mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 21:44:19 +08:00
6c95b8df7f
Stan Shebs <stan@codesourcery.com> Add base multi-executable/process support to GDB. gdb/ * Makefile.in (SFILES): Add progspace.c. (COMMON_OBS): Add progspace.o. * progspace.h: New. * progspace.c: New. * breakpoint.h (struct bp_target_info) <placed_address_space>: New field. (struct bp_location) <pspace>: New field. (struct breakpoint) <pspace>: New field. (bpstat_stop_status, breakpoint_here_p) (moribund_breakpoint_here_p, breakpoint_inserted_here_p) (regular_breakpoint_inserted_here_p) (software_breakpoint_inserted_here_p, breakpoint_thread_match) (set_default_breakpoint): Adjust prototypes. (remove_breakpoints_pid, breakpoint_program_space_exit): Declare. (insert_single_step_breakpoint, deprecated_insert_raw_breakpoint): Adjust prototypes. * breakpoint.c (executing_startup): Delete. (default_breakpoint_sspace): New. (breakpoint_restore_shadows): Skip if the address space doesn't match. (update_watchpoint): Record the frame's program space in the breakpoint location. (insert_bp_location): Record the address space in target_info. Adjust to pass the symbol space to solib_name_from_address. (breakpoint_program_space_exit): New. (insert_breakpoint_locations): Switch the symbol space and thread when inserting breakpoints. Don't insert breakpoints in a vfork parent waiting for vfork done if we're not attached to the vfork child. (remove_breakpoints_pid): New. (reattach_breakpoints): Switch to a thread of PID. Ignore breakpoints of other symbol spaces. (create_internal_breakpoint): Store the symbol space in the sal. (create_longjmp_master_breakpoint): Iterate over all symbol spaces. (update_breakpoints_after_exec): Ignore breakpoints for other symbol spaces. (remove_breakpoint): Rename to ... (remove_breakpoint_1): ... this. Pass the breakpoints symbol space to solib_name_from_address. (remove_breakpoint): New. (mark_breakpoints_out): Ignore breakpoints from other symbol spaces. (breakpoint_init_inferior): Ditto. (breakpoint_here_p): Add an address space argument and adjust to use breakpoint_address_match. (moribund_breakpoint_here_p): Ditto. (regular_breakpoint_inserted_here_p): Ditto. (breakpoint_inserted_here_p): Ditto. (software_breakpoint_inserted_here_p): Ditto. (breakpoint_thread_match): Ditto. (bpstat_check_location): Ditto. (bpstat_stop_status): Ditto. (print_breakpoint_location): If there's a location to print, switch the current symbol space. (print_one_breakpoint_location): Add `allflag' argument. (print_one_breakpoint): Ditto. Adjust. (do_captured_breakpoint_query): Adjust. (breakpoint_1): Adjust. (breakpoint_has_pc): Also match the symbol space. (describe_other_breakpoints): Add a symbol space argument and adjust. (set_default_breakpoint): Add a symbol space argument. Set default_breakpoint_sspace. (breakpoint_address_match): New. (check_duplicates_for): Add an address space argument, and adjust. (set_raw_breakpoint): Record the symbol space in the location and in the breakpoint. (set_longjmp_breakpoint): Skip longjmp master breakpoints from other symbol spaces. (remove_thread_event_breakpoints, remove_solib_event_breakpoints) (disable_breakpoints_in_shlibs): Skip breakpoints from other symbol spaces. (disable_breakpoints_in_unloaded_shlib): Match symbol spaces. (create_catchpoint): Set the symbol space in the sal. (disable_breakpoints_before_startup): Skip breakpoints from other symbol spaces. Set executing_startup in the current symbol space. (enable_breakpoints_after_startup): Clear executing_startup in the current symbol space. Skip breakpoints from other symbol spaces. (clone_momentary_breakpoint): Also copy the symbol space. (add_location_to_breakpoint): Set the location's symbol space. (bp_loc_is_permanent): Switch thread and symbol space. (create_breakpoint): Adjust. (expand_line_sal_maybe): Expand comment to mention symbol spaces. Switch thread and symbol space when reading memory. (parse_breakpoint_sals): Set the symbol space in the sal. (break_command_really): Ditto. (skip_prologue_sal): Switch and space. (resolve_sal_pc): Ditto. (watch_command_1): Record the symbol space in the sal. (create_ada_exception_breakpoint): Adjust. (clear_command): Adjust. Match symbol spaces. (update_global_location_list): Use breakpoint_address_match. (breakpoint_re_set_one): Switch thread and space. (breakpoint_re_set): Save symbol space. (breakpoint_re_set_thread): Also reset the symbol space. (deprecated_insert_raw_breakpoint): Add an address space argument. Adjust. (insert_single_step_breakpoint): Ditto. (single_step_breakpoint_inserted_here_p): Ditto. (clear_syscall_counts): New. (_initialize_breakpoint): Install it as inferior_exit observer. * exec.h: Include "progspace.h". (exec_bfd, exec_bfd_mtime): New defines. (exec_close): Declare. * exec.c: Include "gdbthread.h" and "progspace.h". (exec_bfd, exec_bfd_mtime, current_target_sections_1): Delete. (using_exec_ops): New. (exec_close_1): Rename to exec_close, and make public. (exec_close): Rename to exec_close_1, and adjust all callers. Add description. Remove target sections and close executables from all program spaces. (exec_file_attach): Add comment. (add_target_sections): Check on `using_exec_ops' to check if the target should be pushed. (remove_target_sections): Only unpush the target if there are no more target sections in any symbol space. * gdbcore.h: Include "exec.h". (exec_bfd, exec_bfd_mtime): Remove declarations. * frame.h (get_frame_program_space, get_frame_address_space) (frame_unwind_program_space): Declare. * frame.c (struct frame_info) <pspace, aspace>: New fields. (create_sentinel_frame): Add program space argument. Set the pspace and aspace fields of the frame object. (get_current_frame, create_new_frame): Adjust. (get_frame_program_space): New. (frame_unwind_program_space): New. (get_frame_address_space): New. * stack.c (print_frame_info): Adjust. (print_frame): Use the frame's program space. * gdbthread.h (any_live_thread_of_process): Declare. * thread.c (any_live_thread_of_process): New. (switch_to_thread): Switch the program space as well. (restore_selected_frame): Don't warn if trying to restore frame level 0. * inferior.h: Include "progspace.h". (detach_fork): Declare. (struct inferior) <removable, aspace, pspace> <vfork_parent, vfork_child, pending_detach> <waiting_for_vfork_done>: New fields. <terminal_info>: Remove field. <data, num_data>: New fields. (register_inferior_data, register_inferior_data_with_cleanup) (clear_inferior_data, set_inferior_data, inferior_data): Declare. (exit_inferior, exit_inferior_silent, exit_inferior_num_silent) (inferior_appeared): Declare. (find_inferior_pid): Typo. (find_inferior_id, find_inferior_for_program_space): Declare. (set_current_inferior, save_current_inferior, prune_inferiors) (number_of_inferiors): Declare. (inferior_list): Declare. * inferior.c: Include "gdbcore.h" and "symfile.h". (inferior_list): Make public. (delete_inferior_1): Always delete thread silently. (find_inferior_id): Make public. (current_inferior_): New. (current_inferior): Use it. (set_current_inferior): New. (restore_inferior): New. (save_current_inferior): New. (free_inferior): Free the per-inferior data. (add_inferior_silent): Allocate per-inferior data. Call inferior_appeared. (delete_threads_of_inferior): New. (delete_inferior_1): Adjust interface to take an inferior pointer. (delete_inferior): Adjust. (delete_inferior_silent): Adjust. (exit_inferior_1): New. (exit_inferior): New. (exit_inferior_silent): New. (exit_inferior_num_silent): New. (detach_inferior): Adjust. (inferior_appeared): New. (discard_all_inferiors): Adjust. (find_inferior_id): Make public. Assert pid is not zero. (find_inferior_for_program_space): New. (have_inferiors): Check if we have any inferior with pid not zero. (have_live_inferiors): Go over all pushed targets looking for process_stratum. (prune_inferiors): New. (number_of_inferiors): New. (print_inferior): Add executable column. Print vfork parent/child relationships. (inferior_command): Adjust to cope with not running inferiors. (remove_inferior_command): New. (add_inferior_command): New. (clone_inferior_command): New. (struct inferior_data): New. (struct inferior_data_registration): New. (struct inferior_data_registry): New. (inferior_data_registry): New. (register_inferior_data_with_cleanup): New. (register_inferior_data): New. (inferior_alloc_data): New. (inferior_free_data): New. (clear_inferior_data): New. (set_inferior_data): New. (inferior_data): New. (initialize_inferiors): New. (_initialize_inferiors): Register "add-inferior", "remove-inferior" and "clone-inferior" commands. * objfiles.h: Include "progspace.h". (struct objfile) <pspace>: New field. (symfile_objfile, object_files): Don't declare. (ALL_PSPACE_OBJFILES): New. (ALL_PSPACE_OBJFILES_SAFE): New. (ALL_OBJFILES, ALL_OBJFILES_SAFE): Adjust. (ALL_PSPACE_SYMTABS): New. (ALL_PRIMARY_SYMTABS): Adjust. (ALL_PSPACE_PRIMARY_SYMTABS): New. (ALL_PSYMTABS): Adjust. (ALL_PSPACE_PSYMTABS): New. * objfiles.c (object_files, symfile_objfile): Delete. (struct objfile_sspace_info): New. (objfiles_pspace_data): New. (objfiles_pspace_data_cleanup): New. (get_objfile_pspace_data): New. (objfiles_changed_p): Delete. (allocate_objfile): Set the objfile's program space. Adjust to reference objfiles_changed_p in pspace data. (free_objfile): Adjust to reference objfiles_changed_p in pspace data. (objfile_relocate): Ditto. (update_section_map): Add pspace argument. Adjust to iterate over objfiles in the passed in pspace. (find_pc_section): Delete sections and num_sections statics. Adjust to refer to program space's objfiles_changed_p. Adjust to refer to sections and num_sections store in the objfile's pspace data. (objfiles_changed): Adjust to reference objfiles_changed_p in pspace data. (_initialize_objfiles): New. * linespec.c (decode_all_digits, decode_dollar): Set the sal's program space. * source.c (current_source_pspace): New. (get_current_source_symtab_and_line): Set the sal's program space. (set_current_source_symtab_and_line): Set current_source_pspace. (select_source_symtab): Ditto. Use ALL_OBJFILES. (forget_cached_source_info): Iterate over all program spaces. * symfile.c (clear_symtab_users): Adjust. * symmisc.c (print_symbol_bcache_statistics): Iterate over all program spaces. (print_objfile_statistics): Ditto. (maintenance_print_msymbols): Ditto. (maintenance_print_objfiles): Ditto. (maintenance_info_symtabs): Ditto. (maintenance_info_psymtabs): Ditto. * symtab.h (SYMTAB_PSPACE): New. (struct symtab_and_line) <pspace>: New field. * symtab.c (init_sal): Clear the sal's program space. (find_pc_sect_symtab): Set the sal's program space. Switch thread and space. (append_expanded_sal): Add program space argument. Iterate over all program spaces. (expand_line_sal): Iterate over all program spaces. Switch program space. * target.h (enum target_waitkind) <TARGET_WAITKIND_VFORK_DONE>: New. (struct target_ops) <to_thread_address_space>: New field. (target_thread_address_space): Define. * target.c (target_detach): Only remove breakpoints from the inferior we're detaching. (target_thread_address_space): New. * defs.h (initialize_progspace): Declare. * top.c (gdb_init): Call it. * solist.h (struct so_list) <sspace>: New field. * solib.h (struct program_space): Forward declare. (solib_name_from_address): Adjust prototype. * solib.c (so_list_head): Replace with a macro referencing the program space. (update_solib_list): Set the so's program space. (solib_name_from_address): Add a program space argument and adjust. * solib-svr4.c (struct svr4_info) <pid>: Delete field. <interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low> <interp_plt_sect_high>: New fields. (svr4_info_p, svr4_info): Delete. (solib_svr4_sspace_data): New. (get_svr4_info): Rewrite. (svr4_sspace_data_cleanup): New. (open_symbol_file_object): Adjust. (svr4_default_sos): Adjust. (svr4_fetch_objfile_link_map): Adjust. (interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low) (interp_plt_sect_high): Delete. (svr4_in_dynsym_resolve_code): Adjust. (enable_break): Adjust. (svr4_clear_solib): Revert bit that removed the svr4_info here, and reinstate clearing debug_base, debug_loader_offset_p, debug_loader_offset and debug_loader_name. (_initialize_svr4_solib): Register solib_svr4_pspace_data. Don't install an inferior_exit observer anymore. * printcmd.c (struct display) <pspace>: New field. (display_command): Set the display's sspace. (do_one_display): Match the display's sspace. (display_uses_solib_p): Ditto. * linux-fork.c (detach_fork): Moved to infrun.c. (_initialize_linux_fork): Moved "detach-on-fork" command to infrun.c. * infrun.c (detach_fork): Moved from linux-fork.c. (proceed_after_vfork_done): New. (handle_vfork_child_exec_or_exit): New. (follow_exec_mode_replace, follow_exec_mode_keep) (follow_exec_mode_names, follow_exec_mode_string) (show_follow_exec_mode_string): New. (follow_exec): New. Reinstate the mark_breakpoints_out call. Remove shared libraries before attaching new executable. If user wants to keep the inferior, keep it. (displaced_step_fixup): Adjust to pass an address space to the breakpoints module. (resume): Ditto. (clear_proceed_status): In all-stop mode, always clear the proceed status of all threads. (prepare_to_proceed): Adjust to pass an address space to the breakpoints module. (proceed): Ditto. (adjust_pc_after_break): Ditto. (handle_inferior_event): When handling a process exit, switch the program space to the inferior's that had exited. Call handle_vfork_child_exec_or_exit. Adjust to pass an address space to the breakpoints module. In non-stop mode, when following a fork and detach-fork is off, also resume the other branch. Handle TARGET_WAITKIND_VFORK_DONE. Set the program space in sals. (normal_stop): Prune inferiors. (_initialize_infrun): Install the new "follow-exec-mode" command. "detach-on-fork" moved here. * regcache.h (get_regcache_aspace): Declare. * regcache.c (struct regcache) <aspace>: New field. (regcache_xmalloc): Clear the aspace. (get_regcache_aspace): New. (regcache_cpy): Copy the aspace field. (regcache_cpy_no_passthrough): Ditto. (get_thread_regcache): Fetch the thread's address space from the target, and store it in the regcache. * infcall.c (call_function_by_hand): Set the sal's pspace. * arch-utils.c (default_has_shared_address_space): New. * arch-utils.h (default_has_shared_address_space): Declare. * gdbarch.sh (has_shared_address_space): New. * gdbarch.h, gdbarch.c: Regenerate. * linux-tdep.c: Include auxv.h, target.h, elf/common.h. (linux_has_shared_address_space): New. (_initialize_linux_tdep): Declare. * arm-tdep.c (arm_software_single_step): Pass the frame's address space to insert_single_step_breakpoint. * arm-linux-tdep.c (arm_linux_software_single_step): Pass the frame's pspace to breakpoint functions. * cris-tdep.c (crisv32_single_step_through_delay): Ditto. (cris_software_single_step): Ditto. * mips-tdep.c (deal_with_atomic_sequence): Add frame argument. Pass the frame's pspace to breakpoint functions. (mips_software_single_step): Adjust. (mips_single_step_through_delay): Adjust. * rs6000-aix-tdep.c (rs6000_software_single_step): Adjust. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust. * solib-irix.c (enable_break): Adjust to pass the current frame's address space to breakpoint functions. * sparc-tdep.c (sparc_software_single_step): Ditto. * spu-tdep.c (spu_software_single_step): Ditto. * alpha-tdep.c (alpha_software_single_step): Ditto. * record.c (record_wait): Adjust to pass an address space to the breakpoints module. * fork-child.c (fork_inferior): Set the new inferior's program and address spaces. * inf-ptrace.c (inf_ptrace_follow_fork): Copy the parent's program and address spaces. (inf_ptrace_attach): Set the inferior's program and address spaces. * linux-nat.c: Include "solib.h". (linux_child_follow_fork): Manage parent and child's program and address spaces. Clone the parent's program space if necessary. Don't wait for the vfork to be done here. Refuse to resume if following the vfork parent while leaving the child stopped. (resume_callback): Don't resume a vfork parent. (linux_nat_resume): Also check for pending events in the lp->waitstatus field. (linux_handle_extended_wait): Report TARGET_WAITKIND_VFORK_DONE events to the core. (stop_wait_callback): Don't wait for SIGSTOP on vfork parents. (cancel_breakpoint): Adjust. * linux-thread-db.c (thread_db_wait): Don't remove thread event breakpoints here. (thread_db_mourn_inferior): Don't mark breakpoints out here. Remove thread event breakpoints after mourning. * corelow.c: Include progspace.h. (core_open): Set the inferior's program and address spaces. * remote.c (remote_add_inferior): Set the new inferior's program and address spaces. (remote_start_remote): Update address spaces. (extended_remote_create_inferior_1): Don't init the thread list if we already debugging other inferiors. * darwin-nat.c (darwin_attach): Set the new inferior's program and address spaces. * gnu-nat.c (gnu_attach): Ditto. * go32-nat.c (go32_create_inferior): Ditto. * inf-ttrace.c (inf_ttrace_follow_fork, inf_ttrace_attach): Ditto. * monitor.c (monitor_open): Ditto. * nto-procfs.c (procfs_attach, procfs_create_inferior): Ditto. * procfs.c (do_attach): Ditto. * windows-nat.c (do_initial_windows_stuff): Ditto. * inflow.c (inferior_process_group) (terminal_init_inferior_with_pgrp, terminal_inferior, (terminal_ours_1, inflow_inferior_exit, copy_terminal_info) (child_terminal_info, new_tty_postfork, set_sigint_trap): Adjust to use per-inferior data instead of inferior->terminal_info. (inflow_inferior_data): New. (inflow_new_inferior): Delete. (inflow_inferior_data_cleanup): New. (get_inflow_inferior_data): New. * mi/mi-interp.c (mi_new_inferior): Rename to... (mi_inferior_appeared): ... this. (mi_interpreter_init): Adjust. * tui/tui-disasm.c: Include "progspace.h". (tui_set_disassem_content): Pass an address space to breakpoint_here_p. * NEWS: Mention multi-program debugging support. Mention new commands "add-inferior", "clone-inferior", "remove-inferior", "maint info program-spaces", and new option "set follow-exec-mode". 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * observer.texi (new_inferior): Rename to... (inferior_appeared): ... this. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/testsuite/ * gdb.base/foll-vfork.exp: Adjust to spell out "follow-fork". * gdb.base/foll-exec.exp: Adjust to expect a process id before "Executing new program". * gdb.base/foll-fork.exp: Adjust to spell out "follow-fork". * gdb.base/multi-forks.exp: Ditto. Adjust to the inferior being left listed after having been killed. * gdb.base/attach.exp: Adjust to spell out "symbol-file". * gdb.base/maint.exp: Adjust test. * Makefile.in (ALL_SUBDIRS): Add gdb.multi. * gdb.multi/Makefile.in: New. * gdb.multi/base.exp: New. * gdb.multi/goodbye.c: New. * gdb.multi/hangout.c: New. * gdb.multi/hello.c: New. * gdb.multi/bkpt-multi-exec.c: New. * gdb.multi/bkpt-multi-exec.exp: New. * gdb.multi/crashme.c: New. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * gdb.texinfo (Inferiors): Rename node to ... (Inferiors and Programs): ... this. Mention running multiple programs in the same debug session. <info inferiors>: Mention the new 'Executable' column if "info inferiors". Update examples. Document the "add-inferior", "clone-inferior", "remove-inferior" and "maint info program-spaces" commands. (Process): Rename node to... (Forks): ... this. Document "set|show follow-exec-mode".
4110 lines
129 KiB
C
4110 lines
129 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
|
||
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "doublest.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "osabi.h"
|
||
#include "infcall.h"
|
||
#include "sim-regno.h"
|
||
#include "gdb/sim-ppc.h"
|
||
#include "reggroups.h"
|
||
#include "dwarf2-frame.h"
|
||
#include "target-descriptions.h"
|
||
#include "user-regs.h"
|
||
|
||
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
||
#include "coff/internal.h" /* for libcoff.h */
|
||
#include "libcoff.h" /* for xcoff_data */
|
||
#include "coff/xcoff.h"
|
||
#include "libxcoff.h"
|
||
|
||
#include "elf-bfd.h"
|
||
#include "elf/ppc.h"
|
||
|
||
#include "solib-svr4.h"
|
||
#include "ppc-tdep.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "dis-asm.h"
|
||
|
||
#include "trad-frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "frame-base.h"
|
||
|
||
#include "features/rs6000/powerpc-32.c"
|
||
#include "features/rs6000/powerpc-altivec32.c"
|
||
#include "features/rs6000/powerpc-vsx32.c"
|
||
#include "features/rs6000/powerpc-403.c"
|
||
#include "features/rs6000/powerpc-403gc.c"
|
||
#include "features/rs6000/powerpc-405.c"
|
||
#include "features/rs6000/powerpc-505.c"
|
||
#include "features/rs6000/powerpc-601.c"
|
||
#include "features/rs6000/powerpc-602.c"
|
||
#include "features/rs6000/powerpc-603.c"
|
||
#include "features/rs6000/powerpc-604.c"
|
||
#include "features/rs6000/powerpc-64.c"
|
||
#include "features/rs6000/powerpc-altivec64.c"
|
||
#include "features/rs6000/powerpc-vsx64.c"
|
||
#include "features/rs6000/powerpc-7400.c"
|
||
#include "features/rs6000/powerpc-750.c"
|
||
#include "features/rs6000/powerpc-860.c"
|
||
#include "features/rs6000/powerpc-e500.c"
|
||
#include "features/rs6000/rs6000.c"
|
||
|
||
/* Determine if regnum is an SPE pseudo-register. */
|
||
#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_ev0_regnum \
|
||
&& (regnum) < (tdep)->ppc_ev0_regnum + 32)
|
||
|
||
/* Determine if regnum is a decimal float pseudo-register. */
|
||
#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_dl0_regnum \
|
||
&& (regnum) < (tdep)->ppc_dl0_regnum + 16)
|
||
|
||
/* Determine if regnum is a POWER7 VSX register. */
|
||
#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_vsr0_regnum \
|
||
&& (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
|
||
|
||
/* Determine if regnum is a POWER7 Extended FP register. */
|
||
#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
|
||
&& (regnum) >= (tdep)->ppc_efpr0_regnum \
|
||
&& (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
|
||
|
||
/* The list of available "set powerpc ..." and "show powerpc ..."
|
||
commands. */
|
||
static struct cmd_list_element *setpowerpccmdlist = NULL;
|
||
static struct cmd_list_element *showpowerpccmdlist = NULL;
|
||
|
||
static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
|
||
static const char *powerpc_vector_strings[] =
|
||
{
|
||
"auto",
|
||
"generic",
|
||
"altivec",
|
||
"spe",
|
||
NULL
|
||
};
|
||
|
||
/* A variable that can be configured by the user. */
|
||
static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
|
||
static const char *powerpc_vector_abi_string = "auto";
|
||
|
||
/* To be used by skip_prologue. */
|
||
|
||
struct rs6000_framedata
|
||
{
|
||
int offset; /* total size of frame --- the distance
|
||
by which we decrement sp to allocate
|
||
the frame */
|
||
int saved_gpr; /* smallest # of saved gpr */
|
||
unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
|
||
int saved_fpr; /* smallest # of saved fpr */
|
||
int saved_vr; /* smallest # of saved vr */
|
||
int saved_ev; /* smallest # of saved ev */
|
||
int alloca_reg; /* alloca register number (frame ptr) */
|
||
char frameless; /* true if frameless functions. */
|
||
char nosavedpc; /* true if pc not saved. */
|
||
char used_bl; /* true if link register clobbered */
|
||
int gpr_offset; /* offset of saved gprs from prev sp */
|
||
int fpr_offset; /* offset of saved fprs from prev sp */
|
||
int vr_offset; /* offset of saved vrs from prev sp */
|
||
int ev_offset; /* offset of saved evs from prev sp */
|
||
int lr_offset; /* offset of saved lr */
|
||
int lr_register; /* register of saved lr, if trustworthy */
|
||
int cr_offset; /* offset of saved cr */
|
||
int vrsave_offset; /* offset of saved vrsave register */
|
||
};
|
||
|
||
|
||
/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
vsx_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
if (tdep->ppc_vsr0_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vsr0_upper_regnum && regno
|
||
<= tdep->ppc_vsr0_upper_regnum + 31);
|
||
}
|
||
|
||
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
altivec_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
|
||
}
|
||
|
||
|
||
/* Return true if REGNO is an SPE register, false otherwise. */
|
||
int
|
||
spe_register_p (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* Is it a reference to EV0 -- EV31, and do we have those? */
|
||
if (IS_SPE_PSEUDOREG (tdep, regno))
|
||
return 1;
|
||
|
||
/* Is it a reference to one of the raw upper GPR halves? */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||
return 1;
|
||
|
||
/* Is it a reference to the 64-bit accumulator, and do we have that? */
|
||
if (tdep->ppc_acc_regnum >= 0
|
||
&& tdep->ppc_acc_regnum == regno)
|
||
return 1;
|
||
|
||
/* Is it a reference to the SPE floating-point status and control register,
|
||
and do we have that? */
|
||
if (tdep->ppc_spefscr_regnum >= 0
|
||
&& tdep->ppc_spefscr_regnum == regno)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
floating-point registers (f0 --- f31 and fpscr). */
|
||
int
|
||
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_fp0_regnum >= 0
|
||
&& tdep->ppc_fpscr_regnum >= 0);
|
||
}
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
VSX registers (vsr0 --- vsr63). */
|
||
static int
|
||
ppc_vsx_support_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return tdep->ppc_vsr0_regnum >= 0;
|
||
}
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
Altivec registers (vr0 --- vr31, vrsave and vscr). */
|
||
int
|
||
ppc_altivec_support_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_vr0_regnum >= 0
|
||
&& tdep->ppc_vrsave_regnum >= 0);
|
||
}
|
||
|
||
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
|
||
set it to SIM_REGNO.
|
||
|
||
This is a helper function for init_sim_regno_table, constructing
|
||
the table mapping GDB register numbers to sim register numbers; we
|
||
initialize every element in that table to -1 before we start
|
||
filling it in. */
|
||
static void
|
||
set_sim_regno (int *table, int gdb_regno, int sim_regno)
|
||
{
|
||
/* Make sure we don't try to assign any given GDB register a sim
|
||
register number more than once. */
|
||
gdb_assert (table[gdb_regno] == -1);
|
||
table[gdb_regno] = sim_regno;
|
||
}
|
||
|
||
|
||
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
|
||
numbers to simulator register numbers, based on the values placed
|
||
in the ARCH->tdep->ppc_foo_regnum members. */
|
||
static void
|
||
init_sim_regno_table (struct gdbarch *arch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int total_regs = gdbarch_num_regs (arch);
|
||
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
|
||
int i;
|
||
static const char *const segment_regs[] = {
|
||
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
||
};
|
||
|
||
/* Presume that all registers not explicitly mentioned below are
|
||
unavailable from the sim. */
|
||
for (i = 0; i < total_regs; i++)
|
||
sim_regno[i] = -1;
|
||
|
||
/* General-purpose registers. */
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
|
||
|
||
/* Floating-point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (i = 0; i < ppc_num_fprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_fp0_regnum + i,
|
||
sim_ppc_f0_regnum + i);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
|
||
|
||
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
|
||
|
||
/* Segment registers. */
|
||
for (i = 0; i < ppc_num_srs; i++)
|
||
{
|
||
int gdb_regno;
|
||
|
||
gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
|
||
if (gdb_regno >= 0)
|
||
set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
|
||
}
|
||
|
||
/* Altivec registers. */
|
||
if (tdep->ppc_vr0_regnum >= 0)
|
||
{
|
||
for (i = 0; i < ppc_num_vrs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + i,
|
||
sim_ppc_vr0_regnum + i);
|
||
|
||
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
|
||
we can treat this more like the other cases. */
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + ppc_num_vrs,
|
||
sim_ppc_vscr_regnum);
|
||
}
|
||
/* vsave is a special-purpose register, so the code below handles it. */
|
||
|
||
/* SPE APU (E500) registers. */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_ev0_upper_regnum + i,
|
||
sim_ppc_rh0_regnum + i);
|
||
if (tdep->ppc_acc_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
|
||
/* spefscr is a special-purpose register, so the code below handles it. */
|
||
|
||
#ifdef WITH_SIM
|
||
/* Now handle all special-purpose registers. Verify that they
|
||
haven't mistakenly been assigned numbers by any of the above
|
||
code. */
|
||
for (i = 0; i < sim_ppc_num_sprs; i++)
|
||
{
|
||
const char *spr_name = sim_spr_register_name (i);
|
||
int gdb_regno = -1;
|
||
|
||
if (spr_name != NULL)
|
||
gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
|
||
|
||
if (gdb_regno != -1)
|
||
set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
|
||
}
|
||
#endif
|
||
|
||
/* Drop the initialized array into place. */
|
||
tdep->sim_regno = sim_regno;
|
||
}
|
||
|
||
|
||
/* Given a GDB register number REG, return the corresponding SIM
|
||
register number. */
|
||
static int
|
||
rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int sim_regno;
|
||
|
||
if (tdep->sim_regno == NULL)
|
||
init_sim_regno_table (gdbarch);
|
||
|
||
gdb_assert (0 <= reg
|
||
&& reg <= gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch));
|
||
sim_regno = tdep->sim_regno[reg];
|
||
|
||
if (sim_regno >= 0)
|
||
return sim_regno;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
|
||
|
||
/* Register set support functions. */
|
||
|
||
/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
|
||
Write the register to REGCACHE. */
|
||
|
||
void
|
||
ppc_supply_reg (struct regcache *regcache, int regnum,
|
||
const gdb_byte *regs, size_t offset, int regsize)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
{
|
||
if (regsize > 4)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
int gdb_regsize = register_size (gdbarch, regnum);
|
||
if (gdb_regsize < regsize
|
||
&& gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
offset += regsize - gdb_regsize;
|
||
}
|
||
regcache_raw_supply (regcache, regnum, regs + offset);
|
||
}
|
||
}
|
||
|
||
/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
|
||
in a field REGSIZE wide. Zero pad as necessary. */
|
||
|
||
void
|
||
ppc_collect_reg (const struct regcache *regcache, int regnum,
|
||
gdb_byte *regs, size_t offset, int regsize)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
{
|
||
if (regsize > 4)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
int gdb_regsize = register_size (gdbarch, regnum);
|
||
if (gdb_regsize < regsize)
|
||
{
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
memset (regs + offset, 0, regsize - gdb_regsize);
|
||
offset += regsize - gdb_regsize;
|
||
}
|
||
else
|
||
memset (regs + offset + regsize - gdb_regsize, 0,
|
||
regsize - gdb_regsize);
|
||
}
|
||
}
|
||
regcache_raw_collect (regcache, regnum, regs + offset);
|
||
}
|
||
}
|
||
|
||
static int
|
||
ppc_greg_offset (struct gdbarch *gdbarch,
|
||
struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum,
|
||
int *regsize)
|
||
{
|
||
*regsize = offsets->gpr_size;
|
||
if (regnum >= tdep->ppc_gp0_regnum
|
||
&& regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
||
return (offsets->r0_offset
|
||
+ (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
|
||
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
return offsets->pc_offset;
|
||
|
||
if (regnum == tdep->ppc_ps_regnum)
|
||
return offsets->ps_offset;
|
||
|
||
if (regnum == tdep->ppc_lr_regnum)
|
||
return offsets->lr_offset;
|
||
|
||
if (regnum == tdep->ppc_ctr_regnum)
|
||
return offsets->ctr_offset;
|
||
|
||
*regsize = offsets->xr_size;
|
||
if (regnum == tdep->ppc_cr_regnum)
|
||
return offsets->cr_offset;
|
||
|
||
if (regnum == tdep->ppc_xer_regnum)
|
||
return offsets->xer_offset;
|
||
|
||
if (regnum == tdep->ppc_mq_regnum)
|
||
return offsets->mq_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static int
|
||
ppc_fpreg_offset (struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum)
|
||
{
|
||
if (regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
||
return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
|
||
|
||
if (regnum == tdep->ppc_fpscr_regnum)
|
||
return offsets->fpscr_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
static int
|
||
ppc_vrreg_offset (struct gdbarch_tdep *tdep,
|
||
const struct ppc_reg_offsets *offsets,
|
||
int regnum)
|
||
{
|
||
if (regnum >= tdep->ppc_vr0_regnum
|
||
&& regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
|
||
return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
|
||
|
||
if (regnum == tdep->ppc_vrsave_regnum - 1)
|
||
return offsets->vscr_offset;
|
||
|
||
if (regnum == tdep->ppc_vrsave_regnum)
|
||
return offsets->vrsave_offset;
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Supply register REGNUM in the general-purpose register set REGSET
|
||
from the buffer specified by GREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int regsize;
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
int gpr_size = offsets->gpr_size;
|
||
|
||
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += gpr_size)
|
||
ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
|
||
|
||
ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
||
gregs, offsets->pc_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset, gpr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset, offsets->xr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->xer_offset, offsets->xr_size);
|
||
ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
|
||
gregs, offsets->mq_offset, offsets->xr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
||
ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
|
||
}
|
||
|
||
/* Supply register REGNUM in the floating-point register set REGSET
|
||
from the buffer specified by FPREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_floating_point_unit_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
||
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
ppc_supply_reg (regcache, i, fpregs, offset, 8);
|
||
|
||
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
||
ppc_supply_reg (regcache, regnum, fpregs, offset,
|
||
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
||
}
|
||
|
||
/* Supply register REGNUM in the VSX register set REGSET
|
||
from the buffer specified by VSXREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *vsxregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
if (!ppc_vsx_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vsr0_upper_regnum;
|
||
i < tdep->ppc_vsr0_upper_regnum + 32;
|
||
i++)
|
||
ppc_supply_reg (regcache, i, vsxregs, 0, 8);
|
||
|
||
return;
|
||
}
|
||
else
|
||
ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
|
||
}
|
||
|
||
/* Supply register REGNUM in the Altivec register set REGSET
|
||
from the buffer specified by VRREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *vrregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_altivec_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
||
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
||
i++, offset += 16)
|
||
ppc_supply_reg (regcache, i, vrregs, offset, 16);
|
||
|
||
ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
||
vrregs, offsets->vscr_offset, 4);
|
||
|
||
ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
|
||
vrregs, offsets->vrsave_offset, 4);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
||
if (regnum != tdep->ppc_vrsave_regnum
|
||
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
||
ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
|
||
else
|
||
ppc_supply_reg (regcache, regnum,
|
||
vrregs, offset, 4);
|
||
}
|
||
|
||
/* Collect register REGNUM in the general-purpose register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_gregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int regsize;
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
int gpr_size = offsets->gpr_size;
|
||
|
||
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += gpr_size)
|
||
ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
|
||
|
||
ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
|
||
gregs, offsets->pc_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset, gpr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset, offsets->xr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->xer_offset, offsets->xr_size);
|
||
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
|
||
gregs, offsets->mq_offset, offsets->xr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size);
|
||
ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
|
||
}
|
||
|
||
/* Collect register REGNUM in the floating-point register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
FPREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_floating_point_unit_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
|
||
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
ppc_collect_reg (regcache, i, fpregs, offset, 8);
|
||
|
||
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset, offsets->fpscr_size);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_fpreg_offset (tdep, offsets, regnum);
|
||
ppc_collect_reg (regcache, regnum, fpregs, offset,
|
||
regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
|
||
}
|
||
|
||
/* Collect register REGNUM in the VSX register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
VSXREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_vsxregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *vsxregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
if (!ppc_vsx_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vsr0_upper_regnum;
|
||
i < tdep->ppc_vsr0_upper_regnum + 32;
|
||
i++)
|
||
ppc_collect_reg (regcache, i, vsxregs, 0, 8);
|
||
|
||
return;
|
||
}
|
||
else
|
||
ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
|
||
}
|
||
|
||
|
||
/* Collect register REGNUM in the Altivec register set
|
||
REGSET from register cache REGCACHE into the buffer specified by
|
||
VRREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_vrregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *vrregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep;
|
||
const struct ppc_reg_offsets *offsets;
|
||
size_t offset;
|
||
|
||
if (!ppc_altivec_support_p (gdbarch))
|
||
return;
|
||
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
offsets = regset->descr;
|
||
if (regnum == -1)
|
||
{
|
||
int i;
|
||
|
||
for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
|
||
i < tdep->ppc_vr0_regnum + ppc_num_vrs;
|
||
i++, offset += 16)
|
||
ppc_collect_reg (regcache, i, vrregs, offset, 16);
|
||
|
||
ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
|
||
vrregs, offsets->vscr_offset, 4);
|
||
|
||
ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
|
||
vrregs, offsets->vrsave_offset, 4);
|
||
return;
|
||
}
|
||
|
||
offset = ppc_vrreg_offset (tdep, offsets, regnum);
|
||
if (regnum != tdep->ppc_vrsave_regnum
|
||
&& regnum != tdep->ppc_vrsave_regnum - 1)
|
||
ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
|
||
else
|
||
ppc_collect_reg (regcache, regnum,
|
||
vrregs, offset, 4);
|
||
}
|
||
|
||
|
||
static int
|
||
insn_changes_sp_or_jumps (unsigned long insn)
|
||
{
|
||
int opcode = (insn >> 26) & 0x03f;
|
||
int sd = (insn >> 21) & 0x01f;
|
||
int a = (insn >> 16) & 0x01f;
|
||
int subcode = (insn >> 1) & 0x3ff;
|
||
|
||
/* Changes the stack pointer. */
|
||
|
||
/* NOTE: There are many ways to change the value of a given register.
|
||
The ways below are those used when the register is R1, the SP,
|
||
in a funtion's epilogue. */
|
||
|
||
if (opcode == 31 && subcode == 444 && a == 1)
|
||
return 1; /* mr R1,Rn */
|
||
if (opcode == 14 && sd == 1)
|
||
return 1; /* addi R1,Rn,simm */
|
||
if (opcode == 58 && sd == 1)
|
||
return 1; /* ld R1,ds(Rn) */
|
||
|
||
/* Transfers control. */
|
||
|
||
if (opcode == 18)
|
||
return 1; /* b */
|
||
if (opcode == 16)
|
||
return 1; /* bc */
|
||
if (opcode == 19 && subcode == 16)
|
||
return 1; /* bclr */
|
||
if (opcode == 19 && subcode == 528)
|
||
return 1; /* bcctr */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if we are in the function's epilogue, i.e. after the
|
||
instruction that destroyed the function's stack frame.
|
||
|
||
1) scan forward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer
|
||
or transfers control (except a return), execution is not in
|
||
an epilogue, return.
|
||
b) Stop scanning if you find a return instruction or reach the
|
||
end of the function or reach the hard limit for the size of
|
||
an epilogue.
|
||
2) scan backward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer,
|
||
execution *is* in an epilogue, return.
|
||
b) Stop scanning if you reach an instruction that transfers
|
||
control or the beginning of the function or reach the hard
|
||
limit for the size of an epilogue. */
|
||
|
||
static int
|
||
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
bfd_byte insn_buf[PPC_INSN_SIZE];
|
||
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
||
unsigned long insn;
|
||
struct frame_info *curfrm;
|
||
|
||
/* Find the search limits based on function boundaries and hard limit. */
|
||
|
||
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
||
return 0;
|
||
|
||
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_start < func_start) epilogue_start = func_start;
|
||
|
||
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_end > func_end) epilogue_end = func_end;
|
||
|
||
curfrm = get_current_frame ();
|
||
|
||
/* Scan forward until next 'blr'. */
|
||
|
||
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
||
if (insn == 0x4e800020)
|
||
break;
|
||
/* Assume a bctr is a tail call unless it points strictly within
|
||
this function. */
|
||
if (insn == 0x4e800420)
|
||
{
|
||
CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
|
||
tdep->ppc_ctr_regnum);
|
||
if (ctr > func_start && ctr < func_end)
|
||
return 0;
|
||
else
|
||
break;
|
||
}
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 0;
|
||
}
|
||
|
||
/* Scan backward until adjustment to stack pointer (R1). */
|
||
|
||
for (scan_pc = pc - PPC_INSN_SIZE;
|
||
scan_pc >= epilogue_start;
|
||
scan_pc -= PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Get the ith function argument for the current function. */
|
||
static CORE_ADDR
|
||
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||
struct type *type)
|
||
{
|
||
return get_frame_register_unsigned (frame, 3 + argi);
|
||
}
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
const static unsigned char *
|
||
rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
|
||
int *bp_size)
|
||
{
|
||
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
|
||
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
|
||
*bp_size = 4;
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
/* Instruction masks for displaced stepping. */
|
||
#define BRANCH_MASK 0xfc000000
|
||
#define BP_MASK 0xFC0007FE
|
||
#define B_INSN 0x48000000
|
||
#define BC_INSN 0x40000000
|
||
#define BXL_INSN 0x4c000000
|
||
#define BP_INSN 0x7C000008
|
||
|
||
/* Fix up the state of registers and memory after having single-stepped
|
||
a displaced instruction. */
|
||
static void
|
||
ppc_displaced_step_fixup (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure,
|
||
CORE_ADDR from, CORE_ADDR to,
|
||
struct regcache *regs)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
/* Since we use simple_displaced_step_copy_insn, our closure is a
|
||
copy of the instruction. */
|
||
ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
|
||
PPC_INSN_SIZE, byte_order);
|
||
ULONGEST opcode = 0;
|
||
/* Offset for non PC-relative instructions. */
|
||
LONGEST offset = PPC_INSN_SIZE;
|
||
|
||
opcode = insn & BRANCH_MASK;
|
||
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: (ppc) fixup (%s, %s)\n",
|
||
paddress (gdbarch, from), paddress (gdbarch, to));
|
||
|
||
|
||
/* Handle PC-relative branch instructions. */
|
||
if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
|
||
{
|
||
ULONGEST current_pc;
|
||
|
||
/* Read the current PC value after the instruction has been executed
|
||
in a displaced location. Calculate the offset to be applied to the
|
||
original PC value before the displaced stepping. */
|
||
regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
¤t_pc);
|
||
offset = current_pc - to;
|
||
|
||
if (opcode != BXL_INSN)
|
||
{
|
||
/* Check for AA bit indicating whether this is an absolute
|
||
addressing or PC-relative (1: absolute, 0: relative). */
|
||
if (!(insn & 0x2))
|
||
{
|
||
/* PC-relative addressing is being used in the branch. */
|
||
if (debug_displaced)
|
||
fprintf_unfiltered
|
||
(gdb_stdlog,
|
||
"displaced: (ppc) branch instruction: %s\n"
|
||
"displaced: (ppc) adjusted PC from %s to %s\n",
|
||
paddress (gdbarch, insn), paddress (gdbarch, current_pc),
|
||
paddress (gdbarch, from + offset));
|
||
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
from + offset);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* If we're here, it means we have a branch to LR or CTR. If the
|
||
branch was taken, the offset is probably greater than 4 (the next
|
||
instruction), so it's safe to assume that an offset of 4 means we
|
||
did not take the branch. */
|
||
if (offset == PPC_INSN_SIZE)
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
from + PPC_INSN_SIZE);
|
||
}
|
||
|
||
/* Check for LK bit indicating whether we should set the link
|
||
register to point to the next instruction
|
||
(1: Set, 0: Don't set). */
|
||
if (insn & 0x1)
|
||
{
|
||
/* Link register needs to be set to the next instruction's PC. */
|
||
regcache_cooked_write_unsigned (regs,
|
||
gdbarch_tdep (gdbarch)->ppc_lr_regnum,
|
||
from + PPC_INSN_SIZE);
|
||
if (debug_displaced)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"displaced: (ppc) adjusted LR to %s\n",
|
||
paddress (gdbarch, from + PPC_INSN_SIZE));
|
||
|
||
}
|
||
}
|
||
/* Check for breakpoints in the inferior. If we've found one, place the PC
|
||
right at the breakpoint instruction. */
|
||
else if ((insn & BP_MASK) == BP_INSN)
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
|
||
else
|
||
/* Handle any other instructions that do not fit in the categories above. */
|
||
regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
|
||
from + offset);
|
||
}
|
||
|
||
/* Always use hardware single-stepping to execute the
|
||
displaced instruction. */
|
||
static int
|
||
ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
|
||
struct displaced_step_closure *closure)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Instruction masks used during single-stepping of atomic sequences. */
|
||
#define LWARX_MASK 0xfc0007fe
|
||
#define LWARX_INSTRUCTION 0x7c000028
|
||
#define LDARX_INSTRUCTION 0x7c0000A8
|
||
#define STWCX_MASK 0xfc0007ff
|
||
#define STWCX_INSTRUCTION 0x7c00012d
|
||
#define STDCX_INSTRUCTION 0x7c0001ad
|
||
|
||
/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
|
||
instruction and ending with a STWCX/STDCX instruction. If such a sequence
|
||
is found, attempt to step through it. A breakpoint is placed at the end of
|
||
the sequence. */
|
||
|
||
int
|
||
ppc_deal_with_atomic_sequence (struct frame_info *frame)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct address_space *aspace = get_frame_address_space (frame);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
CORE_ADDR pc = get_frame_pc (frame);
|
||
CORE_ADDR breaks[2] = {-1, -1};
|
||
CORE_ADDR loc = pc;
|
||
CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
|
||
int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
int insn_count;
|
||
int index;
|
||
int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
|
||
const int atomic_sequence_length = 16; /* Instruction sequence length. */
|
||
int opcode; /* Branch instruction's OPcode. */
|
||
int bc_insn_count = 0; /* Conditional branch instruction count. */
|
||
|
||
/* Assume all atomic sequences start with a lwarx/ldarx instruction. */
|
||
if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
|
||
&& (insn & LWARX_MASK) != LDARX_INSTRUCTION)
|
||
return 0;
|
||
|
||
/* Assume that no atomic sequence is longer than "atomic_sequence_length"
|
||
instructions. */
|
||
for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
|
||
{
|
||
loc += PPC_INSN_SIZE;
|
||
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
|
||
/* Assume that there is at most one conditional branch in the atomic
|
||
sequence. If a conditional branch is found, put a breakpoint in
|
||
its destination address. */
|
||
if ((insn & BRANCH_MASK) == BC_INSN)
|
||
{
|
||
int immediate = ((insn & ~3) << 16) >> 16;
|
||
int absolute = ((insn >> 1) & 1);
|
||
|
||
if (bc_insn_count >= 1)
|
||
return 0; /* More than one conditional branch found, fallback
|
||
to the standard single-step code. */
|
||
|
||
if (absolute)
|
||
breaks[1] = immediate;
|
||
else
|
||
breaks[1] = pc + immediate;
|
||
|
||
bc_insn_count++;
|
||
last_breakpoint++;
|
||
}
|
||
|
||
if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
|
||
|| (insn & STWCX_MASK) == STDCX_INSTRUCTION)
|
||
break;
|
||
}
|
||
|
||
/* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
|
||
if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
|
||
&& (insn & STWCX_MASK) != STDCX_INSTRUCTION)
|
||
return 0;
|
||
|
||
closing_insn = loc;
|
||
loc += PPC_INSN_SIZE;
|
||
insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
|
||
|
||
/* Insert a breakpoint right after the end of the atomic sequence. */
|
||
breaks[0] = loc;
|
||
|
||
/* Check for duplicated breakpoints. Check also for a breakpoint
|
||
placed (branch instruction's destination) at the stwcx/stdcx
|
||
instruction, this resets the reservation and take us back to the
|
||
lwarx/ldarx instruction at the beginning of the atomic sequence. */
|
||
if (last_breakpoint && ((breaks[1] == breaks[0])
|
||
|| (breaks[1] == closing_insn)))
|
||
last_breakpoint = 0;
|
||
|
||
/* Effectively inserts the breakpoints. */
|
||
for (index = 0; index <= last_breakpoint; index++)
|
||
insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
/* Limit the number of skipped non-prologue instructions, as the examining
|
||
of the prologue is expensive. */
|
||
static int max_skip_non_prologue_insns = 10;
|
||
|
||
/* Return nonzero if the given instruction OP can be part of the prologue
|
||
of a function and saves a parameter on the stack. FRAMEP should be
|
||
set if one of the previous instructions in the function has set the
|
||
Frame Pointer. */
|
||
|
||
static int
|
||
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
|
||
{
|
||
/* Move parameters from argument registers to temporary register. */
|
||
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
|
||
{
|
||
/* Rx must be scratch register r0. */
|
||
const int rx_regno = (op >> 16) & 31;
|
||
/* Ry: Only r3 - r10 are used for parameter passing. */
|
||
const int ry_regno = GET_SRC_REG (op);
|
||
|
||
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
|
||
{
|
||
*r0_contains_arg = 1;
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack. */
|
||
|
||
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
|
||
{
|
||
/* Rx: Only r3 - r10 are used for parameter passing. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return (rx_regno >= 3 && rx_regno <= 10);
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack via the Frame Pointer. */
|
||
|
||
if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
|
||
{
|
||
/* Rx: Usually, only r3 - r10 are used for parameter passing.
|
||
However, the compiler sometimes uses r0 to hold an argument. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return ((rx_regno >= 3 && rx_regno <= 10)
|
||
|| (rx_regno == 0 && *r0_contains_arg));
|
||
}
|
||
|
||
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
/* Not an insn that saves a parameter on stack. */
|
||
return 0;
|
||
}
|
||
|
||
/* Assuming that INSN is a "bl" instruction located at PC, return
|
||
nonzero if the destination of the branch is a "blrl" instruction.
|
||
|
||
This sequence is sometimes found in certain function prologues.
|
||
It allows the function to load the LR register with a value that
|
||
they can use to access PIC data using PC-relative offsets. */
|
||
|
||
static int
|
||
bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int dest_insn;
|
||
|
||
absolute = (int) ((insn >> 1) & 1);
|
||
immediate = ((insn & ~3) << 6) >> 6;
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
|
||
dest_insn = read_memory_integer (dest, 4, byte_order);
|
||
if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Masks for decoding a branch-and-link (bl) instruction.
|
||
|
||
BL_MASK and BL_INSTRUCTION are used in combination with each other.
|
||
The former is anded with the opcode in question; if the result of
|
||
this masking operation is equal to BL_INSTRUCTION, then the opcode in
|
||
question is a ``bl'' instruction.
|
||
|
||
BL_DISPLACMENT_MASK is anded with the opcode in order to extract
|
||
the branch displacement. */
|
||
|
||
#define BL_MASK 0xfc000001
|
||
#define BL_INSTRUCTION 0x48000001
|
||
#define BL_DISPLACEMENT_MASK 0x03fffffc
|
||
|
||
static unsigned long
|
||
rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
return 0;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
return op;
|
||
}
|
||
|
||
/* GCC generates several well-known sequences of instructions at the begining
|
||
of each function prologue when compiling with -fstack-check. If one of
|
||
such sequences starts at START_PC, then return the address of the
|
||
instruction immediately past this sequence. Otherwise, return START_PC. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
|
||
{
|
||
CORE_ADDR pc = start_pc;
|
||
unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
|
||
|
||
/* First possible sequence: A small number of probes.
|
||
stw 0, -<some immediate>(1)
|
||
[repeat this instruction any (small) number of times]
|
||
*/
|
||
|
||
if ((op & 0xffff0000) == 0x90010000)
|
||
{
|
||
while ((op & 0xffff0000) == 0x90010000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/* Second sequence: A probing loop.
|
||
addi 12,1,-<some immediate>
|
||
lis 0,-<some immediate>
|
||
[possibly ori 0,0,<some immediate>]
|
||
add 0,12,0
|
||
cmpw 0,12,0
|
||
beq 0,<disp>
|
||
addi 12,12,-<some immediate>
|
||
stw 0,0(12)
|
||
b <disp>
|
||
[possibly one last probe: stw 0,<some immediate>(12)]
|
||
*/
|
||
|
||
while (1)
|
||
{
|
||
/* addi 12,1,-<some immediate> */
|
||
if ((op & 0xffff0000) != 0x39810000)
|
||
break;
|
||
|
||
/* lis 0,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x3c000000)
|
||
break;
|
||
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
/* [possibly ori 0,0,<some immediate>] */
|
||
if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
/* add 0,12,0 */
|
||
if (op != 0x7c0c0214)
|
||
break;
|
||
|
||
/* cmpw 0,12,0 */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if (op != 0x7c0c0000)
|
||
break;
|
||
|
||
/* beq 0,<disp> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xff9f0001) != 0x41820000)
|
||
break;
|
||
|
||
/* addi 12,12,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x398c0000)
|
||
break;
|
||
|
||
/* stw 0,0(12) */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if (op != 0x900c0000)
|
||
break;
|
||
|
||
/* b <disp> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xfc000001) != 0x48000000)
|
||
break;
|
||
|
||
/* [possibly one last probe: stw 0,<some immediate>(12)] */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) == 0x900c0000)
|
||
{
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
}
|
||
|
||
/* We found a valid stack-check sequence, return the new PC. */
|
||
return pc;
|
||
}
|
||
|
||
/* Third sequence: No probe; instead, a comparizon between the stack size
|
||
limit (saved in a run-time global variable) and the current stack
|
||
pointer:
|
||
|
||
addi 0,1,-<some immediate>
|
||
lis 12,__gnat_stack_limit@ha
|
||
lwz 12,__gnat_stack_limit@l(12)
|
||
twllt 0,12
|
||
|
||
or, with a small variant in the case of a bigger stack frame:
|
||
addis 0,1,<some immediate>
|
||
addic 0,0,-<some immediate>
|
||
lis 12,__gnat_stack_limit@ha
|
||
lwz 12,__gnat_stack_limit@l(12)
|
||
twllt 0,12
|
||
*/
|
||
while (1)
|
||
{
|
||
/* addi 0,1,-<some immediate> */
|
||
if ((op & 0xffff0000) != 0x38010000)
|
||
{
|
||
/* small stack frame variant not recognized; try the
|
||
big stack frame variant: */
|
||
|
||
/* addis 0,1,<some immediate> */
|
||
if ((op & 0xffff0000) != 0x3c010000)
|
||
break;
|
||
|
||
/* addic 0,0,-<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x30000000)
|
||
break;
|
||
}
|
||
|
||
/* lis 12,<some immediate> */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x3d800000)
|
||
break;
|
||
|
||
/* lwz 12,<some immediate>(12) */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xffff0000) != 0x818c0000)
|
||
break;
|
||
|
||
/* twllt 0,12 */
|
||
pc = pc + 4;
|
||
op = rs6000_fetch_instruction (gdbarch, pc);
|
||
if ((op & 0xfffffffe) != 0x7c406008)
|
||
break;
|
||
|
||
/* We found a valid stack-check sequence, return the new PC. */
|
||
return pc;
|
||
}
|
||
|
||
/* No stack check code in our prologue, return the start_pc. */
|
||
return start_pc;
|
||
}
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- saved_vr is the number of the first saved vr.
|
||
- saved_ev is the number of the first saved ev.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- vr_offset is the offset of the first saved vr from the previous frame.
|
||
- ev_offset is the offset of the first saved ev from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
- vrsave_offset is the offset of the saved vrsave register
|
||
*/
|
||
|
||
static CORE_ADDR
|
||
skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
|
||
struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc = pc;
|
||
CORE_ADDR li_found_pc = 0;
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
long vr_saved_offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int vr_reg = -1;
|
||
int ev_reg = -1;
|
||
long ev_offset = 0;
|
||
int vrsave_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
int num_skip_non_prologue_insns = 0;
|
||
int r0_contains_arg = 0;
|
||
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->saved_vr = -1;
|
||
fdata->saved_ev = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
fdata->lr_register = -1;
|
||
|
||
pc = rs6000_skip_stack_check (gdbarch, pc);
|
||
if (pc >= lim_pc)
|
||
pc = lim_pc;
|
||
|
||
for (;; pc += 4)
|
||
{
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
|
||
/* Stop scanning if we've hit the limit. */
|
||
if (pc >= lim_pc)
|
||
break;
|
||
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
/* Since shared library / PIC code, which needs to get its
|
||
address at runtime, can appear to save more than one link
|
||
register vis:
|
||
|
||
*INDENT-OFF*
|
||
stwu r1,-304(r1)
|
||
mflr r3
|
||
bl 0xff570d0 (blrl)
|
||
stw r30,296(r1)
|
||
mflr r30
|
||
stw r31,300(r1)
|
||
stw r3,308(r1);
|
||
...
|
||
*INDENT-ON*
|
||
|
||
remember just the first one, but skip over additional
|
||
ones. */
|
||
if (lr_reg == -1)
|
||
lr_reg = (op & 0x03e00000) >> 21;
|
||
if (lr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000);
|
||
if (cr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
||
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if ((op & 0xfc1f0000) == 0xbc010000)
|
||
fdata->gpr_mask |= ~((1U << reg) - 1);
|
||
else
|
||
fdata->gpr_mask |= 1U << reg;
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
if ((op & 0xfc1f0003) == 0xf8010000)
|
||
op &= ~3UL;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x94010000))))
|
||
{ /* where Rx == lr */
|
||
fdata->lr_offset = offset;
|
||
fdata->nosavedpc = 0;
|
||
/* Invalidate lr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
lr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 || /* std */
|
||
(op & 0xfc000000) == 0x90000000) /* stw */
|
||
{
|
||
/* Does not update r1, so add displacement to lr_offset. */
|
||
fdata->lr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x94010000))))
|
||
{ /* where Rx == cr */
|
||
fdata->cr_offset = offset;
|
||
/* Invalidate cr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
cr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 ||
|
||
(op & 0xfc000000) == 0x90000000)
|
||
{
|
||
/* Does not update r1, so add displacement to cr_offset. */
|
||
fdata->cr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
|
||
{
|
||
/* bcl 20,xx,.+4 is used to get the current PC, with or without
|
||
prediction bits. If the LR has already been saved, we can
|
||
skip it. */
|
||
continue;
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
|
||
/* If the return address has already been saved, we can skip
|
||
calls to blrl (for PIC). */
|
||
if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
|
||
{
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
}
|
||
|
||
/* Don't skip over the subroutine call if it is not within
|
||
the first three instructions of the prologue and either
|
||
we have no line table information or the line info tells
|
||
us that the subroutine call is not part of the line
|
||
associated with the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
{
|
||
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
|
||
struct symtab_and_line this_sal = find_pc_line (pc, 0);
|
||
|
||
if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
|
||
break;
|
||
}
|
||
|
||
op = read_memory_integer (pc + 4, 4, byte_order);
|
||
|
||
/* At this point, make sure this is not a trampoline
|
||
function (a function that simply calls another functions,
|
||
and nothing else). If the next is not a nop, this branch
|
||
was part of the function prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* don't skip over
|
||
this branch */
|
||
|
||
fdata->used_bl = 1;
|
||
continue;
|
||
}
|
||
/* update stack pointer */
|
||
else if ((op & 0xfc1f0000) == 0x94010000)
|
||
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016e)
|
||
{ /* stwux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f0003) == 0xf8010001)
|
||
{ /* stdu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op & ~3UL);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016a)
|
||
{ /* stdux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xffff0000) == 0x38210000)
|
||
{ /* addi r1,r1,SIMM */
|
||
fdata->frameless = 0;
|
||
fdata->offset += SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
/* Load up minimal toc pointer. Do not treat an epilogue restore
|
||
of r31 as a minimal TOC load. */
|
||
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
|
||
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
|
||
&& !framep
|
||
&& !minimal_toc_loaded)
|
||
{
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
/* Move parameters from argument registers to temporary register. */
|
||
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
|
||
{
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum
|
||
+ ((op & ~0x38010000) >> 21));
|
||
continue;
|
||
}
|
||
/* AltiVec related instructions. */
|
||
/* Store the vrsave register (spr 256) in another register for
|
||
later manipulation, or load a register into the vrsave
|
||
register. 2 instructions are used: mfvrsave and
|
||
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
|
||
and mtspr SPR256, Rn. */
|
||
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
|
||
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
|
||
{
|
||
vrsave_reg = GET_SRC_REG (op);
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
|
||
{
|
||
continue;
|
||
}
|
||
/* Store the register where vrsave was saved to onto the stack:
|
||
rS is the register where vrsave was stored in a previous
|
||
instruction. */
|
||
/* 100100 sssss 00001 dddddddd dddddddd */
|
||
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
|
||
{
|
||
if (vrsave_reg == GET_SRC_REG (op))
|
||
{
|
||
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
|
||
vrsave_reg = -1;
|
||
}
|
||
continue;
|
||
}
|
||
/* Compute the new value of vrsave, by modifying the register
|
||
where vrsave was saved to. */
|
||
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|
||
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
|
||
{
|
||
continue;
|
||
}
|
||
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
|
||
in a pair of insns to save the vector registers on the
|
||
stack. */
|
||
/* 001110 00000 00000 iiii iiii iiii iiii */
|
||
/* 001110 01110 00000 iiii iiii iiii iiii */
|
||
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|
||
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
|
||
{
|
||
if ((op & 0xffff0000) == 0x38000000)
|
||
r0_contains_arg = 0;
|
||
li_found_pc = pc;
|
||
vr_saved_offset = SIGNED_SHORT (op);
|
||
|
||
/* This insn by itself is not part of the prologue, unless
|
||
if part of the pair of insns mentioned above. So do not
|
||
record this insn as part of the prologue yet. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
}
|
||
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
|
||
/* 011111 sssss 11111 00000 00111001110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
vr_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
|
||
{
|
||
fdata->saved_vr = vr_reg;
|
||
fdata->vr_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
vr_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
}
|
||
/* End AltiVec related instructions. */
|
||
|
||
/* Start BookE related instructions. */
|
||
/* Store gen register S at (r31+uimm).
|
||
Any register less than r13 is volatile, so we don't care. */
|
||
/* 000100 sssss 11111 iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
|
||
{
|
||
unsigned int imm;
|
||
ev_reg = GET_SRC_REG (op);
|
||
imm = (op >> 11) & 0x1f;
|
||
ev_offset = imm * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register rS at (r1+rB). */
|
||
/* 000100 sssss 00001 bbbbb 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of rB from the previous instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
ev_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register r31 at (rA+uimm). */
|
||
/* 000100 11111 aaaaa iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
|
||
{
|
||
/* Wwe know that the source register is 31 already, but
|
||
it can't hurt to compute it. */
|
||
ev_reg = GET_SRC_REG (op);
|
||
ev_offset = ((op >> 11) & 0x1f) * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
/* Store gen register S at (r31+r0).
|
||
Store param on stack when offset from SP bigger than 4 bytes. */
|
||
/* 000100 sssss 11111 00000 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000)
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of r0 from the previous
|
||
instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
ev_reg = -1;
|
||
}
|
||
vr_saved_offset = -1;
|
||
li_found_pc = 0;
|
||
continue;
|
||
}
|
||
}
|
||
/* End BookE related instructions. */
|
||
|
||
else
|
||
{
|
||
unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
|
||
|
||
/* Not a recognized prologue instruction.
|
||
Handle optimizer code motions into the prologue by continuing
|
||
the search if we have no valid frame yet or if the return
|
||
address is not yet saved in the frame. Also skip instructions
|
||
if some of the GPRs expected to be saved are not yet saved. */
|
||
if (fdata->frameless == 0 && fdata->nosavedpc == 0
|
||
&& (fdata->gpr_mask & all_mask) == all_mask)
|
||
break;
|
||
|
||
if (op == 0x4e800020 /* blr */
|
||
|| op == 0x4e800420) /* bctr */
|
||
/* Do not scan past epilogue in frameless functions or
|
||
trampolines. */
|
||
break;
|
||
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
||
/* Never skip branches. */
|
||
break;
|
||
|
||
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
||
/* Do not scan too many insns, scanning insns is expensive with
|
||
remote targets. */
|
||
break;
|
||
|
||
/* Continue scanning. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4, byte_order);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* Check and see if we are in main. If so, skip over this
|
||
initializer function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0
|
||
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
if (pc == lim_pc && lr_reg >= 0)
|
||
fdata->lr_register = lr_reg;
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
struct rs6000_framedata frame;
|
||
CORE_ADDR limit_pc, func_addr;
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
||
{
|
||
CORE_ADDR post_prologue_pc
|
||
= skip_prologue_using_sal (gdbarch, func_addr);
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
}
|
||
|
||
/* Can't determine prologue from the symbol table, need to examine
|
||
instructions. */
|
||
|
||
/* Find an upper limit on the function prologue using the debug
|
||
information. If the debug information could not be used to provide
|
||
that bound, then use an arbitrary large number as the upper bound. */
|
||
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
||
if (limit_pc == 0)
|
||
limit_pc = pc + 100; /* Magic. */
|
||
|
||
pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
|
||
return pc;
|
||
}
|
||
|
||
/* When compiling for EABI, some versions of GCC emit a call to __eabi
|
||
in the prologue of main().
|
||
|
||
The function below examines the code pointed at by PC and checks to
|
||
see if it corresponds to a call to __eabi. If so, it returns the
|
||
address of the instruction following that call. Otherwise, it simply
|
||
returns PC. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
|
||
if (target_read_memory (pc, buf, 4))
|
||
return pc;
|
||
op = extract_unsigned_integer (buf, 4, byte_order);
|
||
|
||
if ((op & BL_MASK) == BL_INSTRUCTION)
|
||
{
|
||
CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
|
||
CORE_ADDR call_dest = pc + 4 + displ;
|
||
struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
|
||
|
||
/* We check for ___eabi (three leading underscores) in addition
|
||
to __eabi in case the GCC option "-fleading-underscore" was
|
||
used to compile the program. */
|
||
if (s != NULL
|
||
&& SYMBOL_LINKAGE_NAME (s) != NULL
|
||
&& (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
|
||
|| strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
|
||
pc += 4;
|
||
}
|
||
return pc;
|
||
}
|
||
|
||
/* All the ABI's require 16 byte alignment. */
|
||
static CORE_ADDR
|
||
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return (addr & -16);
|
||
}
|
||
|
||
/* Return whether handle_inferior_event() should proceed through code
|
||
starting at PC in function NAME when stepping.
|
||
|
||
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
||
handle memory references that are too distant to fit in instructions
|
||
generated by the compiler. For example, if 'foo' in the following
|
||
instruction:
|
||
|
||
lwz r9,foo(r2)
|
||
|
||
is greater than 32767, the linker might replace the lwz with a branch to
|
||
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
||
back to where execution should continue.
|
||
|
||
GDB should silently step over @FIX code, just like AIX dbx does.
|
||
Unfortunately, the linker uses the "b" instruction for the
|
||
branches, meaning that the link register doesn't get set.
|
||
Therefore, GDB's usual step_over_function () mechanism won't work.
|
||
|
||
Instead, use the gdbarch_skip_trampoline_code and
|
||
gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
|
||
@FIX code. */
|
||
|
||
static int
|
||
rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
|
||
CORE_ADDR pc, char *name)
|
||
{
|
||
return name && !strncmp (name, "@FIX", 4);
|
||
}
|
||
|
||
/* Skip code that the user doesn't want to see when stepping:
|
||
|
||
1. Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
|
||
2. Skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
|
||
3. Skip bigtoc fixup code.
|
||
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
code that should be skipped. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
unsigned int ii, op;
|
||
int rel;
|
||
CORE_ADDR solib_target_pc;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* Check for bigtoc fixup code. */
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
if (msymbol
|
||
&& rs6000_in_solib_return_trampoline (gdbarch, pc,
|
||
SYMBOL_LINKAGE_NAME (msymbol)))
|
||
{
|
||
/* Double-check that the third instruction from PC is relative "b". */
|
||
op = read_memory_integer (pc + 8, 4, byte_order);
|
||
if ((op & 0xfc000003) == 0x48000000)
|
||
{
|
||
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
||
add it to the containing PC. */
|
||
rel = ((int)(op << 6) >> 6);
|
||
return pc + 8 + rel;
|
||
}
|
||
}
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (frame, pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4, byte_order);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
|
||
pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
|
||
return pc;
|
||
}
|
||
|
||
/* ISA-specific vector types. */
|
||
|
||
static struct type *
|
||
rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->ppc_builtin_type_vec64)
|
||
{
|
||
const struct builtin_type *bt = builtin_type (gdbarch);
|
||
|
||
/* The type we're building is this: */
|
||
#if 0
|
||
union __gdb_builtin_type_vec64
|
||
{
|
||
int64_t uint64;
|
||
float v2_float[2];
|
||
int32_t v2_int32[2];
|
||
int16_t v4_int16[4];
|
||
int8_t v8_int8[8];
|
||
};
|
||
#endif
|
||
|
||
struct type *t;
|
||
|
||
t = arch_composite_type (gdbarch,
|
||
"__ppc_builtin_type_vec64", TYPE_CODE_UNION);
|
||
append_composite_type_field (t, "uint64", bt->builtin_int64);
|
||
append_composite_type_field (t, "v2_float",
|
||
init_vector_type (bt->builtin_float, 2));
|
||
append_composite_type_field (t, "v2_int32",
|
||
init_vector_type (bt->builtin_int32, 2));
|
||
append_composite_type_field (t, "v4_int16",
|
||
init_vector_type (bt->builtin_int16, 4));
|
||
append_composite_type_field (t, "v8_int8",
|
||
init_vector_type (bt->builtin_int8, 8));
|
||
|
||
TYPE_VECTOR (t) = 1;
|
||
TYPE_NAME (t) = "ppc_builtin_type_vec64";
|
||
tdep->ppc_builtin_type_vec64 = t;
|
||
}
|
||
|
||
return tdep->ppc_builtin_type_vec64;
|
||
}
|
||
|
||
/* Vector 128 type. */
|
||
|
||
static struct type *
|
||
rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (!tdep->ppc_builtin_type_vec128)
|
||
{
|
||
const struct builtin_type *bt = builtin_type (gdbarch);
|
||
|
||
/* The type we're building is this
|
||
|
||
type = union __ppc_builtin_type_vec128 {
|
||
uint128_t uint128;
|
||
double v2_double[2];
|
||
float v4_float[4];
|
||
int32_t v4_int32[4];
|
||
int16_t v8_int16[8];
|
||
int8_t v16_int8[16];
|
||
}
|
||
*/
|
||
|
||
struct type *t;
|
||
|
||
t = arch_composite_type (gdbarch,
|
||
"__ppc_builtin_type_vec128", TYPE_CODE_UNION);
|
||
append_composite_type_field (t, "uint128", bt->builtin_uint128);
|
||
append_composite_type_field (t, "v2_double",
|
||
init_vector_type (bt->builtin_double, 2));
|
||
append_composite_type_field (t, "v4_float",
|
||
init_vector_type (bt->builtin_float, 4));
|
||
append_composite_type_field (t, "v4_int32",
|
||
init_vector_type (bt->builtin_int32, 4));
|
||
append_composite_type_field (t, "v8_int16",
|
||
init_vector_type (bt->builtin_int16, 8));
|
||
append_composite_type_field (t, "v16_int8",
|
||
init_vector_type (bt->builtin_int8, 16));
|
||
|
||
TYPE_VECTOR (t) = 1;
|
||
TYPE_NAME (t) = "ppc_builtin_type_vec128";
|
||
tdep->ppc_builtin_type_vec128 = t;
|
||
}
|
||
|
||
return tdep->ppc_builtin_type_vec128;
|
||
}
|
||
|
||
/* Return the name of register number REGNO, or the empty string if it
|
||
is an anonymous register. */
|
||
|
||
static const char *
|
||
rs6000_register_name (struct gdbarch *gdbarch, int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* The upper half "registers" have names in the XML description,
|
||
but we present only the low GPRs and the full 64-bit registers
|
||
to the user. */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||
return "";
|
||
|
||
/* Hide the upper halves of the vs0~vs31 registers. */
|
||
if (tdep->ppc_vsr0_regnum >= 0
|
||
&& tdep->ppc_vsr0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
|
||
return "";
|
||
|
||
/* Check if the SPE pseudo registers are available. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const spe_regnames[] = {
|
||
"ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
|
||
"ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
|
||
"ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
|
||
"ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
|
||
};
|
||
return spe_regnames[regno - tdep->ppc_ev0_regnum];
|
||
}
|
||
|
||
/* Check if the decimal128 pseudo-registers are available. */
|
||
if (IS_DFP_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const dfp128_regnames[] = {
|
||
"dl0", "dl1", "dl2", "dl3",
|
||
"dl4", "dl5", "dl6", "dl7",
|
||
"dl8", "dl9", "dl10", "dl11",
|
||
"dl12", "dl13", "dl14", "dl15"
|
||
};
|
||
return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
|
||
}
|
||
|
||
/* Check if this is a VSX pseudo-register. */
|
||
if (IS_VSX_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const vsx_regnames[] = {
|
||
"vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
|
||
"vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
|
||
"vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
|
||
"vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
|
||
"vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
|
||
"vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
|
||
"vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
|
||
"vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
|
||
"vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
|
||
};
|
||
return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
|
||
}
|
||
|
||
/* Check if the this is a Extended FP pseudo-register. */
|
||
if (IS_EFP_PSEUDOREG (tdep, regno))
|
||
{
|
||
static const char *const efpr_regnames[] = {
|
||
"f32", "f33", "f34", "f35", "f36", "f37", "f38",
|
||
"f39", "f40", "f41", "f42", "f43", "f44", "f45",
|
||
"f46", "f47", "f48", "f49", "f50", "f51",
|
||
"f52", "f53", "f54", "f55", "f56", "f57",
|
||
"f58", "f59", "f60", "f61", "f62", "f63"
|
||
};
|
||
return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
|
||
}
|
||
|
||
return tdesc_register_name (gdbarch, regno);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register N. */
|
||
|
||
static struct type *
|
||
rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* These are the only pseudo-registers we support. */
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
||
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
||
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
||
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
||
|
||
/* These are the e500 pseudo-registers. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regnum))
|
||
return rs6000_builtin_type_vec64 (gdbarch);
|
||
else if (IS_DFP_PSEUDOREG (tdep, regnum))
|
||
/* PPC decimal128 pseudo-registers. */
|
||
return builtin_type (gdbarch)->builtin_declong;
|
||
else if (IS_VSX_PSEUDOREG (tdep, regnum))
|
||
/* POWER7 VSX pseudo-registers. */
|
||
return rs6000_builtin_type_vec128 (gdbarch);
|
||
else
|
||
/* POWER7 Extended FP pseudo-registers. */
|
||
return builtin_type (gdbarch)->builtin_double;
|
||
}
|
||
|
||
/* Is REGNUM a member of REGGROUP? */
|
||
static int
|
||
rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* These are the only pseudo-registers we support. */
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
|
||
|| IS_DFP_PSEUDOREG (tdep, regnum)
|
||
|| IS_VSX_PSEUDOREG (tdep, regnum)
|
||
|| IS_EFP_PSEUDOREG (tdep, regnum));
|
||
|
||
/* These are the e500 pseudo-registers or the POWER7 VSX registers. */
|
||
if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
|
||
return group == all_reggroup || group == vector_reggroup;
|
||
else
|
||
/* PPC decimal128 or Extended FP pseudo-registers. */
|
||
return group == all_reggroup || group == float_reggroup;
|
||
}
|
||
|
||
/* The register format for RS/6000 floating point registers is always
|
||
double, we need a conversion if the memory format is float. */
|
||
|
||
static int
|
||
rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_fp0_regnum >= 0
|
||
&& regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
|
||
&& TYPE_CODE (type) == TYPE_CODE_FLT
|
||
&& TYPE_LENGTH (type)
|
||
!= TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
|
||
}
|
||
|
||
static void
|
||
rs6000_register_to_value (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
gdb_byte *to)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte from[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
get_frame_register (frame, regnum, from);
|
||
convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
|
||
to, type);
|
||
}
|
||
|
||
static void
|
||
rs6000_value_to_register (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
const gdb_byte *from)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte to[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
convert_typed_floating (from, type,
|
||
to, builtin_type (gdbarch)->builtin_double);
|
||
put_frame_register (frame, regnum, to);
|
||
}
|
||
|
||
/* Move SPE vector register values between a 64-bit buffer and the two
|
||
32-bit raw register halves in a regcache. This function handles
|
||
both splitting a 64-bit value into two 32-bit halves, and joining
|
||
two halves into a whole 64-bit value, depending on the function
|
||
passed as the MOVE argument.
|
||
|
||
EV_REG must be the number of an SPE evN vector register --- a
|
||
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
|
||
64-bit buffer.
|
||
|
||
Call MOVE once for each 32-bit half of that register, passing
|
||
REGCACHE, the number of the raw register corresponding to that
|
||
half, and the address of the appropriate half of BUFFER.
|
||
|
||
For example, passing 'regcache_raw_read' as the MOVE function will
|
||
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
|
||
'regcache_raw_supply' will supply the contents of BUFFER to the
|
||
appropriate pair of raw registers in REGCACHE.
|
||
|
||
You may need to cast away some 'const' qualifiers when passing
|
||
MOVE, since this function can't tell at compile-time which of
|
||
REGCACHE or BUFFER is acting as the source of the data. If C had
|
||
co-variant type qualifiers, ... */
|
||
static void
|
||
e500_move_ev_register (void (*move) (struct regcache *regcache,
|
||
int regnum, gdb_byte *buf),
|
||
struct regcache *regcache, int ev_reg,
|
||
gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int reg_index;
|
||
gdb_byte *byte_buffer = buffer;
|
||
|
||
gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
|
||
|
||
reg_index = ev_reg - tdep->ppc_ev0_regnum;
|
||
|
||
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
|
||
{
|
||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
|
||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
|
||
}
|
||
else
|
||
{
|
||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
|
||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
|
||
regcache_raw_write,
|
||
regcache, reg_nr, (gdb_byte *) buffer);
|
||
}
|
||
|
||
/* Read method for DFP pseudo-registers. */
|
||
static void
|
||
dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
||
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
/* Read two FP registers to form a whole dl register. */
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Write method for DFP pseudo-registers. */
|
||
static void
|
||
dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_dl0_regnum;
|
||
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
/* Write each half of the dl register into a separate
|
||
FP register. */
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index + 1, buffer + 8);
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
2 * reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Read method for POWER7 VSX pseudo-registers. */
|
||
static void
|
||
vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
||
|
||
/* Read the portion that overlaps the VMX registers. */
|
||
if (reg_index > 31)
|
||
regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index - 32, buffer);
|
||
else
|
||
/* Read the portion that overlaps the FPR registers. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer);
|
||
regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer + 8);
|
||
regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Write method for POWER7 VSX pseudo-registers. */
|
||
static void
|
||
vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
|
||
|
||
/* Write the portion that overlaps the VMX registers. */
|
||
if (reg_index > 31)
|
||
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index - 32, buffer);
|
||
else
|
||
/* Write the portion that overlaps the FPR registers. */
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer);
|
||
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer + 8);
|
||
}
|
||
else
|
||
{
|
||
regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
|
||
reg_index, buffer + 8);
|
||
regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
}
|
||
|
||
/* Read method for POWER7 Extended FP pseudo-registers. */
|
||
static void
|
||
efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
||
|
||
/* Read the portion that overlaps the VMX registers. */
|
||
regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
|
||
/* Write method for POWER7 Extended FP pseudo-registers. */
|
||
static void
|
||
efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
|
||
|
||
/* Write the portion that overlaps the VMX registers. */
|
||
regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
|
||
reg_index, buffer);
|
||
}
|
||
|
||
static void
|
||
rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
||
e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
||
dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
||
vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
||
efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_pseudo_register_read: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
static void
|
||
rs6000_pseudo_register_write (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (IS_SPE_PSEUDOREG (tdep, reg_nr))
|
||
e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
|
||
dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
|
||
vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
|
||
efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_pseudo_register_write: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
/* Convert a DBX STABS register number to a GDB register number. */
|
||
static int
|
||
rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (77 <= num && num <= 108)
|
||
return tdep->ppc_vr0_regnum + (num - 77);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
return tdep->ppc_mq_regnum;
|
||
case 65:
|
||
return tdep->ppc_lr_regnum;
|
||
case 66:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 76:
|
||
return tdep->ppc_xer_regnum;
|
||
case 109:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 110:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 111:
|
||
return tdep->ppc_acc_regnum;
|
||
case 112:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert a Dwarf 2 register number to a GDB register number. */
|
||
static int
|
||
rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (1124 <= num && num < 1124 + 32)
|
||
return tdep->ppc_vr0_regnum + (num - 1124);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
return tdep->ppc_cr_regnum;
|
||
case 67:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 99:
|
||
return tdep->ppc_acc_regnum;
|
||
case 100:
|
||
return tdep->ppc_mq_regnum;
|
||
case 101:
|
||
return tdep->ppc_xer_regnum;
|
||
case 108:
|
||
return tdep->ppc_lr_regnum;
|
||
case 109:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 356:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 612:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
/* Translate a .eh_frame register to DWARF register, or adjust a
|
||
.debug_frame register. */
|
||
|
||
static int
|
||
rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
|
||
{
|
||
/* GCC releases before 3.4 use GCC internal register numbering in
|
||
.debug_frame (and .debug_info, et cetera). The numbering is
|
||
different from the standard SysV numbering for everything except
|
||
for GPRs and FPRs. We can not detect this problem in most cases
|
||
- to get accurate debug info for variables living in lr, ctr, v0,
|
||
et cetera, use a newer version of GCC. But we must detect
|
||
one important case - lr is in column 65 in .debug_frame output,
|
||
instead of 108.
|
||
|
||
GCC 3.4, and the "hammer" branch, have a related problem. They
|
||
record lr register saves in .debug_frame as 108, but still record
|
||
the return column as 65. We fix that up too.
|
||
|
||
We can do this because 65 is assigned to fpsr, and GCC never
|
||
generates debug info referring to it. To add support for
|
||
handwritten debug info that restores fpsr, we would need to add a
|
||
producer version check to this. */
|
||
if (!eh_frame_p)
|
||
{
|
||
if (num == 65)
|
||
return 108;
|
||
else
|
||
return num;
|
||
}
|
||
|
||
/* .eh_frame is GCC specific. For binary compatibility, it uses GCC
|
||
internal register numbering; translate that to the standard DWARF2
|
||
register numbering. */
|
||
if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
|
||
return num;
|
||
else if (68 <= num && num <= 75) /* cr0-cr8 */
|
||
return num - 68 + 86;
|
||
else if (77 <= num && num <= 108) /* vr0-vr31 */
|
||
return num - 77 + 1124;
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64: /* mq */
|
||
return 100;
|
||
case 65: /* lr */
|
||
return 108;
|
||
case 66: /* ctr */
|
||
return 109;
|
||
case 76: /* xer */
|
||
return 101;
|
||
case 109: /* vrsave */
|
||
return 356;
|
||
case 110: /* vscr */
|
||
return 67;
|
||
case 111: /* spe_acc */
|
||
return 99;
|
||
case 112: /* spefscr */
|
||
return 612;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
/* Handling the various POWER/PowerPC variants. */
|
||
|
||
/* Information about a particular processor variant. */
|
||
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* bfd_arch_info.arch corresponding to variant. */
|
||
enum bfd_architecture arch;
|
||
|
||
/* bfd_arch_info.mach corresponding to variant. */
|
||
unsigned long mach;
|
||
|
||
/* Target description for this variant. */
|
||
struct target_desc **tdesc;
|
||
};
|
||
|
||
static struct variant variants[] =
|
||
{
|
||
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc, &tdesc_powerpc_altivec32},
|
||
{"power", "POWER user-level", bfd_arch_rs6000,
|
||
bfd_mach_rs6k, &tdesc_rs6000},
|
||
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403, &tdesc_powerpc_403},
|
||
{"405", "IBM PowerPC 405", bfd_arch_powerpc,
|
||
bfd_mach_ppc_405, &tdesc_powerpc_405},
|
||
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
||
bfd_mach_ppc_601, &tdesc_powerpc_601},
|
||
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
||
bfd_mach_ppc_602, &tdesc_powerpc_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
||
bfd_mach_ppc_603, &tdesc_powerpc_603},
|
||
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
||
604, &tdesc_powerpc_604},
|
||
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
|
||
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
||
bfd_mach_ppc_505, &tdesc_powerpc_505},
|
||
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
||
bfd_mach_ppc_860, &tdesc_powerpc_860},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
||
bfd_mach_ppc_750, &tdesc_powerpc_750},
|
||
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
|
||
bfd_mach_ppc_7400, &tdesc_powerpc_7400},
|
||
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
|
||
bfd_mach_ppc_e500, &tdesc_powerpc_e500},
|
||
|
||
/* 64-bit */
|
||
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc64, &tdesc_powerpc_altivec64},
|
||
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
||
bfd_mach_ppc_620, &tdesc_powerpc_64},
|
||
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
|
||
bfd_mach_ppc_630, &tdesc_powerpc_64},
|
||
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
||
bfd_mach_ppc_a35, &tdesc_powerpc_64},
|
||
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
|
||
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
|
||
|
||
/* FIXME: I haven't checked the register sets of the following. */
|
||
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs1, &tdesc_rs6000},
|
||
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rsc, &tdesc_rs6000},
|
||
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs2, &tdesc_rs6000},
|
||
|
||
{0, 0, 0, 0, 0}
|
||
};
|
||
|
||
/* Return the variant corresponding to architecture ARCH and machine number
|
||
MACH. If no such variant exists, return null. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (arch == v->arch && mach == v->mach)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
if (!info->disassembler_options)
|
||
info->disassembler_options = "any";
|
||
|
||
if (info->endian == BFD_ENDIAN_BIG)
|
||
return print_insn_big_powerpc (memaddr, info);
|
||
else
|
||
return print_insn_little_powerpc (memaddr, info);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_unwind_register_unsigned (next_frame,
|
||
gdbarch_pc_regnum (gdbarch));
|
||
}
|
||
|
||
static struct frame_id
|
||
rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
|
||
{
|
||
return frame_id_build (get_frame_register_unsigned
|
||
(this_frame, gdbarch_sp_regnum (gdbarch)),
|
||
get_frame_pc (this_frame));
|
||
}
|
||
|
||
struct rs6000_frame_cache
|
||
{
|
||
CORE_ADDR base;
|
||
CORE_ADDR initial_sp;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct rs6000_frame_cache *
|
||
rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *cache;
|
||
struct gdbarch *gdbarch = get_frame_arch (this_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
struct rs6000_framedata fdata;
|
||
int wordsize = tdep->wordsize;
|
||
CORE_ADDR func, pc;
|
||
|
||
if ((*this_cache) != NULL)
|
||
return (*this_cache);
|
||
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
||
|
||
func = get_frame_func (this_frame);
|
||
pc = get_frame_pc (this_frame);
|
||
skip_prologue (gdbarch, func, pc, &fdata);
|
||
|
||
/* Figure out the parent's stack pointer. */
|
||
|
||
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
|
||
address of the current frame. Things might be easier if the
|
||
->frame pointed to the outer-most address of the frame. In
|
||
the mean time, the address of the prev frame is used as the
|
||
base address of this frame. */
|
||
cache->base = get_frame_register_unsigned
|
||
(this_frame, gdbarch_sp_regnum (gdbarch));
|
||
|
||
/* If the function appears to be frameless, check a couple of likely
|
||
indicators that we have simply failed to find the frame setup.
|
||
Two common cases of this are missing symbols (i.e.
|
||
get_frame_func returns the wrong address or 0), and assembly
|
||
stubs which have a fast exit path but set up a frame on the slow
|
||
path.
|
||
|
||
If the LR appears to return to this function, then presume that
|
||
we have an ABI compliant frame that we failed to find. */
|
||
if (fdata.frameless && fdata.lr_offset == 0)
|
||
{
|
||
CORE_ADDR saved_lr;
|
||
int make_frame = 0;
|
||
|
||
saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
|
||
if (func == 0 && saved_lr == pc)
|
||
make_frame = 1;
|
||
else if (func != 0)
|
||
{
|
||
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
|
||
if (func == saved_func)
|
||
make_frame = 1;
|
||
}
|
||
|
||
if (make_frame)
|
||
{
|
||
fdata.frameless = 0;
|
||
fdata.lr_offset = tdep->lr_frame_offset;
|
||
}
|
||
}
|
||
|
||
if (!fdata.frameless)
|
||
/* Frameless really means stackless. */
|
||
cache->base
|
||
= read_memory_unsigned_integer (cache->base, wordsize, byte_order);
|
||
|
||
trad_frame_set_value (cache->saved_regs,
|
||
gdbarch_sp_regnum (gdbarch), cache->base);
|
||
|
||
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdata.saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
|
||
|
||
/* If skip_prologue says floating-point registers were saved,
|
||
but the current architecture has no floating-point registers,
|
||
then that's strange. But we have no indices to even record
|
||
the addresses under, so we just ignore it. */
|
||
if (ppc_floating_point_unit_p (gdbarch))
|
||
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
|
||
fpr_addr += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved (except during the
|
||
prologue). */
|
||
|
||
if (fdata.saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
|
||
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
|
||
{
|
||
if (fdata.gpr_mask & (1U << i))
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
|
||
gpr_addr += wordsize;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
|
||
All vr's from saved_vr to vr31 are saved. */
|
||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||
{
|
||
if (fdata.saved_vr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
|
||
for (i = fdata.saved_vr; i < 32; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
|
||
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
|
||
All vr's from saved_ev to ev31 are saved. ????? */
|
||
if (tdep->ppc_ev0_regnum != -1)
|
||
{
|
||
if (fdata.saved_ev >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
|
||
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
|
||
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdata.cr_offset is the offset from the frame that
|
||
holds the CR. */
|
||
if (fdata.cr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
|
||
|
||
/* If != 0, fdata.lr_offset is the offset from the frame that
|
||
holds the LR. */
|
||
if (fdata.lr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
|
||
else if (fdata.lr_register != -1)
|
||
cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
|
||
/* The PC is found in the link register. */
|
||
cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
|
||
cache->saved_regs[tdep->ppc_lr_regnum];
|
||
|
||
/* If != 0, fdata.vrsave_offset is the offset from the frame that
|
||
holds the VRSAVE. */
|
||
if (fdata.vrsave_offset != 0)
|
||
cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
/* If no alloca register used, then fi->frame is the value of the
|
||
%sp for this frame, and it is good enough. */
|
||
cache->initial_sp
|
||
= get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
|
||
else
|
||
cache->initial_sp
|
||
= get_frame_register_unsigned (this_frame, fdata.alloca_reg);
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
/* This marks the outermost frame. */
|
||
if (info->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
|
||
}
|
||
|
||
static struct value *
|
||
rs6000_frame_prev_register (struct frame_info *this_frame,
|
||
void **this_cache, int regnum)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
||
}
|
||
|
||
static const struct frame_unwind rs6000_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
rs6000_frame_this_id,
|
||
rs6000_frame_prev_register,
|
||
NULL,
|
||
default_frame_sniffer
|
||
};
|
||
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
|
||
this_cache);
|
||
return info->initial_sp;
|
||
}
|
||
|
||
static const struct frame_base rs6000_frame_base = {
|
||
&rs6000_frame_unwind,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address
|
||
};
|
||
|
||
static const struct frame_base *
|
||
rs6000_frame_base_sniffer (struct frame_info *this_frame)
|
||
{
|
||
return &rs6000_frame_base;
|
||
}
|
||
|
||
/* DWARF-2 frame support. Used to handle the detection of
|
||
clobbered registers during function calls. */
|
||
|
||
static void
|
||
ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
|
||
struct dwarf2_frame_state_reg *reg,
|
||
struct frame_info *this_frame)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* PPC32 and PPC64 ABI's are the same regarding volatile and
|
||
non-volatile registers. We will use the same code for both. */
|
||
|
||
/* Call-saved GP registers. */
|
||
if ((regnum >= tdep->ppc_gp0_regnum + 14
|
||
&& regnum <= tdep->ppc_gp0_regnum + 31)
|
||
|| (regnum == tdep->ppc_gp0_regnum + 1))
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered GP registers. */
|
||
if ((regnum >= tdep->ppc_gp0_regnum + 3
|
||
&& regnum <= tdep->ppc_gp0_regnum + 12)
|
||
|| (regnum == tdep->ppc_gp0_regnum))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
|
||
/* Deal with FP registers, if supported. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
{
|
||
/* Call-saved FP registers. */
|
||
if ((regnum >= tdep->ppc_fp0_regnum + 14
|
||
&& regnum <= tdep->ppc_fp0_regnum + 31))
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered FP registers. */
|
||
if ((regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum <= tdep->ppc_fp0_regnum + 13))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
}
|
||
|
||
/* Deal with ALTIVEC registers, if supported. */
|
||
if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
|
||
{
|
||
/* Call-saved Altivec registers. */
|
||
if ((regnum >= tdep->ppc_vr0_regnum + 20
|
||
&& regnum <= tdep->ppc_vr0_regnum + 31)
|
||
|| regnum == tdep->ppc_vrsave_regnum)
|
||
reg->how = DWARF2_FRAME_REG_SAME_VALUE;
|
||
|
||
/* Call-clobbered Altivec registers. */
|
||
if ((regnum >= tdep->ppc_vr0_regnum
|
||
&& regnum <= tdep->ppc_vr0_regnum + 19))
|
||
reg->how = DWARF2_FRAME_REG_UNDEFINED;
|
||
}
|
||
|
||
/* Handle PC register and Stack Pointer correctly. */
|
||
if (regnum == gdbarch_pc_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_RA;
|
||
else if (regnum == gdbarch_sp_regnum (gdbarch))
|
||
reg->how = DWARF2_FRAME_REG_CFA;
|
||
}
|
||
|
||
|
||
/* Initialize the current architecture based on INFO. If possible, re-use an
|
||
architecture from ARCHES, which is a list of architectures already created
|
||
during this debugging session.
|
||
|
||
Called e.g. at program startup, when reading a core file, and when reading
|
||
a binary file. */
|
||
|
||
static struct gdbarch *
|
||
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int wordsize, from_xcoff_exec, from_elf_exec;
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
asection *sect;
|
||
enum auto_boolean soft_float_flag = powerpc_soft_float_global;
|
||
int soft_float;
|
||
enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
|
||
int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
|
||
have_vsx = 0;
|
||
int tdesc_wordsize = -1;
|
||
const struct target_desc *tdesc = info.target_desc;
|
||
struct tdesc_arch_data *tdesc_data = NULL;
|
||
int num_pseudoregs = 0;
|
||
int cur_reg;
|
||
|
||
/* INFO may refer to a binary that is not of the PowerPC architecture,
|
||
e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
|
||
In this case, we must not attempt to infer properties of the (PowerPC
|
||
side) of the target system from properties of that executable. Trust
|
||
the target description instead. */
|
||
if (info.abfd
|
||
&& bfd_get_arch (info.abfd) != bfd_arch_powerpc
|
||
&& bfd_get_arch (info.abfd) != bfd_arch_rs6000)
|
||
info.abfd = NULL;
|
||
|
||
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
||
|
||
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
/* Check word size. If INFO is from a binary file, infer it from
|
||
that, else choose a likely default. */
|
||
if (from_xcoff_exec)
|
||
{
|
||
if (bfd_xcoff_is_xcoff64 (info.abfd))
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (from_elf_exec)
|
||
{
|
||
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (tdesc_has_registers (tdesc))
|
||
wordsize = -1;
|
||
else
|
||
{
|
||
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
|
||
wordsize = info.bfd_arch_info->bits_per_word /
|
||
info.bfd_arch_info->bits_per_byte;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
|
||
/* Get the architecture and machine from the BFD. */
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = info.bfd_arch_info->mach;
|
||
|
||
/* For e500 executables, the apuinfo section is of help here. Such
|
||
section contains the identifier and revision number of each
|
||
Application-specific Processing Unit that is present on the
|
||
chip. The content of the section is determined by the assembler
|
||
which looks at each instruction and determines which unit (and
|
||
which version of it) can execute it. In our case we just look for
|
||
the existance of the section. */
|
||
|
||
if (info.abfd)
|
||
{
|
||
sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
|
||
if (sect)
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = bfd_mach_ppc_e500;
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
}
|
||
}
|
||
|
||
/* Find a default target description which describes our register
|
||
layout, if we do not already have one. */
|
||
if (! tdesc_has_registers (tdesc))
|
||
{
|
||
const struct variant *v;
|
||
|
||
/* Choose variant. */
|
||
v = find_variant_by_arch (arch, mach);
|
||
if (!v)
|
||
return NULL;
|
||
|
||
tdesc = *v->tdesc;
|
||
}
|
||
|
||
gdb_assert (tdesc_has_registers (tdesc));
|
||
|
||
/* Check any target description for validity. */
|
||
if (tdesc_has_registers (tdesc))
|
||
{
|
||
static const char *const gprs[] = {
|
||
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
|
||
};
|
||
static const char *const segment_regs[] = {
|
||
"sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
|
||
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
|
||
};
|
||
const struct tdesc_feature *feature;
|
||
int i, valid_p;
|
||
static const char *const msr_names[] = { "msr", "ps" };
|
||
static const char *const cr_names[] = { "cr", "cnd" };
|
||
static const char *const ctr_names[] = { "ctr", "cnt" };
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.core");
|
||
if (feature == NULL)
|
||
return NULL;
|
||
|
||
tdesc_data = tdesc_data_alloc ();
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
|
||
"pc");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
|
||
"lr");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
|
||
"xer");
|
||
|
||
/* Allow alternate names for these registers, to accomodate GDB's
|
||
historic naming. */
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_MSR_REGNUM, msr_names);
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_CR_REGNUM, cr_names);
|
||
valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
|
||
PPC_CTR_REGNUM, ctr_names);
|
||
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
|
||
"mq");
|
||
|
||
tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
|
||
if (wordsize == -1)
|
||
wordsize = tdesc_wordsize;
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.fpu");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const fprs[] = {
|
||
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
||
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
||
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
||
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
|
||
};
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_fprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_F0_REGNUM + i, fprs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_FPSCR_REGNUM, "fpscr");
|
||
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_fpu = 1;
|
||
}
|
||
else
|
||
have_fpu = 0;
|
||
|
||
/* The DFP pseudo-registers will be available when there are floating
|
||
point registers. */
|
||
have_dfp = have_fpu;
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.altivec");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const vector_regs[] = {
|
||
"vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
|
||
"vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
|
||
"vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
|
||
"vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
|
||
};
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VR0_REGNUM + i,
|
||
vector_regs[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VSCR_REGNUM, "vscr");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VRSAVE_REGNUM, "vrsave");
|
||
|
||
if (have_spe || !valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_altivec = 1;
|
||
}
|
||
else
|
||
have_altivec = 0;
|
||
|
||
/* Check for POWER7 VSX registers support. */
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.vsx");
|
||
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const vsx_regs[] = {
|
||
"vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
|
||
"vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
|
||
"vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
|
||
"vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
|
||
"vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
|
||
"vs30h", "vs31h"
|
||
};
|
||
|
||
valid_p = 1;
|
||
|
||
for (i = 0; i < ppc_num_vshrs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_VSR0_UPPER_REGNUM + i,
|
||
vsx_regs[i]);
|
||
if (!valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
have_vsx = 1;
|
||
}
|
||
else
|
||
have_vsx = 0;
|
||
|
||
/* On machines supporting the SPE APU, the general-purpose registers
|
||
are 64 bits long. There are SIMD vector instructions to treat them
|
||
as pairs of floats, but the rest of the instruction set treats them
|
||
as 32-bit registers, and only operates on their lower halves.
|
||
|
||
In the GDB regcache, we treat their high and low halves as separate
|
||
registers. The low halves we present as the general-purpose
|
||
registers, and then we have pseudo-registers that stitch together
|
||
the upper and lower halves and present them as pseudo-registers.
|
||
|
||
Thus, the target description is expected to supply the upper
|
||
halves separately. */
|
||
|
||
feature = tdesc_find_feature (tdesc,
|
||
"org.gnu.gdb.power.spe");
|
||
if (feature != NULL)
|
||
{
|
||
static const char *const upper_spe[] = {
|
||
"ev0h", "ev1h", "ev2h", "ev3h",
|
||
"ev4h", "ev5h", "ev6h", "ev7h",
|
||
"ev8h", "ev9h", "ev10h", "ev11h",
|
||
"ev12h", "ev13h", "ev14h", "ev15h",
|
||
"ev16h", "ev17h", "ev18h", "ev19h",
|
||
"ev20h", "ev21h", "ev22h", "ev23h",
|
||
"ev24h", "ev25h", "ev26h", "ev27h",
|
||
"ev28h", "ev29h", "ev30h", "ev31h"
|
||
};
|
||
|
||
valid_p = 1;
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_UPPER_GP0_REGNUM + i,
|
||
upper_spe[i]);
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_ACC_REGNUM, "acc");
|
||
valid_p &= tdesc_numbered_register (feature, tdesc_data,
|
||
PPC_SPE_FSCR_REGNUM, "spefscr");
|
||
|
||
if (have_mq || have_fpu || !valid_p)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
have_spe = 1;
|
||
}
|
||
else
|
||
have_spe = 0;
|
||
}
|
||
|
||
/* If we have a 64-bit binary on a 32-bit target, complain. Also
|
||
complain for a 32-bit binary on a 64-bit target; we do not yet
|
||
support that. For instance, the 32-bit ABI routines expect
|
||
32-bit GPRs.
|
||
|
||
As long as there isn't an explicit target description, we'll
|
||
choose one based on the BFD architecture and get a word size
|
||
matching the binary (probably powerpc:common or
|
||
powerpc:common64). So there is only trouble if a 64-bit target
|
||
supplies a 64-bit description while debugging a 32-bit
|
||
binary. */
|
||
if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
|
||
{
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return NULL;
|
||
}
|
||
|
||
#ifdef HAVE_ELF
|
||
if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
|
||
{
|
||
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
||
Tag_GNU_Power_ABI_FP))
|
||
{
|
||
case 1:
|
||
soft_float_flag = AUTO_BOOLEAN_FALSE;
|
||
break;
|
||
case 2:
|
||
soft_float_flag = AUTO_BOOLEAN_TRUE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
|
||
{
|
||
switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
|
||
Tag_GNU_Power_ABI_Vector))
|
||
{
|
||
case 1:
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
break;
|
||
case 2:
|
||
vector_abi = POWERPC_VEC_ALTIVEC;
|
||
break;
|
||
case 3:
|
||
vector_abi = POWERPC_VEC_SPE;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
if (soft_float_flag == AUTO_BOOLEAN_TRUE)
|
||
soft_float = 1;
|
||
else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
|
||
soft_float = 0;
|
||
else
|
||
soft_float = !have_fpu;
|
||
|
||
/* If we have a hard float binary or setting but no floating point
|
||
registers, downgrade to soft float anyway. We're still somewhat
|
||
useful in this scenario. */
|
||
if (!soft_float && !have_fpu)
|
||
soft_float = 1;
|
||
|
||
/* Similarly for vector registers. */
|
||
if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
|
||
if (vector_abi == POWERPC_VEC_SPE && !have_spe)
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
|
||
if (vector_abi == POWERPC_VEC_AUTO)
|
||
{
|
||
if (have_altivec)
|
||
vector_abi = POWERPC_VEC_ALTIVEC;
|
||
else if (have_spe)
|
||
vector_abi = POWERPC_VEC_SPE;
|
||
else
|
||
vector_abi = POWERPC_VEC_GENERIC;
|
||
}
|
||
|
||
/* Do not limit the vector ABI based on available hardware, since we
|
||
do not yet know what hardware we'll decide we have. Yuck! FIXME! */
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
||
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
||
separate word size check. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->soft_float != soft_float)
|
||
continue;
|
||
if (tdep && tdep->vector_abi != vector_abi)
|
||
continue;
|
||
if (tdep && tdep->wordsize == wordsize)
|
||
{
|
||
if (tdesc_data != NULL)
|
||
tdesc_data_cleanup (tdesc_data);
|
||
return arches->gdbarch;
|
||
}
|
||
}
|
||
|
||
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
||
validity depends on the source:
|
||
- executable useless
|
||
- rs6000_host_arch() good
|
||
- core file good
|
||
- "set arch" trust blindly
|
||
- GDB startup useless but harmless */
|
||
|
||
tdep = XCALLOC (1, struct gdbarch_tdep);
|
||
tdep->wordsize = wordsize;
|
||
tdep->soft_float = soft_float;
|
||
tdep->vector_abi = vector_abi;
|
||
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
|
||
tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
|
||
tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
|
||
tdep->ppc_cr_regnum = PPC_CR_REGNUM;
|
||
tdep->ppc_lr_regnum = PPC_LR_REGNUM;
|
||
tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
|
||
tdep->ppc_xer_regnum = PPC_XER_REGNUM;
|
||
tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
|
||
|
||
tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
|
||
tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
|
||
tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
|
||
tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
|
||
tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
|
||
tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
|
||
tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
|
||
tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
|
||
|
||
set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
|
||
set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
|
||
set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
|
||
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
|
||
|
||
/* The XML specification for PowerPC sensibly calls the MSR "msr".
|
||
GDB traditionally called it "ps", though, so let GDB add an
|
||
alias. */
|
||
set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
|
||
|
||
if (wordsize == 8)
|
||
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
|
||
else
|
||
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
||
|
||
/* Set lr_frame_offset. */
|
||
if (wordsize == 8)
|
||
tdep->lr_frame_offset = 16;
|
||
else
|
||
tdep->lr_frame_offset = 4;
|
||
|
||
if (have_spe || have_dfp || have_vsx)
|
||
{
|
||
set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
|
||
}
|
||
|
||
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
||
|
||
/* Select instruction printer. */
|
||
if (arch == bfd_arch_rs6000)
|
||
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
|
||
else
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
|
||
|
||
set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
|
||
|
||
if (have_spe)
|
||
num_pseudoregs += 32;
|
||
if (have_dfp)
|
||
num_pseudoregs += 16;
|
||
if (have_vsx)
|
||
/* Include both VSX and Extended FP registers. */
|
||
num_pseudoregs += 96;
|
||
|
||
set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
|
||
|
||
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||
set_gdbarch_char_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
||
if (wordsize == 8)
|
||
/* PPC64 SYSV. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
|
||
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
|
||
|
||
if (wordsize == 4)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
|
||
else if (wordsize == 8)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
|
||
set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
|
||
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
||
|
||
/* The value of symbols of type N_SO and N_FUN maybe null when
|
||
it shouldn't be. */
|
||
set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
|
||
|
||
/* Handles single stepping of atomic sequences. */
|
||
set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
|
||
|
||
/* Not sure on this. FIXMEmgo */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
/* Helpers for function argument information. */
|
||
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
||
|
||
/* Trampoline. */
|
||
set_gdbarch_in_solib_return_trampoline
|
||
(gdbarch, rs6000_in_solib_return_trampoline);
|
||
set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
|
||
|
||
/* Hook in the DWARF CFI frame unwinder. */
|
||
dwarf2_append_unwinders (gdbarch);
|
||
dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
|
||
|
||
/* Frame handling. */
|
||
dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
|
||
|
||
/* Setup displaced stepping. */
|
||
set_gdbarch_displaced_step_copy_insn (gdbarch,
|
||
simple_displaced_step_copy_insn);
|
||
set_gdbarch_displaced_step_hw_singlestep (gdbarch,
|
||
ppc_displaced_step_hw_singlestep);
|
||
set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
|
||
set_gdbarch_displaced_step_free_closure (gdbarch,
|
||
simple_displaced_step_free_closure);
|
||
set_gdbarch_displaced_step_location (gdbarch,
|
||
displaced_step_at_entry_point);
|
||
|
||
set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
info.target_desc = tdesc;
|
||
info.tdep_info = (void *) tdesc_data;
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
switch (info.osabi)
|
||
{
|
||
case GDB_OSABI_LINUX:
|
||
case GDB_OSABI_NETBSD_AOUT:
|
||
case GDB_OSABI_NETBSD_ELF:
|
||
case GDB_OSABI_UNKNOWN:
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
||
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
break;
|
||
default:
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
|
||
set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
}
|
||
|
||
set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
|
||
set_tdesc_pseudo_register_reggroup_p (gdbarch,
|
||
rs6000_pseudo_register_reggroup_p);
|
||
tdesc_use_registers (gdbarch, tdesc, tdesc_data);
|
||
|
||
/* Override the normal target description method to make the SPE upper
|
||
halves anonymous. */
|
||
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
||
|
||
/* Choose register numbers for all supported pseudo-registers. */
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_dl0_regnum = -1;
|
||
tdep->ppc_vsr0_regnum = -1;
|
||
tdep->ppc_efpr0_regnum = -1;
|
||
|
||
cur_reg = gdbarch_num_regs (gdbarch);
|
||
|
||
if (have_spe)
|
||
{
|
||
tdep->ppc_ev0_regnum = cur_reg;
|
||
cur_reg += 32;
|
||
}
|
||
if (have_dfp)
|
||
{
|
||
tdep->ppc_dl0_regnum = cur_reg;
|
||
cur_reg += 16;
|
||
}
|
||
if (have_vsx)
|
||
{
|
||
tdep->ppc_vsr0_regnum = cur_reg;
|
||
cur_reg += 64;
|
||
tdep->ppc_efpr0_regnum = cur_reg;
|
||
cur_reg += 32;
|
||
}
|
||
|
||
gdb_assert (gdbarch_num_regs (gdbarch)
|
||
+ gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
/* FIXME: Dump gdbarch_tdep. */
|
||
}
|
||
|
||
/* PowerPC-specific commands. */
|
||
|
||
static void
|
||
set_powerpc_command (char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("\
|
||
\"set powerpc\" must be followed by an appropriate subcommand.\n"));
|
||
help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
|
||
}
|
||
|
||
static void
|
||
show_powerpc_command (char *args, int from_tty)
|
||
{
|
||
cmd_show_list (showpowerpccmdlist, from_tty, "");
|
||
}
|
||
|
||
static void
|
||
powerpc_set_soft_float (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
|
||
/* Update the architecture. */
|
||
gdbarch_info_init (&info);
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__, "could not update architecture");
|
||
}
|
||
|
||
static void
|
||
powerpc_set_vector_abi (char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
struct gdbarch_info info;
|
||
enum powerpc_vector_abi vector_abi;
|
||
|
||
for (vector_abi = POWERPC_VEC_AUTO;
|
||
vector_abi != POWERPC_VEC_LAST;
|
||
vector_abi++)
|
||
if (strcmp (powerpc_vector_abi_string,
|
||
powerpc_vector_strings[vector_abi]) == 0)
|
||
{
|
||
powerpc_vector_abi_global = vector_abi;
|
||
break;
|
||
}
|
||
|
||
if (vector_abi == POWERPC_VEC_LAST)
|
||
internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
|
||
powerpc_vector_abi_string);
|
||
|
||
/* Update the architecture. */
|
||
gdbarch_info_init (&info);
|
||
if (!gdbarch_update_p (info))
|
||
internal_error (__FILE__, __LINE__, "could not update architecture");
|
||
}
|
||
|
||
/* Initialization code. */
|
||
|
||
extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
|
||
|
||
void
|
||
_initialize_rs6000_tdep (void)
|
||
{
|
||
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
|
||
/* Initialize the standard target descriptions. */
|
||
initialize_tdesc_powerpc_32 ();
|
||
initialize_tdesc_powerpc_altivec32 ();
|
||
initialize_tdesc_powerpc_vsx32 ();
|
||
initialize_tdesc_powerpc_403 ();
|
||
initialize_tdesc_powerpc_403gc ();
|
||
initialize_tdesc_powerpc_405 ();
|
||
initialize_tdesc_powerpc_505 ();
|
||
initialize_tdesc_powerpc_601 ();
|
||
initialize_tdesc_powerpc_602 ();
|
||
initialize_tdesc_powerpc_603 ();
|
||
initialize_tdesc_powerpc_604 ();
|
||
initialize_tdesc_powerpc_64 ();
|
||
initialize_tdesc_powerpc_altivec64 ();
|
||
initialize_tdesc_powerpc_vsx64 ();
|
||
initialize_tdesc_powerpc_7400 ();
|
||
initialize_tdesc_powerpc_750 ();
|
||
initialize_tdesc_powerpc_860 ();
|
||
initialize_tdesc_powerpc_e500 ();
|
||
initialize_tdesc_rs6000 ();
|
||
|
||
/* Add root prefix command for all "set powerpc"/"show powerpc"
|
||
commands. */
|
||
add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
|
||
_("Various PowerPC-specific commands."),
|
||
&setpowerpccmdlist, "set powerpc ", 0, &setlist);
|
||
|
||
add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
|
||
_("Various PowerPC-specific commands."),
|
||
&showpowerpccmdlist, "show powerpc ", 0, &showlist);
|
||
|
||
/* Add a command to allow the user to force the ABI. */
|
||
add_setshow_auto_boolean_cmd ("soft-float", class_support,
|
||
&powerpc_soft_float_global,
|
||
_("Set whether to use a soft-float ABI."),
|
||
_("Show whether to use a soft-float ABI."),
|
||
NULL,
|
||
powerpc_set_soft_float, NULL,
|
||
&setpowerpccmdlist, &showpowerpccmdlist);
|
||
|
||
add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
|
||
&powerpc_vector_abi_string,
|
||
_("Set the vector ABI."),
|
||
_("Show the vector ABI."),
|
||
NULL, powerpc_set_vector_abi, NULL,
|
||
&setpowerpccmdlist, &showpowerpccmdlist);
|
||
}
|