mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-28 11:43:36 +08:00
eade0c6ce8
an address to 'w'. Make it 'g' or 'h', depending on TARGET_PTR_BIT. * defs.h: Just typedef CORE_ADDR to bfd_vma. Include bfd.h. If BFD64, make a LONGEST a BFD_HOST_64_BIT. * defs.h (longest_to_int): Don't depend on CC_HAS_LONG_LONG; instead always just check against INT_MIN and INT_MAX (this also fixes things if sizeof (long) > sizeof (int), e.g. Alpha). * config/pa/tm-hppa.h, config/i386/sun386.h, config/rs6000/tm-rs6000.h: Don't define LONGEST or BUILTIN_TYPE_LONGEST. * gdbtypes.h: Remove BUILTIN_TYPE_LONGEST and BUILTIN_TYPE_UNSIGNED_LONGEST. * language.h, c-lang.c, ch-lang.c, m2-lang.c: Remove longest_int and longest_unsigned_int. * value.h (struct value): Just align to LONGEST, rather than worrying about CC_HAS_LONG_LONG. * valarith.c (value_binop, _initialize_valarith): Figure out type ourself based on sizeof (LONGEST) rather than relying on BUILTIN_TYPE_LONGEST. The point is that we don't depend on CC_HAS_LONG_LONG anymore. * valprint.c (val_print_type_code_int): Just call extract_unsigned_integer directly, rather than going through unpack_long. * printcmd.c (decode_format): Remove code which would sometimes change 'g' size to 'w' for integers. print_scalar_formatted handles printing huge integers well enough, thank you.
1070 lines
29 KiB
C
1070 lines
29 KiB
C
/* Perform arithmetic and other operations on values, for GDB.
|
||
Copyright 1986, 1989, 1991, 1992 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "value.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "demangle.h"
|
||
#include <string.h>
|
||
|
||
/* Define whether or not the C operator '/' truncates towards zero for
|
||
differently signed operands (truncation direction is undefined in C). */
|
||
|
||
#ifndef TRUNCATION_TOWARDS_ZERO
|
||
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
||
#endif
|
||
|
||
static value
|
||
value_subscripted_rvalue PARAMS ((value, value));
|
||
|
||
|
||
value
|
||
value_add (arg1, arg2)
|
||
value arg1, arg2;
|
||
{
|
||
register value valint, valptr;
|
||
register int len;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
COERCE_ARRAY (arg2);
|
||
|
||
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
|
||
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR)
|
||
&&
|
||
(TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT
|
||
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT))
|
||
/* Exactly one argument is a pointer, and one is an integer. */
|
||
{
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
|
||
{
|
||
valptr = arg1;
|
||
valint = arg2;
|
||
}
|
||
else
|
||
{
|
||
valptr = arg2;
|
||
valint = arg1;
|
||
}
|
||
len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr)));
|
||
if (len == 0) len = 1; /* For (void *) */
|
||
return value_from_longest (VALUE_TYPE (valptr),
|
||
value_as_long (valptr)
|
||
+ (len * value_as_long (valint)));
|
||
}
|
||
|
||
return value_binop (arg1, arg2, BINOP_ADD);
|
||
}
|
||
|
||
value
|
||
value_sub (arg1, arg2)
|
||
value arg1, arg2;
|
||
{
|
||
|
||
COERCE_ARRAY (arg1);
|
||
COERCE_ARRAY (arg2);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
|
||
{
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)
|
||
{
|
||
/* pointer - integer. */
|
||
return value_from_longest
|
||
(VALUE_TYPE (arg1),
|
||
value_as_long (arg1)
|
||
- (TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)))
|
||
* value_as_long (arg2)));
|
||
}
|
||
else if (VALUE_TYPE (arg1) == VALUE_TYPE (arg2))
|
||
{
|
||
/* pointer to <type x> - pointer to <type x>. */
|
||
return value_from_longest
|
||
(builtin_type_long, /* FIXME -- should be ptrdiff_t */
|
||
(value_as_long (arg1) - value_as_long (arg2))
|
||
/ TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))));
|
||
}
|
||
else
|
||
{
|
||
error ("\
|
||
First argument of `-' is a pointer and second argument is neither\n\
|
||
an integer nor a pointer of the same type.");
|
||
}
|
||
}
|
||
|
||
return value_binop (arg1, arg2, BINOP_SUB);
|
||
}
|
||
|
||
/* Return the value of ARRAY[IDX].
|
||
See comments in value_coerce_array() for rationale for reason for
|
||
doing lower bounds adjustment here rather than there.
|
||
FIXME: Perhaps we should validate that the index is valid and if
|
||
verbosity is set, warn about invalid indices (but still use them). */
|
||
|
||
value
|
||
value_subscript (array, idx)
|
||
value array, idx;
|
||
{
|
||
int lowerbound;
|
||
value bound;
|
||
struct type *range_type;
|
||
|
||
COERCE_REF (array);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_STRING)
|
||
{
|
||
range_type = TYPE_FIELD_TYPE (VALUE_TYPE (array), 0);
|
||
lowerbound = TYPE_FIELD_BITPOS (range_type, 0);
|
||
if (lowerbound != 0)
|
||
{
|
||
bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound);
|
||
idx = value_sub (idx, bound);
|
||
}
|
||
if (VALUE_LVAL (array) != lval_memory)
|
||
{
|
||
return value_subscripted_rvalue (array, idx);
|
||
}
|
||
array = value_coerce_array (array);
|
||
}
|
||
return value_ind (value_add (array, idx));
|
||
}
|
||
|
||
/* Return the value of EXPR[IDX], expr an aggregate rvalue
|
||
(eg, a vector register). This routine used to promote floats
|
||
to doubles, but no longer does. */
|
||
|
||
static value
|
||
value_subscripted_rvalue (array, idx)
|
||
value array, idx;
|
||
{
|
||
struct type *elt_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
|
||
int elt_size = TYPE_LENGTH (elt_type);
|
||
int elt_offs = elt_size * longest_to_int (value_as_long (idx));
|
||
value v;
|
||
|
||
if (elt_offs >= TYPE_LENGTH (VALUE_TYPE (array)))
|
||
error ("no such vector element");
|
||
|
||
v = allocate_value (elt_type);
|
||
memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size);
|
||
|
||
if (VALUE_LVAL (array) == lval_internalvar)
|
||
VALUE_LVAL (v) = lval_internalvar_component;
|
||
else
|
||
VALUE_LVAL (v) = not_lval;
|
||
VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
|
||
VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
|
||
VALUE_BITSIZE (v) = elt_size * 8;
|
||
return v;
|
||
}
|
||
|
||
/* Check to see if either argument is a structure. This is called so
|
||
we know whether to go ahead with the normal binop or look for a
|
||
user defined function instead.
|
||
|
||
For now, we do not overload the `=' operator. */
|
||
|
||
int
|
||
binop_user_defined_p (op, arg1, arg2)
|
||
enum exp_opcode op;
|
||
value arg1, arg2;
|
||
{
|
||
if (op == BINOP_ASSIGN)
|
||
return 0;
|
||
return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT
|
||
|| (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)
|
||
|| (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT));
|
||
}
|
||
|
||
/* Check to see if argument is a structure. This is called so
|
||
we know whether to go ahead with the normal unop or look for a
|
||
user defined function instead.
|
||
|
||
For now, we do not overload the `&' operator. */
|
||
|
||
int unop_user_defined_p (op, arg1)
|
||
enum exp_opcode op;
|
||
value arg1;
|
||
{
|
||
if (op == UNOP_ADDR)
|
||
return 0;
|
||
return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
|
||
|| (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
|
||
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT));
|
||
}
|
||
|
||
/* We know either arg1 or arg2 is a structure, so try to find the right
|
||
user defined function. Create an argument vector that calls
|
||
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
|
||
binary operator which is legal for GNU C++).
|
||
|
||
OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
|
||
is the opcode saying how to modify it. Otherwise, OTHEROP is
|
||
unused. */
|
||
|
||
value
|
||
value_x_binop (arg1, arg2, op, otherop)
|
||
value arg1, arg2;
|
||
enum exp_opcode op, otherop;
|
||
{
|
||
value * argvec;
|
||
char *ptr, *mangle_ptr;
|
||
char tstr[13], mangle_tstr[13];
|
||
int static_memfuncp;
|
||
|
||
COERCE_REF (arg1);
|
||
COERCE_REF (arg2);
|
||
COERCE_ENUM (arg1);
|
||
COERCE_ENUM (arg2);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
|
||
error ("Can't do that binary op on that type"); /* FIXME be explicit */
|
||
|
||
argvec = (value *) alloca (sizeof (value) * 4);
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = arg2;
|
||
argvec[3] = 0;
|
||
|
||
/* make the right function name up */
|
||
strcpy(tstr, "operator__");
|
||
ptr = tstr+8;
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD: strcpy(ptr,"+"); break;
|
||
case BINOP_SUB: strcpy(ptr,"-"); break;
|
||
case BINOP_MUL: strcpy(ptr,"*"); break;
|
||
case BINOP_DIV: strcpy(ptr,"/"); break;
|
||
case BINOP_REM: strcpy(ptr,"%"); break;
|
||
case BINOP_LSH: strcpy(ptr,"<<"); break;
|
||
case BINOP_RSH: strcpy(ptr,">>"); break;
|
||
case BINOP_BITWISE_AND: strcpy(ptr,"&"); break;
|
||
case BINOP_BITWISE_IOR: strcpy(ptr,"|"); break;
|
||
case BINOP_BITWISE_XOR: strcpy(ptr,"^"); break;
|
||
case BINOP_LOGICAL_AND: strcpy(ptr,"&&"); break;
|
||
case BINOP_LOGICAL_OR: strcpy(ptr,"||"); break;
|
||
case BINOP_MIN: strcpy(ptr,"<?"); break;
|
||
case BINOP_MAX: strcpy(ptr,">?"); break;
|
||
case BINOP_ASSIGN: strcpy(ptr,"="); break;
|
||
case BINOP_ASSIGN_MODIFY:
|
||
switch (otherop)
|
||
{
|
||
case BINOP_ADD: strcpy(ptr,"+="); break;
|
||
case BINOP_SUB: strcpy(ptr,"-="); break;
|
||
case BINOP_MUL: strcpy(ptr,"*="); break;
|
||
case BINOP_DIV: strcpy(ptr,"/="); break;
|
||
case BINOP_REM: strcpy(ptr,"%="); break;
|
||
case BINOP_BITWISE_AND: strcpy(ptr,"&="); break;
|
||
case BINOP_BITWISE_IOR: strcpy(ptr,"|="); break;
|
||
case BINOP_BITWISE_XOR: strcpy(ptr,"^="); break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error ("Invalid binary operation specified.");
|
||
}
|
||
break;
|
||
case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break;
|
||
case BINOP_EQUAL: strcpy(ptr,"=="); break;
|
||
case BINOP_NOTEQUAL: strcpy(ptr,"!="); break;
|
||
case BINOP_LESS: strcpy(ptr,"<"); break;
|
||
case BINOP_GTR: strcpy(ptr,">"); break;
|
||
case BINOP_GEQ: strcpy(ptr,">="); break;
|
||
case BINOP_LEQ: strcpy(ptr,"<="); break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error ("Invalid binary operation specified.");
|
||
}
|
||
|
||
argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure");
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec++;
|
||
}
|
||
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
||
}
|
||
error ("member function %s not found", tstr);
|
||
#ifdef lint
|
||
return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1);
|
||
#endif
|
||
}
|
||
|
||
/* We know that arg1 is a structure, so try to find a unary user
|
||
defined operator that matches the operator in question.
|
||
Create an argument vector that calls arg1.operator @ (arg1)
|
||
and return that value (where '@' is (almost) any unary operator which
|
||
is legal for GNU C++). */
|
||
|
||
value
|
||
value_x_unop (arg1, op)
|
||
value arg1;
|
||
enum exp_opcode op;
|
||
{
|
||
value * argvec;
|
||
char *ptr, *mangle_ptr;
|
||
char tstr[13], mangle_tstr[13];
|
||
int static_memfuncp;
|
||
|
||
COERCE_ENUM (arg1);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
|
||
error ("Can't do that unary op on that type"); /* FIXME be explicit */
|
||
|
||
argvec = (value *) alloca (sizeof (value) * 3);
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = 0;
|
||
|
||
/* make the right function name up */
|
||
strcpy(tstr,"operator__");
|
||
ptr = tstr+8;
|
||
strcpy(mangle_tstr, "__");
|
||
mangle_ptr = mangle_tstr+2;
|
||
switch (op)
|
||
{
|
||
case UNOP_PREINCREMENT: strcpy(ptr,"++"); break;
|
||
case UNOP_PREDECREMENT: strcpy(ptr,"++"); break;
|
||
case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break;
|
||
case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break;
|
||
case UNOP_LOGICAL_NOT: strcpy(ptr,"!"); break;
|
||
case UNOP_COMPLEMENT: strcpy(ptr,"~"); break;
|
||
case UNOP_NEG: strcpy(ptr,"-"); break;
|
||
default:
|
||
error ("Invalid binary operation specified.");
|
||
}
|
||
|
||
argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure");
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec++;
|
||
}
|
||
return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1);
|
||
}
|
||
error ("member function %s not found", tstr);
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
|
||
|
||
/* Concatenate two values with the following conditions:
|
||
|
||
(1) Both values must be either bitstring values or character string
|
||
values and the resulting value consists of the concatenation of
|
||
ARG1 followed by ARG2.
|
||
|
||
or
|
||
|
||
One value must be an integer value and the other value must be
|
||
either a bitstring value or character string value, which is
|
||
to be repeated by the number of times specified by the integer
|
||
value.
|
||
|
||
|
||
(2) Boolean values are also allowed and are treated as bit string
|
||
values of length 1.
|
||
|
||
(3) Character values are also allowed and are treated as character
|
||
string values of length 1.
|
||
*/
|
||
|
||
value
|
||
value_concat (arg1, arg2)
|
||
value arg1, arg2;
|
||
{
|
||
register value inval1, inval2, outval;
|
||
int inval1len, inval2len;
|
||
int count, idx;
|
||
char *ptr;
|
||
char inchar;
|
||
|
||
/* First figure out if we are dealing with two values to be concatenated
|
||
or a repeat count and a value to be repeated. INVAL1 is set to the
|
||
first of two concatenated values, or the repeat count. INVAL2 is set
|
||
to the second of the two concatenated values or the value to be
|
||
repeated. */
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)
|
||
{
|
||
inval1 = arg2;
|
||
inval2 = arg1;
|
||
}
|
||
else
|
||
{
|
||
inval1 = arg1;
|
||
inval2 = arg2;
|
||
}
|
||
|
||
/* Now process the input values. */
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_INT)
|
||
{
|
||
/* We have a repeat count. Validate the second value and then
|
||
construct a value repeated that many times. */
|
||
if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR)
|
||
{
|
||
count = longest_to_int (value_as_long (inval1));
|
||
inval2len = TYPE_LENGTH (VALUE_TYPE (inval2));
|
||
ptr = (char *) alloca (count * inval2len);
|
||
if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR)
|
||
{
|
||
inchar = (char) unpack_long (VALUE_TYPE (inval2),
|
||
VALUE_CONTENTS (inval2));
|
||
for (idx = 0; idx < count; idx++)
|
||
{
|
||
*(ptr + idx) = inchar;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (idx = 0; idx < count; idx++)
|
||
{
|
||
memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2),
|
||
inval2len);
|
||
}
|
||
}
|
||
outval = value_string (ptr, count * inval2len);
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_BITSTRING
|
||
|| TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_BOOL)
|
||
{
|
||
error ("unimplemented support for bitstring/boolean repeats");
|
||
}
|
||
else
|
||
{
|
||
error ("can't repeat values of that type");
|
||
}
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_CHAR)
|
||
{
|
||
/* We have two character strings to concatenate. */
|
||
if (TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_STRING
|
||
&& TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_CHAR)
|
||
{
|
||
error ("Strings can only be concatenated with other strings.");
|
||
}
|
||
inval1len = TYPE_LENGTH (VALUE_TYPE (inval1));
|
||
inval2len = TYPE_LENGTH (VALUE_TYPE (inval2));
|
||
ptr = (char *) alloca (inval1len + inval2len);
|
||
if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_CHAR)
|
||
{
|
||
*ptr = (char) unpack_long (VALUE_TYPE (inval1), VALUE_CONTENTS (inval1));
|
||
}
|
||
else
|
||
{
|
||
memcpy (ptr, VALUE_CONTENTS (inval1), inval1len);
|
||
}
|
||
if (TYPE_CODE (VALUE_TYPE (inval2)) == TYPE_CODE_CHAR)
|
||
{
|
||
*(ptr + inval1len) =
|
||
(char) unpack_long (VALUE_TYPE (inval2), VALUE_CONTENTS (inval2));
|
||
}
|
||
else
|
||
{
|
||
memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len);
|
||
}
|
||
outval = value_string (ptr, inval1len + inval2len);
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_BITSTRING
|
||
|| TYPE_CODE (VALUE_TYPE (inval1)) == TYPE_CODE_BOOL)
|
||
{
|
||
/* We have two bitstrings to concatenate. */
|
||
if (TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_BITSTRING
|
||
&& TYPE_CODE (VALUE_TYPE (inval2)) != TYPE_CODE_BOOL)
|
||
{
|
||
error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans.");
|
||
}
|
||
error ("unimplemented support for bitstring/boolean concatenation.");
|
||
}
|
||
else
|
||
{
|
||
/* We don't know how to concatenate these operands. */
|
||
error ("illegal operands for concatenation.");
|
||
}
|
||
return (outval);
|
||
}
|
||
|
||
|
||
/* The type we give to value_binop results. This is a kludge to get around
|
||
the fact that we don't know how to determine the result type from
|
||
the types of the operands. (I'm not really sure how much we feel
|
||
the need to duplicate the exact rules of the current language.
|
||
They can get really hairy. But not to do so makes it hard to document
|
||
just what we *do* do). */
|
||
static struct type *signed_operation_result;
|
||
static struct type *unsigned_operation_result;
|
||
|
||
/* Perform a binary operation on two operands which have reasonable
|
||
representations as integers or floats. This includes booleans,
|
||
characters, integers, or floats.
|
||
Does not support addition and subtraction on pointers;
|
||
use value_add or value_sub if you want to handle those possibilities. */
|
||
|
||
value
|
||
value_binop (arg1, arg2, op)
|
||
value arg1, arg2;
|
||
enum exp_opcode op;
|
||
{
|
||
register value val;
|
||
|
||
COERCE_ENUM (arg1);
|
||
COERCE_ENUM (arg2);
|
||
|
||
if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_CHAR
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_BOOL)
|
||
||
|
||
(TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_CHAR
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_BOOL))
|
||
error ("Argument to arithmetic operation not a number or boolean.");
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT
|
||
||
|
||
TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT)
|
||
{
|
||
/* FIXME-if-picky-about-floating-accuracy: Should be doing this
|
||
in target format. real.c in GCC probably has the necessary
|
||
code. */
|
||
double v1, v2, v;
|
||
v1 = value_as_double (arg1);
|
||
v2 = value_as_double (arg2);
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Integer-only operation on floating point number.");
|
||
}
|
||
|
||
val = allocate_value (builtin_type_double);
|
||
store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_BOOL
|
||
&&
|
||
TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_BOOL)
|
||
{
|
||
LONGEST v1, v2, v;
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid operation on booleans.");
|
||
}
|
||
|
||
val = allocate_value (builtin_type_chill_bool);
|
||
store_signed_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
else
|
||
/* Integral operations here. */
|
||
/* FIXME: Also mixed integral/booleans, with result an integer. */
|
||
{
|
||
/* Should we promote to unsigned longest? */
|
||
if ((TYPE_UNSIGNED (VALUE_TYPE (arg1))
|
||
|| TYPE_UNSIGNED (VALUE_TYPE (arg2)))
|
||
&& (TYPE_LENGTH (VALUE_TYPE (arg1)) >= sizeof (unsigned LONGEST)
|
||
|| TYPE_LENGTH (VALUE_TYPE (arg2)) >= sizeof (unsigned LONGEST)))
|
||
{
|
||
unsigned LONGEST v1, v2, v;
|
||
v1 = (unsigned LONGEST) value_as_long (arg1);
|
||
v2 = (unsigned LONGEST) value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
v = v1 % v2;
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
v1 mod 0 has a defined value, v1. */
|
||
/* Chill specifies that v2 must be > 0, so check for that. */
|
||
if (current_language -> la_language == language_chill
|
||
&& value_as_long (arg2) <= 0)
|
||
{
|
||
error ("Second operand of MOD must be greater than zero.");
|
||
}
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1/v2;
|
||
/* Note floor(v1/v2) == v1/v2 for unsigned. */
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
v = v1 << v2;
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid binary operation on numbers.");
|
||
}
|
||
|
||
val = allocate_value (unsigned_operation_result);
|
||
store_unsigned_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
else
|
||
{
|
||
LONGEST v1, v2, v;
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
v = v1 / v2;
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
v = v1 % v2;
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
X mod 0 has a defined value, X. */
|
||
/* Chill specifies that v2 must be > 0, so check for that. */
|
||
if (current_language -> la_language == language_chill
|
||
&& v2 <= 0)
|
||
{
|
||
error ("Second operand of MOD must be greater than zero.");
|
||
}
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1/v2;
|
||
/* Compute floor. */
|
||
if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
|
||
{
|
||
v--;
|
||
}
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
v = v1 << v2;
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
default:
|
||
error ("Invalid binary operation on numbers.");
|
||
}
|
||
|
||
val = allocate_value (signed_operation_result);
|
||
store_signed_integer (VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)),
|
||
v);
|
||
}
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
|
||
|
||
int
|
||
value_logical_not (arg1)
|
||
value arg1;
|
||
{
|
||
register int len;
|
||
register char *p;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT)
|
||
return 0 == value_as_double (arg1);
|
||
|
||
len = TYPE_LENGTH (VALUE_TYPE (arg1));
|
||
p = VALUE_CONTENTS (arg1);
|
||
|
||
while (--len >= 0)
|
||
{
|
||
if (*p++)
|
||
break;
|
||
}
|
||
|
||
return len < 0;
|
||
}
|
||
|
||
/* Simulate the C operator == by returning a 1
|
||
iff ARG1 and ARG2 have equal contents. */
|
||
|
||
int
|
||
value_equal (arg1, arg2)
|
||
register value arg1, arg2;
|
||
|
||
{
|
||
register int len;
|
||
register char *p1, *p2;
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
COERCE_ARRAY (arg2);
|
||
|
||
code1 = TYPE_CODE (VALUE_TYPE (arg1));
|
||
code2 = TYPE_CODE (VALUE_TYPE (arg2));
|
||
|
||
if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
|
||
return value_as_long (arg1) == value_as_long (arg2);
|
||
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
|
||
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
|
||
return value_as_double (arg1) == value_as_double (arg2);
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT)
|
||
return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT)
|
||
return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2);
|
||
|
||
else if (code1 == code2
|
||
&& ((len = TYPE_LENGTH (VALUE_TYPE (arg1)))
|
||
== TYPE_LENGTH (VALUE_TYPE (arg2))))
|
||
{
|
||
p1 = VALUE_CONTENTS (arg1);
|
||
p2 = VALUE_CONTENTS (arg2);
|
||
while (--len >= 0)
|
||
{
|
||
if (*p1++ != *p2++)
|
||
break;
|
||
}
|
||
return len < 0;
|
||
}
|
||
else
|
||
{
|
||
error ("Invalid type combination in equality test.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
}
|
||
|
||
/* Simulate the C operator < by returning 1
|
||
iff ARG1's contents are less than ARG2's. */
|
||
|
||
int
|
||
value_less (arg1, arg2)
|
||
register value arg1, arg2;
|
||
{
|
||
register enum type_code code1;
|
||
register enum type_code code2;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
COERCE_ARRAY (arg2);
|
||
|
||
code1 = TYPE_CODE (VALUE_TYPE (arg1));
|
||
code2 = TYPE_CODE (VALUE_TYPE (arg2));
|
||
|
||
if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
|
||
{
|
||
if (TYPE_UNSIGNED (VALUE_TYPE (arg1))
|
||
|| TYPE_UNSIGNED (VALUE_TYPE (arg2)))
|
||
return ((unsigned LONGEST) value_as_long (arg1)
|
||
< (unsigned LONGEST) value_as_long (arg2));
|
||
else
|
||
return value_as_long (arg1) < value_as_long (arg2);
|
||
}
|
||
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
|
||
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
|
||
return value_as_double (arg1) < value_as_double (arg2);
|
||
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
return value_as_pointer (arg1) < value_as_pointer (arg2);
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT)
|
||
return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT)
|
||
return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2);
|
||
|
||
else
|
||
{
|
||
error ("Invalid type combination in ordering comparison.");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* The unary operators - and ~. Both free the argument ARG1. */
|
||
|
||
value
|
||
value_neg (arg1)
|
||
register value arg1;
|
||
{
|
||
register struct type *type;
|
||
|
||
COERCE_ENUM (arg1);
|
||
|
||
type = VALUE_TYPE (arg1);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
return value_from_double (type, - value_as_double (arg1));
|
||
else if (TYPE_CODE (type) == TYPE_CODE_INT)
|
||
return value_from_longest (type, - value_as_long (arg1));
|
||
else {
|
||
error ("Argument to negate operation not a number.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
}
|
||
|
||
value
|
||
value_complement (arg1)
|
||
register value arg1;
|
||
{
|
||
COERCE_ENUM (arg1);
|
||
|
||
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
|
||
error ("Argument to complement operation not an integer.");
|
||
|
||
return value_from_longest (VALUE_TYPE (arg1), ~ value_as_long (arg1));
|
||
}
|
||
|
||
/* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE,
|
||
and whose VALUE_CONTENTS is valaddr.
|
||
Return -1 if out of range, -2 other error. */
|
||
|
||
int
|
||
value_bit_index (type, valaddr, index)
|
||
struct type *type;
|
||
char *valaddr;
|
||
int index;
|
||
{
|
||
struct type *range;
|
||
int low_bound, high_bound, bit_length;
|
||
LONGEST word;
|
||
range = TYPE_FIELD_TYPE (type, 0);
|
||
if (TYPE_CODE (range) != TYPE_CODE_RANGE)
|
||
return -2;
|
||
low_bound = TYPE_LOW_BOUND (range);
|
||
high_bound = TYPE_HIGH_BOUND (range);
|
||
if (index < low_bound || index > high_bound)
|
||
return -1;
|
||
bit_length = high_bound - low_bound + 1;
|
||
index -= low_bound;
|
||
if (bit_length <= TARGET_CHAR_BIT)
|
||
word = unpack_long (builtin_type_unsigned_char, valaddr);
|
||
else if (bit_length <= TARGET_SHORT_BIT)
|
||
word = unpack_long (builtin_type_unsigned_short, valaddr);
|
||
else
|
||
{
|
||
int word_start_index = (index / TARGET_INT_BIT) * TARGET_INT_BIT;
|
||
index -= word_start_index;
|
||
word = unpack_long (builtin_type_unsigned_int,
|
||
valaddr + (word_start_index / HOST_CHAR_BIT));
|
||
}
|
||
#if BITS_BIG_ENDIAN
|
||
if (bit_length <= TARGET_CHAR_BIT)
|
||
index = TARGET_CHAR_BIT - 1 - index;
|
||
else if (bit_length <= TARGET_SHORT_BIT)
|
||
index = TARGET_SHORT_BIT - 1 - index;
|
||
else
|
||
index = TARGET_INT_BIT - 1 - index;
|
||
#endif
|
||
return (word >> index) & 1;
|
||
}
|
||
|
||
value
|
||
value_in (element, set)
|
||
value element, set;
|
||
{
|
||
int member;
|
||
if (TYPE_CODE (VALUE_TYPE (set)) != TYPE_CODE_SET)
|
||
error ("Second argument of 'IN' has wrong type");
|
||
if (TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_INT
|
||
&& TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_CHAR
|
||
&& TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_ENUM
|
||
&& TYPE_CODE (VALUE_TYPE (element)) != TYPE_CODE_BOOL)
|
||
error ("First argument of 'IN' has wrong type");
|
||
member = value_bit_index (VALUE_TYPE (set), VALUE_CONTENTS (set),
|
||
value_as_long (element));
|
||
if (member < 0)
|
||
error ("First argument of 'IN' not in range");
|
||
return value_from_longest (builtin_type_int, member);
|
||
}
|
||
|
||
void
|
||
_initialize_valarith ()
|
||
{
|
||
/* Can't just call init_type because we wouldn't know what names to give
|
||
them. */
|
||
if (sizeof (LONGEST) > TARGET_LONG_BIT / HOST_CHAR_BIT)
|
||
{
|
||
unsigned_operation_result = builtin_type_unsigned_long_long;
|
||
signed_operation_result = builtin_type_long_long;
|
||
}
|
||
else
|
||
{
|
||
unsigned_operation_result = builtin_type_unsigned_long;
|
||
signed_operation_result = builtin_type_long;
|
||
}
|
||
}
|