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
|
interface, and not the wordsize of the program's ABI. */
|
|
int wordsize = sizeof (long);
|
|
|
|
/* General purpose registers occupy 1 slot each in the buffer */
|
|
if (regno >= tdep->ppc_gp0_regnum
|
|
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
|
u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
|
|
|
|
/* Floating point regs: eight bytes each in both 32- and 64-bit
|
|
ptrace interfaces. Thus, two slots each in 32-bit interface, one
|
|
slot each in 64-bit interface. */
|
|
if (tdep->ppc_fp0_regnum >= 0
|
|
&& regno >= tdep->ppc_fp0_regnum
|
|
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
|
u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
|
|
|
|
/* UISA special purpose registers: 1 slot each */
|
|
if (regno == PC_REGNUM)
|
|
u_addr = PT_NIP * wordsize;
|
|
if (regno == tdep->ppc_lr_regnum)
|
|
u_addr = PT_LNK * wordsize;
|
|
if (regno == tdep->ppc_cr_regnum)
|
|
u_addr = PT_CCR * wordsize;
|
|
if (regno == tdep->ppc_xer_regnum)
|
|
u_addr = PT_XER * wordsize;
|
|
if (regno == tdep->ppc_ctr_regnum)
|
|
u_addr = PT_CTR * wordsize;
|
|
#ifdef PT_MQ
|
|
if (regno == tdep->ppc_mq_regnum)
|
|
u_addr = PT_MQ * wordsize;
|
|
#endif
|
|
if (regno == tdep->ppc_ps_regnum)
|
|
u_addr = PT_MSR * wordsize;
|
|
if (tdep->ppc_fpscr_regnum >= 0
|
|
&& regno == tdep->ppc_fpscr_regnum)
|
|
{
|
|
/* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
|
|
kernel headers incorrectly contained the 32-bit definition of
|
|
PT_FPSCR. For the 32-bit definition, floating-point
|
|
registers occupy two 32-bit "slots", and the FPSCR lives in
|
|
the secondhalf of such a slot-pair (hence +1). For 64-bit,
|
|
the FPSCR instead occupies the full 64-bit 2-word-slot and
|
|
hence no adjustment is necessary. Hack around this. */
|
|
if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
|
|
u_addr = (48 + 32) * wordsize;
|
|
else
|
|
u_addr = PT_FPSCR * wordsize;
|
|
}
|
|
return u_addr;
|
|
}
|
|
|
|
/* The Linux kernel ptrace interface for AltiVec registers uses the
|
|
registers set mechanism, as opposed to the interface for all the
|
|
other registers, that stores/fetches each register individually. */
|
|
static void
|
|
fetch_altivec_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
int offset = 0;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
|
}
|
|
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
|
long on the hardware. We deal only with the lower 4 bytes of the
|
|
vector. VRSAVE is at the end of the array in a 4 bytes slot, so
|
|
there is no need to define an offset for it. */
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
|
offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
regcache_raw_supply (regcache, regno,
|
|
regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
|
|
}
|
|
|
|
/* Fetch the top 32 bits of TID's general-purpose registers and the
|
|
SPE-specific registers, and place the results in EVRREGSET. If we
|
|
don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
|
|
zeros.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
set_spe_registers. */
|
|
static void
|
|
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported;
|
|
we just return zeros. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
|
}
|
|
}
|
|
|
|
memset (evrregset, 0, sizeof (*evrregset));
|
|
}
|
|
|
|
/* Supply values from TID for SPE-specific raw registers: the upper
|
|
halves of the GPRs, the accumulator, and the spefscr. REGNO must
|
|
be the number of an upper half register, acc, spefscr, or -1 to
|
|
supply the values of all registers. */
|
|
static void
|
|
fetch_spe_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (current_gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache_raw_supply (regcache, tdep->ppc_ev0_upper_regnum + i,
|
|
&evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache_raw_supply (regcache, regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache_raw_supply (regcache, tdep->ppc_acc_regnum, &evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache_raw_supply (regcache, tdep->ppc_spefscr_regnum,
|
|
&evrregs.spefscr);
|
|
}
|
|
|
|
static void
|
|
fetch_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (regno);
|
|
int bytes_transferred;
|
|
unsigned int offset; /* Offset of registers within the u area. */
|
|
char buf[MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (regno))
|
|
{
|
|
/* If this is the first time through, or if it is not the first
|
|
time through, and we have comfirmed that there is kernel
|
|
support for such a ptrace request, then go and fetch the
|
|
register. */
|
|
if (have_ptrace_getvrregs)
|
|
{
|
|
fetch_altivec_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
/* If we have discovered that there is no ptrace support for
|
|
AltiVec registers, fall through and return zeroes, because
|
|
regaddr will be -1 in this case. */
|
|
}
|
|
else if (spe_register_p (regno))
|
|
{
|
|
fetch_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
{
|
|
memset (buf, '\0', register_size (current_gdbarch, regno)); /* Supply zeroes */
|
|
regcache_raw_supply (regcache, regno, buf);
|
|
return;
|
|
}
|
|
|
|
/* Read the raw register using sizeof(long) sized chunks. On a
|
|
32-bit platform, 64-bit floating-point registers will require two
|
|
transfers. */
|
|
for (bytes_transferred = 0;
|
|
bytes_transferred < register_size (current_gdbarch, regno);
|
|
bytes_transferred += sizeof (long))
|
|
{
|
|
errno = 0;
|
|
*(long *) &buf[bytes_transferred]
|
|
= ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
|
|
regaddr += sizeof (long);
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
sprintf (message, "reading register %s (#%d)",
|
|
REGISTER_NAME (regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
}
|
|
|
|
/* Now supply the register. Keep in mind that the regcache's idea
|
|
of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values are always found at the left end of the
|
|
bytes transferred. */
|
|
regcache_raw_supply (regcache, regno, buf);
|
|
}
|
|
else if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values are found at the right end of the bytes
|
|
transferred. */
|
|
size_t padding = (bytes_transferred
|
|
- register_size (current_gdbarch, regno));
|
|
regcache_raw_supply (regcache, regno, buf + padding);
|
|
}
|
|
else
|
|
internal_error (__FILE__, __LINE__,
|
|
_("fetch_register: unexpected byte order: %d"),
|
|
gdbarch_byte_order (current_gdbarch));
|
|
}
|
|
|
|
static void
|
|
supply_vrregset (struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
|
int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
|
|
int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
for (i = 0; i < num_of_vrregs; i++)
|
|
{
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
|
128. However an offset is necessary only for VSCR because it
|
|
occupies a whole vector, while VRSAVE occupies a full 4 bytes
|
|
slot. */
|
|
if (i == (num_of_vrregs - 2))
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize + offset);
|
|
else
|
|
regcache_raw_supply (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
fetch_altivec_registers (struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
supply_vrregset (regcache, ®s);
|
|
}
|
|
|
|
static void
|
|
fetch_ppc_registers (struct regcache *regcache, int tid)
|
|
{
|
|
int i;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
fetch_register (regcache, tid, PC_REGNUM);
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
fetch_altivec_registers (regcache, tid);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
fetch_spe_register (regcache, tid, -1);
|
|
}
|
|
|
|
/* Fetch registers from the child process. Fetch all registers if
|
|
regno == -1, otherwise fetch all general registers or all floating
|
|
point registers depending upon the value of regno. */
|
|
static void
|
|
ppc_linux_fetch_inferior_registers (struct regcache *regcache, int regno)
|
|
{
|
|
/* Overload thread id onto process id */
|
|
int tid = TIDGET (inferior_ptid);
|
|
|
|
/* No thread id, just use process id */
|
|
if (tid == 0)
|
|
tid = PIDGET (inferior_ptid);
|
|
|
|
if (regno == -1)
|
|
fetch_ppc_registers (regcache, tid);
|
|
else
|
|
fetch_register (regcache, tid, regno);
|
|
}
|
|
|
|
/* Store one register. */
|
|
static void
|
|
store_altivec_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
int offset = 0;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec register"));
|
|
}
|
|
|
|
/* VSCR is fetched as a 16 bytes quantity, but it is really 4 bytes
|
|
long on the hardware. */
|
|
if (regno == (tdep->ppc_vrsave_regnum - 1))
|
|
offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
regcache_raw_collect (regcache, regno,
|
|
regs + (regno - tdep->ppc_vr0_regnum) * vrregsize + offset);
|
|
|
|
ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
perror_with_name (_("Unable to store AltiVec register"));
|
|
}
|
|
|
|
/* Assuming TID referrs to an SPE process, set the top halves of TID's
|
|
general-purpose registers and its SPE-specific registers to the
|
|
values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
|
|
nothing.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
get_spe_registers. */
|
|
static void
|
|
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_SETEVRREGS request isn't
|
|
supported; we fail silently, and don't try the call
|
|
again. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to set SPE registers"));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
|
|
If REGNO is -1, write the values of all the SPE-specific
|
|
registers. */
|
|
static void
|
|
store_spe_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (current_gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (current_gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (current_gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
if (regno == -1)
|
|
/* Since we're going to write out every register, the code below
|
|
should store to every field of evrregs; if that doesn't happen,
|
|
make it obvious by initializing it with suspicious values. */
|
|
memset (&evrregs, 42, sizeof (evrregs));
|
|
else
|
|
/* We can only read and write the entire EVR register set at a
|
|
time, so to write just a single register, we do a
|
|
read-modify-write maneuver. */
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_ev0_upper_regnum + i,
|
|
&evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache_raw_collect (regcache, regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_acc_regnum,
|
|
&evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache_raw_collect (regcache,
|
|
tdep->ppc_spefscr_regnum,
|
|
&evrregs.spefscr);
|
|
|
|
/* Write back the modified register set. */
|
|
set_spe_registers (tid, &evrregs);
|
|
}
|
|
|
|
static void
|
|
store_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (regno);
|
|
int i;
|
|
size_t bytes_to_transfer;
|
|
char buf[MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (regno))
|
|
{
|
|
store_altivec_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (spe_register_p (regno))
|
|
{
|
|
store_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
return;
|
|
|
|
/* First collect the register. Keep in mind that the regcache's
|
|
idea of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
memset (buf, 0, sizeof buf);
|
|
bytes_to_transfer = align_up (register_size (current_gdbarch, regno),
|
|
sizeof (long));
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values always sit at the left end of the buffer. */
|
|
regcache_raw_collect (regcache, regno, buf);
|
|
}
|
|
else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values sit at the right end of the buffer. */
|
|
size_t padding = (bytes_to_transfer
|
|
- register_size (current_gdbarch, regno));
|
|
regcache_raw_collect (regcache, regno, buf + padding);
|
|
}
|
|
|
|
for (i = 0; i < bytes_to_transfer; i += sizeof (long))
|
|
{
|
|
errno = 0;
|
|
ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr,
|
|
*(long *) &buf[i]);
|
|
regaddr += sizeof (long);
|
|
|
|
if (errno == EIO
|
|
&& regno == tdep->ppc_fpscr_regnum)
|
|
{
|
|
/* Some older kernel versions don't allow fpscr to be written. */
|
|
continue;
|
|
}
|
|
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
sprintf (message, "writing register %s (#%d)",
|
|
REGISTER_NAME (regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
fill_vrregset (const struct regcache *regcache, gdb_vrregset_t *vrregsetp)
|
|
{
|
|
int i;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;
|
|
int vrregsize = register_size (current_gdbarch, tdep->ppc_vr0_regnum);
|
|
int offset = vrregsize - register_size (current_gdbarch, tdep->ppc_vrsave_regnum);
|
|
|
|
for (i = 0; i < num_of_vrregs; i++)
|
|
{
|
|
/* The last 2 registers of this set are only 32 bit long, not
|
|
128, but only VSCR is fetched as a 16 bytes quantity. */
|
|
if (i == (num_of_vrregs - 2))
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize + offset);
|
|
else
|
|
regcache_raw_collect (regcache, tdep->ppc_vr0_regnum + i,
|
|
*vrregsetp + i * vrregsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
store_altivec_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Couldn't get AltiVec registers"));
|
|
}
|
|
|
|
fill_vrregset (regcache, ®s);
|
|
|
|
if (ptrace (PTRACE_SETVRREGS, tid, 0, ®s) < 0)
|
|
perror_with_name (_("Couldn't write AltiVec registers"));
|
|
}
|
|
|
|
static void
|
|
store_ppc_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
int i;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
store_register (regcache, tid, PC_REGNUM);
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
store_altivec_registers (regcache, tid);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
store_spe_register (regcache, tid, -1);
|
|
}
|
|
|
|
static int
|
|
ppc_linux_check_watch_resources (int type, int cnt, int ot)
|
|
{
|
|
int tid;
|
|
ptid_t ptid = inferior_ptid;
|
|
|
|
/* DABR (data address breakpoint register) is optional for PPC variants.
|
|
Some variants have one DABR, others have none. So CNT can't be larger
|
|
than 1. */
|
|
if (cnt > 1)
|
|
return 0;
|
|
|
|
/* We need to know whether ptrace supports PTRACE_SET_DEBUGREG and whether
|
|
the target has DABR. If either answer is no, the ptrace call will
|
|
return -1. Fail in that case. */
|
|
tid = TIDGET (ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
if (ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0) == -1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
|
|
{
|
|
/* Handle sub-8-byte quantities. */
|
|
if (len <= 0)
|
|
return 0;
|
|
|
|
/* addr+len must fall in the 8 byte watchable region. */
|
|
if ((addr + len) > (addr & ~7) + 8)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Set a watchpoint of type TYPE at address ADDR. */
|
|
static int
|
|
ppc_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw)
|
|
{
|
|
int tid;
|
|
long dabr_value;
|
|
ptid_t ptid = inferior_ptid;
|
|
|
|
dabr_value = addr & ~7;
|
|
switch (rw)
|
|
{
|
|
case hw_read:
|
|
/* Set read and translate bits. */
|
|
dabr_value |= 5;
|
|
break;
|
|
case hw_write:
|
|
/* Set write and translate bits. */
|
|
dabr_value |= 6;
|
|
break;
|
|
case hw_access:
|
|
/* Set read, write and translate bits. */
|
|
dabr_value |= 7;
|
|
break;
|
|
}
|
|
|
|
tid = TIDGET (ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
return ptrace (PTRACE_SET_DEBUGREG, tid, 0, dabr_value);
|
|
}
|
|
|
|
static int
|
|
ppc_linux_remove_watchpoint (CORE_ADDR addr, int len, int rw)
|
|
{
|
|
int tid;
|
|
ptid_t ptid = inferior_ptid;
|
|
|
|
tid = TIDGET (ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
return ptrace (PTRACE_SET_DEBUGREG, tid, 0, 0);
|
|
}
|
|
|
|
static int
|
|
ppc_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
|
|
{
|
|
if (last_stopped_data_address)
|
|
{
|
|
*addr_p = last_stopped_data_address;
|
|
last_stopped_data_address = 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ppc_linux_stopped_by_watchpoint (void)
|
|
{
|
|
int tid;
|
|
struct siginfo siginfo;
|
|
ptid_t ptid = inferior_ptid;
|
|
CORE_ADDR *addr_p;
|
|
|
|
tid = TIDGET(ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
errno = 0;
|
|
ptrace (PTRACE_GETSIGINFO, tid, (PTRACE_TYPE_ARG3) 0, &siginfo);
|
|
|
|
if (errno != 0 || siginfo.si_signo != SIGTRAP ||
|
|
(siginfo.si_code & 0xffff) != 0x0004)
|
|
return 0;
|
|
|
|
last_stopped_data_address = (uintptr_t) siginfo.si_addr;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ppc_linux_store_inferior_registers (struct regcache *regcache, int regno)
|
|
{
|
|
/* Overload thread id onto process id */
|
|
int tid = TIDGET (inferior_ptid);
|
|
|
|
/* No thread id, just use process id */
|
|
if (tid == 0)
|
|
tid = PIDGET (inferior_ptid);
|
|
|
|
if (regno >= 0)
|
|
store_register (regcache, tid, regno);
|
|
else
|
|
store_ppc_registers (regcache, tid);
|
|
}
|
|
|
|
void
|
|
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
|
{
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
|
interface, and not the wordsize of the program's ABI. */
|
|
int wordsize = sizeof (long);
|
|
ppc_linux_supply_gregset (regcache, -1, gregsetp,
|
|
sizeof (gdb_gregset_t), wordsize);
|
|
}
|
|
|
|
static void
|
|
right_fill_reg (const struct regcache *regcache, int regnum, void *reg)
|
|
{
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
|
interface, and not the wordsize of the program's ABI. */
|
|
int wordsize = sizeof (long);
|
|
/* Right fill the register. */
|
|
regcache_raw_collect (regcache, regnum,
|
|
((bfd_byte *) reg
|
|
+ wordsize
|
|
- register_size (current_gdbarch, regnum)));
|
|
}
|
|
|
|
void
|
|
fill_gregset (const struct regcache *regcache,
|
|
gdb_gregset_t *gregsetp, int regno)
|
|
{
|
|
int regi;
|
|
elf_greg_t *regp = (elf_greg_t *) gregsetp;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
const int elf_ngreg = 48;
|
|
|
|
|
|
/* Start with zeros. */
|
|
memset (regp, 0, elf_ngreg * sizeof (*regp));
|
|
|
|
for (regi = 0; regi < ppc_num_gprs; regi++)
|
|
{
|
|
if ((regno == -1) || regno == tdep->ppc_gp0_regnum + regi)
|
|
right_fill_reg (regcache, tdep->ppc_gp0_regnum + regi,
|
|
(regp + PT_R0 + regi));
|
|
}
|
|
|
|
if ((regno == -1) || regno == PC_REGNUM)
|
|
right_fill_reg (regcache, PC_REGNUM, regp + PT_NIP);
|
|
if ((regno == -1) || regno == tdep->ppc_lr_regnum)
|
|
right_fill_reg (regcache, tdep->ppc_lr_regnum, regp + PT_LNK);
|
|
if ((regno == -1) || regno == tdep->ppc_cr_regnum)
|
|
regcache_raw_collect (regcache, tdep->ppc_cr_regnum,
|
|
regp + PT_CCR);
|
|
if ((regno == -1) || regno == tdep->ppc_xer_regnum)
|
|
regcache_raw_collect (regcache, tdep->ppc_xer_regnum,
|
|
regp + PT_XER);
|
|
if ((regno == -1) || regno == tdep->ppc_ctr_regnum)
|
|
right_fill_reg (regcache, tdep->ppc_ctr_regnum, regp + PT_CTR);
|
|
#ifdef PT_MQ
|
|
if (((regno == -1) || regno == tdep->ppc_mq_regnum)
|
|
&& (tdep->ppc_mq_regnum != -1))
|
|
right_fill_reg (regcache, tdep->ppc_mq_regnum, regp + PT_MQ);
|
|
#endif
|
|
if ((regno == -1) || regno == tdep->ppc_ps_regnum)
|
|
right_fill_reg (regcache, tdep->ppc_ps_regnum, regp + PT_MSR);
|
|
}
|
|
|
|
void
|
|
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
|
|
{
|
|
ppc_linux_supply_fpregset (NULL, regcache, -1, fpregsetp,
|
|
sizeof (gdb_fpregset_t));
|
|
}
|
|
|
|
/* Given a pointer to a floating point register set in /proc format
|
|
(fpregset_t *), update the register specified by REGNO from gdb's
|
|
idea of the current floating point register set. If REGNO is -1,
|
|
update them all. */
|
|
void
|
|
fill_fpregset (const struct regcache *regcache,
|
|
gdb_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
int regi;
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
bfd_byte *fpp = (void *) fpregsetp;
|
|
|
|
if (ppc_floating_point_unit_p (current_gdbarch))
|
|
{
|
|
for (regi = 0; regi < ppc_num_fprs; regi++)
|
|
{
|
|
if ((regno == -1) || (regno == tdep->ppc_fp0_regnum + regi))
|
|
regcache_raw_collect (regcache, tdep->ppc_fp0_regnum + regi,
|
|
fpp + 8 * regi);
|
|
}
|
|
if (regno == -1 || regno == tdep->ppc_fpscr_regnum)
|
|
right_fill_reg (regcache, tdep->ppc_fpscr_regnum, (fpp + 8 * 32));
|
|
}
|
|
}
|
|
|
|
void _initialize_ppc_linux_nat (void);
|
|
|
|
void
|
|
_initialize_ppc_linux_nat (void)
|
|
{
|
|
struct target_ops *t;
|
|
|
|
/* Fill in the generic GNU/Linux methods. */
|
|
t = linux_target ();
|
|
|
|
/* Add our register access methods. */
|
|
t->to_fetch_registers = ppc_linux_fetch_inferior_registers;
|
|
t->to_store_registers = ppc_linux_store_inferior_registers;
|
|
|
|
/* Add our watchpoint methods. */
|
|
t->to_can_use_hw_breakpoint = ppc_linux_check_watch_resources;
|
|
t->to_region_ok_for_hw_watchpoint = ppc_linux_region_ok_for_hw_watchpoint;
|
|
t->to_insert_watchpoint = ppc_linux_insert_watchpoint;
|
|
t->to_remove_watchpoint = ppc_linux_remove_watchpoint;
|
|
t->to_stopped_by_watchpoint = ppc_linux_stopped_by_watchpoint;
|
|
t->to_stopped_data_address = ppc_linux_stopped_data_address;
|
|
|
|
/* Register the target. */
|
|
linux_nat_add_target (t);
|
|
}
|