mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 21:44:19 +08:00
6c95b8df7f
Stan Shebs <stan@codesourcery.com> Add base multi-executable/process support to GDB. gdb/ * Makefile.in (SFILES): Add progspace.c. (COMMON_OBS): Add progspace.o. * progspace.h: New. * progspace.c: New. * breakpoint.h (struct bp_target_info) <placed_address_space>: New field. (struct bp_location) <pspace>: New field. (struct breakpoint) <pspace>: New field. (bpstat_stop_status, breakpoint_here_p) (moribund_breakpoint_here_p, breakpoint_inserted_here_p) (regular_breakpoint_inserted_here_p) (software_breakpoint_inserted_here_p, breakpoint_thread_match) (set_default_breakpoint): Adjust prototypes. (remove_breakpoints_pid, breakpoint_program_space_exit): Declare. (insert_single_step_breakpoint, deprecated_insert_raw_breakpoint): Adjust prototypes. * breakpoint.c (executing_startup): Delete. (default_breakpoint_sspace): New. (breakpoint_restore_shadows): Skip if the address space doesn't match. (update_watchpoint): Record the frame's program space in the breakpoint location. (insert_bp_location): Record the address space in target_info. Adjust to pass the symbol space to solib_name_from_address. (breakpoint_program_space_exit): New. (insert_breakpoint_locations): Switch the symbol space and thread when inserting breakpoints. Don't insert breakpoints in a vfork parent waiting for vfork done if we're not attached to the vfork child. (remove_breakpoints_pid): New. (reattach_breakpoints): Switch to a thread of PID. Ignore breakpoints of other symbol spaces. (create_internal_breakpoint): Store the symbol space in the sal. (create_longjmp_master_breakpoint): Iterate over all symbol spaces. (update_breakpoints_after_exec): Ignore breakpoints for other symbol spaces. (remove_breakpoint): Rename to ... (remove_breakpoint_1): ... this. Pass the breakpoints symbol space to solib_name_from_address. (remove_breakpoint): New. (mark_breakpoints_out): Ignore breakpoints from other symbol spaces. (breakpoint_init_inferior): Ditto. (breakpoint_here_p): Add an address space argument and adjust to use breakpoint_address_match. (moribund_breakpoint_here_p): Ditto. (regular_breakpoint_inserted_here_p): Ditto. (breakpoint_inserted_here_p): Ditto. (software_breakpoint_inserted_here_p): Ditto. (breakpoint_thread_match): Ditto. (bpstat_check_location): Ditto. (bpstat_stop_status): Ditto. (print_breakpoint_location): If there's a location to print, switch the current symbol space. (print_one_breakpoint_location): Add `allflag' argument. (print_one_breakpoint): Ditto. Adjust. (do_captured_breakpoint_query): Adjust. (breakpoint_1): Adjust. (breakpoint_has_pc): Also match the symbol space. (describe_other_breakpoints): Add a symbol space argument and adjust. (set_default_breakpoint): Add a symbol space argument. Set default_breakpoint_sspace. (breakpoint_address_match): New. (check_duplicates_for): Add an address space argument, and adjust. (set_raw_breakpoint): Record the symbol space in the location and in the breakpoint. (set_longjmp_breakpoint): Skip longjmp master breakpoints from other symbol spaces. (remove_thread_event_breakpoints, remove_solib_event_breakpoints) (disable_breakpoints_in_shlibs): Skip breakpoints from other symbol spaces. (disable_breakpoints_in_unloaded_shlib): Match symbol spaces. (create_catchpoint): Set the symbol space in the sal. (disable_breakpoints_before_startup): Skip breakpoints from other symbol spaces. Set executing_startup in the current symbol space. (enable_breakpoints_after_startup): Clear executing_startup in the current symbol space. Skip breakpoints from other symbol spaces. (clone_momentary_breakpoint): Also copy the symbol space. (add_location_to_breakpoint): Set the location's symbol space. (bp_loc_is_permanent): Switch thread and symbol space. (create_breakpoint): Adjust. (expand_line_sal_maybe): Expand comment to mention symbol spaces. Switch thread and symbol space when reading memory. (parse_breakpoint_sals): Set the symbol space in the sal. (break_command_really): Ditto. (skip_prologue_sal): Switch and space. (resolve_sal_pc): Ditto. (watch_command_1): Record the symbol space in the sal. (create_ada_exception_breakpoint): Adjust. (clear_command): Adjust. Match symbol spaces. (update_global_location_list): Use breakpoint_address_match. (breakpoint_re_set_one): Switch thread and space. (breakpoint_re_set): Save symbol space. (breakpoint_re_set_thread): Also reset the symbol space. (deprecated_insert_raw_breakpoint): Add an address space argument. Adjust. (insert_single_step_breakpoint): Ditto. (single_step_breakpoint_inserted_here_p): Ditto. (clear_syscall_counts): New. (_initialize_breakpoint): Install it as inferior_exit observer. * exec.h: Include "progspace.h". (exec_bfd, exec_bfd_mtime): New defines. (exec_close): Declare. * exec.c: Include "gdbthread.h" and "progspace.h". (exec_bfd, exec_bfd_mtime, current_target_sections_1): Delete. (using_exec_ops): New. (exec_close_1): Rename to exec_close, and make public. (exec_close): Rename to exec_close_1, and adjust all callers. Add description. Remove target sections and close executables from all program spaces. (exec_file_attach): Add comment. (add_target_sections): Check on `using_exec_ops' to check if the target should be pushed. (remove_target_sections): Only unpush the target if there are no more target sections in any symbol space. * gdbcore.h: Include "exec.h". (exec_bfd, exec_bfd_mtime): Remove declarations. * frame.h (get_frame_program_space, get_frame_address_space) (frame_unwind_program_space): Declare. * frame.c (struct frame_info) <pspace, aspace>: New fields. (create_sentinel_frame): Add program space argument. Set the pspace and aspace fields of the frame object. (get_current_frame, create_new_frame): Adjust. (get_frame_program_space): New. (frame_unwind_program_space): New. (get_frame_address_space): New. * stack.c (print_frame_info): Adjust. (print_frame): Use the frame's program space. * gdbthread.h (any_live_thread_of_process): Declare. * thread.c (any_live_thread_of_process): New. (switch_to_thread): Switch the program space as well. (restore_selected_frame): Don't warn if trying to restore frame level 0. * inferior.h: Include "progspace.h". (detach_fork): Declare. (struct inferior) <removable, aspace, pspace> <vfork_parent, vfork_child, pending_detach> <waiting_for_vfork_done>: New fields. <terminal_info>: Remove field. <data, num_data>: New fields. (register_inferior_data, register_inferior_data_with_cleanup) (clear_inferior_data, set_inferior_data, inferior_data): Declare. (exit_inferior, exit_inferior_silent, exit_inferior_num_silent) (inferior_appeared): Declare. (find_inferior_pid): Typo. (find_inferior_id, find_inferior_for_program_space): Declare. (set_current_inferior, save_current_inferior, prune_inferiors) (number_of_inferiors): Declare. (inferior_list): Declare. * inferior.c: Include "gdbcore.h" and "symfile.h". (inferior_list): Make public. (delete_inferior_1): Always delete thread silently. (find_inferior_id): Make public. (current_inferior_): New. (current_inferior): Use it. (set_current_inferior): New. (restore_inferior): New. (save_current_inferior): New. (free_inferior): Free the per-inferior data. (add_inferior_silent): Allocate per-inferior data. Call inferior_appeared. (delete_threads_of_inferior): New. (delete_inferior_1): Adjust interface to take an inferior pointer. (delete_inferior): Adjust. (delete_inferior_silent): Adjust. (exit_inferior_1): New. (exit_inferior): New. (exit_inferior_silent): New. (exit_inferior_num_silent): New. (detach_inferior): Adjust. (inferior_appeared): New. (discard_all_inferiors): Adjust. (find_inferior_id): Make public. Assert pid is not zero. (find_inferior_for_program_space): New. (have_inferiors): Check if we have any inferior with pid not zero. (have_live_inferiors): Go over all pushed targets looking for process_stratum. (prune_inferiors): New. (number_of_inferiors): New. (print_inferior): Add executable column. Print vfork parent/child relationships. (inferior_command): Adjust to cope with not running inferiors. (remove_inferior_command): New. (add_inferior_command): New. (clone_inferior_command): New. (struct inferior_data): New. (struct inferior_data_registration): New. (struct inferior_data_registry): New. (inferior_data_registry): New. (register_inferior_data_with_cleanup): New. (register_inferior_data): New. (inferior_alloc_data): New. (inferior_free_data): New. (clear_inferior_data): New. (set_inferior_data): New. (inferior_data): New. (initialize_inferiors): New. (_initialize_inferiors): Register "add-inferior", "remove-inferior" and "clone-inferior" commands. * objfiles.h: Include "progspace.h". (struct objfile) <pspace>: New field. (symfile_objfile, object_files): Don't declare. (ALL_PSPACE_OBJFILES): New. (ALL_PSPACE_OBJFILES_SAFE): New. (ALL_OBJFILES, ALL_OBJFILES_SAFE): Adjust. (ALL_PSPACE_SYMTABS): New. (ALL_PRIMARY_SYMTABS): Adjust. (ALL_PSPACE_PRIMARY_SYMTABS): New. (ALL_PSYMTABS): Adjust. (ALL_PSPACE_PSYMTABS): New. * objfiles.c (object_files, symfile_objfile): Delete. (struct objfile_sspace_info): New. (objfiles_pspace_data): New. (objfiles_pspace_data_cleanup): New. (get_objfile_pspace_data): New. (objfiles_changed_p): Delete. (allocate_objfile): Set the objfile's program space. Adjust to reference objfiles_changed_p in pspace data. (free_objfile): Adjust to reference objfiles_changed_p in pspace data. (objfile_relocate): Ditto. (update_section_map): Add pspace argument. Adjust to iterate over objfiles in the passed in pspace. (find_pc_section): Delete sections and num_sections statics. Adjust to refer to program space's objfiles_changed_p. Adjust to refer to sections and num_sections store in the objfile's pspace data. (objfiles_changed): Adjust to reference objfiles_changed_p in pspace data. (_initialize_objfiles): New. * linespec.c (decode_all_digits, decode_dollar): Set the sal's program space. * source.c (current_source_pspace): New. (get_current_source_symtab_and_line): Set the sal's program space. (set_current_source_symtab_and_line): Set current_source_pspace. (select_source_symtab): Ditto. Use ALL_OBJFILES. (forget_cached_source_info): Iterate over all program spaces. * symfile.c (clear_symtab_users): Adjust. * symmisc.c (print_symbol_bcache_statistics): Iterate over all program spaces. (print_objfile_statistics): Ditto. (maintenance_print_msymbols): Ditto. (maintenance_print_objfiles): Ditto. (maintenance_info_symtabs): Ditto. (maintenance_info_psymtabs): Ditto. * symtab.h (SYMTAB_PSPACE): New. (struct symtab_and_line) <pspace>: New field. * symtab.c (init_sal): Clear the sal's program space. (find_pc_sect_symtab): Set the sal's program space. Switch thread and space. (append_expanded_sal): Add program space argument. Iterate over all program spaces. (expand_line_sal): Iterate over all program spaces. Switch program space. * target.h (enum target_waitkind) <TARGET_WAITKIND_VFORK_DONE>: New. (struct target_ops) <to_thread_address_space>: New field. (target_thread_address_space): Define. * target.c (target_detach): Only remove breakpoints from the inferior we're detaching. (target_thread_address_space): New. * defs.h (initialize_progspace): Declare. * top.c (gdb_init): Call it. * solist.h (struct so_list) <sspace>: New field. * solib.h (struct program_space): Forward declare. (solib_name_from_address): Adjust prototype. * solib.c (so_list_head): Replace with a macro referencing the program space. (update_solib_list): Set the so's program space. (solib_name_from_address): Add a program space argument and adjust. * solib-svr4.c (struct svr4_info) <pid>: Delete field. <interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low> <interp_plt_sect_high>: New fields. (svr4_info_p, svr4_info): Delete. (solib_svr4_sspace_data): New. (get_svr4_info): Rewrite. (svr4_sspace_data_cleanup): New. (open_symbol_file_object): Adjust. (svr4_default_sos): Adjust. (svr4_fetch_objfile_link_map): Adjust. (interp_text_sect_low, interp_text_sect_high, interp_plt_sect_low) (interp_plt_sect_high): Delete. (svr4_in_dynsym_resolve_code): Adjust. (enable_break): Adjust. (svr4_clear_solib): Revert bit that removed the svr4_info here, and reinstate clearing debug_base, debug_loader_offset_p, debug_loader_offset and debug_loader_name. (_initialize_svr4_solib): Register solib_svr4_pspace_data. Don't install an inferior_exit observer anymore. * printcmd.c (struct display) <pspace>: New field. (display_command): Set the display's sspace. (do_one_display): Match the display's sspace. (display_uses_solib_p): Ditto. * linux-fork.c (detach_fork): Moved to infrun.c. (_initialize_linux_fork): Moved "detach-on-fork" command to infrun.c. * infrun.c (detach_fork): Moved from linux-fork.c. (proceed_after_vfork_done): New. (handle_vfork_child_exec_or_exit): New. (follow_exec_mode_replace, follow_exec_mode_keep) (follow_exec_mode_names, follow_exec_mode_string) (show_follow_exec_mode_string): New. (follow_exec): New. Reinstate the mark_breakpoints_out call. Remove shared libraries before attaching new executable. If user wants to keep the inferior, keep it. (displaced_step_fixup): Adjust to pass an address space to the breakpoints module. (resume): Ditto. (clear_proceed_status): In all-stop mode, always clear the proceed status of all threads. (prepare_to_proceed): Adjust to pass an address space to the breakpoints module. (proceed): Ditto. (adjust_pc_after_break): Ditto. (handle_inferior_event): When handling a process exit, switch the program space to the inferior's that had exited. Call handle_vfork_child_exec_or_exit. Adjust to pass an address space to the breakpoints module. In non-stop mode, when following a fork and detach-fork is off, also resume the other branch. Handle TARGET_WAITKIND_VFORK_DONE. Set the program space in sals. (normal_stop): Prune inferiors. (_initialize_infrun): Install the new "follow-exec-mode" command. "detach-on-fork" moved here. * regcache.h (get_regcache_aspace): Declare. * regcache.c (struct regcache) <aspace>: New field. (regcache_xmalloc): Clear the aspace. (get_regcache_aspace): New. (regcache_cpy): Copy the aspace field. (regcache_cpy_no_passthrough): Ditto. (get_thread_regcache): Fetch the thread's address space from the target, and store it in the regcache. * infcall.c (call_function_by_hand): Set the sal's pspace. * arch-utils.c (default_has_shared_address_space): New. * arch-utils.h (default_has_shared_address_space): Declare. * gdbarch.sh (has_shared_address_space): New. * gdbarch.h, gdbarch.c: Regenerate. * linux-tdep.c: Include auxv.h, target.h, elf/common.h. (linux_has_shared_address_space): New. (_initialize_linux_tdep): Declare. * arm-tdep.c (arm_software_single_step): Pass the frame's address space to insert_single_step_breakpoint. * arm-linux-tdep.c (arm_linux_software_single_step): Pass the frame's pspace to breakpoint functions. * cris-tdep.c (crisv32_single_step_through_delay): Ditto. (cris_software_single_step): Ditto. * mips-tdep.c (deal_with_atomic_sequence): Add frame argument. Pass the frame's pspace to breakpoint functions. (mips_software_single_step): Adjust. (mips_single_step_through_delay): Adjust. * rs6000-aix-tdep.c (rs6000_software_single_step): Adjust. * rs6000-tdep.c (ppc_deal_with_atomic_sequence): Adjust. * solib-irix.c (enable_break): Adjust to pass the current frame's address space to breakpoint functions. * sparc-tdep.c (sparc_software_single_step): Ditto. * spu-tdep.c (spu_software_single_step): Ditto. * alpha-tdep.c (alpha_software_single_step): Ditto. * record.c (record_wait): Adjust to pass an address space to the breakpoints module. * fork-child.c (fork_inferior): Set the new inferior's program and address spaces. * inf-ptrace.c (inf_ptrace_follow_fork): Copy the parent's program and address spaces. (inf_ptrace_attach): Set the inferior's program and address spaces. * linux-nat.c: Include "solib.h". (linux_child_follow_fork): Manage parent and child's program and address spaces. Clone the parent's program space if necessary. Don't wait for the vfork to be done here. Refuse to resume if following the vfork parent while leaving the child stopped. (resume_callback): Don't resume a vfork parent. (linux_nat_resume): Also check for pending events in the lp->waitstatus field. (linux_handle_extended_wait): Report TARGET_WAITKIND_VFORK_DONE events to the core. (stop_wait_callback): Don't wait for SIGSTOP on vfork parents. (cancel_breakpoint): Adjust. * linux-thread-db.c (thread_db_wait): Don't remove thread event breakpoints here. (thread_db_mourn_inferior): Don't mark breakpoints out here. Remove thread event breakpoints after mourning. * corelow.c: Include progspace.h. (core_open): Set the inferior's program and address spaces. * remote.c (remote_add_inferior): Set the new inferior's program and address spaces. (remote_start_remote): Update address spaces. (extended_remote_create_inferior_1): Don't init the thread list if we already debugging other inferiors. * darwin-nat.c (darwin_attach): Set the new inferior's program and address spaces. * gnu-nat.c (gnu_attach): Ditto. * go32-nat.c (go32_create_inferior): Ditto. * inf-ttrace.c (inf_ttrace_follow_fork, inf_ttrace_attach): Ditto. * monitor.c (monitor_open): Ditto. * nto-procfs.c (procfs_attach, procfs_create_inferior): Ditto. * procfs.c (do_attach): Ditto. * windows-nat.c (do_initial_windows_stuff): Ditto. * inflow.c (inferior_process_group) (terminal_init_inferior_with_pgrp, terminal_inferior, (terminal_ours_1, inflow_inferior_exit, copy_terminal_info) (child_terminal_info, new_tty_postfork, set_sigint_trap): Adjust to use per-inferior data instead of inferior->terminal_info. (inflow_inferior_data): New. (inflow_new_inferior): Delete. (inflow_inferior_data_cleanup): New. (get_inflow_inferior_data): New. * mi/mi-interp.c (mi_new_inferior): Rename to... (mi_inferior_appeared): ... this. (mi_interpreter_init): Adjust. * tui/tui-disasm.c: Include "progspace.h". (tui_set_disassem_content): Pass an address space to breakpoint_here_p. * NEWS: Mention multi-program debugging support. Mention new commands "add-inferior", "clone-inferior", "remove-inferior", "maint info program-spaces", and new option "set follow-exec-mode". 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * observer.texi (new_inferior): Rename to... (inferior_appeared): ... this. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/testsuite/ * gdb.base/foll-vfork.exp: Adjust to spell out "follow-fork". * gdb.base/foll-exec.exp: Adjust to expect a process id before "Executing new program". * gdb.base/foll-fork.exp: Adjust to spell out "follow-fork". * gdb.base/multi-forks.exp: Ditto. Adjust to the inferior being left listed after having been killed. * gdb.base/attach.exp: Adjust to spell out "symbol-file". * gdb.base/maint.exp: Adjust test. * Makefile.in (ALL_SUBDIRS): Add gdb.multi. * gdb.multi/Makefile.in: New. * gdb.multi/base.exp: New. * gdb.multi/goodbye.c: New. * gdb.multi/hangout.c: New. * gdb.multi/hello.c: New. * gdb.multi/bkpt-multi-exec.c: New. * gdb.multi/bkpt-multi-exec.exp: New. * gdb.multi/crashme.c: New. 2009-10-19 Pedro Alves <pedro@codesourcery.com> Stan Shebs <stan@codesourcery.com> gdb/doc/ * gdb.texinfo (Inferiors): Rename node to ... (Inferiors and Programs): ... this. Mention running multiple programs in the same debug session. <info inferiors>: Mention the new 'Executable' column if "info inferiors". Update examples. Document the "add-inferior", "clone-inferior", "remove-inferior" and "maint info program-spaces" commands. (Process): Rename node to... (Forks): ... this. Document "set|show follow-exec-mode".
721 lines
29 KiB
C
721 lines
29 KiB
C
/* Definitions for dealing with stack frames, for GDB, the GNU debugger.
|
|
|
|
Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1996, 1997,
|
|
1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#if !defined (FRAME_H)
|
|
#define FRAME_H 1
|
|
|
|
/* The following is the intended naming schema for frame functions.
|
|
It isn't 100% consistent, but it is aproaching that. Frame naming
|
|
schema:
|
|
|
|
Prefixes:
|
|
|
|
get_frame_WHAT...(): Get WHAT from the THIS frame (functionaly
|
|
equivalent to THIS->next->unwind->what)
|
|
|
|
frame_unwind_WHAT...(): Unwind THIS frame's WHAT from the NEXT
|
|
frame.
|
|
|
|
frame_unwind_caller_WHAT...(): Unwind WHAT for NEXT stack frame's
|
|
real caller. Any inlined functions in NEXT's stack frame are
|
|
skipped. Use these to ignore any potentially inlined functions,
|
|
e.g. inlined into the first instruction of a library trampoline.
|
|
|
|
get_stack_frame_WHAT...(): Get WHAT for THIS frame, but if THIS is
|
|
inlined, skip to the containing stack frame.
|
|
|
|
put_frame_WHAT...(): Put a value into this frame (unsafe, need to
|
|
invalidate the frame / regcache afterwards) (better name more
|
|
strongly hinting at its unsafeness)
|
|
|
|
safe_....(): Safer version of various functions, doesn't throw an
|
|
error (leave this for later?). Returns non-zero / non-NULL if the
|
|
request succeeds, zero / NULL otherwize.
|
|
|
|
Suffixes:
|
|
|
|
void /frame/_WHAT(): Read WHAT's value into the buffer parameter.
|
|
|
|
ULONGEST /frame/_WHAT_unsigned(): Return an unsigned value (the
|
|
alternative is *frame_unsigned_WHAT).
|
|
|
|
LONGEST /frame/_WHAT_signed(): Return WHAT signed value.
|
|
|
|
What:
|
|
|
|
/frame/_memory* (frame, coreaddr, len [, buf]): Extract/return
|
|
*memory.
|
|
|
|
/frame/_register* (frame, regnum [, buf]): extract/return register.
|
|
|
|
CORE_ADDR /frame/_{pc,sp,...} (frame): Resume address, innner most
|
|
stack *address, ...
|
|
|
|
*/
|
|
|
|
struct symtab_and_line;
|
|
struct frame_unwind;
|
|
struct frame_base;
|
|
struct block;
|
|
struct gdbarch;
|
|
struct ui_file;
|
|
|
|
/* The frame object. */
|
|
|
|
struct frame_info;
|
|
|
|
/* The frame object's ID. This provides a per-frame unique identifier
|
|
that can be used to relocate a `struct frame_info' after a target
|
|
resume or a frame cache destruct. It of course assumes that the
|
|
inferior hasn't unwound the stack past that frame. */
|
|
|
|
struct frame_id
|
|
{
|
|
/* The frame's stack address. This shall be constant through out
|
|
the lifetime of a frame. Note that this requirement applies to
|
|
not just the function body, but also the prologue and (in theory
|
|
at least) the epilogue. Since that value needs to fall either on
|
|
the boundary, or within the frame's address range, the frame's
|
|
outer-most address (the inner-most address of the previous frame)
|
|
is used. Watch out for all the legacy targets that still use the
|
|
function pointer register or stack pointer register. They are
|
|
wrong.
|
|
|
|
This field is valid only if stack_addr_p is true. Otherwise, this
|
|
frame represents the null frame. */
|
|
CORE_ADDR stack_addr;
|
|
|
|
/* The frame's code address. This shall be constant through out the
|
|
lifetime of the frame. While the PC (a.k.a. resume address)
|
|
changes as the function is executed, this code address cannot.
|
|
Typically, it is set to the address of the entry point of the
|
|
frame's function (as returned by get_frame_func).
|
|
|
|
For inlined functions (INLINE_DEPTH != 0), this is the address of
|
|
the first executed instruction in the block corresponding to the
|
|
inlined function.
|
|
|
|
This field is valid only if code_addr_p is true. Otherwise, this
|
|
frame is considered to have a wildcard code address, i.e. one that
|
|
matches every address value in frame comparisons. */
|
|
CORE_ADDR code_addr;
|
|
|
|
/* The frame's special address. This shall be constant through out the
|
|
lifetime of the frame. This is used for architectures that may have
|
|
frames that do not change the stack but are still distinct and have
|
|
some form of distinct identifier (e.g. the ia64 which uses a 2nd
|
|
stack for registers). This field is treated as unordered - i.e. will
|
|
not be used in frame ordering comparisons.
|
|
|
|
This field is valid only if special_addr_p is true. Otherwise, this
|
|
frame is considered to have a wildcard special address, i.e. one that
|
|
matches every address value in frame comparisons. */
|
|
CORE_ADDR special_addr;
|
|
|
|
/* Flags to indicate the above fields have valid contents. */
|
|
unsigned int stack_addr_p : 1;
|
|
unsigned int code_addr_p : 1;
|
|
unsigned int special_addr_p : 1;
|
|
|
|
/* The inline depth of this frame. A frame representing a "called"
|
|
inlined function will have this set to a nonzero value. */
|
|
int inline_depth;
|
|
};
|
|
|
|
/* Methods for constructing and comparing Frame IDs. */
|
|
|
|
/* For convenience. All fields are zero. This means "there is no frame". */
|
|
extern const struct frame_id null_frame_id;
|
|
|
|
/* This means "there is no frame ID, but there is a frame". It should be
|
|
replaced by best-effort frame IDs for the outermost frame, somehow.
|
|
The implementation is only special_addr_p set. */
|
|
extern const struct frame_id outer_frame_id;
|
|
|
|
/* Flag to control debugging. */
|
|
|
|
extern int frame_debug;
|
|
|
|
/* Construct a frame ID. The first parameter is the frame's constant
|
|
stack address (typically the outer-bound), and the second the
|
|
frame's constant code address (typically the entry point).
|
|
The special identifier address is set to indicate a wild card. */
|
|
extern struct frame_id frame_id_build (CORE_ADDR stack_addr,
|
|
CORE_ADDR code_addr);
|
|
|
|
/* Construct a special frame ID. The first parameter is the frame's constant
|
|
stack address (typically the outer-bound), the second is the
|
|
frame's constant code address (typically the entry point),
|
|
and the third parameter is the frame's special identifier address. */
|
|
extern struct frame_id frame_id_build_special (CORE_ADDR stack_addr,
|
|
CORE_ADDR code_addr,
|
|
CORE_ADDR special_addr);
|
|
|
|
/* Construct a wild card frame ID. The parameter is the frame's constant
|
|
stack address (typically the outer-bound). The code address as well
|
|
as the special identifier address are set to indicate wild cards. */
|
|
extern struct frame_id frame_id_build_wild (CORE_ADDR stack_addr);
|
|
|
|
/* Returns non-zero when L is a valid frame (a valid frame has a
|
|
non-zero .base). The outermost frame is valid even without an
|
|
ID. */
|
|
extern int frame_id_p (struct frame_id l);
|
|
|
|
/* Returns non-zero when L is a valid frame representing an inlined
|
|
function. */
|
|
extern int frame_id_inlined_p (struct frame_id l);
|
|
|
|
/* Returns non-zero when L and R identify the same frame, or, if
|
|
either L or R have a zero .func, then the same frame base. */
|
|
extern int frame_id_eq (struct frame_id l, struct frame_id r);
|
|
|
|
/* Write the internal representation of a frame ID on the specified
|
|
stream. */
|
|
extern void fprint_frame_id (struct ui_file *file, struct frame_id id);
|
|
|
|
|
|
/* Frame types. Some are real, some are signal trampolines, and some
|
|
are completely artificial (dummy). */
|
|
|
|
enum frame_type
|
|
{
|
|
/* A true stack frame, created by the target program during normal
|
|
execution. */
|
|
NORMAL_FRAME,
|
|
/* A fake frame, created by GDB when performing an inferior function
|
|
call. */
|
|
DUMMY_FRAME,
|
|
/* A frame representing an inlined function, associated with an
|
|
upcoming (next, inner, younger) NORMAL_FRAME. */
|
|
INLINE_FRAME,
|
|
/* In a signal handler, various OSs handle this in various ways.
|
|
The main thing is that the frame may be far from normal. */
|
|
SIGTRAMP_FRAME,
|
|
/* Fake frame representing a cross-architecture call. */
|
|
ARCH_FRAME,
|
|
/* Sentinel or registers frame. This frame obtains register values
|
|
direct from the inferior's registers. */
|
|
SENTINEL_FRAME
|
|
};
|
|
|
|
/* For every stopped thread, GDB tracks two frames: current and
|
|
selected. Current frame is the inner most frame of the selected
|
|
thread. Selected frame is the one being examined by the the GDB
|
|
CLI (selected using `up', `down', ...). The frames are created
|
|
on-demand (via get_prev_frame()) and then held in a frame cache. */
|
|
/* FIXME: cagney/2002-11-28: Er, there is a lie here. If you do the
|
|
sequence: `thread 1; up; thread 2; thread 1' you lose thread 1's
|
|
selected frame. At present GDB only tracks the selected frame of
|
|
the current thread. But be warned, that might change. */
|
|
/* FIXME: cagney/2002-11-14: At any time, only one thread's selected
|
|
and current frame can be active. Switching threads causes gdb to
|
|
discard all that cached frame information. Ulgh! Instead, current
|
|
and selected frame should be bound to a thread. */
|
|
|
|
/* On demand, create the inner most frame using information found in
|
|
the inferior. If the inner most frame can't be created, throw an
|
|
error. */
|
|
extern struct frame_info *get_current_frame (void);
|
|
|
|
/* Does the current target interface have enough state to be able to
|
|
query the current inferior for frame info, and is the inferior in a
|
|
state where that is possible? */
|
|
extern int has_stack_frames (void);
|
|
|
|
/* Invalidates the frame cache (this function should have been called
|
|
invalidate_cached_frames).
|
|
|
|
FIXME: cagney/2002-11-28: There should be two methods: one that
|
|
reverts the thread's selected frame back to current frame (for when
|
|
the inferior resumes) and one that does not (for when the user
|
|
modifies the target invalidating the frame cache). */
|
|
extern void reinit_frame_cache (void);
|
|
|
|
/* On demand, create the selected frame and then return it. If the
|
|
selected frame can not be created, this function prints then throws
|
|
an error. When MESSAGE is non-NULL, use it for the error message,
|
|
otherwize use a generic error message. */
|
|
/* FIXME: cagney/2002-11-28: At present, when there is no selected
|
|
frame, this function always returns the current (inner most) frame.
|
|
It should instead, when a thread has previously had its frame
|
|
selected (but not resumed) and the frame cache invalidated, find
|
|
and then return that thread's previously selected frame. */
|
|
extern struct frame_info *get_selected_frame (const char *message);
|
|
|
|
/* Select a specific frame. NULL, apparently implies re-select the
|
|
inner most frame. */
|
|
extern void select_frame (struct frame_info *);
|
|
|
|
/* Given a FRAME, return the next (more inner, younger) or previous
|
|
(more outer, older) frame. */
|
|
extern struct frame_info *get_prev_frame (struct frame_info *);
|
|
extern struct frame_info *get_next_frame (struct frame_info *);
|
|
|
|
/* Given a frame's ID, relocate the frame. Returns NULL if the frame
|
|
is not found. */
|
|
extern struct frame_info *frame_find_by_id (struct frame_id id);
|
|
|
|
/* Base attributes of a frame: */
|
|
|
|
/* The frame's `resume' address. Where the program will resume in
|
|
this frame.
|
|
|
|
This replaced: frame->pc; */
|
|
extern CORE_ADDR get_frame_pc (struct frame_info *);
|
|
|
|
/* An address (not necessarily aligned to an instruction boundary)
|
|
that falls within THIS frame's code block.
|
|
|
|
When a function call is the last statement in a block, the return
|
|
address for the call may land at the start of the next block.
|
|
Similarly, if a no-return function call is the last statement in
|
|
the function, the return address may end up pointing beyond the
|
|
function, and possibly at the start of the next function.
|
|
|
|
These methods make an allowance for this. For call frames, this
|
|
function returns the frame's PC-1 which "should" be an address in
|
|
the frame's block. */
|
|
|
|
extern CORE_ADDR get_frame_address_in_block (struct frame_info *this_frame);
|
|
|
|
/* The frame's inner-most bound. AKA the stack-pointer. Confusingly
|
|
known as top-of-stack. */
|
|
|
|
extern CORE_ADDR get_frame_sp (struct frame_info *);
|
|
|
|
/* Following on from the `resume' address. Return the entry point
|
|
address of the function containing that resume address, or zero if
|
|
that function isn't known. */
|
|
extern CORE_ADDR get_frame_func (struct frame_info *fi);
|
|
|
|
/* Closely related to the resume address, various symbol table
|
|
attributes that are determined by the PC. Note that for a normal
|
|
frame, the PC refers to the resume address after the return, and
|
|
not the call instruction. In such a case, the address is adjusted
|
|
so that it (approximately) identifies the call site (and not the
|
|
return site).
|
|
|
|
NOTE: cagney/2002-11-28: The frame cache could be used to cache the
|
|
computed value. Working on the assumption that the bottle-neck is
|
|
in the single step code, and that code causes the frame cache to be
|
|
constantly flushed, caching things in a frame is probably of little
|
|
benefit. As they say `show us the numbers'.
|
|
|
|
NOTE: cagney/2002-11-28: Plenty more where this one came from:
|
|
find_frame_block(), find_frame_partial_function(),
|
|
find_frame_symtab(), find_frame_function(). Each will need to be
|
|
carefully considered to determine if the real intent was for it to
|
|
apply to the PC or the adjusted PC. */
|
|
extern void find_frame_sal (struct frame_info *frame,
|
|
struct symtab_and_line *sal);
|
|
|
|
/* Set the current source and line to the location given by frame
|
|
FRAME, if possible. When CENTER is true, adjust so the relevant
|
|
line is in the center of the next 'list'. */
|
|
|
|
void set_current_sal_from_frame (struct frame_info *, int);
|
|
|
|
/* Return the frame base (what ever that is) (DEPRECATED).
|
|
|
|
Old code was trying to use this single method for two conflicting
|
|
purposes. Such code needs to be updated to use either of:
|
|
|
|
get_frame_id: A low level frame unique identifier, that consists of
|
|
both a stack and a function address, that can be used to uniquely
|
|
identify a frame. This value is determined by the frame's
|
|
low-level unwinder, the stack part [typically] being the
|
|
top-of-stack of the previous frame, and the function part being the
|
|
function's start address. Since the correct identification of a
|
|
frameless function requires both the a stack and function address,
|
|
the old get_frame_base method was not sufficient.
|
|
|
|
get_frame_base_address: get_frame_locals_address:
|
|
get_frame_args_address: A set of high-level debug-info dependant
|
|
addresses that fall within the frame. These addresses almost
|
|
certainly will not match the stack address part of a frame ID (as
|
|
returned by get_frame_base).
|
|
|
|
This replaced: frame->frame; */
|
|
|
|
extern CORE_ADDR get_frame_base (struct frame_info *);
|
|
|
|
/* Return the per-frame unique identifer. Can be used to relocate a
|
|
frame after a frame cache flush (and other similar operations). If
|
|
FI is NULL, return the null_frame_id.
|
|
|
|
NOTE: kettenis/20040508: These functions return a structure. On
|
|
platforms where structures are returned in static storage (vax,
|
|
m68k), this may trigger compiler bugs in code like:
|
|
|
|
if (frame_id_eq (get_frame_id (l), get_frame_id (r)))
|
|
|
|
where the return value from the first get_frame_id (l) gets
|
|
overwritten by the second get_frame_id (r). Please avoid writing
|
|
code like this. Use code like:
|
|
|
|
struct frame_id id = get_frame_id (l);
|
|
if (frame_id_eq (id, get_frame_id (r)))
|
|
|
|
instead, since that avoids the bug. */
|
|
extern struct frame_id get_frame_id (struct frame_info *fi);
|
|
extern struct frame_id get_stack_frame_id (struct frame_info *fi);
|
|
extern struct frame_id frame_unwind_caller_id (struct frame_info *next_frame);
|
|
|
|
/* Assuming that a frame is `normal', return its base-address, or 0 if
|
|
the information isn't available. NOTE: This address is really only
|
|
meaningful to the frame's high-level debug info. */
|
|
extern CORE_ADDR get_frame_base_address (struct frame_info *);
|
|
|
|
/* Assuming that a frame is `normal', return the base-address of the
|
|
local variables, or 0 if the information isn't available. NOTE:
|
|
This address is really only meaningful to the frame's high-level
|
|
debug info. Typically, the argument and locals share a single
|
|
base-address. */
|
|
extern CORE_ADDR get_frame_locals_address (struct frame_info *);
|
|
|
|
/* Assuming that a frame is `normal', return the base-address of the
|
|
parameter list, or 0 if that information isn't available. NOTE:
|
|
This address is really only meaningful to the frame's high-level
|
|
debug info. Typically, the argument and locals share a single
|
|
base-address. */
|
|
extern CORE_ADDR get_frame_args_address (struct frame_info *);
|
|
|
|
/* The frame's level: 0 for innermost, 1 for its caller, ...; or -1
|
|
for an invalid frame). */
|
|
extern int frame_relative_level (struct frame_info *fi);
|
|
|
|
/* Return the frame's type. */
|
|
|
|
extern enum frame_type get_frame_type (struct frame_info *);
|
|
|
|
/* Return the frame's program space. */
|
|
extern struct program_space *get_frame_program_space (struct frame_info *);
|
|
|
|
/* Unwind THIS frame's program space from the NEXT frame. */
|
|
extern struct program_space *frame_unwind_program_space (struct frame_info *);
|
|
|
|
/* Return the frame's address space. */
|
|
extern struct address_space *get_frame_address_space (struct frame_info *);
|
|
|
|
/* For frames where we can not unwind further, describe why. */
|
|
|
|
enum unwind_stop_reason
|
|
{
|
|
/* No particular reason; either we haven't tried unwinding yet,
|
|
or we didn't fail. */
|
|
UNWIND_NO_REASON,
|
|
|
|
/* The previous frame's analyzer returns an invalid result
|
|
from this_id.
|
|
|
|
FIXME drow/2006-08-16: This is how GDB used to indicate end of
|
|
stack. We should migrate to a model where frames always have a
|
|
valid ID, and this becomes not just an error but an internal
|
|
error. But that's a project for another day. */
|
|
UNWIND_NULL_ID,
|
|
|
|
/* All the conditions after this point are considered errors;
|
|
abnormal stack termination. If a backtrace stops for one
|
|
of these reasons, we'll let the user know. This marker
|
|
is not a valid stop reason. */
|
|
UNWIND_FIRST_ERROR,
|
|
|
|
/* This frame ID looks like it ought to belong to a NEXT frame,
|
|
but we got it for a PREV frame. Normally, this is a sign of
|
|
unwinder failure. It could also indicate stack corruption. */
|
|
UNWIND_INNER_ID,
|
|
|
|
/* This frame has the same ID as the previous one. That means
|
|
that unwinding further would almost certainly give us another
|
|
frame with exactly the same ID, so break the chain. Normally,
|
|
this is a sign of unwinder failure. It could also indicate
|
|
stack corruption. */
|
|
UNWIND_SAME_ID,
|
|
|
|
/* The frame unwinder didn't find any saved PC, but we needed
|
|
one to unwind further. */
|
|
UNWIND_NO_SAVED_PC,
|
|
};
|
|
|
|
/* Return the reason why we can't unwind past this frame. */
|
|
|
|
enum unwind_stop_reason get_frame_unwind_stop_reason (struct frame_info *);
|
|
|
|
/* Translate a reason code to an informative string. */
|
|
|
|
const char *frame_stop_reason_string (enum unwind_stop_reason);
|
|
|
|
/* Unwind the stack frame so that the value of REGNUM, in the previous
|
|
(up, older) frame is returned. If VALUEP is NULL, don't
|
|
fetch/compute the value. Instead just return the location of the
|
|
value. */
|
|
extern void frame_register_unwind (struct frame_info *frame, int regnum,
|
|
int *optimizedp, enum lval_type *lvalp,
|
|
CORE_ADDR *addrp, int *realnump,
|
|
gdb_byte *valuep);
|
|
|
|
/* Fetch a register from this, or unwind a register from the next
|
|
frame. Note that the get_frame methods are wrappers to
|
|
frame->next->unwind. They all [potentially] throw an error if the
|
|
fetch fails. The value methods never return NULL, but usually
|
|
do return a lazy value. */
|
|
|
|
extern void frame_unwind_register (struct frame_info *frame,
|
|
int regnum, gdb_byte *buf);
|
|
extern void get_frame_register (struct frame_info *frame,
|
|
int regnum, gdb_byte *buf);
|
|
|
|
struct value *frame_unwind_register_value (struct frame_info *frame,
|
|
int regnum);
|
|
struct value *get_frame_register_value (struct frame_info *frame,
|
|
int regnum);
|
|
|
|
extern LONGEST frame_unwind_register_signed (struct frame_info *frame,
|
|
int regnum);
|
|
extern LONGEST get_frame_register_signed (struct frame_info *frame,
|
|
int regnum);
|
|
extern ULONGEST frame_unwind_register_unsigned (struct frame_info *frame,
|
|
int regnum);
|
|
extern ULONGEST get_frame_register_unsigned (struct frame_info *frame,
|
|
int regnum);
|
|
|
|
|
|
/* Get the value of the register that belongs to this FRAME. This
|
|
function is a wrapper to the call sequence ``frame_register_unwind
|
|
(get_next_frame (FRAME))''. As per frame_register_unwind(), if
|
|
VALUEP is NULL, the registers value is not fetched/computed. */
|
|
|
|
extern void frame_register (struct frame_info *frame, int regnum,
|
|
int *optimizedp, enum lval_type *lvalp,
|
|
CORE_ADDR *addrp, int *realnump,
|
|
gdb_byte *valuep);
|
|
|
|
/* The reverse. Store a register value relative to the specified
|
|
frame. Note: this call makes the frame's state undefined. The
|
|
register and frame caches must be flushed. */
|
|
extern void put_frame_register (struct frame_info *frame, int regnum,
|
|
const gdb_byte *buf);
|
|
|
|
/* Read LEN bytes from one or multiple registers starting with REGNUM
|
|
in frame FRAME, starting at OFFSET, into BUF. */
|
|
extern int get_frame_register_bytes (struct frame_info *frame, int regnum,
|
|
CORE_ADDR offset, int len,
|
|
gdb_byte *myaddr);
|
|
|
|
/* Write LEN bytes to one or multiple registers starting with REGNUM
|
|
in frame FRAME, starting at OFFSET, into BUF. */
|
|
extern void put_frame_register_bytes (struct frame_info *frame, int regnum,
|
|
CORE_ADDR offset, int len,
|
|
const gdb_byte *myaddr);
|
|
|
|
/* Unwind the PC. Strictly speaking return the resume address of the
|
|
calling frame. For GDB, `pc' is the resume address and not a
|
|
specific register. */
|
|
|
|
extern CORE_ADDR frame_unwind_caller_pc (struct frame_info *frame);
|
|
|
|
/* Discard the specified frame. Restoring the registers to the state
|
|
of the caller. */
|
|
extern void frame_pop (struct frame_info *frame);
|
|
|
|
/* Return memory from the specified frame. A frame knows its thread /
|
|
LWP and hence can find its way down to a target. The assumption
|
|
here is that the current and previous frame share a common address
|
|
space.
|
|
|
|
If the memory read fails, these methods throw an error.
|
|
|
|
NOTE: cagney/2003-06-03: Should there be unwind versions of these
|
|
methods? That isn't clear. Can code, for instance, assume that
|
|
this and the previous frame's memory or architecture are identical?
|
|
If architecture / memory changes are always separated by special
|
|
adaptor frames this should be ok. */
|
|
|
|
extern void get_frame_memory (struct frame_info *this_frame, CORE_ADDR addr,
|
|
gdb_byte *buf, int len);
|
|
extern LONGEST get_frame_memory_signed (struct frame_info *this_frame,
|
|
CORE_ADDR memaddr, int len);
|
|
extern ULONGEST get_frame_memory_unsigned (struct frame_info *this_frame,
|
|
CORE_ADDR memaddr, int len);
|
|
|
|
/* Same as above, but return non-zero when the entire memory read
|
|
succeeds, zero otherwize. */
|
|
extern int safe_frame_unwind_memory (struct frame_info *this_frame,
|
|
CORE_ADDR addr, gdb_byte *buf, int len);
|
|
|
|
/* Return this frame's architecture. */
|
|
extern struct gdbarch *get_frame_arch (struct frame_info *this_frame);
|
|
|
|
/* Return the previous frame's architecture. */
|
|
extern struct gdbarch *frame_unwind_arch (struct frame_info *frame);
|
|
|
|
/* Return the previous frame's architecture, skipping inline functions. */
|
|
extern struct gdbarch *frame_unwind_caller_arch (struct frame_info *frame);
|
|
|
|
|
|
/* Values for the source flag to be used in print_frame_info_base(). */
|
|
enum print_what
|
|
{
|
|
/* Print only the source line, like in stepi. */
|
|
SRC_LINE = -1,
|
|
/* Print only the location, i.e. level, address (sometimes)
|
|
function, args, file, line, line num. */
|
|
LOCATION,
|
|
/* Print both of the above. */
|
|
SRC_AND_LOC,
|
|
/* Print location only, but always include the address. */
|
|
LOC_AND_ADDRESS
|
|
};
|
|
|
|
/* Allocate zero initialized memory from the frame cache obstack.
|
|
Appendices to the frame info (such as the unwind cache) should
|
|
allocate memory using this method. */
|
|
|
|
extern void *frame_obstack_zalloc (unsigned long size);
|
|
#define FRAME_OBSTACK_ZALLOC(TYPE) ((TYPE *) frame_obstack_zalloc (sizeof (TYPE)))
|
|
#define FRAME_OBSTACK_CALLOC(NUMBER,TYPE) ((TYPE *) frame_obstack_zalloc ((NUMBER) * sizeof (TYPE)))
|
|
|
|
/* Create a regcache, and copy the frame's registers into it. */
|
|
struct regcache *frame_save_as_regcache (struct frame_info *this_frame);
|
|
|
|
extern struct block *get_frame_block (struct frame_info *,
|
|
CORE_ADDR *addr_in_block);
|
|
|
|
/* Return the `struct block' that belongs to the selected thread's
|
|
selected frame. If the inferior has no state, return NULL.
|
|
|
|
NOTE: cagney/2002-11-29:
|
|
|
|
No state? Does the inferior have any execution state (a core file
|
|
does, an executable does not). At present the code tests
|
|
`target_has_stack' but I'm left wondering if it should test
|
|
`target_has_registers' or, even, a merged target_has_state.
|
|
|
|
Should it look at the most recently specified SAL? If the target
|
|
has no state, should this function try to extract a block from the
|
|
most recently selected SAL? That way `list foo' would give it some
|
|
sort of reference point. Then again, perhaps that would confuse
|
|
things.
|
|
|
|
Calls to this function can be broken down into two categories: Code
|
|
that uses the selected block as an additional, but optional, data
|
|
point; Code that uses the selected block as a prop, when it should
|
|
have the relevant frame/block/pc explicitly passed in.
|
|
|
|
The latter can be eliminated by correctly parameterizing the code,
|
|
the former though is more interesting. Per the "address" command,
|
|
it occurs in the CLI code and makes it possible for commands to
|
|
work, even when the inferior has no state. */
|
|
|
|
extern struct block *get_selected_block (CORE_ADDR *addr_in_block);
|
|
|
|
extern struct symbol *get_frame_function (struct frame_info *);
|
|
|
|
extern CORE_ADDR get_pc_function_start (CORE_ADDR);
|
|
|
|
extern struct frame_info *find_relative_frame (struct frame_info *, int *);
|
|
|
|
extern void show_and_print_stack_frame (struct frame_info *fi, int print_level,
|
|
enum print_what print_what);
|
|
|
|
extern void print_stack_frame (struct frame_info *, int print_level,
|
|
enum print_what print_what);
|
|
|
|
extern void print_frame_info (struct frame_info *, int print_level,
|
|
enum print_what print_what, int args);
|
|
|
|
extern struct frame_info *block_innermost_frame (struct block *);
|
|
|
|
extern int deprecated_pc_in_call_dummy (struct gdbarch *gdbarch, CORE_ADDR pc);
|
|
|
|
/* FIXME: cagney/2003-02-02: Should be deprecated or replaced with a
|
|
function called get_frame_register_p(). This slightly weird (and
|
|
older) variant of get_frame_register() returns zero (indicating the
|
|
register is unavailable) if either: the register isn't cached; or
|
|
the register has been optimized out. Problem is, neither check is
|
|
exactly correct. A register can't be optimized out (it may not
|
|
have been saved as part of a function call); The fact that a
|
|
register isn't in the register cache doesn't mean that the register
|
|
isn't available (it could have been fetched from memory). */
|
|
|
|
extern int frame_register_read (struct frame_info *frame, int regnum,
|
|
gdb_byte *buf);
|
|
|
|
/* From stack.c. */
|
|
extern void args_info (char *, int);
|
|
|
|
extern void locals_info (char *, int);
|
|
|
|
extern void (*deprecated_selected_frame_level_changed_hook) (int);
|
|
|
|
extern void return_command (char *, int);
|
|
|
|
/* Set FRAME's unwinder temporarily, so that we can call a sniffer.
|
|
Return a cleanup which should be called if unwinding fails, and
|
|
discarded if it succeeds. */
|
|
|
|
struct cleanup *frame_prepare_for_sniffer (struct frame_info *frame,
|
|
const struct frame_unwind *unwind);
|
|
|
|
/* Notes (cagney/2002-11-27, drow/2003-09-06):
|
|
|
|
You might think that calls to this function can simply be replaced by a
|
|
call to get_selected_frame().
|
|
|
|
Unfortunately, it isn't that easy.
|
|
|
|
The relevant code needs to be audited to determine if it is
|
|
possible (or practical) to instead pass the applicable frame in as a
|
|
parameter. For instance, DEPRECATED_DO_REGISTERS_INFO() relied on
|
|
the deprecated_selected_frame global, while its replacement,
|
|
PRINT_REGISTERS_INFO(), is parameterized with the selected frame.
|
|
The only real exceptions occur at the edge (in the CLI code) where
|
|
user commands need to pick up the selected frame before proceeding.
|
|
|
|
There are also some functions called with a NULL frame meaning either "the
|
|
program is not running" or "use the selected frame".
|
|
|
|
This is important. GDB is trying to stamp out the hack:
|
|
|
|
saved_frame = deprecated_safe_get_selected_frame ();
|
|
select_frame (...);
|
|
hack_using_global_selected_frame ();
|
|
select_frame (saved_frame);
|
|
|
|
Take care!
|
|
|
|
This function calls get_selected_frame if the inferior should have a
|
|
frame, or returns NULL otherwise. */
|
|
|
|
extern struct frame_info *deprecated_safe_get_selected_frame (void);
|
|
|
|
/* Create a frame using the specified BASE and PC. */
|
|
|
|
extern struct frame_info *create_new_frame (CORE_ADDR base, CORE_ADDR pc);
|
|
|
|
/* Return true if the frame unwinder for frame FI is UNWINDER; false
|
|
otherwise. */
|
|
|
|
extern int frame_unwinder_is (struct frame_info *fi,
|
|
const struct frame_unwind *unwinder);
|
|
|
|
#endif /* !defined (FRAME_H) */
|