mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-23 18:14:13 +08:00
4a94e36819
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script.
555 lines
17 KiB
C
555 lines
17 KiB
C
/* Target-dependent code for Lattice Mico32 processor, for GDB.
|
|
Contributed by Jon Beniston <jon@beniston.com>
|
|
|
|
Copyright (C) 2009-2022 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "inferior.h"
|
|
#include "dis-asm.h"
|
|
#include "symfile.h"
|
|
#include "remote.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb/sim-lm32.h"
|
|
#include "arch-utils.h"
|
|
#include "regcache.h"
|
|
#include "trad-frame.h"
|
|
#include "reggroups.h"
|
|
#include "opcodes/lm32-desc.h"
|
|
#include <algorithm>
|
|
#include "gdbarch.h"
|
|
|
|
/* Macros to extract fields from an instruction. */
|
|
#define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
|
|
#define LM32_REG0(insn) ((insn >> 21) & 0x1f)
|
|
#define LM32_REG1(insn) ((insn >> 16) & 0x1f)
|
|
#define LM32_REG2(insn) ((insn >> 11) & 0x1f)
|
|
#define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
|
|
|
|
struct lm32_gdbarch_tdep : gdbarch_tdep
|
|
{
|
|
/* gdbarch target dependent data here. Currently unused for LM32. */
|
|
};
|
|
|
|
struct lm32_frame_cache
|
|
{
|
|
/* The frame's base. Used when constructing a frame ID. */
|
|
CORE_ADDR base;
|
|
CORE_ADDR pc;
|
|
/* Size of frame. */
|
|
int size;
|
|
/* Table indicating the location of each and every register. */
|
|
trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
/* Add the available register groups. */
|
|
|
|
static void
|
|
lm32_add_reggroups (struct gdbarch *gdbarch)
|
|
{
|
|
reggroup_add (gdbarch, general_reggroup);
|
|
reggroup_add (gdbarch, all_reggroup);
|
|
reggroup_add (gdbarch, system_reggroup);
|
|
}
|
|
|
|
/* Return whether a given register is in a given group. */
|
|
|
|
static int
|
|
lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
if (group == general_reggroup)
|
|
return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
|
|
|| (regnum == SIM_LM32_PC_REGNUM);
|
|
else if (group == system_reggroup)
|
|
return ((regnum >= SIM_LM32_BA_REGNUM) && (regnum <= SIM_LM32_EA_REGNUM))
|
|
|| ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
/* Return a name that corresponds to the given register number. */
|
|
|
|
static const char *
|
|
lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
static const char *register_names[] = {
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
|
|
"r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
|
|
"PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
|
|
};
|
|
|
|
if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
|
|
return NULL;
|
|
else
|
|
return register_names[reg_nr];
|
|
}
|
|
|
|
/* Return type of register. */
|
|
|
|
static struct type *
|
|
lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
|
|
{
|
|
return builtin_type (gdbarch)->builtin_int32;
|
|
}
|
|
|
|
/* Return non-zero if a register can't be written. */
|
|
|
|
static int
|
|
lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
|
|
}
|
|
|
|
/* Analyze a function's prologue. */
|
|
|
|
static CORE_ADDR
|
|
lm32_analyze_prologue (struct gdbarch *gdbarch,
|
|
CORE_ADDR pc, CORE_ADDR limit,
|
|
struct lm32_frame_cache *info)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
unsigned long instruction;
|
|
|
|
/* Keep reading though instructions, until we come across an instruction
|
|
that isn't likely to be part of the prologue. */
|
|
info->size = 0;
|
|
for (; pc < limit; pc += 4)
|
|
{
|
|
|
|
/* Read an instruction. */
|
|
instruction = read_memory_integer (pc, 4, byte_order);
|
|
|
|
if ((LM32_OPCODE (instruction) == OP_SW)
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
|
|
{
|
|
/* Any stack displaced store is likely part of the prologue.
|
|
Record that the register is being saved, and the offset
|
|
into the stack. */
|
|
info->saved_regs[LM32_REG1 (instruction)].set_addr (LM32_IMM16 (instruction));
|
|
}
|
|
else if ((LM32_OPCODE (instruction) == OP_ADDI)
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
|
|
{
|
|
/* An add to the SP is likely to be part of the prologue.
|
|
Adjust stack size by whatever the instruction adds to the sp. */
|
|
info->size -= LM32_IMM16 (instruction);
|
|
}
|
|
else if ( /* add fp,fp,sp */
|
|
((LM32_OPCODE (instruction) == OP_ADD)
|
|
&& (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
|
|
/* mv fp,imm */
|
|
|| ((LM32_OPCODE (instruction) == OP_ADDI)
|
|
&& (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
|
|
&& (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
|
|
{
|
|
/* Likely to be in the prologue for functions that require
|
|
a frame pointer. */
|
|
}
|
|
else
|
|
{
|
|
/* Any other instruction is likely not to be part of the
|
|
prologue. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* Return PC of first non prologue instruction, for the function at the
|
|
specified address. */
|
|
|
|
static CORE_ADDR
|
|
lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, limit_pc;
|
|
struct lm32_frame_cache frame_info;
|
|
trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
|
|
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
|
|
{
|
|
CORE_ADDR post_prologue_pc
|
|
= skip_prologue_using_sal (gdbarch, func_addr);
|
|
if (post_prologue_pc != 0)
|
|
return std::max (pc, post_prologue_pc);
|
|
}
|
|
|
|
/* Can't determine prologue from the symbol table, need to examine
|
|
instructions. */
|
|
|
|
/* Find an upper limit on the function prologue using the debug
|
|
information. If the debug information could not be used to provide
|
|
that bound, then use an arbitrary large number as the upper bound. */
|
|
limit_pc = skip_prologue_using_sal (gdbarch, pc);
|
|
if (limit_pc == 0)
|
|
limit_pc = pc + 100; /* Magic. */
|
|
|
|
frame_info.saved_regs = saved_regs;
|
|
return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
|
|
}
|
|
|
|
/* Create a breakpoint instruction. */
|
|
constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
|
|
|
|
typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
|
|
|
|
|
|
/* Setup registers and stack for faking a call to a function in the
|
|
inferior. */
|
|
|
|
static CORE_ADDR
|
|
lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
function_call_return_method return_method,
|
|
CORE_ADDR struct_addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
int first_arg_reg = SIM_LM32_R1_REGNUM;
|
|
int num_arg_regs = 8;
|
|
int i;
|
|
|
|
/* Set the return address. */
|
|
regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
|
|
|
|
/* If we're returning a large struct, a pointer to the address to
|
|
store it at is passed as a first hidden parameter. */
|
|
if (return_method == return_method_struct)
|
|
{
|
|
regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
|
|
first_arg_reg++;
|
|
num_arg_regs--;
|
|
sp -= 4;
|
|
}
|
|
|
|
/* Setup parameters. */
|
|
for (i = 0; i < nargs; i++)
|
|
{
|
|
struct value *arg = args[i];
|
|
struct type *arg_type = check_typedef (value_type (arg));
|
|
gdb_byte *contents;
|
|
ULONGEST val;
|
|
|
|
/* Promote small integer types to int. */
|
|
switch (arg_type->code ())
|
|
{
|
|
case TYPE_CODE_INT:
|
|
case TYPE_CODE_BOOL:
|
|
case TYPE_CODE_CHAR:
|
|
case TYPE_CODE_RANGE:
|
|
case TYPE_CODE_ENUM:
|
|
if (TYPE_LENGTH (arg_type) < 4)
|
|
{
|
|
arg_type = builtin_type (gdbarch)->builtin_int32;
|
|
arg = value_cast (arg_type, arg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* FIXME: Handle structures. */
|
|
|
|
contents = (gdb_byte *) value_contents (arg).data ();
|
|
val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
|
|
byte_order);
|
|
|
|
/* First num_arg_regs parameters are passed by registers,
|
|
and the rest are passed on the stack. */
|
|
if (i < num_arg_regs)
|
|
regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
|
|
else
|
|
{
|
|
write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
|
|
val);
|
|
sp -= 4;
|
|
}
|
|
}
|
|
|
|
/* Update stack pointer. */
|
|
regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
/* Extract return value after calling a function in the inferior. */
|
|
|
|
static void
|
|
lm32_extract_return_value (struct type *type, struct regcache *regcache,
|
|
gdb_byte *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST l;
|
|
CORE_ADDR return_buffer;
|
|
|
|
if (type->code () != TYPE_CODE_STRUCT
|
|
&& type->code () != TYPE_CODE_UNION
|
|
&& type->code () != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
|
|
{
|
|
/* Return value is returned in a single register. */
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
|
store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
|
|
}
|
|
else if ((type->code () == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
|
|
{
|
|
/* 64-bit values are returned in a register pair. */
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
|
memcpy (valbuf, &l, 4);
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
|
|
memcpy (valbuf + 4, &l, 4);
|
|
}
|
|
else
|
|
{
|
|
/* Aggregate types greater than a single register are returned
|
|
in memory. FIXME: Unless they are only 2 regs?. */
|
|
regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
|
|
return_buffer = l;
|
|
read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
|
|
}
|
|
}
|
|
|
|
/* Write into appropriate registers a function return value of type
|
|
TYPE, given in virtual format. */
|
|
static void
|
|
lm32_store_return_value (struct type *type, struct regcache *regcache,
|
|
const gdb_byte *valbuf)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
ULONGEST val;
|
|
int len = TYPE_LENGTH (type);
|
|
|
|
if (len <= 4)
|
|
{
|
|
val = extract_unsigned_integer (valbuf, len, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
|
|
}
|
|
else if (len <= 8)
|
|
{
|
|
val = extract_unsigned_integer (valbuf, 4, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
|
|
val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
|
|
regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
|
|
}
|
|
else
|
|
error (_("lm32_store_return_value: type length too large."));
|
|
}
|
|
|
|
/* Determine whether a functions return value is in a register or memory. */
|
|
static enum return_value_convention
|
|
lm32_return_value (struct gdbarch *gdbarch, struct value *function,
|
|
struct type *valtype, struct regcache *regcache,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf)
|
|
{
|
|
enum type_code code = valtype->code ();
|
|
|
|
if (code == TYPE_CODE_STRUCT
|
|
|| code == TYPE_CODE_UNION
|
|
|| code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
|
|
return RETURN_VALUE_STRUCT_CONVENTION;
|
|
|
|
if (readbuf)
|
|
lm32_extract_return_value (valtype, regcache, readbuf);
|
|
if (writebuf)
|
|
lm32_store_return_value (valtype, regcache, writebuf);
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
|
|
/* Put here the code to store, into fi->saved_regs, the addresses of
|
|
the saved registers of frame described by FRAME_INFO. This
|
|
includes special registers such as pc and fp saved in special ways
|
|
in the stack frame. sp is even more special: the address we return
|
|
for it IS the sp for the next frame. */
|
|
|
|
static struct lm32_frame_cache *
|
|
lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
|
|
{
|
|
CORE_ADDR current_pc;
|
|
ULONGEST prev_sp;
|
|
ULONGEST this_base;
|
|
struct lm32_frame_cache *info;
|
|
int i;
|
|
|
|
if ((*this_prologue_cache))
|
|
return (struct lm32_frame_cache *) (*this_prologue_cache);
|
|
|
|
info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
|
|
(*this_prologue_cache) = info;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
|
|
|
|
info->pc = get_frame_func (this_frame);
|
|
current_pc = get_frame_pc (this_frame);
|
|
lm32_analyze_prologue (get_frame_arch (this_frame),
|
|
info->pc, current_pc, info);
|
|
|
|
/* Compute the frame's base, and the previous frame's SP. */
|
|
this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
|
|
prev_sp = this_base + info->size;
|
|
info->base = this_base;
|
|
|
|
/* Convert callee save offsets into addresses. */
|
|
for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
|
|
{
|
|
if (info->saved_regs[i].is_addr ())
|
|
info->saved_regs[i].set_addr (this_base + info->saved_regs[i].addr ());
|
|
}
|
|
|
|
/* The call instruction moves the caller's PC in the callee's RA register.
|
|
Since this is an unwind, do the reverse. Copy the location of RA register
|
|
into PC (the address / regnum) so that a request for PC will be
|
|
converted into a request for the RA register. */
|
|
info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
|
|
|
|
/* The previous frame's SP needed to be computed. Save the computed
|
|
value. */
|
|
info->saved_regs[SIM_LM32_SP_REGNUM].set_value (prev_sp);
|
|
|
|
return info;
|
|
}
|
|
|
|
static void
|
|
lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
|
|
struct frame_id *this_id)
|
|
{
|
|
struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
|
|
|
|
/* This marks the outermost frame. */
|
|
if (cache->base == 0)
|
|
return;
|
|
|
|
(*this_id) = frame_id_build (cache->base, cache->pc);
|
|
}
|
|
|
|
static struct value *
|
|
lm32_frame_prev_register (struct frame_info *this_frame,
|
|
void **this_prologue_cache, int regnum)
|
|
{
|
|
struct lm32_frame_cache *info;
|
|
|
|
info = lm32_frame_cache (this_frame, this_prologue_cache);
|
|
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
|
|
}
|
|
|
|
static const struct frame_unwind lm32_frame_unwind = {
|
|
"lm32 prologue",
|
|
NORMAL_FRAME,
|
|
default_frame_unwind_stop_reason,
|
|
lm32_frame_this_id,
|
|
lm32_frame_prev_register,
|
|
NULL,
|
|
default_frame_sniffer
|
|
};
|
|
|
|
static CORE_ADDR
|
|
lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
|
|
{
|
|
struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
|
|
|
|
return info->base;
|
|
}
|
|
|
|
static const struct frame_base lm32_frame_base = {
|
|
&lm32_frame_unwind,
|
|
lm32_frame_base_address,
|
|
lm32_frame_base_address,
|
|
lm32_frame_base_address
|
|
};
|
|
|
|
static CORE_ADDR
|
|
lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
/* Align to the size of an instruction (so that they can safely be
|
|
pushed onto the stack. */
|
|
return sp & ~3;
|
|
}
|
|
|
|
static struct gdbarch *
|
|
lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* If there is already a candidate, use it. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information provided. */
|
|
lm32_gdbarch_tdep *tdep = new lm32_gdbarch_tdep;
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
/* Type sizes. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
|
|
/* Register info. */
|
|
set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
|
|
set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
|
|
set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
|
|
set_gdbarch_register_name (gdbarch, lm32_register_name);
|
|
set_gdbarch_register_type (gdbarch, lm32_register_type);
|
|
set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
|
|
|
|
/* Frame info. */
|
|
set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
|
|
/* Frame unwinding. */
|
|
set_gdbarch_frame_align (gdbarch, lm32_frame_align);
|
|
frame_base_set_default (gdbarch, &lm32_frame_base);
|
|
frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
|
|
|
|
/* Breakpoints. */
|
|
set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
|
|
set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
|
|
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
|
|
|
|
/* Calling functions in the inferior. */
|
|
set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
|
|
set_gdbarch_return_value (gdbarch, lm32_return_value);
|
|
|
|
lm32_add_reggroups (gdbarch);
|
|
set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void _initialize_lm32_tdep ();
|
|
void
|
|
_initialize_lm32_tdep ()
|
|
{
|
|
register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
|
|
}
|