binutils-gdb/gdb/symfile.c
Keith Seitz fadce6f696 * symfile.c (symbol_file_add): Always call the
pre/post_add_symbol_hooks.

	* gdbtk.c (gdb_get_vars_command): Return static variables and
	variables stored in registers.
1998-06-09 21:15:46 +00:00

2701 lines
81 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Generic symbol file reading for the GNU debugger, GDB.
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996
Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "frame.h"
#include "target.h"
#include "value.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcmd.h"
#include "breakpoint.h"
#include "language.h"
#include "complaints.h"
#include "demangle.h"
#include "inferior.h" /* for write_pc */
#include "gdb-stabs.h"
#include "obstack.h"
#include <assert.h>
#include <sys/types.h>
#include <fcntl.h>
#include "gdb_string.h"
#include "gdb_stat.h"
#include <ctype.h>
#include <time.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifndef O_BINARY
#define O_BINARY 0
#endif
int (*ui_load_progress_hook) PARAMS ((char *, unsigned long));
void (*pre_add_symbol_hook) PARAMS ((char *));
void (*post_add_symbol_hook) PARAMS ((void));
/* Global variables owned by this file */
int readnow_symbol_files; /* Read full symbols immediately */
struct complaint oldsyms_complaint = {
"Replacing old symbols for `%s'", 0, 0
};
struct complaint empty_symtab_complaint = {
"Empty symbol table found for `%s'", 0, 0
};
/* External variables and functions referenced. */
extern int info_verbose;
extern void report_transfer_performance PARAMS ((unsigned long,
time_t, time_t));
/* Functions this file defines */
#if 0
static int simple_read_overlay_region_table PARAMS ((void));
static void simple_free_overlay_region_table PARAMS ((void));
#endif
static void set_initial_language PARAMS ((void));
static void load_command PARAMS ((char *, int));
static void add_symbol_file_command PARAMS ((char *, int));
static void add_shared_symbol_files_command PARAMS ((char *, int));
static void cashier_psymtab PARAMS ((struct partial_symtab *));
static int compare_psymbols PARAMS ((const void *, const void *));
static int compare_symbols PARAMS ((const void *, const void *));
static bfd *symfile_bfd_open PARAMS ((char *));
static void find_sym_fns PARAMS ((struct objfile *));
static void decrement_reading_symtab PARAMS ((void *));
/* List of all available sym_fns. On gdb startup, each object file reader
calls add_symtab_fns() to register information on each format it is
prepared to read. */
static struct sym_fns *symtab_fns = NULL;
/* Flag for whether user will be reloading symbols multiple times.
Defaults to ON for VxWorks, otherwise OFF. */
#ifdef SYMBOL_RELOADING_DEFAULT
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
#else
int symbol_reloading = 0;
#endif
/* If true, then shared library symbols will be added automatically
when the inferior is created, new libraries are loaded, or when
attaching to the inferior. This is almost always what users
will want to have happen; but for very large programs, the startup
time will be excessive, and so if this is a problem, the user can
clear this flag and then add the shared library symbols as needed.
Note that there is a potential for confusion, since if the shared
library symbols are not loaded, commands like "info fun" will *not*
report all the functions that are actually present. */
int auto_solib_add = 1;
/* Since this function is called from within qsort, in an ANSI environment
it must conform to the prototype for qsort, which specifies that the
comparison function takes two "void *" pointers. */
static int
compare_symbols (s1p, s2p)
const PTR s1p;
const PTR s2p;
{
register struct symbol **s1, **s2;
s1 = (struct symbol **) s1p;
s2 = (struct symbol **) s2p;
return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
}
/*
LOCAL FUNCTION
compare_psymbols -- compare two partial symbols by name
DESCRIPTION
Given pointers to pointers to two partial symbol table entries,
compare them by name and return -N, 0, or +N (ala strcmp).
Typically used by sorting routines like qsort().
NOTES
Does direct compare of first two characters before punting
and passing to strcmp for longer compares. Note that the
original version had a bug whereby two null strings or two
identically named one character strings would return the
comparison of memory following the null byte.
*/
static int
compare_psymbols (s1p, s2p)
const PTR s1p;
const PTR s2p;
{
register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
if ((st1[0] - st2[0]) || !st1[0])
{
return (st1[0] - st2[0]);
}
else if ((st1[1] - st2[1]) || !st1[1])
{
return (st1[1] - st2[1]);
}
else
{
return (STRCMP (st1 + 2, st2 + 2));
}
}
void
sort_pst_symbols (pst)
struct partial_symtab *pst;
{
/* Sort the global list; don't sort the static list */
qsort (pst -> objfile -> global_psymbols.list + pst -> globals_offset,
pst -> n_global_syms, sizeof (struct partial_symbol *),
compare_psymbols);
}
/* Call sort_block_syms to sort alphabetically the symbols of one block. */
void
sort_block_syms (b)
register struct block *b;
{
qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
sizeof (struct symbol *), compare_symbols);
}
/* Call sort_symtab_syms to sort alphabetically
the symbols of each block of one symtab. */
void
sort_symtab_syms (s)
register struct symtab *s;
{
register struct blockvector *bv;
int nbl;
int i;
register struct block *b;
if (s == 0)
return;
bv = BLOCKVECTOR (s);
nbl = BLOCKVECTOR_NBLOCKS (bv);
for (i = 0; i < nbl; i++)
{
b = BLOCKVECTOR_BLOCK (bv, i);
if (BLOCK_SHOULD_SORT (b))
sort_block_syms (b);
}
}
/* Make a null terminated copy of the string at PTR with SIZE characters in
the obstack pointed to by OBSTACKP . Returns the address of the copy.
Note that the string at PTR does not have to be null terminated, I.E. it
may be part of a larger string and we are only saving a substring. */
char *
obsavestring (ptr, size, obstackp)
char *ptr;
int size;
struct obstack *obstackp;
{
register char *p = (char *) obstack_alloc (obstackp, size + 1);
/* Open-coded memcpy--saves function call time. These strings are usually
short. FIXME: Is this really still true with a compiler that can
inline memcpy? */
{
register char *p1 = ptr;
register char *p2 = p;
char *end = ptr + size;
while (p1 != end)
*p2++ = *p1++;
}
p[size] = 0;
return p;
}
/* Concatenate strings S1, S2 and S3; return the new string. Space is found
in the obstack pointed to by OBSTACKP. */
char *
obconcat (obstackp, s1, s2, s3)
struct obstack *obstackp;
const char *s1, *s2, *s3;
{
register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
register char *val = (char *) obstack_alloc (obstackp, len);
strcpy (val, s1);
strcat (val, s2);
strcat (val, s3);
return val;
}
/* True if we are nested inside psymtab_to_symtab. */
int currently_reading_symtab = 0;
static void
decrement_reading_symtab (dummy)
void *dummy;
{
currently_reading_symtab--;
}
/* Get the symbol table that corresponds to a partial_symtab.
This is fast after the first time you do it. In fact, there
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
case inline. */
struct symtab *
psymtab_to_symtab (pst)
register struct partial_symtab *pst;
{
/* If it's been looked up before, return it. */
if (pst->symtab)
return pst->symtab;
/* If it has not yet been read in, read it. */
if (!pst->readin)
{
struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
currently_reading_symtab++;
(*pst->read_symtab) (pst);
do_cleanups (back_to);
}
return pst->symtab;
}
/* Initialize entry point information for this objfile. */
void
init_entry_point_info (objfile)
struct objfile *objfile;
{
/* Save startup file's range of PC addresses to help blockframe.c
decide where the bottom of the stack is. */
if (bfd_get_file_flags (objfile -> obfd) & EXEC_P)
{
/* Executable file -- record its entry point so we'll recognize
the startup file because it contains the entry point. */
objfile -> ei.entry_point = bfd_get_start_address (objfile -> obfd);
}
else
{
/* Examination of non-executable.o files. Short-circuit this stuff. */
objfile -> ei.entry_point = INVALID_ENTRY_POINT;
}
objfile -> ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
objfile -> ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
objfile -> ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
objfile -> ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
objfile -> ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
objfile -> ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
}
/* Get current entry point address. */
CORE_ADDR
entry_point_address()
{
return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
}
/* Remember the lowest-addressed loadable section we've seen.
This function is called via bfd_map_over_sections.
In case of equal vmas, the section with the largest size becomes the
lowest-addressed loadable section.
If the vmas and sizes are equal, the last section is considered the
lowest-addressed loadable section. */
void
find_lowest_section (abfd, sect, obj)
bfd *abfd;
asection *sect;
PTR obj;
{
asection **lowest = (asection **)obj;
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
return;
if (!*lowest)
*lowest = sect; /* First loadable section */
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
*lowest = sect; /* A lower loadable section */
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
&& (bfd_section_size (abfd, (*lowest))
<= bfd_section_size (abfd, sect)))
*lowest = sect;
}
/* Parse the user's idea of an offset for dynamic linking, into our idea
of how to represent it for fast symbol reading. This is the default
version of the sym_fns.sym_offsets function for symbol readers that
don't need to do anything special. It allocates a section_offsets table
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
struct section_offsets *
default_symfile_offsets (objfile, addr)
struct objfile *objfile;
CORE_ADDR addr;
{
struct section_offsets *section_offsets;
int i;
objfile->num_sections = SECT_OFF_MAX;
section_offsets = (struct section_offsets *)
obstack_alloc (&objfile -> psymbol_obstack, SIZEOF_SECTION_OFFSETS);
for (i = 0; i < SECT_OFF_MAX; i++)
ANOFFSET (section_offsets, i) = addr;
return section_offsets;
}
/* Process a symbol file, as either the main file or as a dynamically
loaded file.
NAME is the file name (which will be tilde-expanded and made
absolute herein) (but we don't free or modify NAME itself).
FROM_TTY says how verbose to be. MAINLINE specifies whether this
is the main symbol file, or whether it's an extra symbol file such
as dynamically loaded code. If !mainline, ADDR is the address
where the text segment was loaded. If VERBO, the caller has printed
a verbose message about the symbol reading (and complaints can be
more terse about it). */
void
syms_from_objfile (objfile, addr, mainline, verbo)
struct objfile *objfile;
CORE_ADDR addr;
int mainline;
int verbo;
{
struct section_offsets *section_offsets;
asection *lowest_sect;
struct cleanup *old_chain;
init_entry_point_info (objfile);
find_sym_fns (objfile);
/* Make sure that partially constructed symbol tables will be cleaned up
if an error occurs during symbol reading. */
old_chain = make_cleanup (free_objfile, objfile);
if (mainline)
{
/* We will modify the main symbol table, make sure that all its users
will be cleaned up if an error occurs during symbol reading. */
make_cleanup (clear_symtab_users, 0);
/* Since no error yet, throw away the old symbol table. */
if (symfile_objfile != NULL)
{
free_objfile (symfile_objfile);
symfile_objfile = NULL;
}
/* Currently we keep symbols from the add-symbol-file command.
If the user wants to get rid of them, they should do "symbol-file"
without arguments first. Not sure this is the best behavior
(PR 2207). */
(*objfile -> sf -> sym_new_init) (objfile);
}
/* Convert addr into an offset rather than an absolute address.
We find the lowest address of a loaded segment in the objfile,
and assume that <addr> is where that got loaded. Due to historical
precedent, we warn if that doesn't happen to be a text segment. */
if (mainline)
{
addr = 0; /* No offset from objfile addresses. */
}
else
{
lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
if (lowest_sect == NULL)
bfd_map_over_sections (objfile->obfd, find_lowest_section,
(PTR) &lowest_sect);
if (lowest_sect == NULL)
warning ("no loadable sections found in added symbol-file %s",
objfile->name);
else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE)
== 0)
/* FIXME-32x64--assumes bfd_vma fits in long. */
warning ("Lowest section in %s is %s at 0x%lx",
objfile->name,
bfd_section_name (objfile->obfd, lowest_sect),
(unsigned long) bfd_section_vma (objfile->obfd, lowest_sect));
if (lowest_sect)
addr -= bfd_section_vma (objfile->obfd, lowest_sect);
}
/* Initialize symbol reading routines for this objfile, allow complaints to
appear for this new file, and record how verbose to be, then do the
initial symbol reading for this file. */
(*objfile -> sf -> sym_init) (objfile);
clear_complaints (1, verbo);
section_offsets = (*objfile -> sf -> sym_offsets) (objfile, addr);
objfile->section_offsets = section_offsets;
#ifndef IBM6000_TARGET
/* This is a SVR4/SunOS specific hack, I think. In any event, it
screws RS/6000. sym_offsets should be doing this sort of thing,
because it knows the mapping between bfd sections and
section_offsets. */
/* This is a hack. As far as I can tell, section offsets are not
target dependent. They are all set to addr with a couple of
exceptions. The exceptions are sysvr4 shared libraries, whose
offsets are kept in solib structures anyway and rs6000 xcoff
which handles shared libraries in a completely unique way.
Section offsets are built similarly, except that they are built
by adding addr in all cases because there is no clear mapping
from section_offsets into actual sections. Note that solib.c
has a different algorythm for finding section offsets.
These should probably all be collapsed into some target
independent form of shared library support. FIXME. */
if (addr)
{
struct obj_section *s;
for (s = objfile->sections; s < objfile->sections_end; ++s)
{
s->addr -= s->offset;
s->addr += addr;
s->endaddr -= s->offset;
s->endaddr += addr;
s->offset += addr;
}
}
#endif /* not IBM6000_TARGET */
(*objfile -> sf -> sym_read) (objfile, section_offsets, mainline);
if (!have_partial_symbols () && !have_full_symbols ())
{
wrap_here ("");
printf_filtered ("(no debugging symbols found)...");
wrap_here ("");
}
/* Don't allow char * to have a typename (else would get caddr_t).
Ditto void *. FIXME: Check whether this is now done by all the
symbol readers themselves (many of them now do), and if so remove
it from here. */
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
/* Mark the objfile has having had initial symbol read attempted. Note
that this does not mean we found any symbols... */
objfile -> flags |= OBJF_SYMS;
/* Discard cleanups as symbol reading was successful. */
discard_cleanups (old_chain);
/* Call this after reading in a new symbol table to give target dependant code
a crack at the new symbols. For instance, this could be used to update the
values of target-specific symbols GDB needs to keep track of (such as
_sigtramp, or whatever). */
TARGET_SYMFILE_POSTREAD (objfile);
}
/* Perform required actions after either reading in the initial
symbols for a new objfile, or mapping in the symbols from a reusable
objfile. */
void
new_symfile_objfile (objfile, mainline, verbo)
struct objfile *objfile;
int mainline;
int verbo;
{
/* If this is the main symbol file we have to clean up all users of the
old main symbol file. Otherwise it is sufficient to fixup all the
breakpoints that may have been redefined by this symbol file. */
if (mainline)
{
/* OK, make it the "real" symbol file. */
symfile_objfile = objfile;
clear_symtab_users ();
}
else
{
breakpoint_re_set ();
}
/* We're done reading the symbol file; finish off complaints. */
clear_complaints (0, verbo);
}
/* Process a symbol file, as either the main file or as a dynamically
loaded file.
NAME is the file name (which will be tilde-expanded and made
absolute herein) (but we don't free or modify NAME itself).
FROM_TTY says how verbose to be. MAINLINE specifies whether this
is the main symbol file, or whether it's an extra symbol file such
as dynamically loaded code. If !mainline, ADDR is the address
where the text segment was loaded.
Upon success, returns a pointer to the objfile that was added.
Upon failure, jumps back to command level (never returns). */
struct objfile *
symbol_file_add (name, from_tty, addr, mainline, mapped, readnow)
char *name;
int from_tty;
CORE_ADDR addr;
int mainline;
int mapped;
int readnow;
{
struct objfile *objfile;
struct partial_symtab *psymtab;
bfd *abfd;
/* Open a bfd for the file, and give user a chance to burp if we'd be
interactively wiping out any existing symbols. */
abfd = symfile_bfd_open (name);
if ((have_full_symbols () || have_partial_symbols ())
&& mainline
&& from_tty
&& !query ("Load new symbol table from \"%s\"? ", name))
error ("Not confirmed.");
objfile = allocate_objfile (abfd, mapped);
/* If the objfile uses a mapped symbol file, and we have a psymtab for
it, then skip reading any symbols at this time. */
if ((objfile -> flags & OBJF_MAPPED) && (objfile -> flags & OBJF_SYMS))
{
/* We mapped in an existing symbol table file that already has had
initial symbol reading performed, so we can skip that part. Notify
the user that instead of reading the symbols, they have been mapped.
*/
if (from_tty || info_verbose)
{
printf_filtered ("Mapped symbols for %s...", name);
wrap_here ("");
gdb_flush (gdb_stdout);
}
init_entry_point_info (objfile);
find_sym_fns (objfile);
}
else
{
/* We either created a new mapped symbol table, mapped an existing
symbol table file which has not had initial symbol reading
performed, or need to read an unmapped symbol table. */
if (pre_add_symbol_hook)
pre_add_symbol_hook (name);
if (from_tty || info_verbose)
{
printf_filtered ("Reading symbols from %s...", name);
wrap_here ("");
gdb_flush (gdb_stdout);
}
syms_from_objfile (objfile, addr, mainline, from_tty);
}
/* We now have at least a partial symbol table. Check to see if the
user requested that all symbols be read on initial access via either
the gdb startup command line or on a per symbol file basis. Expand
all partial symbol tables for this objfile if so. */
if (readnow || readnow_symbol_files)
{
if (from_tty || info_verbose)
{
printf_filtered ("expanding to full symbols...");
wrap_here ("");
gdb_flush (gdb_stdout);
}
for (psymtab = objfile -> psymtabs;
psymtab != NULL;
psymtab = psymtab -> next)
{
psymtab_to_symtab (psymtab);
}
}
if (post_add_symbol_hook)
post_add_symbol_hook ();
if (from_tty || info_verbose)
{
printf_filtered ("done.\n");
gdb_flush (gdb_stdout);
}
new_symfile_objfile (objfile, mainline, from_tty);
target_new_objfile (objfile);
return (objfile);
}
/* This is the symbol-file command. Read the file, analyze its
symbols, and add a struct symtab to a symtab list. The syntax of
the command is rather bizarre--(1) buildargv implements various
quoting conventions which are undocumented and have little or
nothing in common with the way things are quoted (or not quoted)
elsewhere in GDB, (2) options are used, which are not generally
used in GDB (perhaps "set mapped on", "set readnow on" would be
better), (3) the order of options matters, which is contrary to GNU
conventions (because it is confusing and inconvenient). */
void
symbol_file_command (args, from_tty)
char *args;
int from_tty;
{
char **argv;
char *name = NULL;
CORE_ADDR text_relocation = 0; /* text_relocation */
struct cleanup *cleanups;
int mapped = 0;
int readnow = 0;
dont_repeat ();
if (args == NULL)
{
if ((have_full_symbols () || have_partial_symbols ())
&& from_tty
&& !query ("Discard symbol table from `%s'? ",
symfile_objfile -> name))
error ("Not confirmed.");
free_all_objfiles ();
symfile_objfile = NULL;
if (from_tty)
{
printf_unfiltered ("No symbol file now.\n");
}
}
else
{
if ((argv = buildargv (args)) == NULL)
{
nomem (0);
}
cleanups = make_cleanup (freeargv, (char *) argv);
while (*argv != NULL)
{
if (STREQ (*argv, "-mapped"))
{
mapped = 1;
}
else if (STREQ (*argv, "-readnow"))
{
readnow = 1;
}
else if (**argv == '-')
{
error ("unknown option `%s'", *argv);
}
else
{
char *p;
name = *argv;
/* this is for rombug remote only, to get the text relocation by
using link command */
p = strrchr(name, '/');
if (p != NULL) p++;
else p = name;
target_link(p, &text_relocation);
if (text_relocation == (CORE_ADDR)0)
return;
else if (text_relocation == (CORE_ADDR)-1)
symbol_file_add (name, from_tty, (CORE_ADDR)0, 1, mapped,
readnow);
else
symbol_file_add (name, from_tty, (CORE_ADDR)text_relocation,
0, mapped, readnow);
/* Getting new symbols may change our opinion about what is
frameless. */
reinit_frame_cache ();
set_initial_language ();
}
argv++;
}
if (name == NULL)
{
error ("no symbol file name was specified");
}
do_cleanups (cleanups);
}
}
/* Set the initial language.
A better solution would be to record the language in the psymtab when reading
partial symbols, and then use it (if known) to set the language. This would
be a win for formats that encode the language in an easily discoverable place,
such as DWARF. For stabs, we can jump through hoops looking for specially
named symbols or try to intuit the language from the specific type of stabs
we find, but we can't do that until later when we read in full symbols.
FIXME. */
static void
set_initial_language ()
{
struct partial_symtab *pst;
enum language lang = language_unknown;
pst = find_main_psymtab ();
if (pst != NULL)
{
if (pst -> filename != NULL)
{
lang = deduce_language_from_filename (pst -> filename);
}
if (lang == language_unknown)
{
/* Make C the default language */
lang = language_c;
}
set_language (lang);
expected_language = current_language; /* Don't warn the user */
}
}
/* Open file specified by NAME and hand it off to BFD for preliminary
analysis. Result is a newly initialized bfd *, which includes a newly
malloc'd` copy of NAME (tilde-expanded and made absolute).
In case of trouble, error() is called. */
static bfd *
symfile_bfd_open (name)
char *name;
{
bfd *sym_bfd;
int desc;
char *absolute_name;
name = tilde_expand (name); /* Returns 1st new malloc'd copy */
/* Look down path for it, allocate 2nd new malloc'd copy. */
desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
#if defined(__GO32__) || defined(_WIN32)
if (desc < 0)
{
char *exename = alloca (strlen (name) + 5);
strcat (strcpy (exename, name), ".exe");
desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
0, &absolute_name);
}
#endif
if (desc < 0)
{
make_cleanup (free, name);
perror_with_name (name);
}
free (name); /* Free 1st new malloc'd copy */
name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
/* It'll be freed in free_objfile(). */
sym_bfd = bfd_fdopenr (name, gnutarget, desc);
if (!sym_bfd)
{
close (desc);
make_cleanup (free, name);
error ("\"%s\": can't open to read symbols: %s.", name,
bfd_errmsg (bfd_get_error ()));
}
sym_bfd->cacheable = true;
if (!bfd_check_format (sym_bfd, bfd_object))
{
/* FIXME: should be checking for errors from bfd_close (for one thing,
on error it does not free all the storage associated with the
bfd). */
bfd_close (sym_bfd); /* This also closes desc */
make_cleanup (free, name);
error ("\"%s\": can't read symbols: %s.", name,
bfd_errmsg (bfd_get_error ()));
}
return (sym_bfd);
}
/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
startup by the _initialize routine in each object file format reader,
to register information about each format the the reader is prepared
to handle. */
void
add_symtab_fns (sf)
struct sym_fns *sf;
{
sf->next = symtab_fns;
symtab_fns = sf;
}
/* Initialize to read symbols from the symbol file sym_bfd. It either
returns or calls error(). The result is an initialized struct sym_fns
in the objfile structure, that contains cached information about the
symbol file. */
static void
find_sym_fns (objfile)
struct objfile *objfile;
{
struct sym_fns *sf;
enum bfd_flavour our_flavour = bfd_get_flavour (objfile -> obfd);
char *our_target = bfd_get_target (objfile -> obfd);
/* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
if (STREQ (our_target, "aixcoff-rs6000") ||
STREQ (our_target, "xcoff-powermac"))
our_flavour = (enum bfd_flavour)-1;
/* Special kludge for apollo. See dstread.c. */
if (STREQN (our_target, "apollo", 6))
our_flavour = (enum bfd_flavour)-2;
for (sf = symtab_fns; sf != NULL; sf = sf -> next)
{
if (our_flavour == sf -> sym_flavour)
{
objfile -> sf = sf;
return;
}
}
error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
bfd_get_target (objfile -> obfd));
}
/* This function runs the load command of our current target. */
static void
load_command (arg, from_tty)
char *arg;
int from_tty;
{
if (arg == NULL)
arg = get_exec_file (1);
target_load (arg, from_tty);
}
/* This version of "load" should be usable for any target. Currently
it is just used for remote targets, not inftarg.c or core files,
on the theory that only in that case is it useful.
Avoiding xmodem and the like seems like a win (a) because we don't have
to worry about finding it, and (b) On VMS, fork() is very slow and so
we don't want to run a subprocess. On the other hand, I'm not sure how
performance compares. */
#define GENERIC_LOAD_CHUNK 256
#define VALIDATE_DOWNLOAD 0
void
generic_load (filename, from_tty)
char *filename;
int from_tty;
{
struct cleanup *old_cleanups;
asection *s;
bfd *loadfile_bfd;
time_t start_time, end_time; /* Start and end times of download */
unsigned long data_count = 0; /* Number of bytes transferred to memory */
int n;
unsigned long load_offset = 0; /* offset to add to vma for each section */
char buf[GENERIC_LOAD_CHUNK+8];
#if VALIDATE_DOWNLOAD
char verify_buffer[GENERIC_LOAD_CHUNK+8] ;
#endif
/* enable user to specify address for downloading as 2nd arg to load */
n = sscanf(filename, "%s 0x%lx", buf, &load_offset);
if (n > 1 )
filename = buf;
else
load_offset = 0;
loadfile_bfd = bfd_openr (filename, gnutarget);
if (loadfile_bfd == NULL)
{
perror_with_name (filename);
return;
}
/* FIXME: should be checking for errors from bfd_close (for one thing,
on error it does not free all the storage associated with the
bfd). */
old_cleanups = make_cleanup (bfd_close, loadfile_bfd);
if (!bfd_check_format (loadfile_bfd, bfd_object))
{
error ("\"%s\" is not an object file: %s", filename,
bfd_errmsg (bfd_get_error ()));
}
start_time = time (NULL);
for (s = loadfile_bfd->sections; s; s = s->next)
{
if (s->flags & SEC_LOAD)
{
bfd_size_type size;
size = bfd_get_section_size_before_reloc (s);
if (size > 0)
{
char *buffer;
struct cleanup *old_chain;
bfd_vma lma;
unsigned long l = size ;
int err;
char *sect;
unsigned long sent;
unsigned long len;
l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l ;
buffer = xmalloc (size);
old_chain = make_cleanup (free, buffer);
lma = s->lma;
lma += load_offset;
/* Is this really necessary? I guess it gives the user something
to look at during a long download. */
printf_filtered ("Loading section %s, size 0x%lx lma ",
bfd_get_section_name (loadfile_bfd, s),
(unsigned long) size);
print_address_numeric (lma, 1, gdb_stdout);
printf_filtered ("\n");
bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
sect = (char *) bfd_get_section_name (loadfile_bfd, s);
sent = 0;
do
{
len = (size - sent) < l ? (size - sent) : l;
sent += len;
err = target_write_memory (lma, buffer, len);
if (ui_load_progress_hook)
if (ui_load_progress_hook (sect, sent))
error ("Canceled the download");
#if VALIDATE_DOWNLOAD
/* Broken memories and broken monitors manifest themselves
here when bring new computers to life.
This doubles already slow downloads.
*/
if (err) break ;
{
target_read_memory(lma,verify_buffer,len) ;
if (0 != bcmp(buffer,verify_buffer,len))
error("Download verify failed at %08x",
(unsigned long)lma) ;
}
#endif
data_count += len ;
lma += len;
buffer += len;
} /* od */
while (err == 0 && sent < size);
if (err != 0)
error ("Memory access error while loading section %s.",
bfd_get_section_name (loadfile_bfd, s));
do_cleanups (old_chain);
}
}
}
end_time = time (NULL);
{
unsigned long entry ;
entry = bfd_get_start_address(loadfile_bfd) ;
printf_filtered ("Start address 0x%lx , load size %d\n", entry,data_count);
/* We were doing this in remote-mips.c, I suspect it is right
for other targets too. */
write_pc (entry);
}
/* FIXME: are we supposed to call symbol_file_add or not? According to
a comment from remote-mips.c (where a call to symbol_file_add was
commented out), making the call confuses GDB if more than one file is
loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
does. */
report_transfer_performance (data_count, start_time, end_time);
do_cleanups (old_cleanups);
}
/* Report how fast the transfer went. */
void
report_transfer_performance (data_count, start_time, end_time)
unsigned long data_count;
time_t start_time, end_time;
{
printf_filtered ("Transfer rate: ");
if (end_time != start_time)
printf_filtered ("%d bits/sec",
(data_count * 8) / (end_time - start_time));
else
printf_filtered ("%d bits in <1 sec", (data_count * 8));
printf_filtered (".\n");
}
/* This function allows the addition of incrementally linked object files.
It does not modify any state in the target, only in the debugger. */
/* ARGSUSED */
static void
add_symbol_file_command (args, from_tty)
char *args;
int from_tty;
{
char *name = NULL;
CORE_ADDR text_addr;
char *arg;
int readnow = 0;
int mapped = 0;
dont_repeat ();
if (args == NULL)
{
error ("add-symbol-file takes a file name and an address");
}
/* Make a copy of the string that we can safely write into. */
args = strdup (args);
make_cleanup (free, args);
/* Pick off any -option args and the file name. */
while ((*args != '\000') && (name == NULL))
{
while (isspace (*args)) {args++;}
arg = args;
while ((*args != '\000') && !isspace (*args)) {args++;}
if (*args != '\000')
{
*args++ = '\000';
}
if (*arg != '-')
{
name = arg;
}
else if (STREQ (arg, "-mapped"))
{
mapped = 1;
}
else if (STREQ (arg, "-readnow"))
{
readnow = 1;
}
else
{
error ("unknown option `%s'", arg);
}
}
/* After picking off any options and the file name, args should be
left pointing at the remainder of the command line, which should
be the address expression to evaluate. */
if (name == NULL)
{
error ("add-symbol-file takes a file name");
}
name = tilde_expand (name);
make_cleanup (free, name);
if (*args != '\000')
{
text_addr = parse_and_eval_address (args);
}
else
{
target_link(name, &text_addr);
if (text_addr == (CORE_ADDR)-1)
error("Don't know how to get text start location for this file");
}
/* FIXME-32x64: Assumes text_addr fits in a long. */
if (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
name, local_hex_string ((unsigned long)text_addr)))
error ("Not confirmed.");
symbol_file_add (name, 0, text_addr, 0, mapped, readnow);
/* Getting new symbols may change our opinion about what is
frameless. */
reinit_frame_cache ();
}
static void
add_shared_symbol_files_command (args, from_tty)
char *args;
int from_tty;
{
#ifdef ADD_SHARED_SYMBOL_FILES
ADD_SHARED_SYMBOL_FILES (args, from_tty);
#else
error ("This command is not available in this configuration of GDB.");
#endif
}
/* Re-read symbols if a symbol-file has changed. */
void
reread_symbols ()
{
struct objfile *objfile;
long new_modtime;
int reread_one = 0;
struct stat new_statbuf;
int res;
/* With the addition of shared libraries, this should be modified,
the load time should be saved in the partial symbol tables, since
different tables may come from different source files. FIXME.
This routine should then walk down each partial symbol table
and see if the symbol table that it originates from has been changed */
for (objfile = object_files; objfile; objfile = objfile->next) {
if (objfile->obfd) {
#ifdef IBM6000_TARGET
/* If this object is from a shared library, then you should
stat on the library name, not member name. */
if (objfile->obfd->my_archive)
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
else
#endif
res = stat (objfile->name, &new_statbuf);
if (res != 0) {
/* FIXME, should use print_sys_errmsg but it's not filtered. */
printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
objfile->name);
continue;
}
new_modtime = new_statbuf.st_mtime;
if (new_modtime != objfile->mtime)
{
struct cleanup *old_cleanups;
struct section_offsets *offsets;
int num_offsets;
int section_offsets_size;
char *obfd_filename;
printf_filtered ("`%s' has changed; re-reading symbols.\n",
objfile->name);
/* There are various functions like symbol_file_add,
symfile_bfd_open, syms_from_objfile, etc., which might
appear to do what we want. But they have various other
effects which we *don't* want. So we just do stuff
ourselves. We don't worry about mapped files (for one thing,
any mapped file will be out of date). */
/* If we get an error, blow away this objfile (not sure if
that is the correct response for things like shared
libraries). */
old_cleanups = make_cleanup (free_objfile, objfile);
/* We need to do this whenever any symbols go away. */
make_cleanup (clear_symtab_users, 0);
/* Clean up any state BFD has sitting around. We don't need
to close the descriptor but BFD lacks a way of closing the
BFD without closing the descriptor. */
obfd_filename = bfd_get_filename (objfile->obfd);
if (!bfd_close (objfile->obfd))
error ("Can't close BFD for %s: %s", objfile->name,
bfd_errmsg (bfd_get_error ()));
objfile->obfd = bfd_openr (obfd_filename, gnutarget);
if (objfile->obfd == NULL)
error ("Can't open %s to read symbols.", objfile->name);
/* bfd_openr sets cacheable to true, which is what we want. */
if (!bfd_check_format (objfile->obfd, bfd_object))
error ("Can't read symbols from %s: %s.", objfile->name,
bfd_errmsg (bfd_get_error ()));
/* Save the offsets, we will nuke them with the rest of the
psymbol_obstack. */
num_offsets = objfile->num_sections;
section_offsets_size =
sizeof (struct section_offsets)
+ sizeof (objfile->section_offsets->offsets) * num_offsets;
offsets = (struct section_offsets *) alloca (section_offsets_size);
memcpy (offsets, objfile->section_offsets, section_offsets_size);
/* Nuke all the state that we will re-read. Much of the following
code which sets things to NULL really is necessary to tell
other parts of GDB that there is nothing currently there. */
/* FIXME: Do we have to free a whole linked list, or is this
enough? */
if (objfile->global_psymbols.list)
mfree (objfile->md, objfile->global_psymbols.list);
memset (&objfile -> global_psymbols, 0,
sizeof (objfile -> global_psymbols));
if (objfile->static_psymbols.list)
mfree (objfile->md, objfile->static_psymbols.list);
memset (&objfile -> static_psymbols, 0,
sizeof (objfile -> static_psymbols));
/* Free the obstacks for non-reusable objfiles */
obstack_free (&objfile -> psymbol_cache.cache, 0);
memset (&objfile -> psymbol_cache, 0,
sizeof (objfile -> psymbol_cache));
obstack_free (&objfile -> psymbol_obstack, 0);
obstack_free (&objfile -> symbol_obstack, 0);
obstack_free (&objfile -> type_obstack, 0);
objfile->sections = NULL;
objfile->symtabs = NULL;
objfile->psymtabs = NULL;
objfile->free_psymtabs = NULL;
objfile->msymbols = NULL;
objfile->minimal_symbol_count= 0;
objfile->fundamental_types = NULL;
if (objfile -> sf != NULL)
{
(*objfile -> sf -> sym_finish) (objfile);
}
/* We never make this a mapped file. */
objfile -> md = NULL;
/* obstack_specify_allocation also initializes the obstack so
it is empty. */
obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
xmalloc, free);
obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0,
xmalloc, free);
obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0,
xmalloc, free);
obstack_specify_allocation (&objfile -> type_obstack, 0, 0,
xmalloc, free);
if (build_objfile_section_table (objfile))
{
error ("Can't find the file sections in `%s': %s",
objfile -> name, bfd_errmsg (bfd_get_error ()));
}
/* We use the same section offsets as from last time. I'm not
sure whether that is always correct for shared libraries. */
objfile->section_offsets = (struct section_offsets *)
obstack_alloc (&objfile -> psymbol_obstack, section_offsets_size);
memcpy (objfile->section_offsets, offsets, section_offsets_size);
objfile->num_sections = num_offsets;
/* What the hell is sym_new_init for, anyway? The concept of
distinguishing between the main file and additional files
in this way seems rather dubious. */
if (objfile == symfile_objfile)
(*objfile->sf->sym_new_init) (objfile);
(*objfile->sf->sym_init) (objfile);
clear_complaints (1, 1);
/* The "mainline" parameter is a hideous hack; I think leaving it
zero is OK since dbxread.c also does what it needs to do if
objfile->global_psymbols.size is 0. */
(*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0);
if (!have_partial_symbols () && !have_full_symbols ())
{
wrap_here ("");
printf_filtered ("(no debugging symbols found)\n");
wrap_here ("");
}
objfile -> flags |= OBJF_SYMS;
/* We're done reading the symbol file; finish off complaints. */
clear_complaints (0, 1);
/* Getting new symbols may change our opinion about what is
frameless. */
reinit_frame_cache ();
/* Discard cleanups as symbol reading was successful. */
discard_cleanups (old_cleanups);
/* If the mtime has changed between the time we set new_modtime
and now, we *want* this to be out of date, so don't call stat
again now. */
objfile->mtime = new_modtime;
reread_one = 1;
/* Call this after reading in a new symbol table to give target
dependant code a crack at the new symbols. For instance, this
could be used to update the values of target-specific symbols GDB
needs to keep track of (such as _sigtramp, or whatever). */
TARGET_SYMFILE_POSTREAD (objfile);
}
}
}
if (reread_one)
clear_symtab_users ();
}
enum language
deduce_language_from_filename (filename)
char *filename;
{
char *c;
if (0 == filename)
; /* Get default */
else if (0 == (c = strrchr (filename, '.')))
; /* Get default. */
else if (STREQ (c, ".c"))
return language_c;
else if (STREQ (c, ".cc") || STREQ (c, ".C") || STREQ (c, ".cxx")
|| STREQ (c, ".cpp") || STREQ (c, ".cp") || STREQ (c, ".c++"))
return language_cplus;
/* start-sanitize-java */
else if (STREQ (c, ".java") || STREQ (c, ".class"))
return language_java;
/* end-sanitize-java */
else if (STREQ (c, ".ch") || STREQ (c, ".c186") || STREQ (c, ".c286"))
return language_chill;
else if (STREQ (c, ".f") || STREQ (c, ".F"))
return language_fortran;
else if (STREQ (c, ".mod"))
return language_m2;
else if (STREQ (c, ".s") || STREQ (c, ".S"))
return language_asm;
return language_unknown; /* default */
}
/* allocate_symtab:
Allocate and partly initialize a new symbol table. Return a pointer
to it. error() if no space.
Caller must set these fields:
LINETABLE(symtab)
symtab->blockvector
symtab->dirname
symtab->free_code
symtab->free_ptr
initialize any EXTRA_SYMTAB_INFO
possibly free_named_symtabs (symtab->filename);
*/
struct symtab *
allocate_symtab (filename, objfile)
char *filename;
struct objfile *objfile;
{
register struct symtab *symtab;
symtab = (struct symtab *)
obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symtab));
memset (symtab, 0, sizeof (*symtab));
symtab -> filename = obsavestring (filename, strlen (filename),
&objfile -> symbol_obstack);
symtab -> fullname = NULL;
symtab -> language = deduce_language_from_filename (filename);
symtab -> debugformat = obsavestring ("unknown", 7,
&objfile -> symbol_obstack);
/* Hook it to the objfile it comes from */
symtab -> objfile = objfile;
symtab -> next = objfile -> symtabs;
objfile -> symtabs = symtab;
#ifdef INIT_EXTRA_SYMTAB_INFO
INIT_EXTRA_SYMTAB_INFO (symtab);
#endif
return (symtab);
}
struct partial_symtab *
allocate_psymtab (filename, objfile)
char *filename;
struct objfile *objfile;
{
struct partial_symtab *psymtab;
if (objfile -> free_psymtabs)
{
psymtab = objfile -> free_psymtabs;
objfile -> free_psymtabs = psymtab -> next;
}
else
psymtab = (struct partial_symtab *)
obstack_alloc (&objfile -> psymbol_obstack,
sizeof (struct partial_symtab));
memset (psymtab, 0, sizeof (struct partial_symtab));
psymtab -> filename = obsavestring (filename, strlen (filename),
&objfile -> psymbol_obstack);
psymtab -> symtab = NULL;
/* Prepend it to the psymtab list for the objfile it belongs to.
Psymtabs are searched in most recent inserted -> least recent
inserted order. */
psymtab -> objfile = objfile;
psymtab -> next = objfile -> psymtabs;
objfile -> psymtabs = psymtab;
#if 0
{
struct partial_symtab **prev_pst;
psymtab -> objfile = objfile;
psymtab -> next = NULL;
prev_pst = &(objfile -> psymtabs);
while ((*prev_pst) != NULL)
prev_pst = &((*prev_pst) -> next);
(*prev_pst) = psymtab;
}
#endif
return (psymtab);
}
void
discard_psymtab (pst)
struct partial_symtab *pst;
{
struct partial_symtab **prev_pst;
/* From dbxread.c:
Empty psymtabs happen as a result of header files which don't
have any symbols in them. There can be a lot of them. But this
check is wrong, in that a psymtab with N_SLINE entries but
nothing else is not empty, but we don't realize that. Fixing
that without slowing things down might be tricky. */
/* First, snip it out of the psymtab chain */
prev_pst = &(pst->objfile->psymtabs);
while ((*prev_pst) != pst)
prev_pst = &((*prev_pst)->next);
(*prev_pst) = pst->next;
/* Next, put it on a free list for recycling */
pst->next = pst->objfile->free_psymtabs;
pst->objfile->free_psymtabs = pst;
}
/* Reset all data structures in gdb which may contain references to symbol
table data. */
void
clear_symtab_users ()
{
/* Someday, we should do better than this, by only blowing away
the things that really need to be blown. */
clear_value_history ();
clear_displays ();
clear_internalvars ();
breakpoint_re_set ();
set_default_breakpoint (0, 0, 0, 0);
current_source_symtab = 0;
current_source_line = 0;
clear_pc_function_cache ();
target_new_objfile (NULL);
}
/* clear_symtab_users_once:
This function is run after symbol reading, or from a cleanup.
If an old symbol table was obsoleted, the old symbol table
has been blown away, but the other GDB data structures that may
reference it have not yet been cleared or re-directed. (The old
symtab was zapped, and the cleanup queued, in free_named_symtab()
below.)
This function can be queued N times as a cleanup, or called
directly; it will do all the work the first time, and then will be a
no-op until the next time it is queued. This works by bumping a
counter at queueing time. Much later when the cleanup is run, or at
the end of symbol processing (in case the cleanup is discarded), if
the queued count is greater than the "done-count", we do the work
and set the done-count to the queued count. If the queued count is
less than or equal to the done-count, we just ignore the call. This
is needed because reading a single .o file will often replace many
symtabs (one per .h file, for example), and we don't want to reset
the breakpoints N times in the user's face.
The reason we both queue a cleanup, and call it directly after symbol
reading, is because the cleanup protects us in case of errors, but is
discarded if symbol reading is successful. */
#if 0
/* FIXME: As free_named_symtabs is currently a big noop this function
is no longer needed. */
static void
clear_symtab_users_once PARAMS ((void));
static int clear_symtab_users_queued;
static int clear_symtab_users_done;
static void
clear_symtab_users_once ()
{
/* Enforce once-per-`do_cleanups'-semantics */
if (clear_symtab_users_queued <= clear_symtab_users_done)
return;
clear_symtab_users_done = clear_symtab_users_queued;
clear_symtab_users ();
}
#endif
/* Delete the specified psymtab, and any others that reference it. */
static void
cashier_psymtab (pst)
struct partial_symtab *pst;
{
struct partial_symtab *ps, *pprev = NULL;
int i;
/* Find its previous psymtab in the chain */
for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
if (ps == pst)
break;
pprev = ps;
}
if (ps) {
/* Unhook it from the chain. */
if (ps == pst->objfile->psymtabs)
pst->objfile->psymtabs = ps->next;
else
pprev->next = ps->next;
/* FIXME, we can't conveniently deallocate the entries in the
partial_symbol lists (global_psymbols/static_psymbols) that
this psymtab points to. These just take up space until all
the psymtabs are reclaimed. Ditto the dependencies list and
filename, which are all in the psymbol_obstack. */
/* We need to cashier any psymtab that has this one as a dependency... */
again:
for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
for (i = 0; i < ps->number_of_dependencies; i++) {
if (ps->dependencies[i] == pst) {
cashier_psymtab (ps);
goto again; /* Must restart, chain has been munged. */
}
}
}
}
}
/* If a symtab or psymtab for filename NAME is found, free it along
with any dependent breakpoints, displays, etc.
Used when loading new versions of object modules with the "add-file"
command. This is only called on the top-level symtab or psymtab's name;
it is not called for subsidiary files such as .h files.
Return value is 1 if we blew away the environment, 0 if not.
FIXME. The return valu appears to never be used.
FIXME. I think this is not the best way to do this. We should
work on being gentler to the environment while still cleaning up
all stray pointers into the freed symtab. */
int
free_named_symtabs (name)
char *name;
{
#if 0
/* FIXME: With the new method of each objfile having it's own
psymtab list, this function needs serious rethinking. In particular,
why was it ever necessary to toss psymtabs with specific compilation
unit filenames, as opposed to all psymtabs from a particular symbol
file? -- fnf
Well, the answer is that some systems permit reloading of particular
compilation units. We want to blow away any old info about these
compilation units, regardless of which objfiles they arrived in. --gnu. */
register struct symtab *s;
register struct symtab *prev;
register struct partial_symtab *ps;
struct blockvector *bv;
int blewit = 0;
/* We only wack things if the symbol-reload switch is set. */
if (!symbol_reloading)
return 0;
/* Some symbol formats have trouble providing file names... */
if (name == 0 || *name == '\0')
return 0;
/* Look for a psymtab with the specified name. */
again2:
for (ps = partial_symtab_list; ps; ps = ps->next) {
if (STREQ (name, ps->filename)) {
cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
goto again2; /* Must restart, chain has been munged */
}
}
/* Look for a symtab with the specified name. */
for (s = symtab_list; s; s = s->next)
{
if (STREQ (name, s->filename))
break;
prev = s;
}
if (s)
{
if (s == symtab_list)
symtab_list = s->next;
else
prev->next = s->next;
/* For now, queue a delete for all breakpoints, displays, etc., whether
or not they depend on the symtab being freed. This should be
changed so that only those data structures affected are deleted. */
/* But don't delete anything if the symtab is empty.
This test is necessary due to a bug in "dbxread.c" that
causes empty symtabs to be created for N_SO symbols that
contain the pathname of the object file. (This problem
has been fixed in GDB 3.9x). */
bv = BLOCKVECTOR (s);
if (BLOCKVECTOR_NBLOCKS (bv) > 2
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
{
complain (&oldsyms_complaint, name);
clear_symtab_users_queued++;
make_cleanup (clear_symtab_users_once, 0);
blewit = 1;
} else {
complain (&empty_symtab_complaint, name);
}
free_symtab (s);
}
else
{
/* It is still possible that some breakpoints will be affected
even though no symtab was found, since the file might have
been compiled without debugging, and hence not be associated
with a symtab. In order to handle this correctly, we would need
to keep a list of text address ranges for undebuggable files.
For now, we do nothing, since this is a fairly obscure case. */
;
}
/* FIXME, what about the minimal symbol table? */
return blewit;
#else
return (0);
#endif
}
/* Allocate and partially fill a partial symtab. It will be
completely filled at the end of the symbol list.
SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
is the address relative to which its symbols are (incremental) or 0
(normal). */
struct partial_symtab *
start_psymtab_common (objfile, section_offsets,
filename, textlow, global_syms, static_syms)
struct objfile *objfile;
struct section_offsets *section_offsets;
char *filename;
CORE_ADDR textlow;
struct partial_symbol **global_syms;
struct partial_symbol **static_syms;
{
struct partial_symtab *psymtab;
psymtab = allocate_psymtab (filename, objfile);
psymtab -> section_offsets = section_offsets;
psymtab -> textlow = textlow;
psymtab -> texthigh = psymtab -> textlow; /* default */
psymtab -> globals_offset = global_syms - objfile -> global_psymbols.list;
psymtab -> statics_offset = static_syms - objfile -> static_psymbols.list;
return (psymtab);
}
/* Add a symbol with a long value to a psymtab.
Since one arg is a struct, we pass in a ptr and deref it (sigh). */
void
add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
language, objfile)
char *name;
int namelength;
namespace_enum namespace;
enum address_class class;
struct psymbol_allocation_list *list;
long val; /* Value as a long */
CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
enum language language;
struct objfile *objfile;
{
register struct partial_symbol *psym;
char *buf = alloca (namelength + 1);
/* psymbol is static so that there will be no uninitialized gaps in the
structure which might contain random data, causing cache misses in
bcache. */
static struct partial_symbol psymbol;
/* Create local copy of the partial symbol */
memcpy (buf, name, namelength);
buf[namelength] = '\0';
SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
if (val != 0)
{
SYMBOL_VALUE (&psymbol) = val;
}
else
{
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
}
SYMBOL_SECTION (&psymbol) = 0;
SYMBOL_LANGUAGE (&psymbol) = language;
PSYMBOL_NAMESPACE (&psymbol) = namespace;
PSYMBOL_CLASS (&psymbol) = class;
SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
/* Stash the partial symbol away in the cache */
psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
if (list->next >= list->list + list->size)
{
extend_psymbol_list (list, objfile);
}
*list->next++ = psym;
OBJSTAT (objfile, n_psyms++);
}
/* Initialize storage for partial symbols. */
void
init_psymbol_list (objfile, total_symbols)
struct objfile *objfile;
int total_symbols;
{
/* Free any previously allocated psymbol lists. */
if (objfile -> global_psymbols.list)
{
mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
}
if (objfile -> static_psymbols.list)
{
mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
}
/* Current best guess is that approximately a twentieth
of the total symbols (in a debugging file) are global or static
oriented symbols */
objfile -> global_psymbols.size = total_symbols / 10;
objfile -> static_psymbols.size = total_symbols / 10;
if (objfile -> global_psymbols.size > 0)
{
objfile -> global_psymbols.next =
objfile -> global_psymbols.list = (struct partial_symbol **)
xmmalloc (objfile -> md, (objfile -> global_psymbols.size
* sizeof (struct partial_symbol *)));
}
if (objfile -> static_psymbols.size > 0)
{
objfile -> static_psymbols.next =
objfile -> static_psymbols.list = (struct partial_symbol **)
xmmalloc (objfile -> md, (objfile -> static_psymbols.size
* sizeof (struct partial_symbol *)));
}
}
/* OVERLAYS:
The following code implements an abstraction for debugging overlay sections.
The target model is as follows:
1) The gnu linker will permit multiple sections to be mapped into the
same VMA, each with its own unique LMA (or load address).
2) It is assumed that some runtime mechanism exists for mapping the
sections, one by one, from the load address into the VMA address.
3) This code provides a mechanism for gdb to keep track of which
sections should be considered to be mapped from the VMA to the LMA.
This information is used for symbol lookup, and memory read/write.
For instance, if a section has been mapped then its contents
should be read from the VMA, otherwise from the LMA.
Two levels of debugger support for overlays are available. One is
"manual", in which the debugger relies on the user to tell it which
overlays are currently mapped. This level of support is
implemented entirely in the core debugger, and the information about
whether a section is mapped is kept in the objfile->obj_section table.
The second level of support is "automatic", and is only available if
the target-specific code provides functionality to read the target's
overlay mapping table, and translate its contents for the debugger
(by updating the mapped state information in the obj_section tables).
The interface is as follows:
User commands:
overlay map <name> -- tell gdb to consider this section mapped
overlay unmap <name> -- tell gdb to consider this section unmapped
overlay list -- list the sections that GDB thinks are mapped
overlay read-target -- get the target's state of what's mapped
overlay off/manual/auto -- set overlay debugging state
Functional interface:
find_pc_mapped_section(pc): if the pc is in the range of a mapped
section, return that section.
find_pc_overlay(pc): find any overlay section that contains
the pc, either in its VMA or its LMA
overlay_is_mapped(sect): true if overlay is marked as mapped
section_is_overlay(sect): true if section's VMA != LMA
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
pc_in_unmapped_range(...): true if pc belongs to section's LMA
overlay_mapped_address(...): map an address from section's LMA to VMA
overlay_unmapped_address(...): map an address from section's VMA to LMA
symbol_overlayed_address(...): Return a "current" address for symbol:
either in VMA or LMA depending on whether
the symbol's section is currently mapped
*/
/* Overlay debugging state: */
int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
/* Target vector for refreshing overlay mapped state */
static void simple_overlay_update PARAMS ((struct obj_section *));
void (*target_overlay_update) PARAMS ((struct obj_section *))
= simple_overlay_update;
/* Function: section_is_overlay (SECTION)
Returns true if SECTION has VMA not equal to LMA, ie.
SECTION is loaded at an address different from where it will "run". */
int
section_is_overlay (section)
asection *section;
{
if (overlay_debugging)
if (section && section->lma != 0 &&
section->vma != section->lma)
return 1;
return 0;
}
/* Function: overlay_invalidate_all (void)
Invalidate the mapped state of all overlay sections (mark it as stale). */
static void
overlay_invalidate_all ()
{
struct objfile *objfile;
struct obj_section *sect;
ALL_OBJSECTIONS (objfile, sect)
if (section_is_overlay (sect->the_bfd_section))
sect->ovly_mapped = -1;
}
/* Function: overlay_is_mapped (SECTION)
Returns true if section is an overlay, and is currently mapped.
Private: public access is thru function section_is_mapped.
Access to the ovly_mapped flag is restricted to this function, so
that we can do automatic update. If the global flag
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
overlay_invalidate_all. If the mapped state of the particular
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
static int
overlay_is_mapped (osect)
struct obj_section *osect;
{
if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
return 0;
switch (overlay_debugging)
{
default:
case 0: return 0; /* overlay debugging off */
case -1: /* overlay debugging automatic */
/* Unles there is a target_overlay_update function,
there's really nothing useful to do here (can't really go auto) */
if (target_overlay_update)
{
if (overlay_cache_invalid)
{
overlay_invalidate_all ();
overlay_cache_invalid = 0;
}
if (osect->ovly_mapped == -1)
(*target_overlay_update) (osect);
}
/* fall thru to manual case */
case 1: /* overlay debugging manual */
return osect->ovly_mapped == 1;
}
}
/* Function: section_is_mapped
Returns true if section is an overlay, and is currently mapped. */
int
section_is_mapped (section)
asection *section;
{
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
if (section && section_is_overlay (section))
ALL_OBJSECTIONS (objfile, osect)
if (osect->the_bfd_section == section)
return overlay_is_mapped (osect);
return 0;
}
/* Function: pc_in_unmapped_range
If PC falls into the lma range of SECTION, return true, else false. */
CORE_ADDR
pc_in_unmapped_range (pc, section)
CORE_ADDR pc;
asection *section;
{
int size;
if (overlay_debugging)
if (section && section_is_overlay (section))
{
size = bfd_get_section_size_before_reloc (section);
if (section->lma <= pc && pc < section->lma + size)
return 1;
}
return 0;
}
/* Function: pc_in_mapped_range
If PC falls into the vma range of SECTION, return true, else false. */
CORE_ADDR
pc_in_mapped_range (pc, section)
CORE_ADDR pc;
asection *section;
{
int size;
if (overlay_debugging)
if (section && section_is_overlay (section))
{
size = bfd_get_section_size_before_reloc (section);
if (section->vma <= pc && pc < section->vma + size)
return 1;
}
return 0;
}
/* Function: overlay_unmapped_address (PC, SECTION)
Returns the address corresponding to PC in the unmapped (load) range.
May be the same as PC. */
CORE_ADDR
overlay_unmapped_address (pc, section)
CORE_ADDR pc;
asection *section;
{
if (overlay_debugging)
if (section && section_is_overlay (section) &&
pc_in_mapped_range (pc, section))
return pc + section->lma - section->vma;
return pc;
}
/* Function: overlay_mapped_address (PC, SECTION)
Returns the address corresponding to PC in the mapped (runtime) range.
May be the same as PC. */
CORE_ADDR
overlay_mapped_address (pc, section)
CORE_ADDR pc;
asection *section;
{
if (overlay_debugging)
if (section && section_is_overlay (section) &&
pc_in_unmapped_range (pc, section))
return pc + section->vma - section->lma;
return pc;
}
/* Function: symbol_overlayed_address
Return one of two addresses (relative to the VMA or to the LMA),
depending on whether the section is mapped or not. */
CORE_ADDR
symbol_overlayed_address (address, section)
CORE_ADDR address;
asection *section;
{
if (overlay_debugging)
{
/* If the symbol has no section, just return its regular address. */
if (section == 0)
return address;
/* If the symbol's section is not an overlay, just return its address */
if (!section_is_overlay (section))
return address;
/* If the symbol's section is mapped, just return its address */
if (section_is_mapped (section))
return address;
/*
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
* then return its LOADED address rather than its vma address!!
*/
return overlay_unmapped_address (address, section);
}
return address;
}
/* Function: find_pc_overlay (PC)
Return the best-match overlay section for PC:
If PC matches a mapped overlay section's VMA, return that section.
Else if PC matches an unmapped section's VMA, return that section.
Else if PC matches an unmapped section's LMA, return that section. */
asection *
find_pc_overlay (pc)
CORE_ADDR pc;
{
struct objfile *objfile;
struct obj_section *osect, *best_match = NULL;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (section_is_overlay (osect->the_bfd_section))
{
if (pc_in_mapped_range (pc, osect->the_bfd_section))
{
if (overlay_is_mapped (osect))
return osect->the_bfd_section;
else
best_match = osect;
}
else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
best_match = osect;
}
return best_match ? best_match->the_bfd_section : NULL;
}
/* Function: find_pc_mapped_section (PC)
If PC falls into the VMA address range of an overlay section that is
currently marked as MAPPED, return that section. Else return NULL. */
asection *
find_pc_mapped_section (pc)
CORE_ADDR pc;
{
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
overlay_is_mapped (osect))
return osect->the_bfd_section;
return NULL;
}
/* Function: list_overlays_command
Print a list of mapped sections and their PC ranges */
void
list_overlays_command (args, from_tty)
char *args;
int from_tty;
{
int nmapped = 0;
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (overlay_is_mapped (osect))
{
const char *name;
bfd_vma lma, vma;
int size;
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
printf_filtered ("Section %s, loaded at %08x - %08x, ",
name, lma, lma + size);
printf_filtered ("mapped at %08x - %08x\n",
vma, vma + size);
nmapped ++;
}
if (nmapped == 0)
printf_filtered ("No sections are mapped.\n");
}
/* Function: map_overlay_command
Mark the named section as mapped (ie. residing at its VMA address). */
void
map_overlay_command (args, from_tty)
char *args;
int from_tty;
{
struct objfile *objfile, *objfile2;
struct obj_section *sec, *sec2;
asection *bfdsec;
if (!overlay_debugging)
error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
if (args == 0 || *args == 0)
error ("Argument required: name of an overlay section");
/* First, find a section matching the user supplied argument */
ALL_OBJSECTIONS (objfile, sec)
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
{
/* Now, check to see if the section is an overlay. */
bfdsec = sec->the_bfd_section;
if (!section_is_overlay (bfdsec))
continue; /* not an overlay section */
/* Mark the overlay as "mapped" */
sec->ovly_mapped = 1;
/* Next, make a pass and unmap any sections that are
overlapped by this new section: */
ALL_OBJSECTIONS (objfile2, sec2)
if (sec2->ovly_mapped &&
sec != sec2 &&
sec->the_bfd_section != sec2->the_bfd_section &&
(pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
{
if (info_verbose)
printf_filtered ("Note: section %s unmapped by overlap\n",
bfd_section_name (objfile->obfd,
sec2->the_bfd_section));
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
}
return;
}
error ("No overlay section called %s", args);
}
/* Function: unmap_overlay_command
Mark the overlay section as unmapped
(ie. resident in its LMA address range, rather than the VMA range). */
void
unmap_overlay_command (args, from_tty)
char *args;
int from_tty;
{
struct objfile *objfile;
struct obj_section *sec;
if (!overlay_debugging)
error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
if (args == 0 || *args == 0)
error ("Argument required: name of an overlay section");
/* First, find a section matching the user supplied argument */
ALL_OBJSECTIONS (objfile, sec)
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
{
if (!sec->ovly_mapped)
error ("Section %s is not mapped", args);
sec->ovly_mapped = 0;
return;
}
error ("No overlay section called %s", args);
}
/* Function: overlay_auto_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
overlay_auto_command (args, from_tty)
char *args;
int from_tty;
{
overlay_debugging = -1;
if (info_verbose)
printf_filtered ("Automatic overlay debugging enabled.");
}
/* Function: overlay_manual_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
overlay_manual_command (args, from_tty)
char *args;
int from_tty;
{
overlay_debugging = 1;
if (info_verbose)
printf_filtered ("Overlay debugging enabled.");
}
/* Function: overlay_off_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
overlay_off_command (args, from_tty)
char *args;
int from_tty;
{
overlay_debugging = 0;
if (info_verbose)
printf_filtered ("Overlay debugging disabled.");
}
static void
overlay_load_command (args, from_tty)
char *args;
int from_tty;
{
if (target_overlay_update)
(*target_overlay_update) (NULL);
else
error ("This target does not know how to read its overlay state.");
}
/* Function: overlay_command
A place-holder for a mis-typed command */
/* Command list chain containing all defined "overlay" subcommands. */
struct cmd_list_element *overlaylist;
static void
overlay_command (args, from_tty)
char *args;
int from_tty;
{
printf_unfiltered
("\"overlay\" must be followed by the name of an overlay command.\n");
help_list (overlaylist, "overlay ", -1, gdb_stdout);
}
/* Target Overlays for the "Simplest" overlay manager:
This is GDB's default target overlay layer. It works with the
minimal overlay manager supplied as an example by Cygnus. The
entry point is via a function pointer "target_overlay_update",
so targets that use a different runtime overlay manager can
substitute their own overlay_update function and take over the
function pointer.
The overlay_update function pokes around in the target's data structures
to see what overlays are mapped, and updates GDB's overlay mapping with
this information.
In this simple implementation, the target data structures are as follows:
unsigned _novlys; /# number of overlay sections #/
unsigned _ovly_table[_novlys][4] = {
{VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
{..., ..., ..., ...},
}
unsigned _novly_regions; /# number of overlay regions #/
unsigned _ovly_region_table[_novly_regions][3] = {
{VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
{..., ..., ...},
}
These functions will attempt to update GDB's mappedness state in the
symbol section table, based on the target's mappedness state.
To do this, we keep a cached copy of the target's _ovly_table, and
attempt to detect when the cached copy is invalidated. The main
entry point is "simple_overlay_update(SECT), which looks up SECT in
the cached table and re-reads only the entry for that section from
the target (whenever possible).
*/
/* Cached, dynamically allocated copies of the target data structures: */
static unsigned (*cache_ovly_table)[4] = 0;
#if 0
static unsigned (*cache_ovly_region_table)[3] = 0;
#endif
static unsigned cache_novlys = 0;
#if 0
static unsigned cache_novly_regions = 0;
#endif
static CORE_ADDR cache_ovly_table_base = 0;
#if 0
static CORE_ADDR cache_ovly_region_table_base = 0;
#endif
enum ovly_index { VMA, SIZE, LMA, MAPPED};
#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
/* Throw away the cached copy of _ovly_table */
static void
simple_free_overlay_table ()
{
if (cache_ovly_table)
free(cache_ovly_table);
cache_novlys = 0;
cache_ovly_table = NULL;
cache_ovly_table_base = 0;
}
#if 0
/* Throw away the cached copy of _ovly_region_table */
static void
simple_free_overlay_region_table ()
{
if (cache_ovly_region_table)
free(cache_ovly_region_table);
cache_novly_regions = 0;
cache_ovly_region_table = NULL;
cache_ovly_region_table_base = 0;
}
#endif
/* Read an array of ints from the target into a local buffer.
Convert to host order. int LEN is number of ints */
static void
read_target_long_array (memaddr, myaddr, len)
CORE_ADDR memaddr;
unsigned int *myaddr;
int len;
{
char *buf = alloca (len * TARGET_LONG_BYTES);
int i;
read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
for (i = 0; i < len; i++)
myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
TARGET_LONG_BYTES);
}
/* Find and grab a copy of the target _ovly_table
(and _novlys, which is needed for the table's size) */
static int
simple_read_overlay_table ()
{
struct minimal_symbol *msym;
simple_free_overlay_table ();
msym = lookup_minimal_symbol ("_novlys", 0, 0);
if (msym != NULL)
cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
else
return 0; /* failure */
cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof(*cache_ovly_table));
if (cache_ovly_table != NULL)
{
msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
if (msym != NULL)
{
cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
read_target_long_array (cache_ovly_table_base,
(int *) cache_ovly_table,
cache_novlys * 4);
}
else
return 0; /* failure */
}
else
return 0; /* failure */
return 1; /* SUCCESS */
}
#if 0
/* Find and grab a copy of the target _ovly_region_table
(and _novly_regions, which is needed for the table's size) */
static int
simple_read_overlay_region_table ()
{
struct minimal_symbol *msym;
simple_free_overlay_region_table ();
msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
if (msym != NULL)
cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
else
return 0; /* failure */
cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
if (cache_ovly_region_table != NULL)
{
msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
if (msym != NULL)
{
cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
read_target_long_array (cache_ovly_region_table_base,
(int *) cache_ovly_region_table,
cache_novly_regions * 3);
}
else
return 0; /* failure */
}
else
return 0; /* failure */
return 1; /* SUCCESS */
}
#endif
/* Function: simple_overlay_update_1
A helper function for simple_overlay_update. Assuming a cached copy
of _ovly_table exists, look through it to find an entry whose vma,
lma and size match those of OSECT. Re-read the entry and make sure
it still matches OSECT (else the table may no longer be valid).
Set OSECT's mapped state to match the entry. Return: 1 for
success, 0 for failure. */
static int
simple_overlay_update_1 (osect)
struct obj_section *osect;
{
int i, size;
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
for (i = 0; i < cache_novlys; i++)
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */)
{
read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
(int *) cache_ovly_table[i], 4);
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */)
{
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
return 1;
}
else /* Warning! Warning! Target's ovly table has changed! */
return 0;
}
return 0;
}
/* Function: simple_overlay_update
If OSECT is NULL, then update all sections' mapped state
(after re-reading the entire target _ovly_table).
If OSECT is non-NULL, then try to find a matching entry in the
cached ovly_table and update only OSECT's mapped state.
If a cached entry can't be found or the cache isn't valid, then
re-read the entire cache, and go ahead and update all sections. */
static void
simple_overlay_update (osect)
struct obj_section *osect;
{
struct objfile *objfile;
/* Were we given an osect to look up? NULL means do all of them. */
if (osect)
/* Have we got a cached copy of the target's overlay table? */
if (cache_ovly_table != NULL)
/* Does its cached location match what's currently in the symtab? */
if (cache_ovly_table_base ==
SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
/* Then go ahead and try to look up this single section in the cache */
if (simple_overlay_update_1 (osect))
/* Found it! We're done. */
return;
/* Cached table no good: need to read the entire table anew.
Or else we want all the sections, in which case it's actually
more efficient to read the whole table in one block anyway. */
if (simple_read_overlay_table () == 0) /* read failed? No table? */
{
warning ("Failed to read the target overlay mapping table.");
return;
}
/* Now may as well update all sections, even if only one was requested. */
ALL_OBJSECTIONS (objfile, osect)
if (section_is_overlay (osect->the_bfd_section))
{
int i, size;
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
for (i = 0; i < cache_novlys; i++)
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */)
{ /* obj_section matches i'th entry in ovly_table */
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
break; /* finished with inner for loop: break out */
}
}
}
void
_initialize_symfile ()
{
struct cmd_list_element *c;
c = add_cmd ("symbol-file", class_files, symbol_file_command,
"Load symbol table from executable file FILE.\n\
The `file' command can also load symbol tables, as well as setting the file\n\
to execute.", &cmdlist);
c->completer = filename_completer;
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
"Usage: add-symbol-file FILE ADDR\n\
Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
ADDR is the starting address of the file's text.",
&cmdlist);
c->completer = filename_completer;
c = add_cmd ("add-shared-symbol-files", class_files,
add_shared_symbol_files_command,
"Load the symbols from shared objects in the dynamic linker's link map.",
&cmdlist);
c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
&cmdlist);
c = add_cmd ("load", class_files, load_command,
"Dynamically load FILE into the running program, and record its symbols\n\
for access from GDB.", &cmdlist);
c->completer = filename_completer;
add_show_from_set
(add_set_cmd ("symbol-reloading", class_support, var_boolean,
(char *)&symbol_reloading,
"Set dynamic symbol table reloading multiple times in one run.",
&setlist),
&showlist);
add_prefix_cmd ("overlay", class_support, overlay_command,
"Commands for debugging overlays.", &overlaylist,
"overlay ", 0, &cmdlist);
add_com_alias ("ovly", "overlay", class_alias, 1);
add_com_alias ("ov", "overlay", class_alias, 1);
add_cmd ("map-overlay", class_support, map_overlay_command,
"Assert that an overlay section is mapped.", &overlaylist);
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
"Assert that an overlay section is unmapped.", &overlaylist);
add_cmd ("list-overlays", class_support, list_overlays_command,
"List mappings of overlay sections.", &overlaylist);
add_cmd ("manual", class_support, overlay_manual_command,
"Enable overlay debugging.", &overlaylist);
add_cmd ("off", class_support, overlay_off_command,
"Disable overlay debugging.", &overlaylist);
add_cmd ("auto", class_support, overlay_auto_command,
"Enable automatic overlay debugging.", &overlaylist);
add_cmd ("load-target", class_support, overlay_load_command,
"Read the overlay mapping state from the target.", &overlaylist);
}