mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-27 19:23:33 +08:00
29d375acb5
* hppa-tdep.c (hppa_find_unwind_entry_in_block): New. (hppa_frame_cache): Use new function to find unwind entry. (hppa_frame_this_id): Likewise. (hppa_frame_unwind_sniffer): Likewise.
3198 lines
96 KiB
C
3198 lines
96 KiB
C
/* Target-dependent code for the HP PA-RISC architecture.
|
||
|
||
Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
|
||
1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah (pa-gdb-bugs@cs.utah.edu).
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "inferior.h"
|
||
#include "regcache.h"
|
||
#include "completer.h"
|
||
#include "osabi.h"
|
||
#include "gdb_assert.h"
|
||
#include "arch-utils.h"
|
||
/* For argument passing to the inferior */
|
||
#include "symtab.h"
|
||
#include "dis-asm.h"
|
||
#include "trad-frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "frame-base.h"
|
||
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "hppa-tdep.h"
|
||
|
||
static int hppa_debug = 0;
|
||
|
||
/* Some local constants. */
|
||
static const int hppa32_num_regs = 128;
|
||
static const int hppa64_num_regs = 96;
|
||
|
||
/* hppa-specific object data -- unwind and solib info.
|
||
TODO/maybe: think about splitting this into two parts; the unwind data is
|
||
common to all hppa targets, but is only used in this file; we can register
|
||
that separately and make this static. The solib data is probably hpux-
|
||
specific, so we can create a separate extern objfile_data that is registered
|
||
by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
|
||
const struct objfile_data *hppa_objfile_priv_data = NULL;
|
||
|
||
/* Get at various relevent fields of an instruction word. */
|
||
#define MASK_5 0x1f
|
||
#define MASK_11 0x7ff
|
||
#define MASK_14 0x3fff
|
||
#define MASK_21 0x1fffff
|
||
|
||
/* Sizes (in bytes) of the native unwind entries. */
|
||
#define UNWIND_ENTRY_SIZE 16
|
||
#define STUB_UNWIND_ENTRY_SIZE 8
|
||
|
||
/* FIXME: brobecker 2002-11-07: We will likely be able to make the
|
||
following functions static, once we hppa is partially multiarched. */
|
||
int hppa_pc_requires_run_before_use (CORE_ADDR pc);
|
||
|
||
/* Routines to extract various sized constants out of hppa
|
||
instructions. */
|
||
|
||
/* This assumes that no garbage lies outside of the lower bits of
|
||
value. */
|
||
|
||
int
|
||
hppa_sign_extend (unsigned val, unsigned bits)
|
||
{
|
||
return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
|
||
}
|
||
|
||
/* For many immediate values the sign bit is the low bit! */
|
||
|
||
int
|
||
hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
|
||
{
|
||
return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
|
||
}
|
||
|
||
/* Extract the bits at positions between FROM and TO, using HP's numbering
|
||
(MSB = 0). */
|
||
|
||
int
|
||
hppa_get_field (unsigned word, int from, int to)
|
||
{
|
||
return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
|
||
}
|
||
|
||
/* extract the immediate field from a ld{bhw}s instruction */
|
||
|
||
int
|
||
hppa_extract_5_load (unsigned word)
|
||
{
|
||
return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
|
||
}
|
||
|
||
/* extract the immediate field from a break instruction */
|
||
|
||
unsigned
|
||
hppa_extract_5r_store (unsigned word)
|
||
{
|
||
return (word & MASK_5);
|
||
}
|
||
|
||
/* extract the immediate field from a {sr}sm instruction */
|
||
|
||
unsigned
|
||
hppa_extract_5R_store (unsigned word)
|
||
{
|
||
return (word >> 16 & MASK_5);
|
||
}
|
||
|
||
/* extract a 14 bit immediate field */
|
||
|
||
int
|
||
hppa_extract_14 (unsigned word)
|
||
{
|
||
return hppa_low_hppa_sign_extend (word & MASK_14, 14);
|
||
}
|
||
|
||
/* extract a 21 bit constant */
|
||
|
||
int
|
||
hppa_extract_21 (unsigned word)
|
||
{
|
||
int val;
|
||
|
||
word &= MASK_21;
|
||
word <<= 11;
|
||
val = hppa_get_field (word, 20, 20);
|
||
val <<= 11;
|
||
val |= hppa_get_field (word, 9, 19);
|
||
val <<= 2;
|
||
val |= hppa_get_field (word, 5, 6);
|
||
val <<= 5;
|
||
val |= hppa_get_field (word, 0, 4);
|
||
val <<= 2;
|
||
val |= hppa_get_field (word, 7, 8);
|
||
return hppa_sign_extend (val, 21) << 11;
|
||
}
|
||
|
||
/* extract a 17 bit constant from branch instructions, returning the
|
||
19 bit signed value. */
|
||
|
||
int
|
||
hppa_extract_17 (unsigned word)
|
||
{
|
||
return hppa_sign_extend (hppa_get_field (word, 19, 28) |
|
||
hppa_get_field (word, 29, 29) << 10 |
|
||
hppa_get_field (word, 11, 15) << 11 |
|
||
(word & 0x1) << 16, 17) << 2;
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_symbol_address(const char *sym)
|
||
{
|
||
struct minimal_symbol *minsym;
|
||
|
||
minsym = lookup_minimal_symbol (sym, NULL, NULL);
|
||
if (minsym)
|
||
return SYMBOL_VALUE_ADDRESS (minsym);
|
||
else
|
||
return (CORE_ADDR)-1;
|
||
}
|
||
|
||
struct hppa_objfile_private *
|
||
hppa_init_objfile_priv_data (struct objfile *objfile)
|
||
{
|
||
struct hppa_objfile_private *priv;
|
||
|
||
priv = (struct hppa_objfile_private *)
|
||
obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct hppa_objfile_private));
|
||
set_objfile_data (objfile, hppa_objfile_priv_data, priv);
|
||
memset (priv, 0, sizeof (*priv));
|
||
|
||
return priv;
|
||
}
|
||
|
||
|
||
/* Compare the start address for two unwind entries returning 1 if
|
||
the first address is larger than the second, -1 if the second is
|
||
larger than the first, and zero if they are equal. */
|
||
|
||
static int
|
||
compare_unwind_entries (const void *arg1, const void *arg2)
|
||
{
|
||
const struct unwind_table_entry *a = arg1;
|
||
const struct unwind_table_entry *b = arg2;
|
||
|
||
if (a->region_start > b->region_start)
|
||
return 1;
|
||
else if (a->region_start < b->region_start)
|
||
return -1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
|
||
{
|
||
if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
||
== (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
|
||
{
|
||
bfd_vma value = section->vma - section->filepos;
|
||
CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
|
||
|
||
if (value < *low_text_segment_address)
|
||
*low_text_segment_address = value;
|
||
}
|
||
}
|
||
|
||
static void
|
||
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
|
||
asection *section, unsigned int entries, unsigned int size,
|
||
CORE_ADDR text_offset)
|
||
{
|
||
/* We will read the unwind entries into temporary memory, then
|
||
fill in the actual unwind table. */
|
||
|
||
if (size > 0)
|
||
{
|
||
unsigned long tmp;
|
||
unsigned i;
|
||
char *buf = alloca (size);
|
||
CORE_ADDR low_text_segment_address;
|
||
|
||
/* For ELF targets, then unwinds are supposed to
|
||
be segment relative offsets instead of absolute addresses.
|
||
|
||
Note that when loading a shared library (text_offset != 0) the
|
||
unwinds are already relative to the text_offset that will be
|
||
passed in. */
|
||
if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
|
||
{
|
||
low_text_segment_address = -1;
|
||
|
||
bfd_map_over_sections (objfile->obfd,
|
||
record_text_segment_lowaddr,
|
||
&low_text_segment_address);
|
||
|
||
text_offset = low_text_segment_address;
|
||
}
|
||
else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
|
||
{
|
||
text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
|
||
}
|
||
|
||
bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
|
||
|
||
/* Now internalize the information being careful to handle host/target
|
||
endian issues. */
|
||
for (i = 0; i < entries; i++)
|
||
{
|
||
table[i].region_start = bfd_get_32 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
table[i].region_start += text_offset;
|
||
buf += 4;
|
||
table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
table[i].region_end += text_offset;
|
||
buf += 4;
|
||
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
buf += 4;
|
||
table[i].Cannot_unwind = (tmp >> 31) & 0x1;
|
||
table[i].Millicode = (tmp >> 30) & 0x1;
|
||
table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
|
||
table[i].Region_description = (tmp >> 27) & 0x3;
|
||
table[i].reserved = (tmp >> 26) & 0x1;
|
||
table[i].Entry_SR = (tmp >> 25) & 0x1;
|
||
table[i].Entry_FR = (tmp >> 21) & 0xf;
|
||
table[i].Entry_GR = (tmp >> 16) & 0x1f;
|
||
table[i].Args_stored = (tmp >> 15) & 0x1;
|
||
table[i].Variable_Frame = (tmp >> 14) & 0x1;
|
||
table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
|
||
table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
|
||
table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
|
||
table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
|
||
table[i].sr4export = (tmp >> 9) & 0x1;
|
||
table[i].cxx_info = (tmp >> 8) & 0x1;
|
||
table[i].cxx_try_catch = (tmp >> 7) & 0x1;
|
||
table[i].sched_entry_seq = (tmp >> 6) & 0x1;
|
||
table[i].reserved1 = (tmp >> 5) & 0x1;
|
||
table[i].Save_SP = (tmp >> 4) & 0x1;
|
||
table[i].Save_RP = (tmp >> 3) & 0x1;
|
||
table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
|
||
table[i].save_r19 = (tmp >> 1) & 0x1;
|
||
table[i].Cleanup_defined = tmp & 0x1;
|
||
tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
|
||
buf += 4;
|
||
table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
|
||
table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
|
||
table[i].Large_frame = (tmp >> 29) & 0x1;
|
||
table[i].alloca_frame = (tmp >> 28) & 0x1;
|
||
table[i].reserved2 = (tmp >> 27) & 0x1;
|
||
table[i].Total_frame_size = tmp & 0x7ffffff;
|
||
|
||
/* Stub unwinds are handled elsewhere. */
|
||
table[i].stub_unwind.stub_type = 0;
|
||
table[i].stub_unwind.padding = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Read in the backtrace information stored in the `$UNWIND_START$' section of
|
||
the object file. This info is used mainly by find_unwind_entry() to find
|
||
out the stack frame size and frame pointer used by procedures. We put
|
||
everything on the psymbol obstack in the objfile so that it automatically
|
||
gets freed when the objfile is destroyed. */
|
||
|
||
static void
|
||
read_unwind_info (struct objfile *objfile)
|
||
{
|
||
asection *unwind_sec, *stub_unwind_sec;
|
||
unsigned unwind_size, stub_unwind_size, total_size;
|
||
unsigned index, unwind_entries;
|
||
unsigned stub_entries, total_entries;
|
||
CORE_ADDR text_offset;
|
||
struct hppa_unwind_info *ui;
|
||
struct hppa_objfile_private *obj_private;
|
||
|
||
text_offset = ANOFFSET (objfile->section_offsets, 0);
|
||
ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
|
||
sizeof (struct hppa_unwind_info));
|
||
|
||
ui->table = NULL;
|
||
ui->cache = NULL;
|
||
ui->last = -1;
|
||
|
||
/* For reasons unknown the HP PA64 tools generate multiple unwinder
|
||
sections in a single executable. So we just iterate over every
|
||
section in the BFD looking for unwinder sections intead of trying
|
||
to do a lookup with bfd_get_section_by_name.
|
||
|
||
First determine the total size of the unwind tables so that we
|
||
can allocate memory in a nice big hunk. */
|
||
total_entries = 0;
|
||
for (unwind_sec = objfile->obfd->sections;
|
||
unwind_sec;
|
||
unwind_sec = unwind_sec->next)
|
||
{
|
||
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
||
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
||
{
|
||
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
||
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
||
|
||
total_entries += unwind_entries;
|
||
}
|
||
}
|
||
|
||
/* Now compute the size of the stub unwinds. Note the ELF tools do not
|
||
use stub unwinds at the current time. */
|
||
stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
|
||
|
||
if (stub_unwind_sec)
|
||
{
|
||
stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
|
||
stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
|
||
}
|
||
else
|
||
{
|
||
stub_unwind_size = 0;
|
||
stub_entries = 0;
|
||
}
|
||
|
||
/* Compute total number of unwind entries and their total size. */
|
||
total_entries += stub_entries;
|
||
total_size = total_entries * sizeof (struct unwind_table_entry);
|
||
|
||
/* Allocate memory for the unwind table. */
|
||
ui->table = (struct unwind_table_entry *)
|
||
obstack_alloc (&objfile->objfile_obstack, total_size);
|
||
ui->last = total_entries - 1;
|
||
|
||
/* Now read in each unwind section and internalize the standard unwind
|
||
entries. */
|
||
index = 0;
|
||
for (unwind_sec = objfile->obfd->sections;
|
||
unwind_sec;
|
||
unwind_sec = unwind_sec->next)
|
||
{
|
||
if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
|
||
|| strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
|
||
{
|
||
unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
|
||
unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
|
||
|
||
internalize_unwinds (objfile, &ui->table[index], unwind_sec,
|
||
unwind_entries, unwind_size, text_offset);
|
||
index += unwind_entries;
|
||
}
|
||
}
|
||
|
||
/* Now read in and internalize the stub unwind entries. */
|
||
if (stub_unwind_size > 0)
|
||
{
|
||
unsigned int i;
|
||
char *buf = alloca (stub_unwind_size);
|
||
|
||
/* Read in the stub unwind entries. */
|
||
bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
|
||
0, stub_unwind_size);
|
||
|
||
/* Now convert them into regular unwind entries. */
|
||
for (i = 0; i < stub_entries; i++, index++)
|
||
{
|
||
/* Clear out the next unwind entry. */
|
||
memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
|
||
|
||
/* Convert offset & size into region_start and region_end.
|
||
Stuff away the stub type into "reserved" fields. */
|
||
ui->table[index].region_start = bfd_get_32 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
ui->table[index].region_start += text_offset;
|
||
buf += 4;
|
||
ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
|
||
(bfd_byte *) buf);
|
||
buf += 2;
|
||
ui->table[index].region_end
|
||
= ui->table[index].region_start + 4 *
|
||
(bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
|
||
buf += 2;
|
||
}
|
||
|
||
}
|
||
|
||
/* Unwind table needs to be kept sorted. */
|
||
qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
|
||
compare_unwind_entries);
|
||
|
||
/* Keep a pointer to the unwind information. */
|
||
obj_private = (struct hppa_objfile_private *)
|
||
objfile_data (objfile, hppa_objfile_priv_data);
|
||
if (obj_private == NULL)
|
||
obj_private = hppa_init_objfile_priv_data (objfile);
|
||
|
||
obj_private->unwind_info = ui;
|
||
}
|
||
|
||
/* Lookup the unwind (stack backtrace) info for the given PC. We search all
|
||
of the objfiles seeking the unwind table entry for this PC. Each objfile
|
||
contains a sorted list of struct unwind_table_entry. Since we do a binary
|
||
search of the unwind tables, we depend upon them to be sorted. */
|
||
|
||
struct unwind_table_entry *
|
||
find_unwind_entry (CORE_ADDR pc)
|
||
{
|
||
int first, middle, last;
|
||
struct objfile *objfile;
|
||
struct hppa_objfile_private *priv;
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
|
||
paddr_nz (pc));
|
||
|
||
/* A function at address 0? Not in HP-UX! */
|
||
if (pc == (CORE_ADDR) 0)
|
||
{
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "NULL }\n");
|
||
return NULL;
|
||
}
|
||
|
||
ALL_OBJFILES (objfile)
|
||
{
|
||
struct hppa_unwind_info *ui;
|
||
ui = NULL;
|
||
priv = objfile_data (objfile, hppa_objfile_priv_data);
|
||
if (priv)
|
||
ui = ((struct hppa_objfile_private *) priv)->unwind_info;
|
||
|
||
if (!ui)
|
||
{
|
||
read_unwind_info (objfile);
|
||
priv = objfile_data (objfile, hppa_objfile_priv_data);
|
||
if (priv == NULL)
|
||
error (_("Internal error reading unwind information."));
|
||
ui = ((struct hppa_objfile_private *) priv)->unwind_info;
|
||
}
|
||
|
||
/* First, check the cache */
|
||
|
||
if (ui->cache
|
||
&& pc >= ui->cache->region_start
|
||
&& pc <= ui->cache->region_end)
|
||
{
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
|
||
paddr_nz ((CORE_ADDR) ui->cache));
|
||
return ui->cache;
|
||
}
|
||
|
||
/* Not in the cache, do a binary search */
|
||
|
||
first = 0;
|
||
last = ui->last;
|
||
|
||
while (first <= last)
|
||
{
|
||
middle = (first + last) / 2;
|
||
if (pc >= ui->table[middle].region_start
|
||
&& pc <= ui->table[middle].region_end)
|
||
{
|
||
ui->cache = &ui->table[middle];
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
|
||
paddr_nz ((CORE_ADDR) ui->cache));
|
||
return &ui->table[middle];
|
||
}
|
||
|
||
if (pc < ui->table[middle].region_start)
|
||
last = middle - 1;
|
||
else
|
||
first = middle + 1;
|
||
}
|
||
} /* ALL_OBJFILES() */
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* The epilogue is defined here as the area either on the `bv' instruction
|
||
itself or an instruction which destroys the function's stack frame.
|
||
|
||
We do not assume that the epilogue is at the end of a function as we can
|
||
also have return sequences in the middle of a function. */
|
||
static int
|
||
hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
unsigned long status;
|
||
unsigned int inst;
|
||
char buf[4];
|
||
int off;
|
||
|
||
status = deprecated_read_memory_nobpt (pc, buf, 4);
|
||
if (status != 0)
|
||
return 0;
|
||
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* The most common way to perform a stack adjustment ldo X(sp),sp
|
||
We are destroying a stack frame if the offset is negative. */
|
||
if ((inst & 0xffffc000) == 0x37de0000
|
||
&& hppa_extract_14 (inst) < 0)
|
||
return 1;
|
||
|
||
/* ldw,mb D(sp),X or ldd,mb D(sp),X */
|
||
if (((inst & 0x0fc010e0) == 0x0fc010e0
|
||
|| (inst & 0x0fc010e0) == 0x0fc010e0)
|
||
&& hppa_extract_14 (inst) < 0)
|
||
return 1;
|
||
|
||
/* bv %r0(%rp) or bv,n %r0(%rp) */
|
||
if (inst == 0xe840c000 || inst == 0xe840c002)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static const unsigned char *
|
||
hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
|
||
{
|
||
static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
|
||
(*len) = sizeof (breakpoint);
|
||
return breakpoint;
|
||
}
|
||
|
||
/* Return the name of a register. */
|
||
|
||
static const char *
|
||
hppa32_register_name (int i)
|
||
{
|
||
static char *names[] = {
|
||
"flags", "r1", "rp", "r3",
|
||
"r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11",
|
||
"r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19",
|
||
"r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "dp",
|
||
"ret0", "ret1", "sp", "r31",
|
||
"sar", "pcoqh", "pcsqh", "pcoqt",
|
||
"pcsqt", "eiem", "iir", "isr",
|
||
"ior", "ipsw", "goto", "sr4",
|
||
"sr0", "sr1", "sr2", "sr3",
|
||
"sr5", "sr6", "sr7", "cr0",
|
||
"cr8", "cr9", "ccr", "cr12",
|
||
"cr13", "cr24", "cr25", "cr26",
|
||
"mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
|
||
"fpsr", "fpe1", "fpe2", "fpe3",
|
||
"fpe4", "fpe5", "fpe6", "fpe7",
|
||
"fr4", "fr4R", "fr5", "fr5R",
|
||
"fr6", "fr6R", "fr7", "fr7R",
|
||
"fr8", "fr8R", "fr9", "fr9R",
|
||
"fr10", "fr10R", "fr11", "fr11R",
|
||
"fr12", "fr12R", "fr13", "fr13R",
|
||
"fr14", "fr14R", "fr15", "fr15R",
|
||
"fr16", "fr16R", "fr17", "fr17R",
|
||
"fr18", "fr18R", "fr19", "fr19R",
|
||
"fr20", "fr20R", "fr21", "fr21R",
|
||
"fr22", "fr22R", "fr23", "fr23R",
|
||
"fr24", "fr24R", "fr25", "fr25R",
|
||
"fr26", "fr26R", "fr27", "fr27R",
|
||
"fr28", "fr28R", "fr29", "fr29R",
|
||
"fr30", "fr30R", "fr31", "fr31R"
|
||
};
|
||
if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
|
||
return NULL;
|
||
else
|
||
return names[i];
|
||
}
|
||
|
||
static const char *
|
||
hppa64_register_name (int i)
|
||
{
|
||
static char *names[] = {
|
||
"flags", "r1", "rp", "r3",
|
||
"r4", "r5", "r6", "r7",
|
||
"r8", "r9", "r10", "r11",
|
||
"r12", "r13", "r14", "r15",
|
||
"r16", "r17", "r18", "r19",
|
||
"r20", "r21", "r22", "r23",
|
||
"r24", "r25", "r26", "dp",
|
||
"ret0", "ret1", "sp", "r31",
|
||
"sar", "pcoqh", "pcsqh", "pcoqt",
|
||
"pcsqt", "eiem", "iir", "isr",
|
||
"ior", "ipsw", "goto", "sr4",
|
||
"sr0", "sr1", "sr2", "sr3",
|
||
"sr5", "sr6", "sr7", "cr0",
|
||
"cr8", "cr9", "ccr", "cr12",
|
||
"cr13", "cr24", "cr25", "cr26",
|
||
"mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
|
||
"fpsr", "fpe1", "fpe2", "fpe3",
|
||
"fr4", "fr5", "fr6", "fr7",
|
||
"fr8", "fr9", "fr10", "fr11",
|
||
"fr12", "fr13", "fr14", "fr15",
|
||
"fr16", "fr17", "fr18", "fr19",
|
||
"fr20", "fr21", "fr22", "fr23",
|
||
"fr24", "fr25", "fr26", "fr27",
|
||
"fr28", "fr29", "fr30", "fr31"
|
||
};
|
||
if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
|
||
return NULL;
|
||
else
|
||
return names[i];
|
||
}
|
||
|
||
static int
|
||
hppa64_dwarf_reg_to_regnum (int reg)
|
||
{
|
||
/* r0-r31 and sar map one-to-one. */
|
||
if (reg <= 32)
|
||
return reg;
|
||
|
||
/* fr4-fr31 are mapped from 72 in steps of 2. */
|
||
if (reg >= 72 || reg < 72 + 28 * 2)
|
||
return HPPA64_FP4_REGNUM + (reg - 72) / 2;
|
||
|
||
error ("Invalid DWARF register num %d.", reg);
|
||
return -1;
|
||
}
|
||
|
||
/* This function pushes a stack frame with arguments as part of the
|
||
inferior function calling mechanism.
|
||
|
||
This is the version of the function for the 32-bit PA machines, in
|
||
which later arguments appear at lower addresses. (The stack always
|
||
grows towards higher addresses.)
|
||
|
||
We simply allocate the appropriate amount of stack space and put
|
||
arguments into their proper slots. */
|
||
|
||
static CORE_ADDR
|
||
hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* Stack base address at which any pass-by-reference parameters are
|
||
stored. */
|
||
CORE_ADDR struct_end = 0;
|
||
/* Stack base address at which the first parameter is stored. */
|
||
CORE_ADDR param_end = 0;
|
||
|
||
/* The inner most end of the stack after all the parameters have
|
||
been pushed. */
|
||
CORE_ADDR new_sp = 0;
|
||
|
||
/* Two passes. First pass computes the location of everything,
|
||
second pass writes the bytes out. */
|
||
int write_pass;
|
||
|
||
/* Global pointer (r19) of the function we are trying to call. */
|
||
CORE_ADDR gp;
|
||
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
for (write_pass = 0; write_pass < 2; write_pass++)
|
||
{
|
||
CORE_ADDR struct_ptr = 0;
|
||
/* The first parameter goes into sp-36, each stack slot is 4-bytes.
|
||
struct_ptr is adjusted for each argument below, so the first
|
||
argument will end up at sp-36. */
|
||
CORE_ADDR param_ptr = 32;
|
||
int i;
|
||
int small_struct = 0;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct value *arg = args[i];
|
||
struct type *type = check_typedef (value_type (arg));
|
||
/* The corresponding parameter that is pushed onto the
|
||
stack, and [possibly] passed in a register. */
|
||
char param_val[8];
|
||
int param_len;
|
||
memset (param_val, 0, sizeof param_val);
|
||
if (TYPE_LENGTH (type) > 8)
|
||
{
|
||
/* Large parameter, pass by reference. Store the value
|
||
in "struct" area and then pass its address. */
|
||
param_len = 4;
|
||
struct_ptr += align_up (TYPE_LENGTH (type), 8);
|
||
if (write_pass)
|
||
write_memory (struct_end - struct_ptr, value_contents (arg),
|
||
TYPE_LENGTH (type));
|
||
store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_INT
|
||
|| TYPE_CODE (type) == TYPE_CODE_ENUM)
|
||
{
|
||
/* Integer value store, right aligned. "unpack_long"
|
||
takes care of any sign-extension problems. */
|
||
param_len = align_up (TYPE_LENGTH (type), 4);
|
||
store_unsigned_integer (param_val, param_len,
|
||
unpack_long (type,
|
||
value_contents (arg)));
|
||
}
|
||
else if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
/* Floating point value store, right aligned. */
|
||
param_len = align_up (TYPE_LENGTH (type), 4);
|
||
memcpy (param_val, value_contents (arg), param_len);
|
||
}
|
||
else
|
||
{
|
||
param_len = align_up (TYPE_LENGTH (type), 4);
|
||
|
||
/* Small struct value are stored right-aligned. */
|
||
memcpy (param_val + param_len - TYPE_LENGTH (type),
|
||
value_contents (arg), TYPE_LENGTH (type));
|
||
|
||
/* Structures of size 5, 6 and 7 bytes are special in that
|
||
the higher-ordered word is stored in the lower-ordered
|
||
argument, and even though it is a 8-byte quantity the
|
||
registers need not be 8-byte aligned. */
|
||
if (param_len > 4 && param_len < 8)
|
||
small_struct = 1;
|
||
}
|
||
|
||
param_ptr += param_len;
|
||
if (param_len == 8 && !small_struct)
|
||
param_ptr = align_up (param_ptr, 8);
|
||
|
||
/* First 4 non-FP arguments are passed in gr26-gr23.
|
||
First 4 32-bit FP arguments are passed in fr4L-fr7L.
|
||
First 2 64-bit FP arguments are passed in fr5 and fr7.
|
||
|
||
The rest go on the stack, starting at sp-36, towards lower
|
||
addresses. 8-byte arguments must be aligned to a 8-byte
|
||
stack boundary. */
|
||
if (write_pass)
|
||
{
|
||
write_memory (param_end - param_ptr, param_val, param_len);
|
||
|
||
/* There are some cases when we don't know the type
|
||
expected by the callee (e.g. for variadic functions), so
|
||
pass the parameters in both general and fp regs. */
|
||
if (param_ptr <= 48)
|
||
{
|
||
int grreg = 26 - (param_ptr - 36) / 4;
|
||
int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
|
||
int fpreg = 74 + (param_ptr - 32) / 8 * 4;
|
||
|
||
regcache_cooked_write (regcache, grreg, param_val);
|
||
regcache_cooked_write (regcache, fpLreg, param_val);
|
||
|
||
if (param_len > 4)
|
||
{
|
||
regcache_cooked_write (regcache, grreg + 1,
|
||
param_val + 4);
|
||
|
||
regcache_cooked_write (regcache, fpreg, param_val);
|
||
regcache_cooked_write (regcache, fpreg + 1,
|
||
param_val + 4);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Update the various stack pointers. */
|
||
if (!write_pass)
|
||
{
|
||
struct_end = sp + align_up (struct_ptr, 64);
|
||
/* PARAM_PTR already accounts for all the arguments passed
|
||
by the user. However, the ABI mandates minimum stack
|
||
space allocations for outgoing arguments. The ABI also
|
||
mandates minimum stack alignments which we must
|
||
preserve. */
|
||
param_end = struct_end + align_up (param_ptr, 64);
|
||
}
|
||
}
|
||
|
||
/* If a structure has to be returned, set up register 28 to hold its
|
||
address */
|
||
if (struct_return)
|
||
write_register (28, struct_addr);
|
||
|
||
gp = tdep->find_global_pointer (function);
|
||
|
||
if (gp != 0)
|
||
write_register (19, gp);
|
||
|
||
/* Set the return address. */
|
||
if (!gdbarch_push_dummy_code_p (gdbarch))
|
||
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
||
|
||
/* Update the Stack Pointer. */
|
||
regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
|
||
|
||
return param_end;
|
||
}
|
||
|
||
/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
|
||
Runtime Architecture for PA-RISC 2.0", which is distributed as part
|
||
as of the HP-UX Software Transition Kit (STK). This implementation
|
||
is based on version 3.3, dated October 6, 1997. */
|
||
|
||
/* Check whether TYPE is an "Integral or Pointer Scalar Type". */
|
||
|
||
static int
|
||
hppa64_integral_or_pointer_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
return (len == 1 || len == 2 || len == 4 || len == 8);
|
||
}
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_REF:
|
||
return (TYPE_LENGTH (type) == 8);
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is a "Floating Scalar Type". */
|
||
|
||
static int
|
||
hppa64_floating_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
return (len == 4 || len == 8 || len == 16);
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* If CODE points to a function entry address, try to look up the corresponding
|
||
function descriptor and return its address instead. If CODE is not a
|
||
function entry address, then just return it unchanged. */
|
||
static CORE_ADDR
|
||
hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
|
||
{
|
||
struct obj_section *sec, *opd;
|
||
|
||
sec = find_pc_section (code);
|
||
|
||
if (!sec)
|
||
return code;
|
||
|
||
/* If CODE is in a data section, assume it's already a fptr. */
|
||
if (!(sec->the_bfd_section->flags & SEC_CODE))
|
||
return code;
|
||
|
||
ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
|
||
{
|
||
if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
|
||
break;
|
||
}
|
||
|
||
if (opd < sec->objfile->sections_end)
|
||
{
|
||
CORE_ADDR addr;
|
||
|
||
for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
|
||
{
|
||
ULONGEST opdaddr;
|
||
char tmp[8];
|
||
|
||
if (target_read_memory (addr, tmp, sizeof (tmp)))
|
||
break;
|
||
opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
|
||
|
||
if (opdaddr == code)
|
||
return addr - 16;
|
||
}
|
||
}
|
||
|
||
return code;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int i, offset = 0;
|
||
CORE_ADDR gp;
|
||
|
||
/* "The outgoing parameter area [...] must be aligned at a 16-byte
|
||
boundary." */
|
||
sp = align_up (sp, 16);
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct value *arg = args[i];
|
||
struct type *type = value_type (arg);
|
||
int len = TYPE_LENGTH (type);
|
||
const bfd_byte *valbuf;
|
||
bfd_byte fptrbuf[8];
|
||
int regnum;
|
||
|
||
/* "Each parameter begins on a 64-bit (8-byte) boundary." */
|
||
offset = align_up (offset, 8);
|
||
|
||
if (hppa64_integral_or_pointer_p (type))
|
||
{
|
||
/* "Integral scalar parameters smaller than 64 bits are
|
||
padded on the left (i.e., the value is in the
|
||
least-significant bits of the 64-bit storage unit, and
|
||
the high-order bits are undefined)." Therefore we can
|
||
safely sign-extend them. */
|
||
if (len < 8)
|
||
{
|
||
arg = value_cast (builtin_type_int64, arg);
|
||
len = 8;
|
||
}
|
||
}
|
||
else if (hppa64_floating_p (type))
|
||
{
|
||
if (len > 8)
|
||
{
|
||
/* "Quad-precision (128-bit) floating-point scalar
|
||
parameters are aligned on a 16-byte boundary." */
|
||
offset = align_up (offset, 16);
|
||
|
||
/* "Double-extended- and quad-precision floating-point
|
||
parameters within the first 64 bytes of the parameter
|
||
list are always passed in general registers." */
|
||
}
|
||
else
|
||
{
|
||
if (len == 4)
|
||
{
|
||
/* "Single-precision (32-bit) floating-point scalar
|
||
parameters are padded on the left with 32 bits of
|
||
garbage (i.e., the floating-point value is in the
|
||
least-significant 32 bits of a 64-bit storage
|
||
unit)." */
|
||
offset += 4;
|
||
}
|
||
|
||
/* "Single- and double-precision floating-point
|
||
parameters in this area are passed according to the
|
||
available formal parameter information in a function
|
||
prototype. [...] If no prototype is in scope,
|
||
floating-point parameters must be passed both in the
|
||
corresponding general registers and in the
|
||
corresponding floating-point registers." */
|
||
regnum = HPPA64_FP4_REGNUM + offset / 8;
|
||
|
||
if (regnum < HPPA64_FP4_REGNUM + 8)
|
||
{
|
||
/* "Single-precision floating-point parameters, when
|
||
passed in floating-point registers, are passed in
|
||
the right halves of the floating point registers;
|
||
the left halves are unused." */
|
||
regcache_cooked_write_part (regcache, regnum, offset % 8,
|
||
len, value_contents (arg));
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (len > 8)
|
||
{
|
||
/* "Aggregates larger than 8 bytes are aligned on a
|
||
16-byte boundary, possibly leaving an unused argument
|
||
slot, which is filled with garbage. If necessary,
|
||
they are padded on the right (with garbage), to a
|
||
multiple of 8 bytes." */
|
||
offset = align_up (offset, 16);
|
||
}
|
||
}
|
||
|
||
/* If we are passing a function pointer, make sure we pass a function
|
||
descriptor instead of the function entry address. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_PTR
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
|
||
{
|
||
ULONGEST codeptr, fptr;
|
||
|
||
codeptr = unpack_long (type, value_contents (arg));
|
||
fptr = hppa64_convert_code_addr_to_fptr (codeptr);
|
||
store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
|
||
valbuf = fptrbuf;
|
||
}
|
||
else
|
||
{
|
||
valbuf = value_contents (arg);
|
||
}
|
||
|
||
/* Always store the argument in memory. */
|
||
write_memory (sp + offset, valbuf, len);
|
||
|
||
regnum = HPPA_ARG0_REGNUM - offset / 8;
|
||
while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
|
||
{
|
||
regcache_cooked_write_part (regcache, regnum,
|
||
offset % 8, min (len, 8), valbuf);
|
||
offset += min (len, 8);
|
||
valbuf += min (len, 8);
|
||
len -= min (len, 8);
|
||
regnum--;
|
||
}
|
||
|
||
offset += len;
|
||
}
|
||
|
||
/* Set up GR29 (%ret1) to hold the argument pointer (ap). */
|
||
regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
|
||
|
||
/* Allocate the outgoing parameter area. Make sure the outgoing
|
||
parameter area is multiple of 16 bytes in length. */
|
||
sp += max (align_up (offset, 16), 64);
|
||
|
||
/* Allocate 32-bytes of scratch space. The documentation doesn't
|
||
mention this, but it seems to be needed. */
|
||
sp += 32;
|
||
|
||
/* Allocate the frame marker area. */
|
||
sp += 16;
|
||
|
||
/* If a structure has to be returned, set up GR 28 (%ret0) to hold
|
||
its address. */
|
||
if (struct_return)
|
||
regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
|
||
|
||
/* Set up GR27 (%dp) to hold the global pointer (gp). */
|
||
gp = tdep->find_global_pointer (function);
|
||
if (gp != 0)
|
||
regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
|
||
|
||
/* Set up GR2 (%rp) to hold the return pointer (rp). */
|
||
if (!gdbarch_push_dummy_code_p (gdbarch))
|
||
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
||
|
||
/* Set up GR30 to hold the stack pointer (sp). */
|
||
regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
|
||
/* Handle 32/64-bit struct return conventions. */
|
||
|
||
static enum return_value_convention
|
||
hppa32_return_value (struct gdbarch *gdbarch,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
if (TYPE_LENGTH (type) <= 2 * 4)
|
||
{
|
||
/* The value always lives in the right hand end of the register
|
||
(or register pair)? */
|
||
int b;
|
||
int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
|
||
int part = TYPE_LENGTH (type) % 4;
|
||
/* The left hand register contains only part of the value,
|
||
transfer that first so that the rest can be xfered as entire
|
||
4-byte registers. */
|
||
if (part > 0)
|
||
{
|
||
if (readbuf != NULL)
|
||
regcache_cooked_read_part (regcache, reg, 4 - part,
|
||
part, readbuf);
|
||
if (writebuf != NULL)
|
||
regcache_cooked_write_part (regcache, reg, 4 - part,
|
||
part, writebuf);
|
||
reg++;
|
||
}
|
||
/* Now transfer the remaining register values. */
|
||
for (b = part; b < TYPE_LENGTH (type); b += 4)
|
||
{
|
||
if (readbuf != NULL)
|
||
regcache_cooked_read (regcache, reg, readbuf + b);
|
||
if (writebuf != NULL)
|
||
regcache_cooked_write (regcache, reg, writebuf + b);
|
||
reg++;
|
||
}
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
else
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
}
|
||
|
||
static enum return_value_convention
|
||
hppa64_return_value (struct gdbarch *gdbarch,
|
||
struct type *type, struct regcache *regcache,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum, offset;
|
||
|
||
if (len > 16)
|
||
{
|
||
/* All return values larget than 128 bits must be aggregate
|
||
return values. */
|
||
gdb_assert (!hppa64_integral_or_pointer_p (type));
|
||
gdb_assert (!hppa64_floating_p (type));
|
||
|
||
/* "Aggregate return values larger than 128 bits are returned in
|
||
a buffer allocated by the caller. The address of the buffer
|
||
must be passed in GR 28." */
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
}
|
||
|
||
if (hppa64_integral_or_pointer_p (type))
|
||
{
|
||
/* "Integral return values are returned in GR 28. Values
|
||
smaller than 64 bits are padded on the left (with garbage)." */
|
||
regnum = HPPA_RET0_REGNUM;
|
||
offset = 8 - len;
|
||
}
|
||
else if (hppa64_floating_p (type))
|
||
{
|
||
if (len > 8)
|
||
{
|
||
/* "Double-extended- and quad-precision floating-point
|
||
values are returned in GRs 28 and 29. The sign,
|
||
exponent, and most-significant bits of the mantissa are
|
||
returned in GR 28; the least-significant bits of the
|
||
mantissa are passed in GR 29. For double-extended
|
||
precision values, GR 29 is padded on the right with 48
|
||
bits of garbage." */
|
||
regnum = HPPA_RET0_REGNUM;
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
/* "Single-precision and double-precision floating-point
|
||
return values are returned in FR 4R (single precision) or
|
||
FR 4 (double-precision)." */
|
||
regnum = HPPA64_FP4_REGNUM;
|
||
offset = 8 - len;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* "Aggregate return values up to 64 bits in size are returned
|
||
in GR 28. Aggregates smaller than 64 bits are left aligned
|
||
in the register; the pad bits on the right are undefined."
|
||
|
||
"Aggregate return values between 65 and 128 bits are returned
|
||
in GRs 28 and 29. The first 64 bits are placed in GR 28, and
|
||
the remaining bits are placed, left aligned, in GR 29. The
|
||
pad bits on the right of GR 29 (if any) are undefined." */
|
||
regnum = HPPA_RET0_REGNUM;
|
||
offset = 0;
|
||
}
|
||
|
||
if (readbuf)
|
||
{
|
||
while (len > 0)
|
||
{
|
||
regcache_cooked_read_part (regcache, regnum, offset,
|
||
min (len, 8), readbuf);
|
||
readbuf += min (len, 8);
|
||
len -= min (len, 8);
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
if (writebuf)
|
||
{
|
||
while (len > 0)
|
||
{
|
||
regcache_cooked_write_part (regcache, regnum, offset,
|
||
min (len, 8), writebuf);
|
||
writebuf += min (len, 8);
|
||
len -= min (len, 8);
|
||
regnum++;
|
||
}
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
|
||
struct target_ops *targ)
|
||
{
|
||
if (addr & 2)
|
||
{
|
||
CORE_ADDR plabel = addr & ~3;
|
||
return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
|
||
}
|
||
|
||
return addr;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
/* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
|
||
and not _bit_)! */
|
||
return align_up (addr, 64);
|
||
}
|
||
|
||
/* Force all frames to 16-byte alignment. Better safe than sorry. */
|
||
|
||
static CORE_ADDR
|
||
hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
/* Just always 16-byte align. */
|
||
return align_up (addr, 16);
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_read_pc (ptid_t ptid)
|
||
{
|
||
ULONGEST ipsw;
|
||
CORE_ADDR pc;
|
||
|
||
ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
|
||
pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
|
||
|
||
/* If the current instruction is nullified, then we are effectively
|
||
still executing the previous instruction. Pretend we are still
|
||
there. This is needed when single stepping; if the nullified
|
||
instruction is on a different line, we don't want GDB to think
|
||
we've stepped onto that line. */
|
||
if (ipsw & 0x00200000)
|
||
pc -= 4;
|
||
|
||
return pc & ~0x3;
|
||
}
|
||
|
||
void
|
||
hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
|
||
{
|
||
write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
|
||
write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
|
||
}
|
||
|
||
/* return the alignment of a type in bytes. Structures have the maximum
|
||
alignment required by their fields. */
|
||
|
||
static int
|
||
hppa_alignof (struct type *type)
|
||
{
|
||
int max_align, align, i;
|
||
CHECK_TYPEDEF (type);
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_FLT:
|
||
return TYPE_LENGTH (type);
|
||
case TYPE_CODE_ARRAY:
|
||
return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
max_align = 1;
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
/* Bit fields have no real alignment. */
|
||
/* if (!TYPE_FIELD_BITPOS (type, i)) */
|
||
if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
|
||
{
|
||
align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
|
||
max_align = max (max_align, align);
|
||
}
|
||
}
|
||
return max_align;
|
||
default:
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
/* For the given instruction (INST), return any adjustment it makes
|
||
to the stack pointer or zero for no adjustment.
|
||
|
||
This only handles instructions commonly found in prologues. */
|
||
|
||
static int
|
||
prologue_inst_adjust_sp (unsigned long inst)
|
||
{
|
||
/* This must persist across calls. */
|
||
static int save_high21;
|
||
|
||
/* The most common way to perform a stack adjustment ldo X(sp),sp */
|
||
if ((inst & 0xffffc000) == 0x37de0000)
|
||
return hppa_extract_14 (inst);
|
||
|
||
/* stwm X,D(sp) */
|
||
if ((inst & 0xffe00000) == 0x6fc00000)
|
||
return hppa_extract_14 (inst);
|
||
|
||
/* std,ma X,D(sp) */
|
||
if ((inst & 0xffe00008) == 0x73c00008)
|
||
return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
||
|
||
/* addil high21,%r30; ldo low11,(%r1),%r30)
|
||
save high bits in save_high21 for later use. */
|
||
if ((inst & 0xffe00000) == 0x2bc00000)
|
||
{
|
||
save_high21 = hppa_extract_21 (inst);
|
||
return 0;
|
||
}
|
||
|
||
if ((inst & 0xffff0000) == 0x343e0000)
|
||
return save_high21 + hppa_extract_14 (inst);
|
||
|
||
/* fstws as used by the HP compilers. */
|
||
if ((inst & 0xffffffe0) == 0x2fd01220)
|
||
return hppa_extract_5_load (inst);
|
||
|
||
/* No adjustment. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if INST is a branch of some kind, else return zero. */
|
||
|
||
static int
|
||
is_branch (unsigned long inst)
|
||
{
|
||
switch (inst >> 26)
|
||
{
|
||
case 0x20:
|
||
case 0x21:
|
||
case 0x22:
|
||
case 0x23:
|
||
case 0x27:
|
||
case 0x28:
|
||
case 0x29:
|
||
case 0x2a:
|
||
case 0x2b:
|
||
case 0x2f:
|
||
case 0x30:
|
||
case 0x31:
|
||
case 0x32:
|
||
case 0x33:
|
||
case 0x38:
|
||
case 0x39:
|
||
case 0x3a:
|
||
case 0x3b:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return the register number for a GR which is saved by INST or
|
||
zero it INST does not save a GR. */
|
||
|
||
static int
|
||
inst_saves_gr (unsigned long inst)
|
||
{
|
||
/* Does it look like a stw? */
|
||
if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
|
||
|| (inst >> 26) == 0x1f
|
||
|| ((inst >> 26) == 0x1f
|
||
&& ((inst >> 6) == 0xa)))
|
||
return hppa_extract_5R_store (inst);
|
||
|
||
/* Does it look like a std? */
|
||
if ((inst >> 26) == 0x1c
|
||
|| ((inst >> 26) == 0x03
|
||
&& ((inst >> 6) & 0xf) == 0xb))
|
||
return hppa_extract_5R_store (inst);
|
||
|
||
/* Does it look like a stwm? GCC & HPC may use this in prologues. */
|
||
if ((inst >> 26) == 0x1b)
|
||
return hppa_extract_5R_store (inst);
|
||
|
||
/* Does it look like sth or stb? HPC versions 9.0 and later use these
|
||
too. */
|
||
if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
|
||
|| ((inst >> 26) == 0x3
|
||
&& (((inst >> 6) & 0xf) == 0x8
|
||
|| (inst >> 6) & 0xf) == 0x9))
|
||
return hppa_extract_5R_store (inst);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the register number for a FR which is saved by INST or
|
||
zero it INST does not save a FR.
|
||
|
||
Note we only care about full 64bit register stores (that's the only
|
||
kind of stores the prologue will use).
|
||
|
||
FIXME: What about argument stores with the HP compiler in ANSI mode? */
|
||
|
||
static int
|
||
inst_saves_fr (unsigned long inst)
|
||
{
|
||
/* is this an FSTD ? */
|
||
if ((inst & 0xfc00dfc0) == 0x2c001200)
|
||
return hppa_extract_5r_store (inst);
|
||
if ((inst & 0xfc000002) == 0x70000002)
|
||
return hppa_extract_5R_store (inst);
|
||
/* is this an FSTW ? */
|
||
if ((inst & 0xfc00df80) == 0x24001200)
|
||
return hppa_extract_5r_store (inst);
|
||
if ((inst & 0xfc000002) == 0x7c000000)
|
||
return hppa_extract_5R_store (inst);
|
||
return 0;
|
||
}
|
||
|
||
/* Advance PC across any function entry prologue instructions
|
||
to reach some "real" code.
|
||
|
||
Use information in the unwind table to determine what exactly should
|
||
be in the prologue. */
|
||
|
||
|
||
static CORE_ADDR
|
||
skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
|
||
{
|
||
char buf[4];
|
||
CORE_ADDR orig_pc = pc;
|
||
unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
|
||
unsigned long args_stored, status, i, restart_gr, restart_fr;
|
||
struct unwind_table_entry *u;
|
||
int final_iteration;
|
||
|
||
restart_gr = 0;
|
||
restart_fr = 0;
|
||
|
||
restart:
|
||
u = find_unwind_entry (pc);
|
||
if (!u)
|
||
return pc;
|
||
|
||
/* If we are not at the beginning of a function, then return now. */
|
||
if ((pc & ~0x3) != u->region_start)
|
||
return pc;
|
||
|
||
/* This is how much of a frame adjustment we need to account for. */
|
||
stack_remaining = u->Total_frame_size << 3;
|
||
|
||
/* Magic register saves we want to know about. */
|
||
save_rp = u->Save_RP;
|
||
save_sp = u->Save_SP;
|
||
|
||
/* An indication that args may be stored into the stack. Unfortunately
|
||
the HPUX compilers tend to set this in cases where no args were
|
||
stored too!. */
|
||
args_stored = 1;
|
||
|
||
/* Turn the Entry_GR field into a bitmask. */
|
||
save_gr = 0;
|
||
for (i = 3; i < u->Entry_GR + 3; i++)
|
||
{
|
||
/* Frame pointer gets saved into a special location. */
|
||
if (u->Save_SP && i == HPPA_FP_REGNUM)
|
||
continue;
|
||
|
||
save_gr |= (1 << i);
|
||
}
|
||
save_gr &= ~restart_gr;
|
||
|
||
/* Turn the Entry_FR field into a bitmask too. */
|
||
save_fr = 0;
|
||
for (i = 12; i < u->Entry_FR + 12; i++)
|
||
save_fr |= (1 << i);
|
||
save_fr &= ~restart_fr;
|
||
|
||
final_iteration = 0;
|
||
|
||
/* Loop until we find everything of interest or hit a branch.
|
||
|
||
For unoptimized GCC code and for any HP CC code this will never ever
|
||
examine any user instructions.
|
||
|
||
For optimzied GCC code we're faced with problems. GCC will schedule
|
||
its prologue and make prologue instructions available for delay slot
|
||
filling. The end result is user code gets mixed in with the prologue
|
||
and a prologue instruction may be in the delay slot of the first branch
|
||
or call.
|
||
|
||
Some unexpected things are expected with debugging optimized code, so
|
||
we allow this routine to walk past user instructions in optimized
|
||
GCC code. */
|
||
while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
|
||
|| args_stored)
|
||
{
|
||
unsigned int reg_num;
|
||
unsigned long old_stack_remaining, old_save_gr, old_save_fr;
|
||
unsigned long old_save_rp, old_save_sp, next_inst;
|
||
|
||
/* Save copies of all the triggers so we can compare them later
|
||
(only for HPC). */
|
||
old_save_gr = save_gr;
|
||
old_save_fr = save_fr;
|
||
old_save_rp = save_rp;
|
||
old_save_sp = save_sp;
|
||
old_stack_remaining = stack_remaining;
|
||
|
||
status = deprecated_read_memory_nobpt (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* Yow! */
|
||
if (status != 0)
|
||
return pc;
|
||
|
||
/* Note the interesting effects of this instruction. */
|
||
stack_remaining -= prologue_inst_adjust_sp (inst);
|
||
|
||
/* There are limited ways to store the return pointer into the
|
||
stack. */
|
||
if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
|
||
save_rp = 0;
|
||
|
||
/* These are the only ways we save SP into the stack. At this time
|
||
the HP compilers never bother to save SP into the stack. */
|
||
if ((inst & 0xffffc000) == 0x6fc10000
|
||
|| (inst & 0xffffc00c) == 0x73c10008)
|
||
save_sp = 0;
|
||
|
||
/* Are we loading some register with an offset from the argument
|
||
pointer? */
|
||
if ((inst & 0xffe00000) == 0x37a00000
|
||
|| (inst & 0xffffffe0) == 0x081d0240)
|
||
{
|
||
pc += 4;
|
||
continue;
|
||
}
|
||
|
||
/* Account for general and floating-point register saves. */
|
||
reg_num = inst_saves_gr (inst);
|
||
save_gr &= ~(1 << reg_num);
|
||
|
||
/* Ugh. Also account for argument stores into the stack.
|
||
Unfortunately args_stored only tells us that some arguments
|
||
where stored into the stack. Not how many or what kind!
|
||
|
||
This is a kludge as on the HP compiler sets this bit and it
|
||
never does prologue scheduling. So once we see one, skip past
|
||
all of them. We have similar code for the fp arg stores below.
|
||
|
||
FIXME. Can still die if we have a mix of GR and FR argument
|
||
stores! */
|
||
if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
||
{
|
||
while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
|
||
{
|
||
pc += 4;
|
||
status = deprecated_read_memory_nobpt (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
reg_num = inst_saves_gr (inst);
|
||
}
|
||
args_stored = 0;
|
||
continue;
|
||
}
|
||
|
||
reg_num = inst_saves_fr (inst);
|
||
save_fr &= ~(1 << reg_num);
|
||
|
||
status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
|
||
next_inst = extract_unsigned_integer (buf, 4);
|
||
|
||
/* Yow! */
|
||
if (status != 0)
|
||
return pc;
|
||
|
||
/* We've got to be read to handle the ldo before the fp register
|
||
save. */
|
||
if ((inst & 0xfc000000) == 0x34000000
|
||
&& inst_saves_fr (next_inst) >= 4
|
||
&& inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
/* So we drop into the code below in a reasonable state. */
|
||
reg_num = inst_saves_fr (next_inst);
|
||
pc -= 4;
|
||
}
|
||
|
||
/* Ugh. Also account for argument stores into the stack.
|
||
This is a kludge as on the HP compiler sets this bit and it
|
||
never does prologue scheduling. So once we see one, skip past
|
||
all of them. */
|
||
if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
|
||
{
|
||
pc += 8;
|
||
status = deprecated_read_memory_nobpt (pc, buf, 4);
|
||
inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
if ((inst & 0xfc000000) != 0x34000000)
|
||
break;
|
||
status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
|
||
next_inst = extract_unsigned_integer (buf, 4);
|
||
if (status != 0)
|
||
return pc;
|
||
reg_num = inst_saves_fr (next_inst);
|
||
}
|
||
args_stored = 0;
|
||
continue;
|
||
}
|
||
|
||
/* Quit if we hit any kind of branch. This can happen if a prologue
|
||
instruction is in the delay slot of the first call/branch. */
|
||
if (is_branch (inst) && stop_before_branch)
|
||
break;
|
||
|
||
/* What a crock. The HP compilers set args_stored even if no
|
||
arguments were stored into the stack (boo hiss). This could
|
||
cause this code to then skip a bunch of user insns (up to the
|
||
first branch).
|
||
|
||
To combat this we try to identify when args_stored was bogusly
|
||
set and clear it. We only do this when args_stored is nonzero,
|
||
all other resources are accounted for, and nothing changed on
|
||
this pass. */
|
||
if (args_stored
|
||
&& !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
|
||
&& old_save_gr == save_gr && old_save_fr == save_fr
|
||
&& old_save_rp == save_rp && old_save_sp == save_sp
|
||
&& old_stack_remaining == stack_remaining)
|
||
break;
|
||
|
||
/* Bump the PC. */
|
||
pc += 4;
|
||
|
||
/* !stop_before_branch, so also look at the insn in the delay slot
|
||
of the branch. */
|
||
if (final_iteration)
|
||
break;
|
||
if (is_branch (inst))
|
||
final_iteration = 1;
|
||
}
|
||
|
||
/* We've got a tenative location for the end of the prologue. However
|
||
because of limitations in the unwind descriptor mechanism we may
|
||
have went too far into user code looking for the save of a register
|
||
that does not exist. So, if there registers we expected to be saved
|
||
but never were, mask them out and restart.
|
||
|
||
This should only happen in optimized code, and should be very rare. */
|
||
if (save_gr || (save_fr && !(restart_fr || restart_gr)))
|
||
{
|
||
pc = orig_pc;
|
||
restart_gr = save_gr;
|
||
restart_fr = save_fr;
|
||
goto restart;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Return the address of the PC after the last prologue instruction if
|
||
we can determine it from the debug symbols. Else return zero. */
|
||
|
||
static CORE_ADDR
|
||
after_prologue (CORE_ADDR pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_addr, func_end;
|
||
struct symbol *f;
|
||
|
||
/* If we can not find the symbol in the partial symbol table, then
|
||
there is no hope we can determine the function's start address
|
||
with this code. */
|
||
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
||
return 0;
|
||
|
||
/* Get the line associated with FUNC_ADDR. */
|
||
sal = find_pc_line (func_addr, 0);
|
||
|
||
/* There are only two cases to consider. First, the end of the source line
|
||
is within the function bounds. In that case we return the end of the
|
||
source line. Second is the end of the source line extends beyond the
|
||
bounds of the current function. We need to use the slow code to
|
||
examine instructions in that case.
|
||
|
||
Anything else is simply a bug elsewhere. Fixing it here is absolutely
|
||
the wrong thing to do. In fact, it should be entirely possible for this
|
||
function to always return zero since the slow instruction scanning code
|
||
is supposed to *always* work. If it does not, then it is a bug. */
|
||
if (sal.end < func_end)
|
||
return sal.end;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* To skip prologues, I use this predicate. Returns either PC itself
|
||
if the code at PC does not look like a function prologue; otherwise
|
||
returns an address that (if we're lucky) follows the prologue.
|
||
|
||
hppa_skip_prologue is called by gdb to place a breakpoint in a function.
|
||
It doesn't necessarily skips all the insns in the prologue. In fact
|
||
we might not want to skip all the insns because a prologue insn may
|
||
appear in the delay slot of the first branch, and we don't want to
|
||
skip over the branch in that case. */
|
||
|
||
static CORE_ADDR
|
||
hppa_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
unsigned long inst;
|
||
int offset;
|
||
CORE_ADDR post_prologue_pc;
|
||
char buf[4];
|
||
|
||
/* See if we can determine the end of the prologue via the symbol table.
|
||
If so, then return either PC, or the PC after the prologue, whichever
|
||
is greater. */
|
||
|
||
post_prologue_pc = after_prologue (pc);
|
||
|
||
/* If after_prologue returned a useful address, then use it. Else
|
||
fall back on the instruction skipping code.
|
||
|
||
Some folks have claimed this causes problems because the breakpoint
|
||
may be the first instruction of the prologue. If that happens, then
|
||
the instruction skipping code has a bug that needs to be fixed. */
|
||
if (post_prologue_pc != 0)
|
||
return max (pc, post_prologue_pc);
|
||
else
|
||
return (skip_prologue_hard_way (pc, 1));
|
||
}
|
||
|
||
/* Return an unwind entry that falls within the frame's code block. */
|
||
static struct unwind_table_entry *
|
||
hppa_find_unwind_entry_in_block (struct frame_info *f)
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
pc = frame_unwind_address_in_block (f);
|
||
pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
|
||
return find_unwind_entry (pc);
|
||
}
|
||
|
||
struct hppa_frame_cache
|
||
{
|
||
CORE_ADDR base;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct hppa_frame_cache *
|
||
hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct hppa_frame_cache *cache;
|
||
long saved_gr_mask;
|
||
long saved_fr_mask;
|
||
CORE_ADDR this_sp;
|
||
long frame_size;
|
||
struct unwind_table_entry *u;
|
||
CORE_ADDR prologue_end;
|
||
int fp_in_r1 = 0;
|
||
int i;
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
|
||
frame_relative_level(next_frame));
|
||
|
||
if ((*this_cache) != NULL)
|
||
{
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
|
||
paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
|
||
return (*this_cache);
|
||
}
|
||
cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
||
|
||
/* Yow! */
|
||
u = hppa_find_unwind_entry_in_block (next_frame);
|
||
if (!u)
|
||
{
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
|
||
return (*this_cache);
|
||
}
|
||
|
||
/* Turn the Entry_GR field into a bitmask. */
|
||
saved_gr_mask = 0;
|
||
for (i = 3; i < u->Entry_GR + 3; i++)
|
||
{
|
||
/* Frame pointer gets saved into a special location. */
|
||
if (u->Save_SP && i == HPPA_FP_REGNUM)
|
||
continue;
|
||
|
||
saved_gr_mask |= (1 << i);
|
||
}
|
||
|
||
/* Turn the Entry_FR field into a bitmask too. */
|
||
saved_fr_mask = 0;
|
||
for (i = 12; i < u->Entry_FR + 12; i++)
|
||
saved_fr_mask |= (1 << i);
|
||
|
||
/* Loop until we find everything of interest or hit a branch.
|
||
|
||
For unoptimized GCC code and for any HP CC code this will never ever
|
||
examine any user instructions.
|
||
|
||
For optimized GCC code we're faced with problems. GCC will schedule
|
||
its prologue and make prologue instructions available for delay slot
|
||
filling. The end result is user code gets mixed in with the prologue
|
||
and a prologue instruction may be in the delay slot of the first branch
|
||
or call.
|
||
|
||
Some unexpected things are expected with debugging optimized code, so
|
||
we allow this routine to walk past user instructions in optimized
|
||
GCC code. */
|
||
{
|
||
int final_iteration = 0;
|
||
CORE_ADDR pc, start_pc, end_pc;
|
||
int looking_for_sp = u->Save_SP;
|
||
int looking_for_rp = u->Save_RP;
|
||
int fp_loc = -1;
|
||
|
||
/* We have to use skip_prologue_hard_way instead of just
|
||
skip_prologue_using_sal, in case we stepped into a function without
|
||
symbol information. hppa_skip_prologue also bounds the returned
|
||
pc by the passed in pc, so it will not return a pc in the next
|
||
function.
|
||
|
||
We used to call hppa_skip_prologue to find the end of the prologue,
|
||
but if some non-prologue instructions get scheduled into the prologue,
|
||
and the program is compiled with debug information, the "easy" way
|
||
in hppa_skip_prologue will return a prologue end that is too early
|
||
for us to notice any potential frame adjustments. */
|
||
|
||
/* We used to use frame_func_unwind () to locate the beginning of the
|
||
function to pass to skip_prologue (). However, when objects are
|
||
compiled without debug symbols, frame_func_unwind can return the wrong
|
||
function (or 0). We can do better than that by using unwind records.
|
||
This only works if the Region_description of the unwind record
|
||
indicates that it includes the entry point of the function.
|
||
HP compilers sometimes generate unwind records for regions that
|
||
do not include the entry or exit point of a function. GNU tools
|
||
do not do this. */
|
||
|
||
if ((u->Region_description & 0x2) == 0)
|
||
start_pc = u->region_start;
|
||
else
|
||
start_pc = frame_func_unwind (next_frame);
|
||
|
||
prologue_end = skip_prologue_hard_way (start_pc, 0);
|
||
end_pc = frame_pc_unwind (next_frame);
|
||
|
||
if (prologue_end != 0 && end_pc > prologue_end)
|
||
end_pc = prologue_end;
|
||
|
||
frame_size = 0;
|
||
|
||
for (pc = start_pc;
|
||
((saved_gr_mask || saved_fr_mask
|
||
|| looking_for_sp || looking_for_rp
|
||
|| frame_size < (u->Total_frame_size << 3))
|
||
&& pc < end_pc);
|
||
pc += 4)
|
||
{
|
||
int reg;
|
||
char buf4[4];
|
||
long inst;
|
||
|
||
if (!safe_frame_unwind_memory (next_frame, pc, buf4,
|
||
sizeof buf4))
|
||
{
|
||
error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
|
||
return (*this_cache);
|
||
}
|
||
|
||
inst = extract_unsigned_integer (buf4, sizeof buf4);
|
||
|
||
/* Note the interesting effects of this instruction. */
|
||
frame_size += prologue_inst_adjust_sp (inst);
|
||
|
||
/* There are limited ways to store the return pointer into the
|
||
stack. */
|
||
if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
||
{
|
||
looking_for_rp = 0;
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
|
||
}
|
||
else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
|
||
{
|
||
looking_for_rp = 0;
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
|
||
}
|
||
else if (inst == 0x0fc212c1
|
||
|| inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
|
||
{
|
||
looking_for_rp = 0;
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
|
||
}
|
||
|
||
/* Check to see if we saved SP into the stack. This also
|
||
happens to indicate the location of the saved frame
|
||
pointer. */
|
||
if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
|
||
|| (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
|
||
{
|
||
looking_for_sp = 0;
|
||
cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
|
||
}
|
||
else if (inst == 0x08030241) /* copy %r3, %r1 */
|
||
{
|
||
fp_in_r1 = 1;
|
||
}
|
||
|
||
/* Account for general and floating-point register saves. */
|
||
reg = inst_saves_gr (inst);
|
||
if (reg >= 3 && reg <= 18
|
||
&& (!u->Save_SP || reg != HPPA_FP_REGNUM))
|
||
{
|
||
saved_gr_mask &= ~(1 << reg);
|
||
if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
|
||
/* stwm with a positive displacement is a _post_
|
||
_modify_. */
|
||
cache->saved_regs[reg].addr = 0;
|
||
else if ((inst & 0xfc00000c) == 0x70000008)
|
||
/* A std has explicit post_modify forms. */
|
||
cache->saved_regs[reg].addr = 0;
|
||
else
|
||
{
|
||
CORE_ADDR offset;
|
||
|
||
if ((inst >> 26) == 0x1c)
|
||
offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
|
||
else if ((inst >> 26) == 0x03)
|
||
offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
|
||
else
|
||
offset = hppa_extract_14 (inst);
|
||
|
||
/* Handle code with and without frame pointers. */
|
||
if (u->Save_SP)
|
||
cache->saved_regs[reg].addr = offset;
|
||
else
|
||
cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
|
||
}
|
||
}
|
||
|
||
/* GCC handles callee saved FP regs a little differently.
|
||
|
||
It emits an instruction to put the value of the start of
|
||
the FP store area into %r1. It then uses fstds,ma with a
|
||
basereg of %r1 for the stores.
|
||
|
||
HP CC emits them at the current stack pointer modifying the
|
||
stack pointer as it stores each register. */
|
||
|
||
/* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
|
||
if ((inst & 0xffffc000) == 0x34610000
|
||
|| (inst & 0xffffc000) == 0x37c10000)
|
||
fp_loc = hppa_extract_14 (inst);
|
||
|
||
reg = inst_saves_fr (inst);
|
||
if (reg >= 12 && reg <= 21)
|
||
{
|
||
/* Note +4 braindamage below is necessary because the FP
|
||
status registers are internally 8 registers rather than
|
||
the expected 4 registers. */
|
||
saved_fr_mask &= ~(1 << reg);
|
||
if (fp_loc == -1)
|
||
{
|
||
/* 1st HP CC FP register store. After this
|
||
instruction we've set enough state that the GCC and
|
||
HPCC code are both handled in the same manner. */
|
||
cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
|
||
fp_loc = 8;
|
||
}
|
||
else
|
||
{
|
||
cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
|
||
fp_loc += 8;
|
||
}
|
||
}
|
||
|
||
/* Quit if we hit any kind of branch the previous iteration. */
|
||
if (final_iteration)
|
||
break;
|
||
/* We want to look precisely one instruction beyond the branch
|
||
if we have not found everything yet. */
|
||
if (is_branch (inst))
|
||
final_iteration = 1;
|
||
}
|
||
}
|
||
|
||
{
|
||
/* The frame base always represents the value of %sp at entry to
|
||
the current function (and is thus equivalent to the "saved"
|
||
stack pointer. */
|
||
CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
||
CORE_ADDR fp;
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
|
||
"prologue_end=0x%s) ",
|
||
paddr_nz (this_sp),
|
||
paddr_nz (frame_pc_unwind (next_frame)),
|
||
paddr_nz (prologue_end));
|
||
|
||
/* Check to see if a frame pointer is available, and use it for
|
||
frame unwinding if it is.
|
||
|
||
There are some situations where we need to rely on the frame
|
||
pointer to do stack unwinding. For example, if a function calls
|
||
alloca (), the stack pointer can get adjusted inside the body of
|
||
the function. In this case, the ABI requires that the compiler
|
||
maintain a frame pointer for the function.
|
||
|
||
The unwind record has a flag (alloca_frame) that indicates that
|
||
a function has a variable frame; unfortunately, gcc/binutils
|
||
does not set this flag. Instead, whenever a frame pointer is used
|
||
and saved on the stack, the Save_SP flag is set. We use this to
|
||
decide whether to use the frame pointer for unwinding.
|
||
|
||
TODO: For the HP compiler, maybe we should use the alloca_frame flag
|
||
instead of Save_SP. */
|
||
|
||
fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
|
||
|
||
if (u->alloca_frame)
|
||
fp -= u->Total_frame_size << 3;
|
||
|
||
if (frame_pc_unwind (next_frame) >= prologue_end
|
||
&& (u->Save_SP || u->alloca_frame) && fp != 0)
|
||
{
|
||
cache->base = fp;
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
|
||
paddr_nz (cache->base));
|
||
}
|
||
else if (u->Save_SP
|
||
&& trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
|
||
{
|
||
/* Both we're expecting the SP to be saved and the SP has been
|
||
saved. The entry SP value is saved at this frame's SP
|
||
address. */
|
||
cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
|
||
paddr_nz (cache->base));
|
||
}
|
||
else
|
||
{
|
||
/* The prologue has been slowly allocating stack space. Adjust
|
||
the SP back. */
|
||
cache->base = this_sp - frame_size;
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
|
||
paddr_nz (cache->base));
|
||
|
||
}
|
||
trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
|
||
}
|
||
|
||
/* The PC is found in the "return register", "Millicode" uses "r31"
|
||
as the return register while normal code uses "rp". */
|
||
if (u->Millicode)
|
||
{
|
||
if (trad_frame_addr_p (cache->saved_regs, 31))
|
||
{
|
||
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
|
||
}
|
||
else
|
||
{
|
||
ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
|
||
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
|
||
{
|
||
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
|
||
cache->saved_regs[HPPA_RP_REGNUM];
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
|
||
}
|
||
else
|
||
{
|
||
ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
|
||
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
|
||
}
|
||
}
|
||
|
||
/* If Save_SP is set, then we expect the frame pointer to be saved in the
|
||
frame. However, there is a one-insn window where we haven't saved it
|
||
yet, but we've already clobbered it. Detect this case and fix it up.
|
||
|
||
The prologue sequence for frame-pointer functions is:
|
||
0: stw %rp, -20(%sp)
|
||
4: copy %r3, %r1
|
||
8: copy %sp, %r3
|
||
c: stw,ma %r1, XX(%sp)
|
||
|
||
So if we are at offset c, the r3 value that we want is not yet saved
|
||
on the stack, but it's been overwritten. The prologue analyzer will
|
||
set fp_in_r1 when it sees the copy insn so we know to get the value
|
||
from r1 instead. */
|
||
if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
|
||
&& fp_in_r1)
|
||
{
|
||
ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
|
||
trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
|
||
}
|
||
|
||
{
|
||
/* Convert all the offsets into addresses. */
|
||
int reg;
|
||
for (reg = 0; reg < NUM_REGS; reg++)
|
||
{
|
||
if (trad_frame_addr_p (cache->saved_regs, reg))
|
||
cache->saved_regs[reg].addr += cache->base;
|
||
}
|
||
}
|
||
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
|
||
gdbarch = get_frame_arch (next_frame);
|
||
tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (tdep->unwind_adjust_stub)
|
||
{
|
||
tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
|
||
}
|
||
}
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
|
||
paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
|
||
return (*this_cache);
|
||
}
|
||
|
||
static void
|
||
hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_frame_cache *info;
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
struct unwind_table_entry *u;
|
||
|
||
info = hppa_frame_cache (next_frame, this_cache);
|
||
u = hppa_find_unwind_entry_in_block (next_frame);
|
||
|
||
(*this_id) = frame_id_build (info->base, u->region_start);
|
||
}
|
||
|
||
static void
|
||
hppa_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, gdb_byte *valuep)
|
||
{
|
||
struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
|
||
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind hppa_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
hppa_frame_this_id,
|
||
hppa_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
hppa_frame_unwind_sniffer (struct frame_info *next_frame)
|
||
{
|
||
if (hppa_find_unwind_entry_in_block (next_frame))
|
||
return &hppa_frame_unwind;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* This is a generic fallback frame unwinder that kicks in if we fail all
|
||
the other ones. Normally we would expect the stub and regular unwinder
|
||
to work, but in some cases we might hit a function that just doesn't
|
||
have any unwind information available. In this case we try to do
|
||
unwinding solely based on code reading. This is obviously going to be
|
||
slow, so only use this as a last resort. Currently this will only
|
||
identify the stack and pc for the frame. */
|
||
|
||
static struct hppa_frame_cache *
|
||
hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct hppa_frame_cache *cache;
|
||
unsigned int frame_size = 0;
|
||
int found_rp = 0;
|
||
CORE_ADDR start_pc;
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"{ hppa_fallback_frame_cache (frame=%d) -> ",
|
||
frame_relative_level (next_frame));
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
||
|
||
start_pc = frame_func_unwind (next_frame);
|
||
if (start_pc)
|
||
{
|
||
CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
|
||
CORE_ADDR pc;
|
||
|
||
for (pc = start_pc; pc < cur_pc; pc += 4)
|
||
{
|
||
unsigned int insn;
|
||
|
||
insn = read_memory_unsigned_integer (pc, 4);
|
||
frame_size += prologue_inst_adjust_sp (insn);
|
||
|
||
/* There are limited ways to store the return pointer into the
|
||
stack. */
|
||
if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
|
||
{
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
|
||
found_rp = 1;
|
||
}
|
||
else if (insn == 0x0fc212c1
|
||
|| insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
|
||
{
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
|
||
found_rp = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (hppa_debug)
|
||
fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
|
||
frame_size, found_rp);
|
||
|
||
cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
||
cache->base -= frame_size;
|
||
trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
|
||
|
||
if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
|
||
{
|
||
cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
|
||
cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
|
||
cache->saved_regs[HPPA_RP_REGNUM];
|
||
}
|
||
else
|
||
{
|
||
ULONGEST rp;
|
||
rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
|
||
trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_frame_cache *info =
|
||
hppa_fallback_frame_cache (next_frame, this_cache);
|
||
(*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
|
||
}
|
||
|
||
static void
|
||
hppa_fallback_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, gdb_byte *valuep)
|
||
{
|
||
struct hppa_frame_cache *info =
|
||
hppa_fallback_frame_cache (next_frame, this_cache);
|
||
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind hppa_fallback_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
hppa_fallback_frame_this_id,
|
||
hppa_fallback_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &hppa_fallback_frame_unwind;
|
||
}
|
||
|
||
/* Stub frames, used for all kinds of call stubs. */
|
||
struct hppa_stub_unwind_cache
|
||
{
|
||
CORE_ADDR base;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct hppa_stub_unwind_cache *
|
||
hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
|
||
void **this_cache)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
||
struct hppa_stub_unwind_cache *info;
|
||
struct unwind_table_entry *u;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
|
||
*this_cache = info;
|
||
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
||
|
||
info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
|
||
|
||
if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
|
||
{
|
||
/* HPUX uses export stubs in function calls; the export stub clobbers
|
||
the return value of the caller, and, later restores it from the
|
||
stack. */
|
||
u = find_unwind_entry (frame_pc_unwind (next_frame));
|
||
|
||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||
{
|
||
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
|
||
|
||
return info;
|
||
}
|
||
}
|
||
|
||
/* By default we assume that stubs do not change the rp. */
|
||
info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
|
||
|
||
return info;
|
||
}
|
||
|
||
static void
|
||
hppa_stub_frame_this_id (struct frame_info *next_frame,
|
||
void **this_prologue_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct hppa_stub_unwind_cache *info
|
||
= hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
||
|
||
if (info)
|
||
*this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
|
||
else
|
||
*this_id = null_frame_id;
|
||
}
|
||
|
||
static void
|
||
hppa_stub_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_prologue_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, gdb_byte *valuep)
|
||
{
|
||
struct hppa_stub_unwind_cache *info
|
||
= hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
|
||
|
||
if (info)
|
||
hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump,
|
||
valuep);
|
||
else
|
||
error (_("Requesting registers from null frame."));
|
||
}
|
||
|
||
static const struct frame_unwind hppa_stub_frame_unwind = {
|
||
NORMAL_FRAME,
|
||
hppa_stub_frame_this_id,
|
||
hppa_stub_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
hppa_stub_unwind_sniffer (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (pc == 0
|
||
|| (tdep->in_solib_call_trampoline != NULL
|
||
&& tdep->in_solib_call_trampoline (pc, NULL))
|
||
|| IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
|
||
return &hppa_stub_frame_unwind;
|
||
return NULL;
|
||
}
|
||
|
||
static struct frame_id
|
||
hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_id_build (frame_unwind_register_unsigned (next_frame,
|
||
HPPA_SP_REGNUM),
|
||
frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
CORE_ADDR
|
||
hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
ULONGEST ipsw;
|
||
CORE_ADDR pc;
|
||
|
||
ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
|
||
pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
|
||
|
||
/* If the current instruction is nullified, then we are effectively
|
||
still executing the previous instruction. Pretend we are still
|
||
there. This is needed when single stepping; if the nullified
|
||
instruction is on a different line, we don't want GDB to think
|
||
we've stepped onto that line. */
|
||
if (ipsw & 0x00200000)
|
||
pc -= 4;
|
||
|
||
return pc & ~0x3;
|
||
}
|
||
|
||
/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
|
||
Return NULL if no such symbol was found. */
|
||
|
||
struct minimal_symbol *
|
||
hppa_lookup_stub_minimal_symbol (const char *name,
|
||
enum unwind_stub_types stub_type)
|
||
{
|
||
struct objfile *objfile;
|
||
struct minimal_symbol *msym;
|
||
|
||
ALL_MSYMBOLS (objfile, msym)
|
||
{
|
||
if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (SYMBOL_VALUE (msym));
|
||
if (u != NULL && u->stub_unwind.stub_type == stub_type)
|
||
return msym;
|
||
}
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
unwind_command (char *exp, int from_tty)
|
||
{
|
||
CORE_ADDR address;
|
||
struct unwind_table_entry *u;
|
||
|
||
/* If we have an expression, evaluate it and use it as the address. */
|
||
|
||
if (exp != 0 && *exp != 0)
|
||
address = parse_and_eval_address (exp);
|
||
else
|
||
return;
|
||
|
||
u = find_unwind_entry (address);
|
||
|
||
if (!u)
|
||
{
|
||
printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
|
||
return;
|
||
}
|
||
|
||
printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
|
||
|
||
printf_unfiltered ("\tregion_start = ");
|
||
print_address (u->region_start, gdb_stdout);
|
||
gdb_flush (gdb_stdout);
|
||
|
||
printf_unfiltered ("\n\tregion_end = ");
|
||
print_address (u->region_end, gdb_stdout);
|
||
gdb_flush (gdb_stdout);
|
||
|
||
#define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
|
||
|
||
printf_unfiltered ("\n\tflags =");
|
||
pif (Cannot_unwind);
|
||
pif (Millicode);
|
||
pif (Millicode_save_sr0);
|
||
pif (Entry_SR);
|
||
pif (Args_stored);
|
||
pif (Variable_Frame);
|
||
pif (Separate_Package_Body);
|
||
pif (Frame_Extension_Millicode);
|
||
pif (Stack_Overflow_Check);
|
||
pif (Two_Instruction_SP_Increment);
|
||
pif (sr4export);
|
||
pif (cxx_info);
|
||
pif (cxx_try_catch);
|
||
pif (sched_entry_seq);
|
||
pif (Save_SP);
|
||
pif (Save_RP);
|
||
pif (Save_MRP_in_frame);
|
||
pif (save_r19);
|
||
pif (Cleanup_defined);
|
||
pif (MPE_XL_interrupt_marker);
|
||
pif (HP_UX_interrupt_marker);
|
||
pif (Large_frame);
|
||
pif (alloca_frame);
|
||
|
||
putchar_unfiltered ('\n');
|
||
|
||
#define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
|
||
|
||
pin (Region_description);
|
||
pin (Entry_FR);
|
||
pin (Entry_GR);
|
||
pin (Total_frame_size);
|
||
|
||
if (u->stub_unwind.stub_type)
|
||
{
|
||
printf_unfiltered ("\tstub type = ");
|
||
switch (u->stub_unwind.stub_type)
|
||
{
|
||
case LONG_BRANCH:
|
||
printf_unfiltered ("long branch\n");
|
||
break;
|
||
case PARAMETER_RELOCATION:
|
||
printf_unfiltered ("parameter relocation\n");
|
||
break;
|
||
case EXPORT:
|
||
printf_unfiltered ("export\n");
|
||
break;
|
||
case IMPORT:
|
||
printf_unfiltered ("import\n");
|
||
break;
|
||
case IMPORT_SHLIB:
|
||
printf_unfiltered ("import shlib\n");
|
||
break;
|
||
default:
|
||
printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
|
||
}
|
||
}
|
||
}
|
||
|
||
int
|
||
hppa_pc_requires_run_before_use (CORE_ADDR pc)
|
||
{
|
||
/* Sometimes we may pluck out a minimal symbol that has a negative address.
|
||
|
||
An example of this occurs when an a.out is linked against a foo.sl.
|
||
The foo.sl defines a global bar(), and the a.out declares a signature
|
||
for bar(). However, the a.out doesn't directly call bar(), but passes
|
||
its address in another call.
|
||
|
||
If you have this scenario and attempt to "break bar" before running,
|
||
gdb will find a minimal symbol for bar() in the a.out. But that
|
||
symbol's address will be negative. What this appears to denote is
|
||
an index backwards from the base of the procedure linkage table (PLT)
|
||
into the data linkage table (DLT), the end of which is contiguous
|
||
with the start of the PLT. This is clearly not a valid address for
|
||
us to set a breakpoint on.
|
||
|
||
Note that one must be careful in how one checks for a negative address.
|
||
0xc0000000 is a legitimate address of something in a shared text
|
||
segment, for example. Since I don't know what the possible range
|
||
is of these "really, truly negative" addresses that come from the
|
||
minimal symbols, I'm resorting to the gross hack of checking the
|
||
top byte of the address for all 1's. Sigh. */
|
||
|
||
return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
static struct type *
|
||
hppa32_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (regnum < HPPA_FP4_REGNUM)
|
||
return builtin_type_uint32;
|
||
else
|
||
return builtin_type_ieee_single_big;
|
||
}
|
||
|
||
static struct type *
|
||
hppa64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (regnum < HPPA64_FP4_REGNUM)
|
||
return builtin_type_uint64;
|
||
else
|
||
return builtin_type_ieee_double_big;
|
||
}
|
||
|
||
/* Return non-zero if REGNUM is not a register available to the user
|
||
through ptrace/ttrace. */
|
||
|
||
static int
|
||
hppa32_cannot_store_register (int regnum)
|
||
{
|
||
return (regnum == 0
|
||
|| regnum == HPPA_PCSQ_HEAD_REGNUM
|
||
|| (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
|
||
|| (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
|
||
}
|
||
|
||
static int
|
||
hppa64_cannot_store_register (int regnum)
|
||
{
|
||
return (regnum == 0
|
||
|| regnum == HPPA_PCSQ_HEAD_REGNUM
|
||
|| (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
|
||
|| (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_smash_text_address (CORE_ADDR addr)
|
||
{
|
||
/* The low two bits of the PC on the PA contain the privilege level.
|
||
Some genius implementing a (non-GCC) compiler apparently decided
|
||
this means that "addresses" in a text section therefore include a
|
||
privilege level, and thus symbol tables should contain these bits.
|
||
This seems like a bonehead thing to do--anyway, it seems to work
|
||
for our purposes to just ignore those bits. */
|
||
|
||
return (addr &= ~0x3);
|
||
}
|
||
|
||
/* Get the ARGIth function argument for the current function. */
|
||
|
||
static CORE_ADDR
|
||
hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||
struct type *type)
|
||
{
|
||
return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
|
||
}
|
||
|
||
static void
|
||
hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int regnum, gdb_byte *buf)
|
||
{
|
||
ULONGEST tmp;
|
||
|
||
regcache_raw_read_unsigned (regcache, regnum, &tmp);
|
||
if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
|
||
tmp &= ~0x3;
|
||
store_unsigned_integer (buf, sizeof tmp, tmp);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
hppa_find_global_pointer (struct value *function)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
hppa_frame_prev_register_helper (struct frame_info *next_frame,
|
||
struct trad_frame_saved_reg saved_regs[],
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, gdb_byte *valuep)
|
||
{
|
||
struct gdbarch *arch = get_frame_arch (next_frame);
|
||
|
||
if (regnum == HPPA_PCOQ_TAIL_REGNUM)
|
||
{
|
||
if (valuep)
|
||
{
|
||
int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
|
||
CORE_ADDR pc;
|
||
|
||
trad_frame_get_prev_register (next_frame, saved_regs,
|
||
HPPA_PCOQ_HEAD_REGNUM, optimizedp,
|
||
lvalp, addrp, realnump, valuep);
|
||
|
||
pc = extract_unsigned_integer (valuep, size);
|
||
store_unsigned_integer (valuep, size, pc + 4);
|
||
}
|
||
|
||
/* It's a computed value. */
|
||
*optimizedp = 0;
|
||
*lvalp = not_lval;
|
||
*addrp = 0;
|
||
*realnump = -1;
|
||
return;
|
||
}
|
||
|
||
/* Make sure the "flags" register is zero in all unwound frames.
|
||
The "flags" registers is a HP-UX specific wart, and only the code
|
||
in hppa-hpux-tdep.c depends on it. However, it is easier to deal
|
||
with it here. This shouldn't affect other systems since those
|
||
should provide zero for the "flags" register anyway. */
|
||
if (regnum == HPPA_FLAGS_REGNUM)
|
||
{
|
||
if (valuep)
|
||
store_unsigned_integer (valuep, register_size (arch, regnum), 0);
|
||
|
||
/* It's a computed value. */
|
||
*optimizedp = 0;
|
||
*lvalp = not_lval;
|
||
*addrp = 0;
|
||
*realnump = -1;
|
||
return;
|
||
}
|
||
|
||
trad_frame_get_prev_register (next_frame, saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
|
||
/* An instruction to match. */
|
||
struct insn_pattern
|
||
{
|
||
unsigned int data; /* See if it matches this.... */
|
||
unsigned int mask; /* ... with this mask. */
|
||
};
|
||
|
||
/* See bfd/elf32-hppa.c */
|
||
static struct insn_pattern hppa_long_branch_stub[] = {
|
||
/* ldil LR'xxx,%r1 */
|
||
{ 0x20200000, 0xffe00000 },
|
||
/* be,n RR'xxx(%sr4,%r1) */
|
||
{ 0xe0202002, 0xffe02002 },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
static struct insn_pattern hppa_long_branch_pic_stub[] = {
|
||
/* b,l .+8, %r1 */
|
||
{ 0xe8200000, 0xffe00000 },
|
||
/* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
|
||
{ 0x28200000, 0xffe00000 },
|
||
/* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
|
||
{ 0xe0202002, 0xffe02002 },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
static struct insn_pattern hppa_import_stub[] = {
|
||
/* addil LR'xxx, %dp */
|
||
{ 0x2b600000, 0xffe00000 },
|
||
/* ldw RR'xxx(%r1), %r21 */
|
||
{ 0x48350000, 0xffffb000 },
|
||
/* bv %r0(%r21) */
|
||
{ 0xeaa0c000, 0xffffffff },
|
||
/* ldw RR'xxx+4(%r1), %r19 */
|
||
{ 0x48330000, 0xffffb000 },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
static struct insn_pattern hppa_import_pic_stub[] = {
|
||
/* addil LR'xxx,%r19 */
|
||
{ 0x2a600000, 0xffe00000 },
|
||
/* ldw RR'xxx(%r1),%r21 */
|
||
{ 0x48350000, 0xffffb000 },
|
||
/* bv %r0(%r21) */
|
||
{ 0xeaa0c000, 0xffffffff },
|
||
/* ldw RR'xxx+4(%r1),%r19 */
|
||
{ 0x48330000, 0xffffb000 },
|
||
{ 0, 0 },
|
||
};
|
||
|
||
static struct insn_pattern hppa_plt_stub[] = {
|
||
/* b,l 1b, %r20 - 1b is 3 insns before here */
|
||
{ 0xea9f1fdd, 0xffffffff },
|
||
/* depi 0,31,2,%r20 */
|
||
{ 0xd6801c1e, 0xffffffff },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
static struct insn_pattern hppa_sigtramp[] = {
|
||
/* ldi 0, %r25 or ldi 1, %r25 */
|
||
{ 0x34190000, 0xfffffffd },
|
||
/* ldi __NR_rt_sigreturn, %r20 */
|
||
{ 0x3414015a, 0xffffffff },
|
||
/* be,l 0x100(%sr2, %r0), %sr0, %r31 */
|
||
{ 0xe4008200, 0xffffffff },
|
||
/* nop */
|
||
{ 0x08000240, 0xffffffff },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
/* Maximum number of instructions on the patterns above. */
|
||
#define HPPA_MAX_INSN_PATTERN_LEN 4
|
||
|
||
/* Return non-zero if the instructions at PC match the series
|
||
described in PATTERN, or zero otherwise. PATTERN is an array of
|
||
'struct insn_pattern' objects, terminated by an entry whose mask is
|
||
zero.
|
||
|
||
When the match is successful, fill INSN[i] with what PATTERN[i]
|
||
matched. */
|
||
|
||
static int
|
||
hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
|
||
unsigned int *insn)
|
||
{
|
||
CORE_ADDR npc = pc;
|
||
int i;
|
||
|
||
for (i = 0; pattern[i].mask; i++)
|
||
{
|
||
gdb_byte buf[HPPA_INSN_SIZE];
|
||
|
||
deprecated_read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
|
||
insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
|
||
if ((insn[i] & pattern[i].mask) == pattern[i].data)
|
||
npc += 4;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* This relaxed version of the insstruction matcher allows us to match
|
||
from somewhere inside the pattern, by looking backwards in the
|
||
instruction scheme. */
|
||
|
||
static int
|
||
hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
|
||
unsigned int *insn)
|
||
{
|
||
int offset, len = 0;
|
||
|
||
while (pattern[len].mask)
|
||
len++;
|
||
|
||
for (offset = 0; offset < len; offset++)
|
||
if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
hppa_in_dyncall (CORE_ADDR pc)
|
||
{
|
||
struct unwind_table_entry *u;
|
||
|
||
u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
|
||
if (!u)
|
||
return 0;
|
||
|
||
return (pc >= u->region_start && pc <= u->region_end);
|
||
}
|
||
|
||
int
|
||
hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
||
struct unwind_table_entry *u;
|
||
|
||
if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
|
||
return 1;
|
||
|
||
/* The GNU toolchain produces linker stubs without unwind
|
||
information. Since the pattern matching for linker stubs can be
|
||
quite slow, so bail out if we do have an unwind entry. */
|
||
|
||
u = find_unwind_entry (pc);
|
||
if (u != NULL)
|
||
return 0;
|
||
|
||
return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
|
||
|| hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
|
||
|| hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
|
||
|| hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
|
||
}
|
||
|
||
/* This code skips several kind of "trampolines" used on PA-RISC
|
||
systems: $$dyncall, import stubs and PLT stubs. */
|
||
|
||
CORE_ADDR
|
||
hppa_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
|
||
int dp_rel;
|
||
|
||
/* $$dyncall handles both PLABELs and direct addresses. */
|
||
if (hppa_in_dyncall (pc))
|
||
{
|
||
pc = read_register (HPPA_R0_REGNUM + 22);
|
||
|
||
/* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
|
||
if (pc & 0x2)
|
||
pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
|
||
|
||
return pc;
|
||
}
|
||
|
||
dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
|
||
if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
|
||
{
|
||
/* Extract the target address from the addil/ldw sequence. */
|
||
pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
|
||
|
||
if (dp_rel)
|
||
pc += read_register (HPPA_DP_REGNUM);
|
||
else
|
||
pc += read_register (HPPA_R0_REGNUM + 19);
|
||
|
||
/* fallthrough */
|
||
}
|
||
|
||
if (in_plt_section (pc, NULL))
|
||
{
|
||
pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
|
||
|
||
/* If the PLT slot has not yet been resolved, the target will be
|
||
the PLT stub. */
|
||
if (in_plt_section (pc, NULL))
|
||
{
|
||
/* Sanity check: are we pointing to the PLT stub? */
|
||
if (!hppa_match_insns (pc, hppa_plt_stub, insn))
|
||
{
|
||
warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
|
||
return 0;
|
||
}
|
||
|
||
/* This should point to the fixup routine. */
|
||
pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
|
||
}
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Here is a table of C type sizes on hppa with various compiles
|
||
and options. I measured this on PA 9000/800 with HP-UX 11.11
|
||
and these compilers:
|
||
|
||
/usr/ccs/bin/cc HP92453-01 A.11.01.21
|
||
/opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
|
||
/opt/aCC/bin/aCC B3910B A.03.45
|
||
gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
|
||
|
||
cc : 1 2 4 4 8 : 4 8 -- : 4 4
|
||
ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
|
||
ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
|
||
ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
|
||
acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
|
||
acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
|
||
acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
|
||
gcc : 1 2 4 4 8 : 4 8 16 : 4 4
|
||
|
||
Each line is:
|
||
|
||
compiler and options
|
||
char, short, int, long, long long
|
||
float, double, long double
|
||
char *, void (*)()
|
||
|
||
So all these compilers use either ILP32 or LP64 model.
|
||
TODO: gcc has more options so it needs more investigation.
|
||
|
||
For floating point types, see:
|
||
|
||
http://docs.hp.com/hpux/pdf/B3906-90006.pdf
|
||
HP-UX floating-point guide, hpux 11.00
|
||
|
||
-- chastain 2003-12-18 */
|
||
|
||
static struct gdbarch *
|
||
hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch_tdep *tdep;
|
||
struct gdbarch *gdbarch;
|
||
|
||
/* Try to determine the ABI of the object we are loading. */
|
||
if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
|
||
{
|
||
/* If it's a SOM file, assume it's HP/UX SOM. */
|
||
if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
|
||
info.osabi = GDB_OSABI_HPUX_SOM;
|
||
}
|
||
|
||
/* find a candidate among the list of pre-declared architectures. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return (arches->gdbarch);
|
||
|
||
/* If none found, then allocate and initialize one. */
|
||
tdep = XZALLOC (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
/* Determine from the bfd_arch_info structure if we are dealing with
|
||
a 32 or 64 bits architecture. If the bfd_arch_info is not available,
|
||
then default to a 32bit machine. */
|
||
if (info.bfd_arch_info != NULL)
|
||
tdep->bytes_per_address =
|
||
info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
|
||
else
|
||
tdep->bytes_per_address = 4;
|
||
|
||
tdep->find_global_pointer = hppa_find_global_pointer;
|
||
|
||
/* Some parts of the gdbarch vector depend on whether we are running
|
||
on a 32 bits or 64 bits target. */
|
||
switch (tdep->bytes_per_address)
|
||
{
|
||
case 4:
|
||
set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
|
||
set_gdbarch_register_name (gdbarch, hppa32_register_name);
|
||
set_gdbarch_register_type (gdbarch, hppa32_register_type);
|
||
set_gdbarch_cannot_store_register (gdbarch,
|
||
hppa32_cannot_store_register);
|
||
set_gdbarch_cannot_fetch_register (gdbarch,
|
||
hppa32_cannot_store_register);
|
||
break;
|
||
case 8:
|
||
set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
|
||
set_gdbarch_register_name (gdbarch, hppa64_register_name);
|
||
set_gdbarch_register_type (gdbarch, hppa64_register_type);
|
||
set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
|
||
set_gdbarch_cannot_store_register (gdbarch,
|
||
hppa64_cannot_store_register);
|
||
set_gdbarch_cannot_fetch_register (gdbarch,
|
||
hppa64_cannot_store_register);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
|
||
tdep->bytes_per_address);
|
||
}
|
||
|
||
set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
|
||
set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
|
||
|
||
/* The following gdbarch vector elements are the same in both ILP32
|
||
and LP64, but might show differences some day. */
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
|
||
|
||
/* The following gdbarch vector elements do not depend on the address
|
||
size, or in any other gdbarch element previously set. */
|
||
set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
|
||
set_gdbarch_in_function_epilogue_p (gdbarch,
|
||
hppa_in_function_epilogue_p);
|
||
set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
|
||
set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
|
||
set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
|
||
set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
|
||
set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
set_gdbarch_read_pc (gdbarch, hppa_read_pc);
|
||
set_gdbarch_write_pc (gdbarch, hppa_write_pc);
|
||
|
||
/* Helper for function argument information. */
|
||
set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
|
||
|
||
set_gdbarch_print_insn (gdbarch, print_insn_hppa);
|
||
|
||
/* When a hardware watchpoint triggers, we'll move the inferior past
|
||
it by removing all eventpoints; stepping past the instruction
|
||
that caused the trigger; reinserting eventpoints; and checking
|
||
whether any watched location changed. */
|
||
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
||
|
||
/* Inferior function call methods. */
|
||
switch (tdep->bytes_per_address)
|
||
{
|
||
case 4:
|
||
set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
|
||
set_gdbarch_convert_from_func_ptr_addr
|
||
(gdbarch, hppa32_convert_from_func_ptr_addr);
|
||
break;
|
||
case 8:
|
||
set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("bad switch"));
|
||
}
|
||
|
||
/* Struct return methods. */
|
||
switch (tdep->bytes_per_address)
|
||
{
|
||
case 4:
|
||
set_gdbarch_return_value (gdbarch, hppa32_return_value);
|
||
break;
|
||
case 8:
|
||
set_gdbarch_return_value (gdbarch, hppa64_return_value);
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("bad switch"));
|
||
}
|
||
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
|
||
set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
|
||
|
||
/* Frame unwind methods. */
|
||
set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
|
||
set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
/* Hook in the default unwinders. */
|
||
frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
|
||
frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
|
||
frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
fprintf_unfiltered (file, "bytes_per_address = %d\n",
|
||
tdep->bytes_per_address);
|
||
fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
|
||
}
|
||
|
||
void
|
||
_initialize_hppa_tdep (void)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
|
||
|
||
hppa_objfile_priv_data = register_objfile_data ();
|
||
|
||
add_cmd ("unwind", class_maintenance, unwind_command,
|
||
_("Print unwind table entry at given address."),
|
||
&maintenanceprintlist);
|
||
|
||
/* Debug this files internals. */
|
||
add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
|
||
Set whether hppa target specific debugging information should be displayed."),
|
||
_("\
|
||
Show whether hppa target specific debugging information is displayed."), _("\
|
||
This flag controls whether hppa target specific debugging information is\n\
|
||
displayed. This information is particularly useful for debugging frame\n\
|
||
unwinding problems."),
|
||
NULL,
|
||
NULL, /* FIXME: i18n: hppa debug flag is %s. */
|
||
&setdebuglist, &showdebuglist);
|
||
}
|