binutils-gdb/bfd/format.c
Alan Modra 226f9f4fad Rename bfd_bread and bfd_bwrite
These were renamed from bfd_read and bfd_write back in 2001 when they
lost an unnecessary parameter.  Rename them back, and get rid of a few
casts that are only needed without prototyped functions (K&R C).
2023-08-09 08:48:09 +09:30

742 lines
21 KiB
C

/* Generic BFD support for file formats.
Copyright (C) 1990-2023 Free Software Foundation, Inc.
Written by Cygnus Support.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
MA 02110-1301, USA. */
/*
SECTION
File formats
A format is a BFD concept of high level file contents type. The
formats supported by BFD are:
o <<bfd_object>>
The BFD may contain data, symbols, relocations and debug info.
o <<bfd_archive>>
The BFD contains other BFDs and an optional index.
o <<bfd_core>>
The BFD contains the result of an executable core dump.
SUBSECTION
File format functions
*/
#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
/* IMPORT from targets.c. */
extern const size_t _bfd_target_vector_entries;
/*
FUNCTION
bfd_check_format
SYNOPSIS
bool bfd_check_format (bfd *abfd, bfd_format format);
DESCRIPTION
Verify if the file attached to the BFD @var{abfd} is compatible
with the format @var{format} (i.e., one of <<bfd_object>>,
<<bfd_archive>> or <<bfd_core>>).
If the BFD has been set to a specific target before the
call, only the named target and format combination is
checked. If the target has not been set, or has been set to
<<default>>, then all the known target backends is
interrogated to determine a match. If the default target
matches, it is used. If not, exactly one target must recognize
the file, or an error results.
The function returns <<TRUE>> on success, otherwise <<FALSE>>
with one of the following error codes:
o <<bfd_error_invalid_operation>> -
if <<format>> is not one of <<bfd_object>>, <<bfd_archive>> or
<<bfd_core>>.
o <<bfd_error_system_call>> -
if an error occured during a read - even some file mismatches
can cause bfd_error_system_calls.
o <<file_not_recognised>> -
none of the backends recognised the file format.
o <<bfd_error_file_ambiguously_recognized>> -
more than one backend recognised the file format.
*/
bool
bfd_check_format (bfd *abfd, bfd_format format)
{
return bfd_check_format_matches (abfd, format, NULL);
}
struct bfd_preserve
{
void *marker;
void *tdata;
flagword flags;
const struct bfd_iovec *iovec;
void *iostream;
const struct bfd_arch_info *arch_info;
const struct bfd_build_id *build_id;
bfd_cleanup cleanup;
struct bfd_section *sections;
struct bfd_section *section_last;
unsigned int section_count;
unsigned int section_id;
unsigned int symcount;
bool read_only;
bfd_vma start_address;
struct bfd_hash_table section_htab;
};
/* When testing an object for compatibility with a particular target
back-end, the back-end object_p function needs to set up certain
fields in the bfd on successfully recognizing the object. This
typically happens in a piecemeal fashion, with failures possible at
many points. On failure, the bfd is supposed to be restored to its
initial state, which is virtually impossible. However, restoring a
subset of the bfd state works in practice. This function stores
the subset. */
static bool
bfd_preserve_save (bfd *abfd, struct bfd_preserve *preserve,
bfd_cleanup cleanup)
{
preserve->tdata = abfd->tdata.any;
preserve->arch_info = abfd->arch_info;
preserve->flags = abfd->flags;
preserve->iovec = abfd->iovec;
preserve->iostream = abfd->iostream;
preserve->sections = abfd->sections;
preserve->section_last = abfd->section_last;
preserve->section_count = abfd->section_count;
preserve->section_id = _bfd_section_id;
preserve->symcount = abfd->symcount;
preserve->read_only = abfd->read_only;
preserve->start_address = abfd->start_address;
preserve->section_htab = abfd->section_htab;
preserve->marker = bfd_alloc (abfd, 1);
preserve->build_id = abfd->build_id;
preserve->cleanup = cleanup;
if (preserve->marker == NULL)
return false;
return bfd_hash_table_init (&abfd->section_htab, bfd_section_hash_newfunc,
sizeof (struct section_hash_entry));
}
/* A back-end object_p function may flip a bfd from file backed to
in-memory, eg. pe_ILF_object_p. In that case to restore the
original IO state we need to reopen the file. Conversely, if we
are restoring a previously matched pe ILF format and have been
checking further target matches using file IO then we need to close
the file and detach the bfd from the cache lru list. */
static void
io_reinit (bfd *abfd, struct bfd_preserve *preserve)
{
if (abfd->iovec != preserve->iovec)
{
/* Handle file backed to in-memory transition. bfd_cache_close
won't do anything unless abfd->iovec is the cache_iovec. */
bfd_cache_close (abfd);
abfd->iovec = preserve->iovec;
abfd->iostream = preserve->iostream;
/* Handle in-memory to file backed transition. */
if ((abfd->flags & BFD_CLOSED_BY_CACHE) != 0
&& (abfd->flags & BFD_IN_MEMORY) != 0
&& (preserve->flags & BFD_CLOSED_BY_CACHE) == 0
&& (preserve->flags & BFD_IN_MEMORY) == 0)
bfd_open_file (abfd);
}
abfd->flags = preserve->flags;
}
/* Clear out a subset of BFD state. */
static void
bfd_reinit (bfd *abfd, unsigned int section_id,
struct bfd_preserve *preserve, bfd_cleanup cleanup)
{
_bfd_section_id = section_id;
if (cleanup)
cleanup (abfd);
abfd->tdata.any = NULL;
abfd->arch_info = &bfd_default_arch_struct;
io_reinit (abfd, preserve);
abfd->symcount = 0;
abfd->read_only = 0;
abfd->start_address = 0;
abfd->build_id = NULL;
bfd_section_list_clear (abfd);
}
/* Restores bfd state saved by bfd_preserve_save. */
static bfd_cleanup
bfd_preserve_restore (bfd *abfd, struct bfd_preserve *preserve)
{
bfd_hash_table_free (&abfd->section_htab);
abfd->tdata.any = preserve->tdata;
abfd->arch_info = preserve->arch_info;
io_reinit (abfd, preserve);
abfd->section_htab = preserve->section_htab;
abfd->sections = preserve->sections;
abfd->section_last = preserve->section_last;
abfd->section_count = preserve->section_count;
_bfd_section_id = preserve->section_id;
abfd->symcount = preserve->symcount;
abfd->read_only = preserve->read_only;
abfd->start_address = preserve->start_address;
abfd->build_id = preserve->build_id;
/* bfd_release frees all memory more recently bfd_alloc'd than
its arg, as well as its arg. */
bfd_release (abfd, preserve->marker);
preserve->marker = NULL;
return preserve->cleanup;
}
/* Called when the bfd state saved by bfd_preserve_save is no longer
needed. */
static void
bfd_preserve_finish (bfd *abfd ATTRIBUTE_UNUSED, struct bfd_preserve *preserve)
{
if (preserve->cleanup)
{
/* Run the cleanup, assuming that all it will need is the
tdata at the time the cleanup was returned. */
void *tdata = abfd->tdata.any;
abfd->tdata.any = preserve->tdata;
preserve->cleanup (abfd);
abfd->tdata.any = tdata;
}
/* It would be nice to be able to free more memory here, eg. old
tdata, but that's not possible since these blocks are sitting
inside bfd_alloc'd memory. The section hash is on a separate
objalloc. */
bfd_hash_table_free (&preserve->section_htab);
preserve->marker = NULL;
}
static void
print_warnmsg (struct per_xvec_message **list)
{
fflush (stdout);
fprintf (stderr, "%s: ", _bfd_get_error_program_name ());
for (struct per_xvec_message *warn = *list; warn; warn = warn->next)
{
fputs (warn->message, stderr);
fputc ('\n', stderr);
}
fflush (stderr);
}
static void
clear_warnmsg (struct per_xvec_message **list)
{
struct per_xvec_message *warn = *list;
while (warn)
{
struct per_xvec_message *next = warn->next;
free (warn);
warn = next;
}
*list = NULL;
}
static void
null_error_handler (const char *fmt ATTRIBUTE_UNUSED,
va_list ap ATTRIBUTE_UNUSED)
{
}
/*
FUNCTION
bfd_check_format_matches
SYNOPSIS
bool bfd_check_format_matches
(bfd *abfd, bfd_format format, char ***matching);
DESCRIPTION
Like <<bfd_check_format>>, except when it returns FALSE with
<<bfd_errno>> set to <<bfd_error_file_ambiguously_recognized>>. In that
case, if @var{matching} is not NULL, it will be filled in with
a NULL-terminated list of the names of the formats that matched,
allocated with <<malloc>>.
Then the user may choose a format and try again.
When done with the list that @var{matching} points to, the caller
should free it.
*/
bool
bfd_check_format_matches (bfd *abfd, bfd_format format, char ***matching)
{
extern const bfd_target binary_vec;
#if BFD_SUPPORTS_PLUGINS
extern const bfd_target plugin_vec;
#endif
const bfd_target * const *target;
const bfd_target **matching_vector = NULL;
const bfd_target *save_targ, *right_targ, *ar_right_targ, *match_targ;
int match_count, best_count, best_match;
int ar_match_index;
unsigned int initial_section_id = _bfd_section_id;
struct bfd_preserve preserve, preserve_match;
bfd_cleanup cleanup = NULL;
bfd_error_handler_type orig_error_handler;
static int in_check_format;
if (matching != NULL)
*matching = NULL;
if (!bfd_read_p (abfd)
|| (unsigned int) abfd->format >= (unsigned int) bfd_type_end)
{
bfd_set_error (bfd_error_invalid_operation);
return false;
}
if (abfd->format != bfd_unknown)
return abfd->format == format;
if (matching != NULL || *bfd_associated_vector != NULL)
{
size_t amt;
amt = sizeof (*matching_vector) * 2 * _bfd_target_vector_entries;
matching_vector = (const bfd_target **) bfd_malloc (amt);
if (!matching_vector)
return false;
}
/* Presume the answer is yes. */
abfd->format = format;
save_targ = abfd->xvec;
/* Don't report errors on recursive calls checking the first element
of an archive. */
if (in_check_format)
orig_error_handler = bfd_set_error_handler (null_error_handler);
else
orig_error_handler = _bfd_set_error_handler_caching (abfd);
++in_check_format;
preserve_match.marker = NULL;
if (!bfd_preserve_save (abfd, &preserve, NULL))
goto err_ret;
/* If the target type was explicitly specified, just check that target. */
if (!abfd->target_defaulted)
{
if (bfd_seek (abfd, 0, SEEK_SET) != 0) /* rewind! */
goto err_ret;
cleanup = BFD_SEND_FMT (abfd, _bfd_check_format, (abfd));
if (cleanup)
goto ok_ret;
/* For a long time the code has dropped through to check all
targets if the specified target was wrong. I don't know why,
and I'm reluctant to change it. However, in the case of an
archive, it can cause problems. If the specified target does
not permit archives (e.g., the binary target), then we should
not allow some other target to recognize it as an archive, but
should instead allow the specified target to recognize it as an
object. When I first made this change, it broke the PE target,
because the specified pei-i386 target did not recognize the
actual pe-i386 archive. Since there may be other problems of
this sort, I changed this test to check only for the binary
target. */
if (format == bfd_archive && save_targ == &binary_vec)
goto err_unrecog;
}
/* Since the target type was defaulted, check them all in the hope
that one will be uniquely recognized. */
right_targ = NULL;
ar_right_targ = NULL;
match_targ = NULL;
best_match = 256;
best_count = 0;
match_count = 0;
ar_match_index = _bfd_target_vector_entries;
for (target = bfd_target_vector; *target != NULL; target++)
{
void **high_water;
/* The binary target matches anything, so don't return it when
searching. Don't match the plugin target if we have another
alternative since we want to properly set the input format
before allowing a plugin to claim the file. Also, don't
check the default target twice. */
if (*target == &binary_vec
#if BFD_SUPPORTS_PLUGINS
|| (match_count != 0 && *target == &plugin_vec)
#endif
|| (!abfd->target_defaulted && *target == save_targ))
continue;
/* If we already tried a match, the bfd is modified and may
have sections attached, which will confuse the next
_bfd_check_format call. */
bfd_reinit (abfd, initial_section_id, &preserve, cleanup);
/* Free bfd_alloc memory too. If we have matched and preserved
a target then the high water mark is that much higher. */
if (preserve_match.marker)
high_water = &preserve_match.marker;
else
high_water = &preserve.marker;
bfd_release (abfd, *high_water);
*high_water = bfd_alloc (abfd, 1);
/* Change BFD's target temporarily. */
abfd->xvec = *target;
if (bfd_seek (abfd, 0, SEEK_SET) != 0)
goto err_ret;
cleanup = BFD_SEND_FMT (abfd, _bfd_check_format, (abfd));
if (cleanup)
{
int match_priority = abfd->xvec->match_priority;
#if BFD_SUPPORTS_PLUGINS
/* If this object can be handled by a plugin, give that the
lowest priority; objects both handled by a plugin and
with an underlying object format will be claimed
separately by the plugin. */
if (*target == &plugin_vec)
match_priority = (*target)->match_priority;
#endif
if (abfd->format != bfd_archive
|| (bfd_has_map (abfd)
&& bfd_get_error () != bfd_error_wrong_object_format))
{
/* If this is the default target, accept it, even if
other targets might match. People who want those
other targets have to set the GNUTARGET variable. */
if (abfd->xvec == bfd_default_vector[0])
goto ok_ret;
if (matching_vector)
matching_vector[match_count] = abfd->xvec;
match_count++;
if (match_priority < best_match)
{
best_match = match_priority;
best_count = 0;
}
if (match_priority <= best_match)
{
/* This format checks out as ok! */
right_targ = abfd->xvec;
best_count++;
}
}
else
{
/* An archive with no armap or objects of the wrong
type. We want this target to match if we get no
better matches. */
if (ar_right_targ != bfd_default_vector[0])
ar_right_targ = *target;
if (matching_vector)
matching_vector[ar_match_index] = *target;
ar_match_index++;
}
if (preserve_match.marker == NULL)
{
match_targ = abfd->xvec;
if (!bfd_preserve_save (abfd, &preserve_match, cleanup))
goto err_ret;
cleanup = NULL;
}
}
}
if (best_count == 1)
match_count = 1;
if (match_count == 0)
{
/* Try partial matches. */
right_targ = ar_right_targ;
if (right_targ == bfd_default_vector[0])
{
match_count = 1;
}
else
{
match_count = ar_match_index - _bfd_target_vector_entries;
if (matching_vector && match_count > 1)
memcpy (matching_vector,
matching_vector + _bfd_target_vector_entries,
sizeof (*matching_vector) * match_count);
}
}
/* We have more than one equally good match. If any of the best
matches is a target in config.bfd targ_defvec or targ_selvecs,
choose it. */
if (match_count > 1)
{
const bfd_target * const *assoc = bfd_associated_vector;
while ((right_targ = *assoc++) != NULL)
{
int i = match_count;
while (--i >= 0)
if (matching_vector[i] == right_targ
&& right_targ->match_priority <= best_match)
break;
if (i >= 0)
{
match_count = 1;
break;
}
}
}
/* We still have more than one equally good match, and at least some
of the targets support match priority. Choose the first of the
best matches. */
if (matching_vector && match_count > 1 && best_count != match_count)
{
int i;
for (i = 0; i < match_count; i++)
{
right_targ = matching_vector[i];
if (right_targ->match_priority <= best_match)
break;
}
match_count = 1;
}
/* There is way too much undoing of half-known state here. We
really shouldn't iterate on live bfd's. Note that saving the
whole bfd and restoring it would be even worse; the first thing
you notice is that the cached bfd file position gets out of sync. */
if (preserve_match.marker != NULL)
cleanup = bfd_preserve_restore (abfd, &preserve_match);
if (match_count == 1)
{
abfd->xvec = right_targ;
/* If we come out of the loop knowing that the last target that
matched is the one we want, then ABFD should still be in a usable
state (except possibly for XVEC). This is not just an
optimisation. In the case of plugins a match against the
plugin target can result in the bfd being changed such that
it no longer matches the plugin target, nor will it match
RIGHT_TARG again. */
if (match_targ != right_targ)
{
bfd_reinit (abfd, initial_section_id, &preserve, cleanup);
bfd_release (abfd, preserve.marker);
if (bfd_seek (abfd, 0, SEEK_SET) != 0)
goto err_ret;
cleanup = BFD_SEND_FMT (abfd, _bfd_check_format, (abfd));
BFD_ASSERT (cleanup != NULL);
}
ok_ret:
/* If the file was opened for update, then `output_has_begun'
some time ago when the file was created. Do not recompute
sections sizes or alignments in _bfd_set_section_contents.
We can not set this flag until after checking the format,
because it will interfere with creation of BFD sections. */
if (abfd->direction == both_direction)
abfd->output_has_begun = true;
free (matching_vector);
if (preserve_match.marker != NULL)
bfd_preserve_finish (abfd, &preserve_match);
bfd_preserve_finish (abfd, &preserve);
bfd_set_error_handler (orig_error_handler);
struct per_xvec_message **list = _bfd_per_xvec_warn (abfd->xvec, 0);
if (*list)
print_warnmsg (list);
list = _bfd_per_xvec_warn (NULL, 0);
for (size_t i = 0; i < _bfd_target_vector_entries + 1; i++)
clear_warnmsg (list++);
--in_check_format;
/* File position has moved, BTW. */
return true;
}
if (match_count == 0)
{
err_unrecog:
bfd_set_error (bfd_error_file_not_recognized);
err_ret:
if (cleanup)
cleanup (abfd);
abfd->xvec = save_targ;
abfd->format = bfd_unknown;
free (matching_vector);
goto out;
}
/* Restore original target type and format. */
abfd->xvec = save_targ;
abfd->format = bfd_unknown;
bfd_set_error (bfd_error_file_ambiguously_recognized);
if (matching)
{
*matching = (char **) matching_vector;
matching_vector[match_count] = NULL;
/* Return target names. This is a little nasty. Maybe we
should do another bfd_malloc? */
while (--match_count >= 0)
{
const char *name = matching_vector[match_count]->name;
*(const char **) &matching_vector[match_count] = name;
}
}
else
free (matching_vector);
if (cleanup)
cleanup (abfd);
out:
if (preserve_match.marker != NULL)
bfd_preserve_finish (abfd, &preserve_match);
bfd_preserve_restore (abfd, &preserve);
bfd_set_error_handler (orig_error_handler);
struct per_xvec_message **list = _bfd_per_xvec_warn (NULL, 0);
struct per_xvec_message **one = NULL;
for (size_t i = 0; i < _bfd_target_vector_entries + 1; i++)
{
if (list[i])
{
if (!one)
one = list + i;
else
{
one = NULL;
break;
}
}
}
if (one)
print_warnmsg (one);
for (size_t i = 0; i < _bfd_target_vector_entries + 1; i++)
clear_warnmsg (list++);
--in_check_format;
return false;
}
/*
FUNCTION
bfd_set_format
SYNOPSIS
bool bfd_set_format (bfd *abfd, bfd_format format);
DESCRIPTION
This function sets the file format of the BFD @var{abfd} to the
format @var{format}. If the target set in the BFD does not
support the format requested, the format is invalid, or the BFD
is not open for writing, then an error occurs.
*/
bool
bfd_set_format (bfd *abfd, bfd_format format)
{
if (bfd_read_p (abfd)
|| (unsigned int) abfd->format >= (unsigned int) bfd_type_end)
{
bfd_set_error (bfd_error_invalid_operation);
return false;
}
if (abfd->format != bfd_unknown)
return abfd->format == format;
/* Presume the answer is yes. */
abfd->format = format;
if (!BFD_SEND_FMT (abfd, _bfd_set_format, (abfd)))
{
abfd->format = bfd_unknown;
return false;
}
return true;
}
/*
FUNCTION
bfd_format_string
SYNOPSIS
const char *bfd_format_string (bfd_format format);
DESCRIPTION
Return a pointer to a const string
<<invalid>>, <<object>>, <<archive>>, <<core>>, or <<unknown>>,
depending upon the value of @var{format}.
*/
const char *
bfd_format_string (bfd_format format)
{
if (((int) format < (int) bfd_unknown)
|| ((int) format >= (int) bfd_type_end))
return "invalid";
switch (format)
{
case bfd_object:
return "object"; /* Linker/assembler/compiler output. */
case bfd_archive:
return "archive"; /* Object archive file. */
case bfd_core:
return "core"; /* Core dump. */
default:
return "unknown";
}
}