mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 21:44:19 +08:00
6c95b8df7f
Stan Shebs <stan@codesourcery.com> Add base multi-executable/process support to GDB. gdb/ * Makefile.in (SFILES): Add progspace.c. (COMMON_OBS): Add progspace.o. * progspace.h: New. * progspace.c: New. * breakpoint.h (struct bp_target_info) <placed_address_space>: New field. (struct bp_location) <pspace>: New field. (struct breakpoint) <pspace>: New field. (bpstat_stop_status, breakpoint_here_p) (moribund_breakpoint_here_p, breakpoint_inserted_here_p) (regular_breakpoint_inserted_here_p) (software_breakpoint_inserted_here_p, breakpoint_thread_match) (set_default_breakpoint): Adjust prototypes. (remove_breakpoints_pid, breakpoint_program_space_exit): Declare. (insert_single_step_breakpoint, deprecated_insert_raw_breakpoint): Adjust prototypes. * breakpoint.c (executing_startup): Delete. (default_breakpoint_sspace): New. (breakpoint_restore_shadows): Skip if the address space doesn't match. (update_watchpoint): Record the frame's program space in the breakpoint location. (insert_bp_location): Record the address space in target_info. Adjust to pass the symbol space to solib_name_from_address. (breakpoint_program_space_exit): New. (insert_breakpoint_locations): Switch the symbol space and thread when inserting breakpoints. Don't insert breakpoints in a vfork parent waiting for vfork done if we're not attached to the vfork child. (remove_breakpoints_pid): New. (reattach_breakpoints): Switch to a thread of PID. Ignore breakpoints of other symbol spaces. (create_internal_breakpoint): Store the symbol space in the sal. (create_longjmp_master_breakpoint): Iterate over all symbol spaces. (update_breakpoints_after_exec): Ignore breakpoints for other symbol spaces. (remove_breakpoint): Rename to ... (remove_breakpoint_1): ... this. Pass the breakpoints symbol space to solib_name_from_address. (remove_breakpoint): New. (mark_breakpoints_out): Ignore breakpoints from other symbol spaces. (breakpoint_init_inferior): Ditto. (breakpoint_here_p): Add an address space argument and adjust to use breakpoint_address_match. (moribund_breakpoint_here_p): Ditto. (regular_breakpoint_inserted_here_p): Ditto. (breakpoint_inserted_here_p): Ditto. (software_breakpoint_inserted_here_p): Ditto. (breakpoint_thread_match): Ditto. (bpstat_check_location): Ditto. (bpstat_stop_status): Ditto. (print_breakpoint_location): If there's a location to print, switch the current symbol space. (print_one_breakpoint_location): Add `allflag' argument. (print_one_breakpoint): Ditto. Adjust. (do_captured_breakpoint_query): Adjust. (breakpoint_1): Adjust. (breakpoint_has_pc): Also match the symbol space. (describe_other_breakpoints): Add a symbol space argument and adjust. (set_default_breakpoint): Add a symbol space argument. Set default_breakpoint_sspace. (breakpoint_address_match): New. (check_duplicates_for): Add an address space argument, and adjust. (set_raw_breakpoint): Record the symbol space in the location and in the breakpoint. (set_longjmp_breakpoint): Skip longjmp master breakpoints from other symbol spaces. (remove_thread_event_breakpoints, remove_solib_event_breakpoints) (disable_breakpoints_in_shlibs): Skip breakpoints from other symbol spaces. (disable_breakpoints_in_unloaded_shlib): Match symbol spaces. (create_catchpoint): Set the symbol space in the sal. (disable_breakpoints_before_startup): Skip breakpoints from other symbol spaces. Set executing_startup in the current symbol space. (enable_breakpoints_after_startup): Clear executing_startup in the current symbol space. Skip breakpoints from other symbol spaces. (clone_momentary_breakpoint): Also copy the symbol space. (add_location_to_breakpoint): Set the location's symbol space. (bp_loc_is_permanent): Switch thread and symbol space. (create_breakpoint): Adjust. (expand_line_sal_maybe): Expand comment to mention symbol spaces. Switch thread and symbol space when reading memory. (parse_breakpoint_sals): Set the symbol space in the sal. (break_command_really): Ditto. (skip_prologue_sal): Switch and space. (resolve_sal_pc): Ditto. (watch_command_1): Record the symbol space in the sal. (create_ada_exception_breakpoint): Adjust. (clear_command): Adjust. Match symbol spaces. (update_global_location_list): Use breakpoint_address_match. (breakpoint_re_set_one): Switch thread and space. (breakpoint_re_set): Save symbol space. (breakpoint_re_set_thread): Also reset the symbol space. (deprecated_insert_raw_breakpoint): Add an address space argument. Adjust. (insert_single_step_breakpoint): Ditto. (single_step_breakpoint_inserted_here_p): Ditto. (clear_syscall_counts): New. (_initialize_breakpoint): Install it as inferior_exit observer. * exec.h: Include "progspace.h". (exec_bfd, exec_bfd_mtime): New defines. (exec_close): Declare. * exec.c: Include "gdbthread.h" and "progspace.h". (exec_bfd, exec_bfd_mtime, current_target_sections_1): Delete. (using_exec_ops): New. (exec_close_1): Rename to exec_close, and make public. (exec_close): Rename to exec_close_1, and adjust all callers. Add description. Remove target sections and close executables from all program spaces. (exec_file_attach): Add comment. (add_target_sections): Check on `using_exec_ops' to check if the target should be pushed. (remove_target_sections): Only unpush the target if there are no more target sections in any symbol space. * gdbcore.h: Include "exec.h". (exec_bfd, exec_bfd_mtime): Remove declarations. * frame.h (get_frame_program_space, get_frame_address_space) (frame_unwind_program_space): Declare. * frame.c (struct frame_info) <pspace, aspace>: New fields. (create_sentinel_frame): Add program space argument. Set the pspace and aspace fields of the frame object. (get_current_frame, create_new_frame): Adjust. (get_frame_program_space): New. (frame_unwind_program_space): New. (get_frame_address_space): New. * stack.c (print_frame_info): Adjust. (print_frame): Use the frame's program space. * gdbthread.h (any_live_thread_of_process): Declare. * thread.c (any_live_thread_of_process): New. (switch_to_thread): Switch the program space as well. (restore_selected_frame): Don't warn if trying to restore frame level 0. * inferior.h: Include "progspace.h". (detach_fork): Declare. (struct inferior) <removable, aspace, pspace> <vfork_parent, vfork_child, pending_detach> <waiting_for_vfork_done>: New fields. <terminal_info>: Remove field. <data, num_data>: New fields. (register_inferior_data, register_inferior_data_with_cleanup) (clear_inferior_data, set_inferior_data, inferior_data): Declare. (exit_inferior, exit_inferior_silent, exit_inferior_num_silent) (inferior_appeared): Declare. (find_inferior_pid): Typo. (find_inferior_id, find_inferior_for_program_space): Declare. (set_current_inferior, save_current_inferior, prune_inferiors) (number_of_inferiors): Declare. (inferior_list): Declare. * inferior.c: Include "gdbcore.h" and "symfile.h". (inferior_list): Make public. (delete_inferior_1): Always delete thread silently. (find_inferior_id): Make public. (current_inferior_): New. (current_inferior): Use it. (set_current_inferior): New. (restore_inferior): New. (save_current_inferior): New. (free_inferior): Free the per-inferior data. (add_inferior_silent): Allocate per-inferior data. Call inferior_appeared. (delete_threads_of_inferior): New. (delete_inferior_1): Adjust interface to take an inferior pointer. (delete_inferior): Adjust. (delete_inferior_silent): Adjust. (exit_inferior_1): New. (exit_inferior): New. (exit_inferior_silent): New. (exit_inferior_num_silent): New. (detach_inferior): Adjust. (inferior_appeared): New. (discard_all_inferiors): Adjust. (find_inferior_id): Make public. Assert pid is not zero. (find_inferior_for_program_space): New. (have_inferiors): Check if we have any inferior with pid not zero. (have_live_inferiors): Go over all pushed targets looking for process_stratum. (prune_inferiors): New. (number_of_inferiors): New. (print_inferior): Add executable column. Print vfork parent/child relationships. (inferior_command): Adjust to cope with not running inferiors. (remove_inferior_command): New. (add_inferior_command): New. (clone_inferior_command): New. (struct inferior_data): New. (struct inferior_data_registration): New. (struct inferior_data_registry): New. (inferior_data_registry): New. (register_inferior_data_with_cleanup): New. (register_inferior_data): New. (inferior_alloc_data): New. (inferior_free_data): New. (clear_inferior_data): New. (set_inferior_data): New. (inferior_data): New. (initialize_inferiors): New. (_initialize_inferiors): Register "add-inferior", "remove-inferior" and "clone-inferior" commands. * objfiles.h: Include "progspace.h". (struct objfile) <pspace>: New field. (symfile_objfile, object_files): Don't declare. (ALL_PSPACE_OBJFILES): New. (ALL_PSPACE_OBJFILES_SAFE): New. (ALL_OBJFILES, ALL_OBJFILES_SAFE): Adjust. (ALL_PSPACE_SYMTABS): New. (ALL_PRIMARY_SYMTABS): Adjust. (ALL_PSPACE_PRIMARY_SYMTABS): New. (ALL_PSYMTABS): Adjust. (ALL_PSPACE_PSYMTABS): New. * objfiles.c (object_files, symfile_objfile): Delete. (struct objfile_sspace_info): New. (objfiles_pspace_data): New. (objfiles_pspace_data_cleanup): New. (get_objfile_pspace_data): New. (objfiles_changed_p): Delete. (allocate_objfile): Set the objfile's program space. Adjust to reference objfiles_changed_p in pspace data. (free_objfile): Adjust to reference objfiles_changed_p in pspace data. (objfile_relocate): Ditto. (update_section_map): Add pspace argument. Adjust to iterate over objfiles in the passed in pspace. (find_pc_section): Delete sections and num_sections statics. Adjust to refer to program space's objfiles_changed_p. Adjust to refer to sections and num_sections store in the objfile's pspace data. (objfiles_changed): Adjust to reference objfiles_changed_p in pspace data. (_initialize_objfiles): New. * linespec.c (decode_all_digits, decode_dollar): Set the sal's program space. * source.c (current_source_pspace): New. (get_current_source_symtab_and_line): Set the sal's program space. (set_current_source_symtab_and_line): Set current_source_pspace. (select_source_symtab): Ditto. Use ALL_OBJFILES. (forget_cached_source_info): Iterate over all program spaces. * symfile.c (clear_symtab_users): Adjust. * symmisc.c (print_symbol_bcache_statistics): Iterate over all program spaces. (print_objfile_statistics): Ditto. (maintenance_print_msymbols): Ditto. (maintenance_print_objfiles): Ditto. (maintenance_info_symtabs): Ditto. (maintenance_info_psymtabs): Ditto. * symtab.h (SYMTAB_PSPACE): New. (struct symtab_and_line) <pspace>: New field. * symtab.c (init_sal): Clear the sal's program space. (find_pc_sect_symtab): Set the sal's program space. Switch thread and space. (append_expanded_sal): Add program space argument. Iterate over all program spaces. (expand_line_sal): Iterate over all program spaces. Switch program space. * target.h (enum target_waitkind) <TARGET_WAITKIND_VFORK_DONE>: New. (struct target_ops) <to_thread_address_space>: New field. (target_thread_address_space): Define. * target.c (target_detach): Only remove breakpoints from the inferior we're detaching. (target_thread_address_space): New. * defs.h (initialize_progspace): Declare. * top.c (gdb_init): Call it. * solist.h (struct so_list) <sspace>: New field. * solib.h (struct program_space): Forward declare. (solib_name_from_address): Adjust prototype. * solib.c (so_list_head): Replace with a macro referencing the program space. (update_solib_list): Set the so's program space. (solib_name_from_address): Add a program space argument and adjust. * solib-svr4.c (struct svr4_info) <pid>: Delete field. <interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low> <interp_plt_sect_high>: New fields. (svr4_info_p, svr4_info): Delete. (solib_svr4_sspace_data): New. (get_svr4_info): Rewrite. (svr4_sspace_data_cleanup): New. (open_symbol_file_object): Adjust. (svr4_default_sos): Adjust. (svr4_fetch_objfile_link_map): Adjust. (interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low) (interp_plt_sect_high): Delete. (svr4_in_dynsym_resolve_code): Adjust. (enable_break): Adjust. (svr4_clear_solib): Revert bit that removed the svr4_info here, and reinstate clearing debug_base, debug_loader_offset_p, debug_loader_offset and debug_loader_name. (_initialize_svr4_solib): Register solib_svr4_pspace_data. Don't install an inferior_exit observer anymore. * printcmd.c (struct display) <pspace>: New field. (display_command): Set the display's sspace. (do_one_display): Match the display's sspace. (display_uses_solib_p): Ditto. * linux-fork.c (detach_fork): Moved to infrun.c. (_initialize_linux_fork): Moved "detach-on-fork" command to infrun.c. * infrun.c (detach_fork): Moved from linux-fork.c. (proceed_after_vfork_done): New. (handle_vfork_child_exec_or_exit): New. (follow_exec_mode_replace, follow_exec_mode_keep) (follow_exec_mode_names, follow_exec_mode_string) (show_follow_exec_mode_string): New. (follow_exec): New. Reinstate the mark_breakpoints_out call. Remove shared libraries before attaching new executable. If user wants to keep the inferior, keep it. (displaced_step_fixup): Adjust to pass an address space to the breakpoints module. (resume): Ditto. (clear_proceed_status): In all-stop mode, always clear the proceed status of all threads. (prepare_to_proceed): Adjust to pass an address space to the breakpoints module. (proceed): Ditto. (adjust_pc_after_break): Ditto. (handle_inferior_event): When handling a process exit, switch the program space to the inferior's that had exited. Call handle_vfork_child_exec_or_exit. Adjust to pass an address space to the breakpoints module. In non-stop mode, when following a fork and detach-fork is off, also resume the other branch. Handle TARGET_WAITKIND_VFORK_DONE. Set the program space in sals. (normal_stop): Prune inferiors. (_initialize_infrun): Install the new "follow-exec-mode" command. "detach-on-fork" moved here. * regcache.h (get_regcache_aspace): Declare. * regcache.c (struct regcache) <aspace>: New field. (regcache_xmalloc): Clear the aspace. (get_regcache_aspace): New. (regcache_cpy): Copy the aspace field. (regcache_cpy_no_passthrough): Ditto. (get_thread_regcache): Fetch the thread's address space from the target, and store it in the regcache. * infcall.c (call_function_by_hand): Set the sal's pspace. * arch-utils.c (default_has_shared_address_space): New. * arch-utils.h (default_has_shared_address_space): Declare. * gdbarch.sh (has_shared_address_space): New. * gdbarch.h, gdbarch.c: Regenerate. * linux-tdep.c: Include auxv.h, target.h, elf/common.h. (linux_has_shared_address_space): New. (_initialize_linux_tdep): Declare. * arm-tdep.c (arm_software_single_step): Pass the frame's address space to insert_single_step_breakpoint. * arm-linux-tdep.c (arm_linux_software_single_step): Pass the frame's pspace to breakpoint functions. * cris-tdep.c (crisv32_single_step_through_delay): Ditto. (cris_software_single_step): Ditto. * mips-tdep.c (deal_with_atomic_sequence): Add frame argument. Pass the frame's pspace to breakpoint functions. (mips_software_single_step): Adjust. (mips_single_step_through_delay): Adjust. * rs6000-aix-tdep.c (rs6000_software_single_step): Adjust. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust. * solib-irix.c (enable_break): Adjust to pass the current frame's address space to breakpoint functions. * sparc-tdep.c (sparc_software_single_step): Ditto. * spu-tdep.c (spu_software_single_step): Ditto. * alpha-tdep.c (alpha_software_single_step): Ditto. * record.c (record_wait): Adjust to pass an address space to the breakpoints module. * fork-child.c (fork_inferior): Set the new inferior's program and address spaces. * inf-ptrace.c (inf_ptrace_follow_fork): Copy the parent's program and address spaces. (inf_ptrace_attach): Set the inferior's program and address spaces. * linux-nat.c: Include "solib.h". (linux_child_follow_fork): Manage parent and child's program and address spaces. Clone the parent's program space if necessary. Don't wait for the vfork to be done here. Refuse to resume if following the vfork parent while leaving the child stopped. (resume_callback): Don't resume a vfork parent. (linux_nat_resume): Also check for pending events in the lp->waitstatus field. (linux_handle_extended_wait): Report TARGET_WAITKIND_VFORK_DONE events to the core. (stop_wait_callback): Don't wait for SIGSTOP on vfork parents. (cancel_breakpoint): Adjust. * linux-thread-db.c (thread_db_wait): Don't remove thread event breakpoints here. (thread_db_mourn_inferior): Don't mark breakpoints out here. Remove thread event breakpoints after mourning. * corelow.c: Include progspace.h. (core_open): Set the inferior's program and address spaces. * remote.c (remote_add_inferior): Set the new inferior's program and address spaces. (remote_start_remote): Update address spaces. (extended_remote_create_inferior_1): Don't init the thread list if we already debugging other inferiors. * darwin-nat.c (darwin_attach): Set the new inferior's program and address spaces. * gnu-nat.c (gnu_attach): Ditto. * go32-nat.c (go32_create_inferior): Ditto. * inf-ttrace.c (inf_ttrace_follow_fork, inf_ttrace_attach): Ditto. * monitor.c (monitor_open): Ditto. * nto-procfs.c (procfs_attach, procfs_create_inferior): Ditto. * procfs.c (do_attach): Ditto. * windows-nat.c (do_initial_windows_stuff): Ditto. * inflow.c (inferior_process_group) (terminal_init_inferior_with_pgrp, terminal_inferior, (terminal_ours_1, inflow_inferior_exit, copy_terminal_info) (child_terminal_info, new_tty_postfork, set_sigint_trap): Adjust to use per-inferior data instead of inferior->terminal_info. (inflow_inferior_data): New. (inflow_new_inferior): Delete. (inflow_inferior_data_cleanup): New. (get_inflow_inferior_data): New. * mi/mi-interp.c (mi_new_inferior): Rename to... (mi_inferior_appeared): ... this. (mi_interpreter_init): Adjust. * tui/tui-disasm.c: Include "progspace.h". (tui_set_disassem_content): Pass an address space to breakpoint_here_p. * NEWS: Mention multi-program debugging support. Mention new commands "add-inferior", "clone-inferior", "remove-inferior", "maint info program-spaces", and new option "set follow-exec-mode". 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * observer.texi (new_inferior): Rename to... (inferior_appeared): ... this. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/testsuite/ * gdb.base/foll-vfork.exp: Adjust to spell out "follow-fork". * gdb.base/foll-exec.exp: Adjust to expect a process id before "Executing new program". * gdb.base/foll-fork.exp: Adjust to spell out "follow-fork". * gdb.base/multi-forks.exp: Ditto. Adjust to the inferior being left listed after having been killed. * gdb.base/attach.exp: Adjust to spell out "symbol-file". * gdb.base/maint.exp: Adjust test. * Makefile.in (ALL_SUBDIRS): Add gdb.multi. * gdb.multi/Makefile.in: New. * gdb.multi/base.exp: New. * gdb.multi/goodbye.c: New. * gdb.multi/hangout.c: New. * gdb.multi/hello.c: New. * gdb.multi/bkpt-multi-exec.c: New. * gdb.multi/bkpt-multi-exec.exp: New. * gdb.multi/crashme.c: New. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * gdb.texinfo (Inferiors): Rename node to ... (Inferiors and Programs): ... this. Mention running multiple programs in the same debug session. <info inferiors>: Mention the new 'Executable' column if "info inferiors". Update examples. Document the "add-inferior", "clone-inferior", "remove-inferior" and "maint info program-spaces" commands. (Process): Rename node to... (Forks): ... this. Document "set|show follow-exec-mode".
2084 lines
67 KiB
Bash
Executable File
2084 lines
67 KiB
Bash
Executable File
#!/bin/sh -u
|
|
|
|
# Architecture commands for GDB, the GNU debugger.
|
|
#
|
|
# Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
|
# 2008, 2009 Free Software Foundation, Inc.
|
|
#
|
|
# This file is part of GDB.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# Make certain that the script is not running in an internationalized
|
|
# environment.
|
|
LANG=c ; export LANG
|
|
LC_ALL=c ; export LC_ALL
|
|
|
|
|
|
compare_new ()
|
|
{
|
|
file=$1
|
|
if test ! -r ${file}
|
|
then
|
|
echo "${file} missing? cp new-${file} ${file}" 1>&2
|
|
elif diff -u ${file} new-${file}
|
|
then
|
|
echo "${file} unchanged" 1>&2
|
|
else
|
|
echo "${file} has changed? cp new-${file} ${file}" 1>&2
|
|
fi
|
|
}
|
|
|
|
|
|
# Format of the input table
|
|
read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
|
|
|
|
do_read ()
|
|
{
|
|
comment=""
|
|
class=""
|
|
while read line
|
|
do
|
|
if test "${line}" = ""
|
|
then
|
|
continue
|
|
elif test "${line}" = "#" -a "${comment}" = ""
|
|
then
|
|
continue
|
|
elif expr "${line}" : "#" > /dev/null
|
|
then
|
|
comment="${comment}
|
|
${line}"
|
|
else
|
|
|
|
# The semantics of IFS varies between different SH's. Some
|
|
# treat ``::' as three fields while some treat it as just too.
|
|
# Work around this by eliminating ``::'' ....
|
|
line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
|
|
|
|
OFS="${IFS}" ; IFS="[:]"
|
|
eval read ${read} <<EOF
|
|
${line}
|
|
EOF
|
|
IFS="${OFS}"
|
|
|
|
if test -n "${garbage_at_eol}"
|
|
then
|
|
echo "Garbage at end-of-line in ${line}" 1>&2
|
|
kill $$
|
|
exit 1
|
|
fi
|
|
|
|
# .... and then going back through each field and strip out those
|
|
# that ended up with just that space character.
|
|
for r in ${read}
|
|
do
|
|
if eval test \"\${${r}}\" = \"\ \"
|
|
then
|
|
eval ${r}=""
|
|
fi
|
|
done
|
|
|
|
case "${class}" in
|
|
m ) staticdefault="${predefault}" ;;
|
|
M ) staticdefault="0" ;;
|
|
* ) test "${staticdefault}" || staticdefault=0 ;;
|
|
esac
|
|
|
|
case "${class}" in
|
|
F | V | M )
|
|
case "${invalid_p}" in
|
|
"" )
|
|
if test -n "${predefault}"
|
|
then
|
|
#invalid_p="gdbarch->${function} == ${predefault}"
|
|
predicate="gdbarch->${function} != ${predefault}"
|
|
elif class_is_variable_p
|
|
then
|
|
predicate="gdbarch->${function} != 0"
|
|
elif class_is_function_p
|
|
then
|
|
predicate="gdbarch->${function} != NULL"
|
|
fi
|
|
;;
|
|
* )
|
|
echo "Predicate function ${function} with invalid_p." 1>&2
|
|
kill $$
|
|
exit 1
|
|
;;
|
|
esac
|
|
esac
|
|
|
|
# PREDEFAULT is a valid fallback definition of MEMBER when
|
|
# multi-arch is not enabled. This ensures that the
|
|
# default value, when multi-arch is the same as the
|
|
# default value when not multi-arch. POSTDEFAULT is
|
|
# always a valid definition of MEMBER as this again
|
|
# ensures consistency.
|
|
|
|
if [ -n "${postdefault}" ]
|
|
then
|
|
fallbackdefault="${postdefault}"
|
|
elif [ -n "${predefault}" ]
|
|
then
|
|
fallbackdefault="${predefault}"
|
|
else
|
|
fallbackdefault="0"
|
|
fi
|
|
|
|
#NOT YET: See gdbarch.log for basic verification of
|
|
# database
|
|
|
|
break
|
|
fi
|
|
done
|
|
if [ -n "${class}" ]
|
|
then
|
|
true
|
|
else
|
|
false
|
|
fi
|
|
}
|
|
|
|
|
|
fallback_default_p ()
|
|
{
|
|
[ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
|
|
|| [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
|
|
}
|
|
|
|
class_is_variable_p ()
|
|
{
|
|
case "${class}" in
|
|
*v* | *V* ) true ;;
|
|
* ) false ;;
|
|
esac
|
|
}
|
|
|
|
class_is_function_p ()
|
|
{
|
|
case "${class}" in
|
|
*f* | *F* | *m* | *M* ) true ;;
|
|
* ) false ;;
|
|
esac
|
|
}
|
|
|
|
class_is_multiarch_p ()
|
|
{
|
|
case "${class}" in
|
|
*m* | *M* ) true ;;
|
|
* ) false ;;
|
|
esac
|
|
}
|
|
|
|
class_is_predicate_p ()
|
|
{
|
|
case "${class}" in
|
|
*F* | *V* | *M* ) true ;;
|
|
* ) false ;;
|
|
esac
|
|
}
|
|
|
|
class_is_info_p ()
|
|
{
|
|
case "${class}" in
|
|
*i* ) true ;;
|
|
* ) false ;;
|
|
esac
|
|
}
|
|
|
|
|
|
# dump out/verify the doco
|
|
for field in ${read}
|
|
do
|
|
case ${field} in
|
|
|
|
class ) : ;;
|
|
|
|
# # -> line disable
|
|
# f -> function
|
|
# hiding a function
|
|
# F -> function + predicate
|
|
# hiding a function + predicate to test function validity
|
|
# v -> variable
|
|
# hiding a variable
|
|
# V -> variable + predicate
|
|
# hiding a variable + predicate to test variables validity
|
|
# i -> set from info
|
|
# hiding something from the ``struct info'' object
|
|
# m -> multi-arch function
|
|
# hiding a multi-arch function (parameterised with the architecture)
|
|
# M -> multi-arch function + predicate
|
|
# hiding a multi-arch function + predicate to test function validity
|
|
|
|
returntype ) : ;;
|
|
|
|
# For functions, the return type; for variables, the data type
|
|
|
|
function ) : ;;
|
|
|
|
# For functions, the member function name; for variables, the
|
|
# variable name. Member function names are always prefixed with
|
|
# ``gdbarch_'' for name-space purity.
|
|
|
|
formal ) : ;;
|
|
|
|
# The formal argument list. It is assumed that the formal
|
|
# argument list includes the actual name of each list element.
|
|
# A function with no arguments shall have ``void'' as the
|
|
# formal argument list.
|
|
|
|
actual ) : ;;
|
|
|
|
# The list of actual arguments. The arguments specified shall
|
|
# match the FORMAL list given above. Functions with out
|
|
# arguments leave this blank.
|
|
|
|
staticdefault ) : ;;
|
|
|
|
# To help with the GDB startup a static gdbarch object is
|
|
# created. STATICDEFAULT is the value to insert into that
|
|
# static gdbarch object. Since this a static object only
|
|
# simple expressions can be used.
|
|
|
|
# If STATICDEFAULT is empty, zero is used.
|
|
|
|
predefault ) : ;;
|
|
|
|
# An initial value to assign to MEMBER of the freshly
|
|
# malloc()ed gdbarch object. After initialization, the
|
|
# freshly malloc()ed object is passed to the target
|
|
# architecture code for further updates.
|
|
|
|
# If PREDEFAULT is empty, zero is used.
|
|
|
|
# A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
|
|
# INVALID_P are specified, PREDEFAULT will be used as the
|
|
# default for the non- multi-arch target.
|
|
|
|
# A zero PREDEFAULT function will force the fallback to call
|
|
# internal_error().
|
|
|
|
# Variable declarations can refer to ``gdbarch'' which will
|
|
# contain the current architecture. Care should be taken.
|
|
|
|
postdefault ) : ;;
|
|
|
|
# A value to assign to MEMBER of the new gdbarch object should
|
|
# the target architecture code fail to change the PREDEFAULT
|
|
# value.
|
|
|
|
# If POSTDEFAULT is empty, no post update is performed.
|
|
|
|
# If both INVALID_P and POSTDEFAULT are non-empty then
|
|
# INVALID_P will be used to determine if MEMBER should be
|
|
# changed to POSTDEFAULT.
|
|
|
|
# If a non-empty POSTDEFAULT and a zero INVALID_P are
|
|
# specified, POSTDEFAULT will be used as the default for the
|
|
# non- multi-arch target (regardless of the value of
|
|
# PREDEFAULT).
|
|
|
|
# You cannot specify both a zero INVALID_P and a POSTDEFAULT.
|
|
|
|
# Variable declarations can refer to ``gdbarch'' which
|
|
# will contain the current architecture. Care should be
|
|
# taken.
|
|
|
|
invalid_p ) : ;;
|
|
|
|
# A predicate equation that validates MEMBER. Non-zero is
|
|
# returned if the code creating the new architecture failed to
|
|
# initialize MEMBER or the initialized the member is invalid.
|
|
# If POSTDEFAULT is non-empty then MEMBER will be updated to
|
|
# that value. If POSTDEFAULT is empty then internal_error()
|
|
# is called.
|
|
|
|
# If INVALID_P is empty, a check that MEMBER is no longer
|
|
# equal to PREDEFAULT is used.
|
|
|
|
# The expression ``0'' disables the INVALID_P check making
|
|
# PREDEFAULT a legitimate value.
|
|
|
|
# See also PREDEFAULT and POSTDEFAULT.
|
|
|
|
print ) : ;;
|
|
|
|
# An optional expression that convers MEMBER to a value
|
|
# suitable for formatting using %s.
|
|
|
|
# If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
|
|
# or plongest (anything else) is used.
|
|
|
|
garbage_at_eol ) : ;;
|
|
|
|
# Catches stray fields.
|
|
|
|
*)
|
|
echo "Bad field ${field}"
|
|
exit 1;;
|
|
esac
|
|
done
|
|
|
|
|
|
function_list ()
|
|
{
|
|
# See below (DOCO) for description of each field
|
|
cat <<EOF
|
|
i:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::gdbarch_bfd_arch_info (gdbarch)->printable_name
|
|
#
|
|
i:int:byte_order:::BFD_ENDIAN_BIG
|
|
i:int:byte_order_for_code:::BFD_ENDIAN_BIG
|
|
#
|
|
i:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
|
|
#
|
|
i:const struct target_desc *:target_desc:::::::host_address_to_string (gdbarch->target_desc)
|
|
|
|
# The bit byte-order has to do just with numbering of bits in debugging symbols
|
|
# and such. Conceptually, it's quite separate from byte/word byte order.
|
|
v:int:bits_big_endian:::1:(gdbarch->byte_order == BFD_ENDIAN_BIG)::0
|
|
|
|
# Number of bits in a char or unsigned char for the target machine.
|
|
# Just like CHAR_BIT in <limits.h> but describes the target machine.
|
|
# v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
|
|
#
|
|
# Number of bits in a short or unsigned short for the target machine.
|
|
v:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
|
|
# Number of bits in an int or unsigned int for the target machine.
|
|
v:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
|
|
# Number of bits in a long or unsigned long for the target machine.
|
|
v:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
|
|
# Number of bits in a long long or unsigned long long for the target
|
|
# machine.
|
|
v:int:long_long_bit:::8 * sizeof (LONGEST):2*gdbarch->long_bit::0
|
|
|
|
# The ABI default bit-size and format for "float", "double", and "long
|
|
# double". These bit/format pairs should eventually be combined into
|
|
# a single object. For the moment, just initialize them as a pair.
|
|
# Each format describes both the big and little endian layouts (if
|
|
# useful).
|
|
|
|
v:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
|
|
v:const struct floatformat **:float_format:::::floatformats_ieee_single::pformat (gdbarch->float_format)
|
|
v:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
|
|
v:const struct floatformat **:double_format:::::floatformats_ieee_double::pformat (gdbarch->double_format)
|
|
v:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
|
|
v:const struct floatformat **:long_double_format:::::floatformats_ieee_double::pformat (gdbarch->long_double_format)
|
|
|
|
# For most targets, a pointer on the target and its representation as an
|
|
# address in GDB have the same size and "look the same". For such a
|
|
# target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
|
|
# / addr_bit will be set from it.
|
|
#
|
|
# If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
|
|
# also need to set gdbarch_pointer_to_address and gdbarch_address_to_pointer
|
|
# as well.
|
|
#
|
|
# ptr_bit is the size of a pointer on the target
|
|
v:int:ptr_bit:::8 * sizeof (void*):gdbarch->int_bit::0
|
|
# addr_bit is the size of a target address as represented in gdb
|
|
v:int:addr_bit:::8 * sizeof (void*):0:gdbarch_ptr_bit (gdbarch):
|
|
#
|
|
# One if \`char' acts like \`signed char', zero if \`unsigned char'.
|
|
v:int:char_signed:::1:-1:1
|
|
#
|
|
F:CORE_ADDR:read_pc:struct regcache *regcache:regcache
|
|
F:void:write_pc:struct regcache *regcache, CORE_ADDR val:regcache, val
|
|
# Function for getting target's idea of a frame pointer. FIXME: GDB's
|
|
# whole scheme for dealing with "frames" and "frame pointers" needs a
|
|
# serious shakedown.
|
|
m:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
|
|
#
|
|
M:void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
|
|
M:void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
|
|
#
|
|
v:int:num_regs:::0:-1
|
|
# This macro gives the number of pseudo-registers that live in the
|
|
# register namespace but do not get fetched or stored on the target.
|
|
# These pseudo-registers may be aliases for other registers,
|
|
# combinations of other registers, or they may be computed by GDB.
|
|
v:int:num_pseudo_regs:::0:0::0
|
|
|
|
# GDB's standard (or well known) register numbers. These can map onto
|
|
# a real register or a pseudo (computed) register or not be defined at
|
|
# all (-1).
|
|
# gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
|
|
v:int:sp_regnum:::-1:-1::0
|
|
v:int:pc_regnum:::-1:-1::0
|
|
v:int:ps_regnum:::-1:-1::0
|
|
v:int:fp0_regnum:::0:-1::0
|
|
# Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
|
|
m:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
|
|
# Provide a default mapping from a ecoff register number to a gdb REGNUM.
|
|
m:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
|
|
# Convert from an sdb register number to an internal gdb register number.
|
|
m:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
|
|
# Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
|
|
m:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
|
|
m:const char *:register_name:int regnr:regnr::0
|
|
|
|
# Return the type of a register specified by the architecture. Only
|
|
# the register cache should call this function directly; others should
|
|
# use "register_type".
|
|
M:struct type *:register_type:int reg_nr:reg_nr
|
|
|
|
# See gdbint.texinfo, and PUSH_DUMMY_CALL.
|
|
M:struct frame_id:dummy_id:struct frame_info *this_frame:this_frame
|
|
# Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
|
|
# deprecated_fp_regnum.
|
|
v:int:deprecated_fp_regnum:::-1:-1::0
|
|
|
|
# See gdbint.texinfo. See infcall.c.
|
|
M:CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
|
|
v:int:call_dummy_location::::AT_ENTRY_POINT::0
|
|
M:CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache:sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
|
|
|
|
m:void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
|
|
M:void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
|
|
M:void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
|
|
# MAP a GDB RAW register number onto a simulator register number. See
|
|
# also include/...-sim.h.
|
|
m:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
|
|
m:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
|
|
m:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
|
|
# setjmp/longjmp support.
|
|
F:int:get_longjmp_target:struct frame_info *frame, CORE_ADDR *pc:frame, pc
|
|
#
|
|
v:int:believe_pcc_promotion:::::::
|
|
#
|
|
m:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
|
|
f:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
|
|
f:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
|
|
# Construct a value representing the contents of register REGNUM in
|
|
# frame FRAME, interpreted as type TYPE. The routine needs to
|
|
# allocate and return a struct value with all value attributes
|
|
# (but not the value contents) filled in.
|
|
f:struct value *:value_from_register:struct type *type, int regnum, struct frame_info *frame:type, regnum, frame::default_value_from_register::0
|
|
#
|
|
m:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
|
|
m:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
|
|
M:CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
|
|
|
|
# Return the return-value convention that will be used by FUNCTYPE
|
|
# to return a value of type VALTYPE. FUNCTYPE may be NULL in which
|
|
# case the return convention is computed based only on VALTYPE.
|
|
#
|
|
# If READBUF is not NULL, extract the return value and save it in this buffer.
|
|
#
|
|
# If WRITEBUF is not NULL, it contains a return value which will be
|
|
# stored into the appropriate register. This can be used when we want
|
|
# to force the value returned by a function (see the "return" command
|
|
# for instance).
|
|
M:enum return_value_convention:return_value:struct type *functype, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:functype, valtype, regcache, readbuf, writebuf
|
|
|
|
m:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
|
|
M:CORE_ADDR:skip_main_prologue:CORE_ADDR ip:ip
|
|
f:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
|
|
m:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
|
|
M:CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
|
|
m:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
|
|
m:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
|
|
v:CORE_ADDR:decr_pc_after_break:::0:::0
|
|
|
|
# A function can be addressed by either it's "pointer" (possibly a
|
|
# descriptor address) or "entry point" (first executable instruction).
|
|
# The method "convert_from_func_ptr_addr" converting the former to the
|
|
# latter. gdbarch_deprecated_function_start_offset is being used to implement
|
|
# a simplified subset of that functionality - the function's address
|
|
# corresponds to the "function pointer" and the function's start
|
|
# corresponds to the "function entry point" - and hence is redundant.
|
|
|
|
v:CORE_ADDR:deprecated_function_start_offset:::0:::0
|
|
|
|
# Return the remote protocol register number associated with this
|
|
# register. Normally the identity mapping.
|
|
m:int:remote_register_number:int regno:regno::default_remote_register_number::0
|
|
|
|
# Fetch the target specific address used to represent a load module.
|
|
F:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
|
|
#
|
|
v:CORE_ADDR:frame_args_skip:::0:::0
|
|
M:CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
|
|
M:CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
|
|
# DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
|
|
# frame-base. Enable frame-base before frame-unwind.
|
|
F:int:frame_num_args:struct frame_info *frame:frame
|
|
#
|
|
M:CORE_ADDR:frame_align:CORE_ADDR address:address
|
|
m:int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
|
|
v:int:frame_red_zone_size
|
|
#
|
|
m:CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
|
|
# On some machines there are bits in addresses which are not really
|
|
# part of the address, but are used by the kernel, the hardware, etc.
|
|
# for special purposes. gdbarch_addr_bits_remove takes out any such bits so
|
|
# we get a "real" address such as one would find in a symbol table.
|
|
# This is used only for addresses of instructions, and even then I'm
|
|
# not sure it's used in all contexts. It exists to deal with there
|
|
# being a few stray bits in the PC which would mislead us, not as some
|
|
# sort of generic thing to handle alignment or segmentation (it's
|
|
# possible it should be in TARGET_READ_PC instead).
|
|
m:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
|
|
# It is not at all clear why gdbarch_smash_text_address is not folded into
|
|
# gdbarch_addr_bits_remove.
|
|
m:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
|
|
|
|
# FIXME/cagney/2001-01-18: This should be split in two. A target method that
|
|
# indicates if the target needs software single step. An ISA method to
|
|
# implement it.
|
|
#
|
|
# FIXME/cagney/2001-01-18: This should be replaced with something that inserts
|
|
# breakpoints using the breakpoint system instead of blatting memory directly
|
|
# (as with rs6000).
|
|
#
|
|
# FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
|
|
# target can single step. If not, then implement single step using breakpoints.
|
|
#
|
|
# A return value of 1 means that the software_single_step breakpoints
|
|
# were inserted; 0 means they were not.
|
|
F:int:software_single_step:struct frame_info *frame:frame
|
|
|
|
# Return non-zero if the processor is executing a delay slot and a
|
|
# further single-step is needed before the instruction finishes.
|
|
M:int:single_step_through_delay:struct frame_info *frame:frame
|
|
# FIXME: cagney/2003-08-28: Need to find a better way of selecting the
|
|
# disassembler. Perhaps objdump can handle it?
|
|
f:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
|
|
f:CORE_ADDR:skip_trampoline_code:struct frame_info *frame, CORE_ADDR pc:frame, pc::generic_skip_trampoline_code::0
|
|
|
|
|
|
# If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
|
|
# evaluates non-zero, this is the address where the debugger will place
|
|
# a step-resume breakpoint to get us past the dynamic linker.
|
|
m:CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
|
|
# Some systems also have trampoline code for returning from shared libs.
|
|
m:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
|
|
|
|
# A target might have problems with watchpoints as soon as the stack
|
|
# frame of the current function has been destroyed. This mostly happens
|
|
# as the first action in a funtion's epilogue. in_function_epilogue_p()
|
|
# is defined to return a non-zero value if either the given addr is one
|
|
# instruction after the stack destroying instruction up to the trailing
|
|
# return instruction or if we can figure out that the stack frame has
|
|
# already been invalidated regardless of the value of addr. Targets
|
|
# which don't suffer from that problem could just let this functionality
|
|
# untouched.
|
|
m:int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
|
|
f:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
|
|
f:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
|
|
v:int:cannot_step_breakpoint:::0:0::0
|
|
v:int:have_nonsteppable_watchpoint:::0:0::0
|
|
F:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
|
|
M:const char *:address_class_type_flags_to_name:int type_flags:type_flags
|
|
M:int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
|
|
# Is a register in a group
|
|
m:int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
|
|
# Fetch the pointer to the ith function argument.
|
|
F:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
|
|
|
|
# Return the appropriate register set for a core file section with
|
|
# name SECT_NAME and size SECT_SIZE.
|
|
M:const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
|
|
|
|
# When creating core dumps, some systems encode the PID in addition
|
|
# to the LWP id in core file register section names. In those cases, the
|
|
# "XXX" in ".reg/XXX" is encoded as [LWPID << 16 | PID]. This setting
|
|
# is set to true for such architectures; false if "XXX" represents an LWP
|
|
# or thread id with no special encoding.
|
|
v:int:core_reg_section_encodes_pid:::0:0::0
|
|
|
|
# Supported register notes in a core file.
|
|
v:struct core_regset_section *:core_regset_sections:const char *name, int len::::::host_address_to_string (gdbarch->core_regset_sections)
|
|
|
|
# Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
|
|
# core file into buffer READBUF with length LEN.
|
|
M:LONGEST:core_xfer_shared_libraries:gdb_byte *readbuf, ULONGEST offset, LONGEST len:readbuf, offset, len
|
|
|
|
# How the core_stratum layer converts a PTID from a core file to a
|
|
# string.
|
|
M:char *:core_pid_to_str:ptid_t ptid:ptid
|
|
|
|
# BFD target to use when generating a core file.
|
|
V:const char *:gcore_bfd_target:::0:0:::gdbarch->gcore_bfd_target
|
|
|
|
# If the elements of C++ vtables are in-place function descriptors rather
|
|
# than normal function pointers (which may point to code or a descriptor),
|
|
# set this to one.
|
|
v:int:vtable_function_descriptors:::0:0::0
|
|
|
|
# Set if the least significant bit of the delta is used instead of the least
|
|
# significant bit of the pfn for pointers to virtual member functions.
|
|
v:int:vbit_in_delta:::0:0::0
|
|
|
|
# Advance PC to next instruction in order to skip a permanent breakpoint.
|
|
F:void:skip_permanent_breakpoint:struct regcache *regcache:regcache
|
|
|
|
# The maximum length of an instruction on this architecture.
|
|
V:ULONGEST:max_insn_length:::0:0
|
|
|
|
# Copy the instruction at FROM to TO, and make any adjustments
|
|
# necessary to single-step it at that address.
|
|
#
|
|
# REGS holds the state the thread's registers will have before
|
|
# executing the copied instruction; the PC in REGS will refer to FROM,
|
|
# not the copy at TO. The caller should update it to point at TO later.
|
|
#
|
|
# Return a pointer to data of the architecture's choice to be passed
|
|
# to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
|
|
# the instruction's effects have been completely simulated, with the
|
|
# resulting state written back to REGS.
|
|
#
|
|
# For a general explanation of displaced stepping and how GDB uses it,
|
|
# see the comments in infrun.c.
|
|
#
|
|
# The TO area is only guaranteed to have space for
|
|
# gdbarch_max_insn_length (arch) bytes, so this function must not
|
|
# write more bytes than that to that area.
|
|
#
|
|
# If you do not provide this function, GDB assumes that the
|
|
# architecture does not support displaced stepping.
|
|
#
|
|
# If your architecture doesn't need to adjust instructions before
|
|
# single-stepping them, consider using simple_displaced_step_copy_insn
|
|
# here.
|
|
M:struct displaced_step_closure *:displaced_step_copy_insn:CORE_ADDR from, CORE_ADDR to, struct regcache *regs:from, to, regs
|
|
|
|
# Return true if GDB should use hardware single-stepping to execute
|
|
# the displaced instruction identified by CLOSURE. If false,
|
|
# GDB will simply restart execution at the displaced instruction
|
|
# location, and it is up to the target to ensure GDB will receive
|
|
# control again (e.g. by placing a software breakpoint instruction
|
|
# into the displaced instruction buffer).
|
|
#
|
|
# The default implementation returns false on all targets that
|
|
# provide a gdbarch_software_single_step routine, and true otherwise.
|
|
m:int:displaced_step_hw_singlestep:struct displaced_step_closure *closure:closure::default_displaced_step_hw_singlestep::0
|
|
|
|
# Fix up the state resulting from successfully single-stepping a
|
|
# displaced instruction, to give the result we would have gotten from
|
|
# stepping the instruction in its original location.
|
|
#
|
|
# REGS is the register state resulting from single-stepping the
|
|
# displaced instruction.
|
|
#
|
|
# CLOSURE is the result from the matching call to
|
|
# gdbarch_displaced_step_copy_insn.
|
|
#
|
|
# If you provide gdbarch_displaced_step_copy_insn.but not this
|
|
# function, then GDB assumes that no fixup is needed after
|
|
# single-stepping the instruction.
|
|
#
|
|
# For a general explanation of displaced stepping and how GDB uses it,
|
|
# see the comments in infrun.c.
|
|
M:void:displaced_step_fixup:struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs:closure, from, to, regs::NULL
|
|
|
|
# Free a closure returned by gdbarch_displaced_step_copy_insn.
|
|
#
|
|
# If you provide gdbarch_displaced_step_copy_insn, you must provide
|
|
# this function as well.
|
|
#
|
|
# If your architecture uses closures that don't need to be freed, then
|
|
# you can use simple_displaced_step_free_closure here.
|
|
#
|
|
# For a general explanation of displaced stepping and how GDB uses it,
|
|
# see the comments in infrun.c.
|
|
m:void:displaced_step_free_closure:struct displaced_step_closure *closure:closure::NULL::(! gdbarch->displaced_step_free_closure) != (! gdbarch->displaced_step_copy_insn)
|
|
|
|
# Return the address of an appropriate place to put displaced
|
|
# instructions while we step over them. There need only be one such
|
|
# place, since we're only stepping one thread over a breakpoint at a
|
|
# time.
|
|
#
|
|
# For a general explanation of displaced stepping and how GDB uses it,
|
|
# see the comments in infrun.c.
|
|
m:CORE_ADDR:displaced_step_location:void:::NULL::(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
|
|
|
|
# Refresh overlay mapped state for section OSECT.
|
|
F:void:overlay_update:struct obj_section *osect:osect
|
|
|
|
M:const struct target_desc *:core_read_description:struct target_ops *target, bfd *abfd:target, abfd
|
|
|
|
# Handle special encoding of static variables in stabs debug info.
|
|
F:char *:static_transform_name:char *name:name
|
|
# Set if the address in N_SO or N_FUN stabs may be zero.
|
|
v:int:sofun_address_maybe_missing:::0:0::0
|
|
|
|
# Parse the instruction at ADDR storing in the record execution log
|
|
# the registers REGCACHE and memory ranges that will be affected when
|
|
# the instruction executes, along with their current values.
|
|
# Return -1 if something goes wrong, 0 otherwise.
|
|
M:int:process_record:struct regcache *regcache, CORE_ADDR addr:regcache, addr
|
|
|
|
# Save process state after a signal.
|
|
# Return -1 if something goes wrong, 0 otherwise.
|
|
M:int:process_record_signal:struct regcache *regcache, enum target_signal signal:regcache, signal
|
|
|
|
# Signal translation: translate inferior's signal (host's) number into
|
|
# GDB's representation.
|
|
m:enum target_signal:target_signal_from_host:int signo:signo::default_target_signal_from_host::0
|
|
# Signal translation: translate GDB's signal number into inferior's host
|
|
# signal number.
|
|
m:int:target_signal_to_host:enum target_signal ts:ts::default_target_signal_to_host::0
|
|
|
|
# Extra signal info inspection.
|
|
#
|
|
# Return a type suitable to inspect extra signal information.
|
|
M:struct type *:get_siginfo_type:void:
|
|
|
|
# Record architecture-specific information from the symbol table.
|
|
M:void:record_special_symbol:struct objfile *objfile, asymbol *sym:objfile, sym
|
|
|
|
# Function for the 'catch syscall' feature.
|
|
|
|
# Get architecture-specific system calls information from registers.
|
|
M:LONGEST:get_syscall_number:ptid_t ptid:ptid
|
|
|
|
# True if the list of shared libraries is one and only for all
|
|
# processes, as opposed to a list of shared libraries per inferior.
|
|
# This usually means that all processes, although may or may not share
|
|
# an address space, will see the same set of symbols at the same
|
|
# addresses.
|
|
v:int:has_global_solist:::0:0::0
|
|
|
|
# On some targets, even though each inferior has its own private
|
|
# address space, the debug interface takes care of making breakpoints
|
|
# visible to all address spaces automatically. For such cases,
|
|
# this property should be set to true.
|
|
v:int:has_global_breakpoints:::0:0::0
|
|
|
|
# True if inferiors share an address space (e.g., uClinux).
|
|
m:int:has_shared_address_space:void:::default_has_shared_address_space::0
|
|
EOF
|
|
}
|
|
|
|
#
|
|
# The .log file
|
|
#
|
|
exec > new-gdbarch.log
|
|
function_list | while do_read
|
|
do
|
|
cat <<EOF
|
|
${class} ${returntype} ${function} ($formal)
|
|
EOF
|
|
for r in ${read}
|
|
do
|
|
eval echo \"\ \ \ \ ${r}=\${${r}}\"
|
|
done
|
|
if class_is_predicate_p && fallback_default_p
|
|
then
|
|
echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
|
|
kill $$
|
|
exit 1
|
|
fi
|
|
if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
|
|
then
|
|
echo "Error: postdefault is useless when invalid_p=0" 1>&2
|
|
kill $$
|
|
exit 1
|
|
fi
|
|
if class_is_multiarch_p
|
|
then
|
|
if class_is_predicate_p ; then :
|
|
elif test "x${predefault}" = "x"
|
|
then
|
|
echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
|
|
kill $$
|
|
exit 1
|
|
fi
|
|
fi
|
|
echo ""
|
|
done
|
|
|
|
exec 1>&2
|
|
compare_new gdbarch.log
|
|
|
|
|
|
copyright ()
|
|
{
|
|
cat <<EOF
|
|
/* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
|
|
|
|
/* Dynamic architecture support for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* This file was created with the aid of \`\`gdbarch.sh''.
|
|
|
|
The Bourne shell script \`\`gdbarch.sh'' creates the files
|
|
\`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
|
|
against the existing \`\`gdbarch.[hc]''. Any differences found
|
|
being reported.
|
|
|
|
If editing this file, please also run gdbarch.sh and merge any
|
|
changes into that script. Conversely, when making sweeping changes
|
|
to this file, modifying gdbarch.sh and using its output may prove
|
|
easier. */
|
|
|
|
EOF
|
|
}
|
|
|
|
#
|
|
# The .h file
|
|
#
|
|
|
|
exec > new-gdbarch.h
|
|
copyright
|
|
cat <<EOF
|
|
#ifndef GDBARCH_H
|
|
#define GDBARCH_H
|
|
|
|
struct floatformat;
|
|
struct ui_file;
|
|
struct frame_info;
|
|
struct value;
|
|
struct objfile;
|
|
struct obj_section;
|
|
struct minimal_symbol;
|
|
struct regcache;
|
|
struct reggroup;
|
|
struct regset;
|
|
struct disassemble_info;
|
|
struct target_ops;
|
|
struct obstack;
|
|
struct bp_target_info;
|
|
struct target_desc;
|
|
struct displaced_step_closure;
|
|
struct core_regset_section;
|
|
struct syscall;
|
|
|
|
/* The architecture associated with the connection to the target.
|
|
|
|
The architecture vector provides some information that is really
|
|
a property of the target: The layout of certain packets, for instance;
|
|
or the solib_ops vector. Etc. To differentiate architecture accesses
|
|
to per-target properties from per-thread/per-frame/per-objfile properties,
|
|
accesses to per-target properties should be made through target_gdbarch.
|
|
|
|
Eventually, when support for multiple targets is implemented in
|
|
GDB, this global should be made target-specific. */
|
|
extern struct gdbarch *target_gdbarch;
|
|
EOF
|
|
|
|
# function typedef's
|
|
printf "\n"
|
|
printf "\n"
|
|
printf "/* The following are pre-initialized by GDBARCH. */\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_info_p
|
|
then
|
|
printf "\n"
|
|
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
|
|
printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
|
|
fi
|
|
done
|
|
|
|
# function typedef's
|
|
printf "\n"
|
|
printf "\n"
|
|
printf "/* The following are initialized by the target dependent code. */\n"
|
|
function_list | while do_read
|
|
do
|
|
if [ -n "${comment}" ]
|
|
then
|
|
echo "${comment}" | sed \
|
|
-e '2 s,#,/*,' \
|
|
-e '3,$ s,#, ,' \
|
|
-e '$ s,$, */,'
|
|
fi
|
|
|
|
if class_is_predicate_p
|
|
then
|
|
printf "\n"
|
|
printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
|
|
fi
|
|
if class_is_variable_p
|
|
then
|
|
printf "\n"
|
|
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
|
|
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
|
|
fi
|
|
if class_is_function_p
|
|
then
|
|
printf "\n"
|
|
if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
|
|
then
|
|
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
|
|
elif class_is_multiarch_p
|
|
then
|
|
printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
|
|
else
|
|
printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
|
|
fi
|
|
if [ "x${formal}" = "xvoid" ]
|
|
then
|
|
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
|
|
else
|
|
printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
|
|
fi
|
|
printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
|
|
fi
|
|
done
|
|
|
|
# close it off
|
|
cat <<EOF
|
|
|
|
/* Definition for an unknown syscall, used basically in error-cases. */
|
|
#define UNKNOWN_SYSCALL (-1)
|
|
|
|
extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
|
|
|
|
|
|
/* Mechanism for co-ordinating the selection of a specific
|
|
architecture.
|
|
|
|
GDB targets (*-tdep.c) can register an interest in a specific
|
|
architecture. Other GDB components can register a need to maintain
|
|
per-architecture data.
|
|
|
|
The mechanisms below ensures that there is only a loose connection
|
|
between the set-architecture command and the various GDB
|
|
components. Each component can independently register their need
|
|
to maintain architecture specific data with gdbarch.
|
|
|
|
Pragmatics:
|
|
|
|
Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
|
|
didn't scale.
|
|
|
|
The more traditional mega-struct containing architecture specific
|
|
data for all the various GDB components was also considered. Since
|
|
GDB is built from a variable number of (fairly independent)
|
|
components it was determined that the global aproach was not
|
|
applicable. */
|
|
|
|
|
|
/* Register a new architectural family with GDB.
|
|
|
|
Register support for the specified ARCHITECTURE with GDB. When
|
|
gdbarch determines that the specified architecture has been
|
|
selected, the corresponding INIT function is called.
|
|
|
|
--
|
|
|
|
The INIT function takes two parameters: INFO which contains the
|
|
information available to gdbarch about the (possibly new)
|
|
architecture; ARCHES which is a list of the previously created
|
|
\`\`struct gdbarch'' for this architecture.
|
|
|
|
The INFO parameter is, as far as possible, be pre-initialized with
|
|
information obtained from INFO.ABFD or the global defaults.
|
|
|
|
The ARCHES parameter is a linked list (sorted most recently used)
|
|
of all the previously created architures for this architecture
|
|
family. The (possibly NULL) ARCHES->gdbarch can used to access
|
|
values from the previously selected architecture for this
|
|
architecture family.
|
|
|
|
The INIT function shall return any of: NULL - indicating that it
|
|
doesn't recognize the selected architecture; an existing \`\`struct
|
|
gdbarch'' from the ARCHES list - indicating that the new
|
|
architecture is just a synonym for an earlier architecture (see
|
|
gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
|
|
- that describes the selected architecture (see gdbarch_alloc()).
|
|
|
|
The DUMP_TDEP function shall print out all target specific values.
|
|
Care should be taken to ensure that the function works in both the
|
|
multi-arch and non- multi-arch cases. */
|
|
|
|
struct gdbarch_list
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_list *next;
|
|
};
|
|
|
|
struct gdbarch_info
|
|
{
|
|
/* Use default: NULL (ZERO). */
|
|
const struct bfd_arch_info *bfd_arch_info;
|
|
|
|
/* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
|
|
int byte_order;
|
|
|
|
int byte_order_for_code;
|
|
|
|
/* Use default: NULL (ZERO). */
|
|
bfd *abfd;
|
|
|
|
/* Use default: NULL (ZERO). */
|
|
struct gdbarch_tdep_info *tdep_info;
|
|
|
|
/* Use default: GDB_OSABI_UNINITIALIZED (-1). */
|
|
enum gdb_osabi osabi;
|
|
|
|
/* Use default: NULL (ZERO). */
|
|
const struct target_desc *target_desc;
|
|
};
|
|
|
|
typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
|
|
typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
|
|
|
|
/* DEPRECATED - use gdbarch_register() */
|
|
extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
|
|
|
|
extern void gdbarch_register (enum bfd_architecture architecture,
|
|
gdbarch_init_ftype *,
|
|
gdbarch_dump_tdep_ftype *);
|
|
|
|
|
|
/* Return a freshly allocated, NULL terminated, array of the valid
|
|
architecture names. Since architectures are registered during the
|
|
_initialize phase this function only returns useful information
|
|
once initialization has been completed. */
|
|
|
|
extern const char **gdbarch_printable_names (void);
|
|
|
|
|
|
/* Helper function. Search the list of ARCHES for a GDBARCH that
|
|
matches the information provided by INFO. */
|
|
|
|
extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
|
|
|
|
|
|
/* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
|
|
basic initialization using values obtained from the INFO and TDEP
|
|
parameters. set_gdbarch_*() functions are called to complete the
|
|
initialization of the object. */
|
|
|
|
extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
|
|
|
|
|
|
/* Helper function. Free a partially-constructed \`\`struct gdbarch''.
|
|
It is assumed that the caller freeds the \`\`struct
|
|
gdbarch_tdep''. */
|
|
|
|
extern void gdbarch_free (struct gdbarch *);
|
|
|
|
|
|
/* Helper function. Allocate memory from the \`\`struct gdbarch''
|
|
obstack. The memory is freed when the corresponding architecture
|
|
is also freed. */
|
|
|
|
extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
|
|
#define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
|
|
#define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
|
|
|
|
|
|
/* Helper function. Force an update of the current architecture.
|
|
|
|
The actual architecture selected is determined by INFO, \`\`(gdb) set
|
|
architecture'' et.al., the existing architecture and BFD's default
|
|
architecture. INFO should be initialized to zero and then selected
|
|
fields should be updated.
|
|
|
|
Returns non-zero if the update succeeds */
|
|
|
|
extern int gdbarch_update_p (struct gdbarch_info info);
|
|
|
|
|
|
/* Helper function. Find an architecture matching info.
|
|
|
|
INFO should be initialized using gdbarch_info_init, relevant fields
|
|
set, and then finished using gdbarch_info_fill.
|
|
|
|
Returns the corresponding architecture, or NULL if no matching
|
|
architecture was found. */
|
|
|
|
extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
|
|
|
|
|
|
/* Helper function. Set the global "target_gdbarch" to "gdbarch".
|
|
|
|
FIXME: kettenis/20031124: Of the functions that follow, only
|
|
gdbarch_from_bfd is supposed to survive. The others will
|
|
dissappear since in the future GDB will (hopefully) be truly
|
|
multi-arch. However, for now we're still stuck with the concept of
|
|
a single active architecture. */
|
|
|
|
extern void deprecated_target_gdbarch_select_hack (struct gdbarch *gdbarch);
|
|
|
|
|
|
/* Register per-architecture data-pointer.
|
|
|
|
Reserve space for a per-architecture data-pointer. An identifier
|
|
for the reserved data-pointer is returned. That identifer should
|
|
be saved in a local static variable.
|
|
|
|
Memory for the per-architecture data shall be allocated using
|
|
gdbarch_obstack_zalloc. That memory will be deleted when the
|
|
corresponding architecture object is deleted.
|
|
|
|
When a previously created architecture is re-selected, the
|
|
per-architecture data-pointer for that previous architecture is
|
|
restored. INIT() is not re-called.
|
|
|
|
Multiple registrarants for any architecture are allowed (and
|
|
strongly encouraged). */
|
|
|
|
struct gdbarch_data;
|
|
|
|
typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
|
|
extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
|
|
typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
|
|
extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
|
|
extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
|
|
struct gdbarch_data *data,
|
|
void *pointer);
|
|
|
|
extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
|
|
|
|
|
|
/* Set the dynamic target-system-dependent parameters (architecture,
|
|
byte-order, ...) using information found in the BFD */
|
|
|
|
extern void set_gdbarch_from_file (bfd *);
|
|
|
|
|
|
/* Initialize the current architecture to the "first" one we find on
|
|
our list. */
|
|
|
|
extern void initialize_current_architecture (void);
|
|
|
|
/* gdbarch trace variable */
|
|
extern int gdbarch_debug;
|
|
|
|
extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
|
|
|
|
#endif
|
|
EOF
|
|
exec 1>&2
|
|
#../move-if-change new-gdbarch.h gdbarch.h
|
|
compare_new gdbarch.h
|
|
|
|
|
|
#
|
|
# C file
|
|
#
|
|
|
|
exec > new-gdbarch.c
|
|
copyright
|
|
cat <<EOF
|
|
|
|
#include "defs.h"
|
|
#include "arch-utils.h"
|
|
|
|
#include "gdbcmd.h"
|
|
#include "inferior.h"
|
|
#include "symcat.h"
|
|
|
|
#include "floatformat.h"
|
|
|
|
#include "gdb_assert.h"
|
|
#include "gdb_string.h"
|
|
#include "reggroups.h"
|
|
#include "osabi.h"
|
|
#include "gdb_obstack.h"
|
|
#include "observer.h"
|
|
#include "regcache.h"
|
|
|
|
/* Static function declarations */
|
|
|
|
static void alloc_gdbarch_data (struct gdbarch *);
|
|
|
|
/* Non-zero if we want to trace architecture code. */
|
|
|
|
#ifndef GDBARCH_DEBUG
|
|
#define GDBARCH_DEBUG 0
|
|
#endif
|
|
int gdbarch_debug = GDBARCH_DEBUG;
|
|
static void
|
|
show_gdbarch_debug (struct ui_file *file, int from_tty,
|
|
struct cmd_list_element *c, const char *value)
|
|
{
|
|
fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
|
|
}
|
|
|
|
static const char *
|
|
pformat (const struct floatformat **format)
|
|
{
|
|
if (format == NULL)
|
|
return "(null)";
|
|
else
|
|
/* Just print out one of them - this is only for diagnostics. */
|
|
return format[0]->name;
|
|
}
|
|
|
|
EOF
|
|
|
|
# gdbarch open the gdbarch object
|
|
printf "\n"
|
|
printf "/* Maintain the struct gdbarch object */\n"
|
|
printf "\n"
|
|
printf "struct gdbarch\n"
|
|
printf "{\n"
|
|
printf " /* Has this architecture been fully initialized? */\n"
|
|
printf " int initialized_p;\n"
|
|
printf "\n"
|
|
printf " /* An obstack bound to the lifetime of the architecture. */\n"
|
|
printf " struct obstack *obstack;\n"
|
|
printf "\n"
|
|
printf " /* basic architectural information */\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_info_p
|
|
then
|
|
printf " ${returntype} ${function};\n"
|
|
fi
|
|
done
|
|
printf "\n"
|
|
printf " /* target specific vector. */\n"
|
|
printf " struct gdbarch_tdep *tdep;\n"
|
|
printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
|
|
printf "\n"
|
|
printf " /* per-architecture data-pointers */\n"
|
|
printf " unsigned nr_data;\n"
|
|
printf " void **data;\n"
|
|
printf "\n"
|
|
printf " /* per-architecture swap-regions */\n"
|
|
printf " struct gdbarch_swap *swap;\n"
|
|
printf "\n"
|
|
cat <<EOF
|
|
/* Multi-arch values.
|
|
|
|
When extending this structure you must:
|
|
|
|
Add the field below.
|
|
|
|
Declare set/get functions and define the corresponding
|
|
macro in gdbarch.h.
|
|
|
|
gdbarch_alloc(): If zero/NULL is not a suitable default,
|
|
initialize the new field.
|
|
|
|
verify_gdbarch(): Confirm that the target updated the field
|
|
correctly.
|
|
|
|
gdbarch_dump(): Add a fprintf_unfiltered call so that the new
|
|
field is dumped out
|
|
|
|
\`\`startup_gdbarch()'': Append an initial value to the static
|
|
variable (base values on the host's c-type system).
|
|
|
|
get_gdbarch(): Implement the set/get functions (probably using
|
|
the macro's as shortcuts).
|
|
|
|
*/
|
|
|
|
EOF
|
|
function_list | while do_read
|
|
do
|
|
if class_is_variable_p
|
|
then
|
|
printf " ${returntype} ${function};\n"
|
|
elif class_is_function_p
|
|
then
|
|
printf " gdbarch_${function}_ftype *${function};\n"
|
|
fi
|
|
done
|
|
printf "};\n"
|
|
|
|
# A pre-initialized vector
|
|
printf "\n"
|
|
printf "\n"
|
|
cat <<EOF
|
|
/* The default architecture uses host values (for want of a better
|
|
choice). */
|
|
EOF
|
|
printf "\n"
|
|
printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
|
|
printf "\n"
|
|
printf "struct gdbarch startup_gdbarch =\n"
|
|
printf "{\n"
|
|
printf " 1, /* Always initialized. */\n"
|
|
printf " NULL, /* The obstack. */\n"
|
|
printf " /* basic architecture information */\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_info_p
|
|
then
|
|
printf " ${staticdefault}, /* ${function} */\n"
|
|
fi
|
|
done
|
|
cat <<EOF
|
|
/* target specific vector and its dump routine */
|
|
NULL, NULL,
|
|
/*per-architecture data-pointers and swap regions */
|
|
0, NULL, NULL,
|
|
/* Multi-arch values */
|
|
EOF
|
|
function_list | while do_read
|
|
do
|
|
if class_is_function_p || class_is_variable_p
|
|
then
|
|
printf " ${staticdefault}, /* ${function} */\n"
|
|
fi
|
|
done
|
|
cat <<EOF
|
|
/* startup_gdbarch() */
|
|
};
|
|
|
|
struct gdbarch *target_gdbarch = &startup_gdbarch;
|
|
EOF
|
|
|
|
# Create a new gdbarch struct
|
|
cat <<EOF
|
|
|
|
/* Create a new \`\`struct gdbarch'' based on information provided by
|
|
\`\`struct gdbarch_info''. */
|
|
EOF
|
|
printf "\n"
|
|
cat <<EOF
|
|
struct gdbarch *
|
|
gdbarch_alloc (const struct gdbarch_info *info,
|
|
struct gdbarch_tdep *tdep)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* Create an obstack for allocating all the per-architecture memory,
|
|
then use that to allocate the architecture vector. */
|
|
struct obstack *obstack = XMALLOC (struct obstack);
|
|
obstack_init (obstack);
|
|
gdbarch = obstack_alloc (obstack, sizeof (*gdbarch));
|
|
memset (gdbarch, 0, sizeof (*gdbarch));
|
|
gdbarch->obstack = obstack;
|
|
|
|
alloc_gdbarch_data (gdbarch);
|
|
|
|
gdbarch->tdep = tdep;
|
|
EOF
|
|
printf "\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_info_p
|
|
then
|
|
printf " gdbarch->${function} = info->${function};\n"
|
|
fi
|
|
done
|
|
printf "\n"
|
|
printf " /* Force the explicit initialization of these. */\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_function_p || class_is_variable_p
|
|
then
|
|
if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
|
|
then
|
|
printf " gdbarch->${function} = ${predefault};\n"
|
|
fi
|
|
fi
|
|
done
|
|
cat <<EOF
|
|
/* gdbarch_alloc() */
|
|
|
|
return gdbarch;
|
|
}
|
|
EOF
|
|
|
|
# Free a gdbarch struct.
|
|
printf "\n"
|
|
printf "\n"
|
|
cat <<EOF
|
|
/* Allocate extra space using the per-architecture obstack. */
|
|
|
|
void *
|
|
gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
|
|
{
|
|
void *data = obstack_alloc (arch->obstack, size);
|
|
memset (data, 0, size);
|
|
return data;
|
|
}
|
|
|
|
|
|
/* Free a gdbarch struct. This should never happen in normal
|
|
operation --- once you've created a gdbarch, you keep it around.
|
|
However, if an architecture's init function encounters an error
|
|
building the structure, it may need to clean up a partially
|
|
constructed gdbarch. */
|
|
|
|
void
|
|
gdbarch_free (struct gdbarch *arch)
|
|
{
|
|
struct obstack *obstack;
|
|
gdb_assert (arch != NULL);
|
|
gdb_assert (!arch->initialized_p);
|
|
obstack = arch->obstack;
|
|
obstack_free (obstack, 0); /* Includes the ARCH. */
|
|
xfree (obstack);
|
|
}
|
|
EOF
|
|
|
|
# verify a new architecture
|
|
cat <<EOF
|
|
|
|
|
|
/* Ensure that all values in a GDBARCH are reasonable. */
|
|
|
|
static void
|
|
verify_gdbarch (struct gdbarch *gdbarch)
|
|
{
|
|
struct ui_file *log;
|
|
struct cleanup *cleanups;
|
|
long length;
|
|
char *buf;
|
|
log = mem_fileopen ();
|
|
cleanups = make_cleanup_ui_file_delete (log);
|
|
/* fundamental */
|
|
if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
|
|
fprintf_unfiltered (log, "\n\tbyte-order");
|
|
if (gdbarch->bfd_arch_info == NULL)
|
|
fprintf_unfiltered (log, "\n\tbfd_arch_info");
|
|
/* Check those that need to be defined for the given multi-arch level. */
|
|
EOF
|
|
function_list | while do_read
|
|
do
|
|
if class_is_function_p || class_is_variable_p
|
|
then
|
|
if [ "x${invalid_p}" = "x0" ]
|
|
then
|
|
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
|
|
elif class_is_predicate_p
|
|
then
|
|
printf " /* Skip verify of ${function}, has predicate */\n"
|
|
# FIXME: See do_read for potential simplification
|
|
elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
|
|
then
|
|
printf " if (${invalid_p})\n"
|
|
printf " gdbarch->${function} = ${postdefault};\n"
|
|
elif [ -n "${predefault}" -a -n "${postdefault}" ]
|
|
then
|
|
printf " if (gdbarch->${function} == ${predefault})\n"
|
|
printf " gdbarch->${function} = ${postdefault};\n"
|
|
elif [ -n "${postdefault}" ]
|
|
then
|
|
printf " if (gdbarch->${function} == 0)\n"
|
|
printf " gdbarch->${function} = ${postdefault};\n"
|
|
elif [ -n "${invalid_p}" ]
|
|
then
|
|
printf " if (${invalid_p})\n"
|
|
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
|
|
elif [ -n "${predefault}" ]
|
|
then
|
|
printf " if (gdbarch->${function} == ${predefault})\n"
|
|
printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
|
|
fi
|
|
fi
|
|
done
|
|
cat <<EOF
|
|
buf = ui_file_xstrdup (log, &length);
|
|
make_cleanup (xfree, buf);
|
|
if (length > 0)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("verify_gdbarch: the following are invalid ...%s"),
|
|
buf);
|
|
do_cleanups (cleanups);
|
|
}
|
|
EOF
|
|
|
|
# dump the structure
|
|
printf "\n"
|
|
printf "\n"
|
|
cat <<EOF
|
|
/* Print out the details of the current architecture. */
|
|
|
|
void
|
|
gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
|
|
{
|
|
const char *gdb_nm_file = "<not-defined>";
|
|
#if defined (GDB_NM_FILE)
|
|
gdb_nm_file = GDB_NM_FILE;
|
|
#endif
|
|
fprintf_unfiltered (file,
|
|
"gdbarch_dump: GDB_NM_FILE = %s\\n",
|
|
gdb_nm_file);
|
|
EOF
|
|
function_list | sort -t: -k 3 | while do_read
|
|
do
|
|
# First the predicate
|
|
if class_is_predicate_p
|
|
then
|
|
printf " fprintf_unfiltered (file,\n"
|
|
printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
|
|
printf " gdbarch_${function}_p (gdbarch));\n"
|
|
fi
|
|
# Print the corresponding value.
|
|
if class_is_function_p
|
|
then
|
|
printf " fprintf_unfiltered (file,\n"
|
|
printf " \"gdbarch_dump: ${function} = <%%s>\\\\n\",\n"
|
|
printf " host_address_to_string (gdbarch->${function}));\n"
|
|
else
|
|
# It is a variable
|
|
case "${print}:${returntype}" in
|
|
:CORE_ADDR )
|
|
fmt="%s"
|
|
print="core_addr_to_string_nz (gdbarch->${function})"
|
|
;;
|
|
:* )
|
|
fmt="%s"
|
|
print="plongest (gdbarch->${function})"
|
|
;;
|
|
* )
|
|
fmt="%s"
|
|
;;
|
|
esac
|
|
printf " fprintf_unfiltered (file,\n"
|
|
printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
|
|
printf " ${print});\n"
|
|
fi
|
|
done
|
|
cat <<EOF
|
|
if (gdbarch->dump_tdep != NULL)
|
|
gdbarch->dump_tdep (gdbarch, file);
|
|
}
|
|
EOF
|
|
|
|
|
|
# GET/SET
|
|
printf "\n"
|
|
cat <<EOF
|
|
struct gdbarch_tdep *
|
|
gdbarch_tdep (struct gdbarch *gdbarch)
|
|
{
|
|
if (gdbarch_debug >= 2)
|
|
fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
|
|
return gdbarch->tdep;
|
|
}
|
|
EOF
|
|
printf "\n"
|
|
function_list | while do_read
|
|
do
|
|
if class_is_predicate_p
|
|
then
|
|
printf "\n"
|
|
printf "int\n"
|
|
printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
|
|
printf "{\n"
|
|
printf " gdb_assert (gdbarch != NULL);\n"
|
|
printf " return ${predicate};\n"
|
|
printf "}\n"
|
|
fi
|
|
if class_is_function_p
|
|
then
|
|
printf "\n"
|
|
printf "${returntype}\n"
|
|
if [ "x${formal}" = "xvoid" ]
|
|
then
|
|
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
|
|
else
|
|
printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
|
|
fi
|
|
printf "{\n"
|
|
printf " gdb_assert (gdbarch != NULL);\n"
|
|
printf " gdb_assert (gdbarch->${function} != NULL);\n"
|
|
if class_is_predicate_p && test -n "${predefault}"
|
|
then
|
|
# Allow a call to a function with a predicate.
|
|
printf " /* Do not check predicate: ${predicate}, allow call. */\n"
|
|
fi
|
|
printf " if (gdbarch_debug >= 2)\n"
|
|
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
|
|
if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
|
|
then
|
|
if class_is_multiarch_p
|
|
then
|
|
params="gdbarch"
|
|
else
|
|
params=""
|
|
fi
|
|
else
|
|
if class_is_multiarch_p
|
|
then
|
|
params="gdbarch, ${actual}"
|
|
else
|
|
params="${actual}"
|
|
fi
|
|
fi
|
|
if [ "x${returntype}" = "xvoid" ]
|
|
then
|
|
printf " gdbarch->${function} (${params});\n"
|
|
else
|
|
printf " return gdbarch->${function} (${params});\n"
|
|
fi
|
|
printf "}\n"
|
|
printf "\n"
|
|
printf "void\n"
|
|
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
|
|
printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
|
|
printf "{\n"
|
|
printf " gdbarch->${function} = ${function};\n"
|
|
printf "}\n"
|
|
elif class_is_variable_p
|
|
then
|
|
printf "\n"
|
|
printf "${returntype}\n"
|
|
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
|
|
printf "{\n"
|
|
printf " gdb_assert (gdbarch != NULL);\n"
|
|
if [ "x${invalid_p}" = "x0" ]
|
|
then
|
|
printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
|
|
elif [ -n "${invalid_p}" ]
|
|
then
|
|
printf " /* Check variable is valid. */\n"
|
|
printf " gdb_assert (!(${invalid_p}));\n"
|
|
elif [ -n "${predefault}" ]
|
|
then
|
|
printf " /* Check variable changed from pre-default. */\n"
|
|
printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
|
|
fi
|
|
printf " if (gdbarch_debug >= 2)\n"
|
|
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
|
|
printf " return gdbarch->${function};\n"
|
|
printf "}\n"
|
|
printf "\n"
|
|
printf "void\n"
|
|
printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
|
|
printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
|
|
printf "{\n"
|
|
printf " gdbarch->${function} = ${function};\n"
|
|
printf "}\n"
|
|
elif class_is_info_p
|
|
then
|
|
printf "\n"
|
|
printf "${returntype}\n"
|
|
printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
|
|
printf "{\n"
|
|
printf " gdb_assert (gdbarch != NULL);\n"
|
|
printf " if (gdbarch_debug >= 2)\n"
|
|
printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
|
|
printf " return gdbarch->${function};\n"
|
|
printf "}\n"
|
|
fi
|
|
done
|
|
|
|
# All the trailing guff
|
|
cat <<EOF
|
|
|
|
|
|
/* Keep a registry of per-architecture data-pointers required by GDB
|
|
modules. */
|
|
|
|
struct gdbarch_data
|
|
{
|
|
unsigned index;
|
|
int init_p;
|
|
gdbarch_data_pre_init_ftype *pre_init;
|
|
gdbarch_data_post_init_ftype *post_init;
|
|
};
|
|
|
|
struct gdbarch_data_registration
|
|
{
|
|
struct gdbarch_data *data;
|
|
struct gdbarch_data_registration *next;
|
|
};
|
|
|
|
struct gdbarch_data_registry
|
|
{
|
|
unsigned nr;
|
|
struct gdbarch_data_registration *registrations;
|
|
};
|
|
|
|
struct gdbarch_data_registry gdbarch_data_registry =
|
|
{
|
|
0, NULL,
|
|
};
|
|
|
|
static struct gdbarch_data *
|
|
gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
|
|
gdbarch_data_post_init_ftype *post_init)
|
|
{
|
|
struct gdbarch_data_registration **curr;
|
|
/* Append the new registraration. */
|
|
for (curr = &gdbarch_data_registry.registrations;
|
|
(*curr) != NULL;
|
|
curr = &(*curr)->next);
|
|
(*curr) = XMALLOC (struct gdbarch_data_registration);
|
|
(*curr)->next = NULL;
|
|
(*curr)->data = XMALLOC (struct gdbarch_data);
|
|
(*curr)->data->index = gdbarch_data_registry.nr++;
|
|
(*curr)->data->pre_init = pre_init;
|
|
(*curr)->data->post_init = post_init;
|
|
(*curr)->data->init_p = 1;
|
|
return (*curr)->data;
|
|
}
|
|
|
|
struct gdbarch_data *
|
|
gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
|
|
{
|
|
return gdbarch_data_register (pre_init, NULL);
|
|
}
|
|
|
|
struct gdbarch_data *
|
|
gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
|
|
{
|
|
return gdbarch_data_register (NULL, post_init);
|
|
}
|
|
|
|
/* Create/delete the gdbarch data vector. */
|
|
|
|
static void
|
|
alloc_gdbarch_data (struct gdbarch *gdbarch)
|
|
{
|
|
gdb_assert (gdbarch->data == NULL);
|
|
gdbarch->nr_data = gdbarch_data_registry.nr;
|
|
gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
|
|
}
|
|
|
|
/* Initialize the current value of the specified per-architecture
|
|
data-pointer. */
|
|
|
|
void
|
|
deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
|
|
struct gdbarch_data *data,
|
|
void *pointer)
|
|
{
|
|
gdb_assert (data->index < gdbarch->nr_data);
|
|
gdb_assert (gdbarch->data[data->index] == NULL);
|
|
gdb_assert (data->pre_init == NULL);
|
|
gdbarch->data[data->index] = pointer;
|
|
}
|
|
|
|
/* Return the current value of the specified per-architecture
|
|
data-pointer. */
|
|
|
|
void *
|
|
gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
|
|
{
|
|
gdb_assert (data->index < gdbarch->nr_data);
|
|
if (gdbarch->data[data->index] == NULL)
|
|
{
|
|
/* The data-pointer isn't initialized, call init() to get a
|
|
value. */
|
|
if (data->pre_init != NULL)
|
|
/* Mid architecture creation: pass just the obstack, and not
|
|
the entire architecture, as that way it isn't possible for
|
|
pre-init code to refer to undefined architecture
|
|
fields. */
|
|
gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
|
|
else if (gdbarch->initialized_p
|
|
&& data->post_init != NULL)
|
|
/* Post architecture creation: pass the entire architecture
|
|
(as all fields are valid), but be careful to also detect
|
|
recursive references. */
|
|
{
|
|
gdb_assert (data->init_p);
|
|
data->init_p = 0;
|
|
gdbarch->data[data->index] = data->post_init (gdbarch);
|
|
data->init_p = 1;
|
|
}
|
|
else
|
|
/* The architecture initialization hasn't completed - punt -
|
|
hope that the caller knows what they are doing. Once
|
|
deprecated_set_gdbarch_data has been initialized, this can be
|
|
changed to an internal error. */
|
|
return NULL;
|
|
gdb_assert (gdbarch->data[data->index] != NULL);
|
|
}
|
|
return gdbarch->data[data->index];
|
|
}
|
|
|
|
|
|
/* Keep a registry of the architectures known by GDB. */
|
|
|
|
struct gdbarch_registration
|
|
{
|
|
enum bfd_architecture bfd_architecture;
|
|
gdbarch_init_ftype *init;
|
|
gdbarch_dump_tdep_ftype *dump_tdep;
|
|
struct gdbarch_list *arches;
|
|
struct gdbarch_registration *next;
|
|
};
|
|
|
|
static struct gdbarch_registration *gdbarch_registry = NULL;
|
|
|
|
static void
|
|
append_name (const char ***buf, int *nr, const char *name)
|
|
{
|
|
*buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
|
|
(*buf)[*nr] = name;
|
|
*nr += 1;
|
|
}
|
|
|
|
const char **
|
|
gdbarch_printable_names (void)
|
|
{
|
|
/* Accumulate a list of names based on the registed list of
|
|
architectures. */
|
|
enum bfd_architecture a;
|
|
int nr_arches = 0;
|
|
const char **arches = NULL;
|
|
struct gdbarch_registration *rego;
|
|
for (rego = gdbarch_registry;
|
|
rego != NULL;
|
|
rego = rego->next)
|
|
{
|
|
const struct bfd_arch_info *ap;
|
|
ap = bfd_lookup_arch (rego->bfd_architecture, 0);
|
|
if (ap == NULL)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("gdbarch_architecture_names: multi-arch unknown"));
|
|
do
|
|
{
|
|
append_name (&arches, &nr_arches, ap->printable_name);
|
|
ap = ap->next;
|
|
}
|
|
while (ap != NULL);
|
|
}
|
|
append_name (&arches, &nr_arches, NULL);
|
|
return arches;
|
|
}
|
|
|
|
|
|
void
|
|
gdbarch_register (enum bfd_architecture bfd_architecture,
|
|
gdbarch_init_ftype *init,
|
|
gdbarch_dump_tdep_ftype *dump_tdep)
|
|
{
|
|
struct gdbarch_registration **curr;
|
|
const struct bfd_arch_info *bfd_arch_info;
|
|
/* Check that BFD recognizes this architecture */
|
|
bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
|
|
if (bfd_arch_info == NULL)
|
|
{
|
|
internal_error (__FILE__, __LINE__,
|
|
_("gdbarch: Attempt to register unknown architecture (%d)"),
|
|
bfd_architecture);
|
|
}
|
|
/* Check that we haven't seen this architecture before */
|
|
for (curr = &gdbarch_registry;
|
|
(*curr) != NULL;
|
|
curr = &(*curr)->next)
|
|
{
|
|
if (bfd_architecture == (*curr)->bfd_architecture)
|
|
internal_error (__FILE__, __LINE__,
|
|
_("gdbarch: Duplicate registraration of architecture (%s)"),
|
|
bfd_arch_info->printable_name);
|
|
}
|
|
/* log it */
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
|
|
bfd_arch_info->printable_name,
|
|
host_address_to_string (init));
|
|
/* Append it */
|
|
(*curr) = XMALLOC (struct gdbarch_registration);
|
|
(*curr)->bfd_architecture = bfd_architecture;
|
|
(*curr)->init = init;
|
|
(*curr)->dump_tdep = dump_tdep;
|
|
(*curr)->arches = NULL;
|
|
(*curr)->next = NULL;
|
|
}
|
|
|
|
void
|
|
register_gdbarch_init (enum bfd_architecture bfd_architecture,
|
|
gdbarch_init_ftype *init)
|
|
{
|
|
gdbarch_register (bfd_architecture, init, NULL);
|
|
}
|
|
|
|
|
|
/* Look for an architecture using gdbarch_info. */
|
|
|
|
struct gdbarch_list *
|
|
gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
|
|
const struct gdbarch_info *info)
|
|
{
|
|
for (; arches != NULL; arches = arches->next)
|
|
{
|
|
if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
|
|
continue;
|
|
if (info->byte_order != arches->gdbarch->byte_order)
|
|
continue;
|
|
if (info->osabi != arches->gdbarch->osabi)
|
|
continue;
|
|
if (info->target_desc != arches->gdbarch->target_desc)
|
|
continue;
|
|
return arches;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Find an architecture that matches the specified INFO. Create a new
|
|
architecture if needed. Return that new architecture. */
|
|
|
|
struct gdbarch *
|
|
gdbarch_find_by_info (struct gdbarch_info info)
|
|
{
|
|
struct gdbarch *new_gdbarch;
|
|
struct gdbarch_registration *rego;
|
|
|
|
/* Fill in missing parts of the INFO struct using a number of
|
|
sources: "set ..."; INFOabfd supplied; and the global
|
|
defaults. */
|
|
gdbarch_info_fill (&info);
|
|
|
|
/* Must have found some sort of architecture. */
|
|
gdb_assert (info.bfd_arch_info != NULL);
|
|
|
|
if (gdbarch_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"gdbarch_find_by_info: info.bfd_arch_info %s\n",
|
|
(info.bfd_arch_info != NULL
|
|
? info.bfd_arch_info->printable_name
|
|
: "(null)"));
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"gdbarch_find_by_info: info.byte_order %d (%s)\n",
|
|
info.byte_order,
|
|
(info.byte_order == BFD_ENDIAN_BIG ? "big"
|
|
: info.byte_order == BFD_ENDIAN_LITTLE ? "little"
|
|
: "default"));
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"gdbarch_find_by_info: info.osabi %d (%s)\n",
|
|
info.osabi, gdbarch_osabi_name (info.osabi));
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"gdbarch_find_by_info: info.abfd %s\n",
|
|
host_address_to_string (info.abfd));
|
|
fprintf_unfiltered (gdb_stdlog,
|
|
"gdbarch_find_by_info: info.tdep_info %s\n",
|
|
host_address_to_string (info.tdep_info));
|
|
}
|
|
|
|
/* Find the tdep code that knows about this architecture. */
|
|
for (rego = gdbarch_registry;
|
|
rego != NULL;
|
|
rego = rego->next)
|
|
if (rego->bfd_architecture == info.bfd_arch_info->arch)
|
|
break;
|
|
if (rego == NULL)
|
|
{
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
|
|
"No matching architecture\n");
|
|
return 0;
|
|
}
|
|
|
|
/* Ask the tdep code for an architecture that matches "info". */
|
|
new_gdbarch = rego->init (info, rego->arches);
|
|
|
|
/* Did the tdep code like it? No. Reject the change and revert to
|
|
the old architecture. */
|
|
if (new_gdbarch == NULL)
|
|
{
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
|
|
"Target rejected architecture\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Is this a pre-existing architecture (as determined by already
|
|
being initialized)? Move it to the front of the architecture
|
|
list (keeping the list sorted Most Recently Used). */
|
|
if (new_gdbarch->initialized_p)
|
|
{
|
|
struct gdbarch_list **list;
|
|
struct gdbarch_list *this;
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
|
|
"Previous architecture %s (%s) selected\n",
|
|
host_address_to_string (new_gdbarch),
|
|
new_gdbarch->bfd_arch_info->printable_name);
|
|
/* Find the existing arch in the list. */
|
|
for (list = ®o->arches;
|
|
(*list) != NULL && (*list)->gdbarch != new_gdbarch;
|
|
list = &(*list)->next);
|
|
/* It had better be in the list of architectures. */
|
|
gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
|
|
/* Unlink THIS. */
|
|
this = (*list);
|
|
(*list) = this->next;
|
|
/* Insert THIS at the front. */
|
|
this->next = rego->arches;
|
|
rego->arches = this;
|
|
/* Return it. */
|
|
return new_gdbarch;
|
|
}
|
|
|
|
/* It's a new architecture. */
|
|
if (gdbarch_debug)
|
|
fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
|
|
"New architecture %s (%s) selected\n",
|
|
host_address_to_string (new_gdbarch),
|
|
new_gdbarch->bfd_arch_info->printable_name);
|
|
|
|
/* Insert the new architecture into the front of the architecture
|
|
list (keep the list sorted Most Recently Used). */
|
|
{
|
|
struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
|
|
this->next = rego->arches;
|
|
this->gdbarch = new_gdbarch;
|
|
rego->arches = this;
|
|
}
|
|
|
|
/* Check that the newly installed architecture is valid. Plug in
|
|
any post init values. */
|
|
new_gdbarch->dump_tdep = rego->dump_tdep;
|
|
verify_gdbarch (new_gdbarch);
|
|
new_gdbarch->initialized_p = 1;
|
|
|
|
if (gdbarch_debug)
|
|
gdbarch_dump (new_gdbarch, gdb_stdlog);
|
|
|
|
return new_gdbarch;
|
|
}
|
|
|
|
/* Make the specified architecture current. */
|
|
|
|
void
|
|
deprecated_target_gdbarch_select_hack (struct gdbarch *new_gdbarch)
|
|
{
|
|
gdb_assert (new_gdbarch != NULL);
|
|
gdb_assert (new_gdbarch->initialized_p);
|
|
target_gdbarch = new_gdbarch;
|
|
observer_notify_architecture_changed (new_gdbarch);
|
|
registers_changed ();
|
|
}
|
|
|
|
extern void _initialize_gdbarch (void);
|
|
|
|
void
|
|
_initialize_gdbarch (void)
|
|
{
|
|
struct cmd_list_element *c;
|
|
|
|
add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
|
|
Set architecture debugging."), _("\\
|
|
Show architecture debugging."), _("\\
|
|
When non-zero, architecture debugging is enabled."),
|
|
NULL,
|
|
show_gdbarch_debug,
|
|
&setdebuglist, &showdebuglist);
|
|
}
|
|
EOF
|
|
|
|
# close things off
|
|
exec 1>&2
|
|
#../move-if-change new-gdbarch.c gdbarch.c
|
|
compare_new gdbarch.c
|