binutils-gdb/gold/mips.cc
Alan Modra fd67aa1129 Update year range in copyright notice of binutils files
Adds two new external authors to etc/update-copyright.py to cover
bfd/ax_tls.m4, and adds gprofng to dirs handled automatically, then
updates copyright messages as follows:

1) Update cgen/utils.scm emitted copyrights.
2) Run "etc/update-copyright.py --this-year" with an extra external
   author I haven't committed, 'Kalray SA.', to cover gas testsuite
   files (which should have their copyright message removed).
3) Build with --enable-maintainer-mode --enable-cgen-maint=yes.
4) Check out */po/*.pot which we don't update frequently.
2024-01-04 22:58:12 +10:30

12749 lines
441 KiB
C++

// mips.cc -- mips target support for gold.
// Copyright (C) 2011-2024 Free Software Foundation, Inc.
// Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
// and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
// This file contains borrowed and adapted code from bfd/elfxx-mips.c.
// This file is part of gold.
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
#include "gold.h"
#include <algorithm>
#include <set>
#include <sstream>
#include "demangle.h"
#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "mips.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "errors.h"
#include "gc.h"
#include "attributes.h"
#include "nacl.h"
namespace
{
using namespace gold;
template<int size, bool big_endian>
class Mips_output_data_plt;
template<int size, bool big_endian>
class Mips_output_data_got;
template<int size, bool big_endian>
class Target_mips;
template<int size, bool big_endian>
class Mips_output_section_reginfo;
template<int size, bool big_endian>
class Mips_output_section_options;
template<int size, bool big_endian>
class Mips_output_data_la25_stub;
template<int size, bool big_endian>
class Mips_output_data_mips_stubs;
template<int size>
class Mips_symbol;
template<int size, bool big_endian>
class Mips_got_info;
template<int size, bool big_endian>
class Mips_relobj;
class Mips16_stub_section_base;
template<int size, bool big_endian>
class Mips16_stub_section;
// The ABI says that every symbol used by dynamic relocations must have
// a global GOT entry. Among other things, this provides the dynamic
// linker with a free, directly-indexed cache. The GOT can therefore
// contain symbols that are not referenced by GOT relocations themselves
// (in other words, it may have symbols that are not referenced by things
// like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
// GOT relocations are less likely to overflow if we put the associated
// GOT entries towards the beginning. We therefore divide the global
// GOT entries into two areas: "normal" and "reloc-only". Entries in
// the first area can be used for both dynamic relocations and GP-relative
// accesses, while those in the "reloc-only" area are for dynamic
// relocations only.
// These GGA_* ("Global GOT Area") values are organised so that lower
// values are more general than higher values. Also, non-GGA_NONE
// values are ordered by the position of the area in the GOT.
enum Global_got_area
{
GGA_NORMAL = 0,
GGA_RELOC_ONLY = 1,
GGA_NONE = 2
};
// The types of GOT entries needed for this platform.
// These values are exposed to the ABI in an incremental link.
// Do not renumber existing values without changing the version
// number of the .gnu_incremental_inputs section.
enum Got_type
{
GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
// GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
GOT_TYPE_STANDARD_MULTIGOT = 3,
GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
};
// TLS type of GOT entry.
enum Got_tls_type
{
GOT_TLS_NONE = 0,
GOT_TLS_GD = 1,
GOT_TLS_LDM = 2,
GOT_TLS_IE = 4
};
// Values found in the r_ssym field of a relocation entry.
enum Special_relocation_symbol
{
RSS_UNDEF = 0, // None - value is zero.
RSS_GP = 1, // Value of GP.
RSS_GP0 = 2, // Value of GP in object being relocated.
RSS_LOC = 3 // Address of location being relocated.
};
// Whether the section is readonly.
static inline bool
is_readonly_section(Output_section* output_section)
{
elfcpp::Elf_Xword section_flags = output_section->flags();
elfcpp::Elf_Word section_type = output_section->type();
if (section_type == elfcpp::SHT_NOBITS)
return false;
if (section_flags & elfcpp::SHF_WRITE)
return false;
return true;
}
// Return TRUE if a relocation of type R_TYPE from OBJECT might
// require an la25 stub. See also local_pic_function, which determines
// whether the destination function ever requires a stub.
template<int size, bool big_endian>
static inline bool
relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
unsigned int r_type, bool target_is_16_bit_code)
{
// We specifically ignore branches and jumps from EF_PIC objects,
// where the onus is on the compiler or programmer to perform any
// necessary initialization of $25. Sometimes such initialization
// is unnecessary; for example, -mno-shared functions do not use
// the incoming value of $25, and may therefore be called directly.
if (object->is_pic())
return false;
switch (r_type)
{
case elfcpp::R_MIPS_26:
case elfcpp::R_MIPS_PC16:
case elfcpp::R_MIPS_PC21_S2:
case elfcpp::R_MIPS_PC26_S2:
case elfcpp::R_MICROMIPS_26_S1:
case elfcpp::R_MICROMIPS_PC7_S1:
case elfcpp::R_MICROMIPS_PC10_S1:
case elfcpp::R_MICROMIPS_PC16_S1:
case elfcpp::R_MICROMIPS_PC23_S2:
return true;
case elfcpp::R_MIPS16_26:
return !target_is_16_bit_code;
default:
return false;
}
}
// Return true if SYM is a locally-defined PIC function, in the sense
// that it or its fn_stub might need $25 to be valid on entry.
// Note that MIPS16 functions set up $gp using PC-relative instructions,
// so they themselves never need $25 to be valid. Only non-MIPS16
// entry points are of interest here.
template<int size, bool big_endian>
static inline bool
local_pic_function(Mips_symbol<size>* sym)
{
bool def_regular = (sym->source() == Symbol::FROM_OBJECT
&& !sym->object()->is_dynamic()
&& !sym->is_undefined());
if (sym->is_defined() && def_regular)
{
Mips_relobj<size, big_endian>* object =
static_cast<Mips_relobj<size, big_endian>*>(sym->object());
if ((object->is_pic() || sym->is_pic())
&& (!sym->is_mips16()
|| (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
return true;
}
return false;
}
static inline bool
hi16_reloc(int r_type)
{
return (r_type == elfcpp::R_MIPS_HI16
|| r_type == elfcpp::R_MIPS16_HI16
|| r_type == elfcpp::R_MICROMIPS_HI16
|| r_type == elfcpp::R_MIPS_PCHI16);
}
static inline bool
lo16_reloc(int r_type)
{
return (r_type == elfcpp::R_MIPS_LO16
|| r_type == elfcpp::R_MIPS16_LO16
|| r_type == elfcpp::R_MICROMIPS_LO16
|| r_type == elfcpp::R_MIPS_PCLO16);
}
static inline bool
got16_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_GOT16
|| r_type == elfcpp::R_MIPS16_GOT16
|| r_type == elfcpp::R_MICROMIPS_GOT16);
}
static inline bool
call_lo16_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_CALL_LO16
|| r_type == elfcpp::R_MICROMIPS_CALL_LO16);
}
static inline bool
got_lo16_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_GOT_LO16
|| r_type == elfcpp::R_MICROMIPS_GOT_LO16);
}
static inline bool
eh_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_EH);
}
static inline bool
got_disp_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_GOT_DISP
|| r_type == elfcpp::R_MICROMIPS_GOT_DISP);
}
static inline bool
got_page_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_GOT_PAGE
|| r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
}
static inline bool
tls_gd_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_TLS_GD
|| r_type == elfcpp::R_MIPS16_TLS_GD
|| r_type == elfcpp::R_MICROMIPS_TLS_GD);
}
static inline bool
tls_gottprel_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
|| r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
|| r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
}
static inline bool
tls_ldm_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_TLS_LDM
|| r_type == elfcpp::R_MIPS16_TLS_LDM
|| r_type == elfcpp::R_MICROMIPS_TLS_LDM);
}
static inline bool
mips16_call_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS16_26
|| r_type == elfcpp::R_MIPS16_CALL16);
}
static inline bool
jal_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MIPS_26
|| r_type == elfcpp::R_MIPS16_26
|| r_type == elfcpp::R_MICROMIPS_26_S1);
}
static inline bool
micromips_branch_reloc(unsigned int r_type)
{
return (r_type == elfcpp::R_MICROMIPS_26_S1
|| r_type == elfcpp::R_MICROMIPS_PC16_S1
|| r_type == elfcpp::R_MICROMIPS_PC10_S1
|| r_type == elfcpp::R_MICROMIPS_PC7_S1);
}
// Check if R_TYPE is a MIPS16 reloc.
static inline bool
mips16_reloc(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_MIPS16_26:
case elfcpp::R_MIPS16_GPREL:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS16_LO16:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_TPREL_HI16:
case elfcpp::R_MIPS16_TLS_TPREL_LO16:
return true;
default:
return false;
}
}
// Check if R_TYPE is a microMIPS reloc.
static inline bool
micromips_reloc(unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_MICROMIPS_26_S1:
case elfcpp::R_MICROMIPS_HI16:
case elfcpp::R_MICROMIPS_LO16:
case elfcpp::R_MICROMIPS_GPREL16:
case elfcpp::R_MICROMIPS_LITERAL:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_PC7_S1:
case elfcpp::R_MICROMIPS_PC10_S1:
case elfcpp::R_MICROMIPS_PC16_S1:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MICROMIPS_GOT_DISP:
case elfcpp::R_MICROMIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_OFST:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_SUB:
case elfcpp::R_MICROMIPS_HIGHER:
case elfcpp::R_MICROMIPS_HIGHEST:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_SCN_DISP:
case elfcpp::R_MICROMIPS_JALR:
case elfcpp::R_MICROMIPS_HI0_LO16:
case elfcpp::R_MICROMIPS_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
case elfcpp::R_MICROMIPS_GPREL7_S2:
case elfcpp::R_MICROMIPS_PC23_S2:
return true;
default:
return false;
}
}
static inline bool
is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
{
switch (high_reloc)
{
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_GOT16:
return lo16_reloc == elfcpp::R_MIPS_LO16;
case elfcpp::R_MIPS_PCHI16:
return lo16_reloc == elfcpp::R_MIPS_PCLO16;
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS16_GOT16:
return lo16_reloc == elfcpp::R_MIPS16_LO16;
case elfcpp::R_MICROMIPS_HI16:
case elfcpp::R_MICROMIPS_GOT16:
return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
default:
return false;
}
}
// This class is used to hold information about one GOT entry.
// There are three types of entry:
//
// (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
// (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
// (2) a SYMBOL address, where SYMBOL is not local to an input object
// (sym != NULL, symndx == -1)
// (3) a TLS LDM slot (there's only one of these per GOT.)
// (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
template<int size, bool big_endian>
class Mips_got_entry
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
public:
Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
Mips_address addend, unsigned char tls_type,
unsigned int shndx, bool is_section_symbol)
: addend_(addend), symndx_(symndx), tls_type_(tls_type),
is_section_symbol_(is_section_symbol), shndx_(shndx)
{ this->d.object = object; }
Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
: addend_(0), symndx_(-1U), tls_type_(tls_type),
is_section_symbol_(false), shndx_(-1U)
{ this->d.sym = sym; }
// Return whether this entry is for a local symbol.
bool
is_for_local_symbol() const
{ return this->symndx_ != -1U; }
// Return whether this entry is for a global symbol.
bool
is_for_global_symbol() const
{ return this->symndx_ == -1U; }
// Return the hash of this entry.
size_t
hash() const
{
if (this->tls_type_ == GOT_TLS_LDM)
return this->symndx_ + (1 << 18);
size_t name_hash_value = gold::string_hash<char>(
(this->symndx_ != -1U)
? this->d.object->name().c_str()
: this->d.sym->name());
size_t addend = this->addend_;
return name_hash_value ^ this->symndx_ ^ (addend << 16);
}
// Return whether this entry is equal to OTHER.
bool
equals(Mips_got_entry<size, big_endian>* other) const
{
if (this->symndx_ != other->symndx_
|| this->tls_type_ != other->tls_type_)
return false;
if (this->tls_type_ == GOT_TLS_LDM)
return true;
return (((this->symndx_ != -1U)
? (this->d.object == other->d.object)
: (this->d.sym == other->d.sym))
&& (this->addend_ == other->addend_));
}
// Return input object that needs this GOT entry.
Mips_relobj<size, big_endian>*
object() const
{
gold_assert(this->symndx_ != -1U);
return this->d.object;
}
// Return local symbol index for local GOT entries.
unsigned int
symndx() const
{
gold_assert(this->symndx_ != -1U);
return this->symndx_;
}
// Return the relocation addend for local GOT entries.
Mips_address
addend() const
{ return this->addend_; }
// Return global symbol for global GOT entries.
Mips_symbol<size>*
sym() const
{
gold_assert(this->symndx_ == -1U);
return this->d.sym;
}
// Return whether this is a TLS GOT entry.
bool
is_tls_entry() const
{ return this->tls_type_ != GOT_TLS_NONE; }
// Return TLS type of this GOT entry.
unsigned char
tls_type() const
{ return this->tls_type_; }
// Return section index of the local symbol for local GOT entries.
unsigned int
shndx() const
{ return this->shndx_; }
// Return whether this is a STT_SECTION symbol.
bool
is_section_symbol() const
{ return this->is_section_symbol_; }
private:
// The addend.
Mips_address addend_;
// The index of the symbol if we have a local symbol; -1 otherwise.
unsigned int symndx_;
union
{
// The input object for local symbols that needs the GOT entry.
Mips_relobj<size, big_endian>* object;
// If symndx == -1, the global symbol corresponding to this GOT entry. The
// symbol's entry is in the local area if mips_sym->global_got_area is
// GGA_NONE, otherwise it is in the global area.
Mips_symbol<size>* sym;
} d;
// The TLS type of this GOT entry. An LDM GOT entry will be a local
// symbol entry with r_symndx == 0.
unsigned char tls_type_;
// Whether this is a STT_SECTION symbol.
bool is_section_symbol_;
// For local GOT entries, section index of the local symbol.
unsigned int shndx_;
};
// Hash for Mips_got_entry.
template<int size, bool big_endian>
class Mips_got_entry_hash
{
public:
size_t
operator()(Mips_got_entry<size, big_endian>* entry) const
{ return entry->hash(); }
};
// Equality for Mips_got_entry.
template<int size, bool big_endian>
class Mips_got_entry_eq
{
public:
bool
operator()(Mips_got_entry<size, big_endian>* e1,
Mips_got_entry<size, big_endian>* e2) const
{ return e1->equals(e2); }
};
// Hash for Mips_symbol.
template<int size>
class Mips_symbol_hash
{
public:
size_t
operator()(Mips_symbol<size>* sym) const
{ return sym->hash(); }
};
// Got_page_range. This class describes a range of addends: [MIN_ADDEND,
// MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
// increasing MIN_ADDEND.
struct Got_page_range
{
Got_page_range()
: next(NULL), min_addend(0), max_addend(0)
{ }
Got_page_range* next;
int min_addend;
int max_addend;
// Return the maximum number of GOT page entries required.
int
get_max_pages()
{ return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
};
// Got_page_entry. This class describes the range of addends that are applied
// to page relocations against a given symbol.
struct Got_page_entry
{
Got_page_entry()
: object(NULL), symndx(-1U), ranges(NULL)
{ }
Got_page_entry(Object* object_, unsigned int symndx_)
: object(object_), symndx(symndx_), ranges(NULL)
{ }
// The input object that needs the GOT page entry.
Object* object;
// The index of the symbol, as stored in the relocation r_info.
unsigned int symndx;
// The ranges for this page entry.
Got_page_range* ranges;
};
// Hash for Got_page_entry.
struct Got_page_entry_hash
{
size_t
operator()(Got_page_entry* entry) const
{ return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
};
// Equality for Got_page_entry.
struct Got_page_entry_eq
{
bool
operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
{
return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
}
};
// This class is used to hold .got information when linking.
template<int size, bool big_endian>
class Mips_got_info
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
Reloc_section;
typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
// Unordered set of GOT entries.
typedef Unordered_set<Mips_got_entry<size, big_endian>*,
Mips_got_entry_hash<size, big_endian>,
Mips_got_entry_eq<size, big_endian> > Got_entry_set;
// Unordered set of GOT page entries.
typedef Unordered_set<Got_page_entry*,
Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
// Unordered set of global GOT entries.
typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
Global_got_entry_set;
public:
Mips_got_info()
: local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
got_entries_(), got_page_entries_(), got_page_offset_start_(0),
got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
offset_(0)
{ }
// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
void
record_local_got_symbol(Mips_relobj<size, big_endian>* object,
unsigned int symndx, Mips_address addend,
unsigned int r_type, unsigned int shndx,
bool is_section_symbol);
// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
// in OBJECT. FOR_CALL is true if the caller is only interested in
// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
// relocation.
void
record_global_got_symbol(Mips_symbol<size>* mips_sym,
Mips_relobj<size, big_endian>* object,
unsigned int r_type, bool dyn_reloc, bool for_call);
// Add ENTRY to master GOT and to OBJECT's GOT.
void
record_got_entry(Mips_got_entry<size, big_endian>* entry,
Mips_relobj<size, big_endian>* object);
// Record that OBJECT has a page relocation against symbol SYMNDX and
// that ADDEND is the addend for that relocation.
void
record_got_page_entry(Mips_relobj<size, big_endian>* object,
unsigned int symndx, int addend);
// Create all entries that should be in the local part of the GOT.
void
add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
// Create GOT page entries.
void
add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
void
add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
unsigned int non_reloc_only_global_gotno);
// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
void
add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
// Create TLS GOT entries.
void
add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
// Decide whether the symbol needs an entry in the global part of the primary
// GOT, setting global_got_area accordingly. Count the number of global
// symbols that are in the primary GOT only because they have dynamic
// relocations R_MIPS_REL32 against them (reloc_only_gotno).
void
count_got_symbols(Symbol_table* symtab);
// Return the offset of GOT page entry for VALUE.
unsigned int
get_got_page_offset(Mips_address value,
Mips_output_data_got<size, big_endian>* got);
// Count the number of GOT entries required.
void
count_got_entries();
// Count the number of GOT entries required by ENTRY. Accumulate the result.
void
count_got_entry(Mips_got_entry<size, big_endian>* entry);
// Add FROM's GOT entries.
void
add_got_entries(Mips_got_info<size, big_endian>* from);
// Add FROM's GOT page entries.
void
add_got_page_count(Mips_got_info<size, big_endian>* from);
// Return GOT size.
unsigned int
got_size() const
{ return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
+ this->tls_gotno_) * size/8);
}
// Return the number of local GOT entries.
unsigned int
local_gotno() const
{ return this->local_gotno_; }
// Return the maximum number of page GOT entries needed.
unsigned int
page_gotno() const
{ return this->page_gotno_; }
// Return the number of global GOT entries.
unsigned int
global_gotno() const
{ return this->global_gotno_; }
// Set the number of global GOT entries.
void
set_global_gotno(unsigned int global_gotno)
{ this->global_gotno_ = global_gotno; }
// Return the number of GGA_RELOC_ONLY global GOT entries.
unsigned int
reloc_only_gotno() const
{ return this->reloc_only_gotno_; }
// Return the number of TLS GOT entries.
unsigned int
tls_gotno() const
{ return this->tls_gotno_; }
// Return the GOT type for this GOT. Used for multi-GOT links only.
unsigned int
multigot_got_type(unsigned int got_type) const
{
switch (got_type)
{
case GOT_TYPE_STANDARD:
return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
case GOT_TYPE_TLS_OFFSET:
return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
case GOT_TYPE_TLS_PAIR:
return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
default:
gold_unreachable();
}
}
// Remove lazy-binding stubs for global symbols in this GOT.
void
remove_lazy_stubs(Target_mips<size, big_endian>* target);
// Return offset of this GOT from the start of .got section.
unsigned int
offset() const
{ return this->offset_; }
// Set offset of this GOT from the start of .got section.
void
set_offset(unsigned int offset)
{ this->offset_ = offset; }
// Set index of this GOT in multi-GOT links.
void
set_index(unsigned int index)
{ this->index_ = index; }
// Return next GOT in multi-GOT links.
Mips_got_info<size, big_endian>*
next() const
{ return this->next_; }
// Set next GOT in multi-GOT links.
void
set_next(Mips_got_info<size, big_endian>* next)
{ this->next_ = next; }
// Return the offset of TLS LDM entry for this GOT.
unsigned int
tls_ldm_offset() const
{ return this->tls_ldm_offset_; }
// Set the offset of TLS LDM entry for this GOT.
void
set_tls_ldm_offset(unsigned int tls_ldm_offset)
{ this->tls_ldm_offset_ = tls_ldm_offset; }
Global_got_entry_set&
global_got_symbols()
{ return this->global_got_symbols_; }
// Return the GOT_TLS_* type required by relocation type R_TYPE.
static int
mips_elf_reloc_tls_type(unsigned int r_type)
{
if (tls_gd_reloc(r_type))
return GOT_TLS_GD;
if (tls_ldm_reloc(r_type))
return GOT_TLS_LDM;
if (tls_gottprel_reloc(r_type))
return GOT_TLS_IE;
return GOT_TLS_NONE;
}
// Return the number of GOT slots needed for GOT TLS type TYPE.
static int
mips_tls_got_entries(unsigned int type)
{
switch (type)
{
case GOT_TLS_GD:
case GOT_TLS_LDM:
return 2;
case GOT_TLS_IE:
return 1;
case GOT_TLS_NONE:
return 0;
default:
gold_unreachable();
}
}
private:
// The number of local GOT entries.
unsigned int local_gotno_;
// The maximum number of page GOT entries needed.
unsigned int page_gotno_;
// The number of global GOT entries.
unsigned int global_gotno_;
// The number of global GOT entries that are in the GGA_RELOC_ONLY area.
unsigned int reloc_only_gotno_;
// The number of TLS GOT entries.
unsigned int tls_gotno_;
// The offset of TLS LDM entry for this GOT.
unsigned int tls_ldm_offset_;
// All symbols that have global GOT entry.
Global_got_entry_set global_got_symbols_;
// A hash table holding GOT entries.
Got_entry_set got_entries_;
// A hash table of GOT page entries (only used in master GOT).
Got_page_entry_set got_page_entries_;
// The offset of first GOT page entry for this GOT.
unsigned int got_page_offset_start_;
// The offset of next available GOT page entry for this GOT.
unsigned int got_page_offset_next_;
// A hash table that maps GOT page entry value to the GOT offset where
// the entry is located.
Got_page_offsets got_page_offsets_;
// In multi-GOT links, a pointer to the next GOT.
Mips_got_info<size, big_endian>* next_;
// Index of this GOT in multi-GOT links.
unsigned int index_;
// The offset of this GOT in multi-GOT links.
unsigned int offset_;
};
// This is a helper class used during relocation scan. It records GOT16 addend.
template<int size, bool big_endian>
struct got16_addend
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
got16_addend(const Sized_relobj_file<size, big_endian>* _object,
unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
Mips_address _addend)
: object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
addend(_addend)
{ }
const Sized_relobj_file<size, big_endian>* object;
unsigned int shndx;
unsigned int r_type;
unsigned int r_sym;
Mips_address addend;
};
// .MIPS.abiflags section content
template<bool big_endian>
struct Mips_abiflags
{
typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
Mips_abiflags()
: version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
{ }
// Version of flags structure.
Valtype16 version;
// The level of the ISA: 1-5, 32, 64.
Valtype8 isa_level;
// The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
Valtype8 isa_rev;
// The size of general purpose registers.
Valtype8 gpr_size;
// The size of co-processor 1 registers.
Valtype8 cpr1_size;
// The size of co-processor 2 registers.
Valtype8 cpr2_size;
// The floating-point ABI.
Valtype8 fp_abi;
// Processor-specific extension.
Valtype32 isa_ext;
// Mask of ASEs used.
Valtype32 ases;
// Mask of general flags.
Valtype32 flags1;
Valtype32 flags2;
};
// Mips_symbol class. Holds additional symbol information needed for Mips.
template<int size>
class Mips_symbol : public Sized_symbol<size>
{
public:
Mips_symbol()
: need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
pointer_equality_needed_(false), global_got_area_(GGA_NONE),
global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
{ }
// Return whether this is a MIPS16 symbol.
bool
is_mips16() const
{
// (st_other & STO_MIPS16) == STO_MIPS16
return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
== elfcpp::STO_MIPS16 >> 2);
}
// Return whether this is a microMIPS symbol.
bool
is_micromips() const
{
// (st_other & STO_MIPS_ISA) == STO_MICROMIPS
return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
== elfcpp::STO_MICROMIPS >> 2);
}
// Return whether the symbol needs MIPS16 fn_stub.
bool
need_fn_stub() const
{ return this->need_fn_stub_; }
// Set that the symbol needs MIPS16 fn_stub.
void
set_need_fn_stub()
{ this->need_fn_stub_ = true; }
// Return whether this symbol is referenced by branch relocations from
// any non-PIC input file.
bool
has_nonpic_branches() const
{ return this->has_nonpic_branches_; }
// Set that this symbol is referenced by branch relocations from
// any non-PIC input file.
void
set_has_nonpic_branches()
{ this->has_nonpic_branches_ = true; }
// Return the offset of the la25 stub for this symbol from the start of the
// la25 stub section.
unsigned int
la25_stub_offset() const
{ return this->la25_stub_offset_; }
// Set the offset of the la25 stub for this symbol from the start of the
// la25 stub section.
void
set_la25_stub_offset(unsigned int offset)
{ this->la25_stub_offset_ = offset; }
// Return whether the symbol has la25 stub. This is true if this symbol is
// for a PIC function, and there are non-PIC branches and jumps to it.
bool
has_la25_stub() const
{ return this->la25_stub_offset_ != -1U; }
// Return whether there is a relocation against this symbol that must be
// resolved by the static linker (that is, the relocation cannot possibly
// be made dynamic).
bool
has_static_relocs() const
{ return this->has_static_relocs_; }
// Set that there is a relocation against this symbol that must be resolved
// by the static linker (that is, the relocation cannot possibly be made
// dynamic).
void
set_has_static_relocs()
{ this->has_static_relocs_ = true; }
// Return whether we must not create a lazy-binding stub for this symbol.
bool
no_lazy_stub() const
{ return this->no_lazy_stub_; }
// Set that we must not create a lazy-binding stub for this symbol.
void
set_no_lazy_stub()
{ this->no_lazy_stub_ = true; }
// Return the offset of the lazy-binding stub for this symbol from the start
// of .MIPS.stubs section.
unsigned int
lazy_stub_offset() const
{ return this->lazy_stub_offset_; }
// Set the offset of the lazy-binding stub for this symbol from the start
// of .MIPS.stubs section.
void
set_lazy_stub_offset(unsigned int offset)
{ this->lazy_stub_offset_ = offset; }
// Return whether there are any relocations for this symbol where
// pointer equality matters.
bool
pointer_equality_needed() const
{ return this->pointer_equality_needed_; }
// Set that there are relocations for this symbol where pointer equality
// matters.
void
set_pointer_equality_needed()
{ this->pointer_equality_needed_ = true; }
// Return global GOT area where this symbol in located.
Global_got_area
global_got_area() const
{ return this->global_got_area_; }
// Set global GOT area where this symbol in located.
void
set_global_got_area(Global_got_area global_got_area)
{ this->global_got_area_ = global_got_area; }
// Return the global GOT offset for this symbol. For multi-GOT links, this
// returns the offset from the start of .got section to the first GOT entry
// for the symbol. Note that in multi-GOT links the symbol can have entry
// in more than one GOT.
unsigned int
global_gotoffset() const
{ return this->global_gotoffset_; }
// Set the global GOT offset for this symbol. Note that in multi-GOT links
// the symbol can have entry in more than one GOT. This method will set
// the offset only if it is less than current offset.
void
set_global_gotoffset(unsigned int offset)
{
if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
this->global_gotoffset_ = offset;
}
// Return whether all GOT relocations for this symbol are for calls.
bool
got_only_for_calls() const
{ return this->got_only_for_calls_; }
// Set that there is a GOT relocation for this symbol that is not for call.
void
set_got_not_only_for_calls()
{ this->got_only_for_calls_ = false; }
// Return whether this is a PIC symbol.
bool
is_pic() const
{
// (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
== (elfcpp::STO_MIPS_PIC >> 2));
}
// Set the flag in st_other field that marks this symbol as PIC.
void
set_pic()
{
if (this->is_mips16())
// (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
this->set_nonvis((this->nonvis()
& ~((elfcpp::STO_MIPS16 >> 2)
| (elfcpp::STO_MIPS_FLAGS >> 2)))
| (elfcpp::STO_MIPS_PIC >> 2));
else
// (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
| (elfcpp::STO_MIPS_PIC >> 2));
}
// Set the flag in st_other field that marks this symbol as PLT.
void
set_mips_plt()
{
if (this->is_mips16())
// (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
this->set_nonvis((this->nonvis()
& ((elfcpp::STO_MIPS16 >> 2)
| ~(elfcpp::STO_MIPS_FLAGS >> 2)))
| (elfcpp::STO_MIPS_PLT >> 2));
else
// (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
| (elfcpp::STO_MIPS_PLT >> 2));
}
// Downcast a base pointer to a Mips_symbol pointer.
static Mips_symbol<size>*
as_mips_sym(Symbol* sym)
{ return static_cast<Mips_symbol<size>*>(sym); }
// Downcast a base pointer to a Mips_symbol pointer.
static const Mips_symbol<size>*
as_mips_sym(const Symbol* sym)
{ return static_cast<const Mips_symbol<size>*>(sym); }
// Return whether the symbol has lazy-binding stub.
bool
has_lazy_stub() const
{ return this->has_lazy_stub_; }
// Set whether the symbol has lazy-binding stub.
void
set_has_lazy_stub(bool has_lazy_stub)
{ this->has_lazy_stub_ = has_lazy_stub; }
// Return whether the symbol needs a standard PLT entry.
bool
needs_mips_plt() const
{ return this->needs_mips_plt_; }
// Set whether the symbol needs a standard PLT entry.
void
set_needs_mips_plt(bool needs_mips_plt)
{ this->needs_mips_plt_ = needs_mips_plt; }
// Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
// entry.
bool
needs_comp_plt() const
{ return this->needs_comp_plt_; }
// Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
void
set_needs_comp_plt(bool needs_comp_plt)
{ this->needs_comp_plt_ = needs_comp_plt; }
// Return standard PLT entry offset, or -1 if none.
unsigned int
mips_plt_offset() const
{ return this->mips_plt_offset_; }
// Set standard PLT entry offset.
void
set_mips_plt_offset(unsigned int mips_plt_offset)
{ this->mips_plt_offset_ = mips_plt_offset; }
// Return whether the symbol has standard PLT entry.
bool
has_mips_plt_offset() const
{ return this->mips_plt_offset_ != -1U; }
// Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
unsigned int
comp_plt_offset() const
{ return this->comp_plt_offset_; }
// Set compressed (MIPS16 or microMIPS) PLT entry offset.
void
set_comp_plt_offset(unsigned int comp_plt_offset)
{ this->comp_plt_offset_ = comp_plt_offset; }
// Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
bool
has_comp_plt_offset() const
{ return this->comp_plt_offset_ != -1U; }
// Return MIPS16 fn stub for a symbol.
template<bool big_endian>
Mips16_stub_section<size, big_endian>*
get_mips16_fn_stub() const
{
return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
}
// Set MIPS16 fn stub for a symbol.
void
set_mips16_fn_stub(Mips16_stub_section_base* stub)
{ this->mips16_fn_stub_ = stub; }
// Return whether symbol has MIPS16 fn stub.
bool
has_mips16_fn_stub() const
{ return this->mips16_fn_stub_ != NULL; }
// Return MIPS16 call stub for a symbol.
template<bool big_endian>
Mips16_stub_section<size, big_endian>*
get_mips16_call_stub() const
{
return static_cast<Mips16_stub_section<size, big_endian>*>(
mips16_call_stub_);
}
// Set MIPS16 call stub for a symbol.
void
set_mips16_call_stub(Mips16_stub_section_base* stub)
{ this->mips16_call_stub_ = stub; }
// Return whether symbol has MIPS16 call stub.
bool
has_mips16_call_stub() const
{ return this->mips16_call_stub_ != NULL; }
// Return MIPS16 call_fp stub for a symbol.
template<bool big_endian>
Mips16_stub_section<size, big_endian>*
get_mips16_call_fp_stub() const
{
return static_cast<Mips16_stub_section<size, big_endian>*>(
mips16_call_fp_stub_);
}
// Set MIPS16 call_fp stub for a symbol.
void
set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
{ this->mips16_call_fp_stub_ = stub; }
// Return whether symbol has MIPS16 call_fp stub.
bool
has_mips16_call_fp_stub() const
{ return this->mips16_call_fp_stub_ != NULL; }
bool
get_applied_secondary_got_fixup() const
{ return applied_secondary_got_fixup_; }
void
set_applied_secondary_got_fixup()
{ this->applied_secondary_got_fixup_ = true; }
// Return the hash of this symbol.
size_t
hash() const
{
return gold::string_hash<char>(this->name());
}
private:
// Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
// appears in any relocs other than a 16 bit call.
bool need_fn_stub_;
// True if this symbol is referenced by branch relocations from
// any non-PIC input file. This is used to determine whether an
// la25 stub is required.
bool has_nonpic_branches_;
// The offset of the la25 stub for this symbol from the start of the
// la25 stub section.
unsigned int la25_stub_offset_;
// True if there is a relocation against this symbol that must be
// resolved by the static linker (that is, the relocation cannot
// possibly be made dynamic).
bool has_static_relocs_;
// Whether we must not create a lazy-binding stub for this symbol.
// This is true if the symbol has relocations related to taking the
// function's address.
bool no_lazy_stub_;
// The offset of the lazy-binding stub for this symbol from the start of
// .MIPS.stubs section.
unsigned int lazy_stub_offset_;
// True if there are any relocations for this symbol where pointer equality
// matters.
bool pointer_equality_needed_;
// Global GOT area where this symbol in located, or GGA_NONE if symbol is not
// in the global part of the GOT.
Global_got_area global_got_area_;
// The global GOT offset for this symbol. For multi-GOT links, this is offset
// from the start of .got section to the first GOT entry for the symbol.
// Note that in multi-GOT links the symbol can have entry in more than one GOT.
unsigned int global_gotoffset_;
// Whether all GOT relocations for this symbol are for calls.
bool got_only_for_calls_;
// Whether the symbol has lazy-binding stub.
bool has_lazy_stub_;
// Whether the symbol needs a standard PLT entry.
bool needs_mips_plt_;
// Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
bool needs_comp_plt_;
// Standard PLT entry offset, or -1 if none.
unsigned int mips_plt_offset_;
// Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
unsigned int comp_plt_offset_;
// MIPS16 fn stub for a symbol.
Mips16_stub_section_base* mips16_fn_stub_;
// MIPS16 call stub for a symbol.
Mips16_stub_section_base* mips16_call_stub_;
// MIPS16 call_fp stub for a symbol.
Mips16_stub_section_base* mips16_call_fp_stub_;
bool applied_secondary_got_fixup_;
};
// Mips16_stub_section class.
// The mips16 compiler uses a couple of special sections to handle
// floating point arguments.
// Section names that look like .mips16.fn.FNNAME contain stubs that
// copy floating point arguments from the fp regs to the gp regs and
// then jump to FNNAME. If any 32 bit function calls FNNAME, the
// call should be redirected to the stub instead. If no 32 bit
// function calls FNNAME, the stub should be discarded. We need to
// consider any reference to the function, not just a call, because
// if the address of the function is taken we will need the stub,
// since the address might be passed to a 32 bit function.
// Section names that look like .mips16.call.FNNAME contain stubs
// that copy floating point arguments from the gp regs to the fp
// regs and then jump to FNNAME. If FNNAME is a 32 bit function,
// then any 16 bit function that calls FNNAME should be redirected
// to the stub instead. If FNNAME is not a 32 bit function, the
// stub should be discarded.
// .mips16.call.fp.FNNAME sections are similar, but contain stubs
// which call FNNAME and then copy the return value from the fp regs
// to the gp regs. These stubs store the return address in $18 while
// calling FNNAME; any function which might call one of these stubs
// must arrange to save $18 around the call. (This case is not
// needed for 32 bit functions that call 16 bit functions, because
// 16 bit functions always return floating point values in both
// $f0/$f1 and $2/$3.)
// Note that in all cases FNNAME might be defined statically.
// Therefore, FNNAME is not used literally. Instead, the relocation
// information will indicate which symbol the section is for.
// We record any stubs that we find in the symbol table.
// TODO(sasa): All mips16 stub sections should be emitted in the .text section.
class Mips16_stub_section_base { };
template<int size, bool big_endian>
class Mips16_stub_section : public Mips16_stub_section_base
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
public:
Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
: object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
found_r_mips_none_(false)
{
gold_assert(object->is_mips16_fn_stub_section(shndx)
|| object->is_mips16_call_stub_section(shndx)
|| object->is_mips16_call_fp_stub_section(shndx));
}
// Return the object of this stub section.
Mips_relobj<size, big_endian>*
object() const
{ return this->object_; }
// Return the size of a section.
uint64_t
section_size() const
{ return this->object_->section_size(this->shndx_); }
// Return section index of this stub section.
unsigned int
shndx() const
{ return this->shndx_; }
// Return symbol index, if stub is for a local function.
unsigned int
r_sym() const
{ return this->r_sym_; }
// Return symbol, if stub is for a global function.
Mips_symbol<size>*
gsym() const
{ return this->gsym_; }
// Return whether stub is for a local function.
bool
is_for_local_function() const
{ return this->gsym_ == NULL; }
// This method is called when a new relocation R_TYPE for local symbol R_SYM
// is found in the stub section. Try to find stub target.
void
new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
{
// To find target symbol for this stub, trust the first R_MIPS_NONE
// relocation, if any. Otherwise trust the first relocation, whatever
// its kind.
if (this->found_r_mips_none_)
return;
if (r_type == elfcpp::R_MIPS_NONE)
{
this->r_sym_ = r_sym;
this->gsym_ = NULL;
this->found_r_mips_none_ = true;
}
else if (!is_target_found())
this->r_sym_ = r_sym;
}
// This method is called when a new relocation R_TYPE for global symbol GSYM
// is found in the stub section. Try to find stub target.
void
new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
{
// To find target symbol for this stub, trust the first R_MIPS_NONE
// relocation, if any. Otherwise trust the first relocation, whatever
// its kind.
if (this->found_r_mips_none_)
return;
if (r_type == elfcpp::R_MIPS_NONE)
{
this->gsym_ = gsym;
this->r_sym_ = 0;
this->found_r_mips_none_ = true;
}
else if (!is_target_found())
this->gsym_ = gsym;
}
// Return whether we found the stub target.
bool
is_target_found() const
{ return this->r_sym_ != 0 || this->gsym_ != NULL; }
// Return whether this is a fn stub.
bool
is_fn_stub() const
{ return this->object_->is_mips16_fn_stub_section(this->shndx_); }
// Return whether this is a call stub.
bool
is_call_stub() const
{ return this->object_->is_mips16_call_stub_section(this->shndx_); }
// Return whether this is a call_fp stub.
bool
is_call_fp_stub() const
{ return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
// Return the output address.
Mips_address
output_address() const
{
return (this->object_->output_section(this->shndx_)->address()
+ this->object_->output_section_offset(this->shndx_));
}
private:
// The object of this stub section.
Mips_relobj<size, big_endian>* object_;
// The section index of this stub section.
unsigned int shndx_;
// The symbol index, if stub is for a local function.
unsigned int r_sym_;
// The symbol, if stub is for a global function.
Mips_symbol<size>* gsym_;
// True if we found R_MIPS_NONE relocation in this stub.
bool found_r_mips_none_;
};
// Mips_relobj class.
template<int size, bool big_endian>
class Mips_relobj : public Sized_relobj_file<size, big_endian>
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
Mips16_stubs_int_map;
typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
public:
Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
const typename elfcpp::Ehdr<size, big_endian>& ehdr)
: Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
processor_specific_flags_(0), local_symbol_is_mips16_(),
local_symbol_is_micromips_(), mips16_stub_sections_(),
local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
merge_processor_specific_data_(true), got_info_(NULL),
section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U),
attributes_section_data_(NULL), abiflags_(NULL), gprmask_(0),
cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
{
this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
}
~Mips_relobj()
{ delete this->attributes_section_data_; }
// Downcast a base pointer to a Mips_relobj pointer. This is
// not type-safe but we only use Mips_relobj not the base class.
static Mips_relobj<size, big_endian>*
as_mips_relobj(Relobj* relobj)
{ return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
// Downcast a base pointer to a Mips_relobj pointer. This is
// not type-safe but we only use Mips_relobj not the base class.
static const Mips_relobj<size, big_endian>*
as_mips_relobj(const Relobj* relobj)
{ return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
// Processor-specific flags in ELF file header. This is valid only after
// reading symbols.
elfcpp::Elf_Word
processor_specific_flags() const
{ return this->processor_specific_flags_; }
// Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
// index. This is only valid after do_count_local_symbol is called.
bool
local_symbol_is_mips16(unsigned int r_sym) const
{
gold_assert(r_sym < this->local_symbol_is_mips16_.size());
return this->local_symbol_is_mips16_[r_sym];
}
// Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
// index. This is only valid after do_count_local_symbol is called.
bool
local_symbol_is_micromips(unsigned int r_sym) const
{
gold_assert(r_sym < this->local_symbol_is_micromips_.size());
return this->local_symbol_is_micromips_[r_sym];
}
// Get or create MIPS16 stub section.
Mips16_stub_section<size, big_endian>*
get_mips16_stub_section(unsigned int shndx)
{
typename Mips16_stubs_int_map::const_iterator it =
this->mips16_stub_sections_.find(shndx);
if (it != this->mips16_stub_sections_.end())
return (*it).second;
Mips16_stub_section<size, big_endian>* stub_section =
new Mips16_stub_section<size, big_endian>(this, shndx);
this->mips16_stub_sections_.insert(
std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
stub_section->shndx(), stub_section));
return stub_section;
}
// Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
// object doesn't have fn stub for R_SYM.
Mips16_stub_section<size, big_endian>*
get_local_mips16_fn_stub(unsigned int r_sym) const
{
typename Mips16_stubs_int_map::const_iterator it =
this->local_mips16_fn_stubs_.find(r_sym);
if (it != this->local_mips16_fn_stubs_.end())
return (*it).second;
return NULL;
}
// Record that this object has MIPS16 fn stub for local symbol. This method
// is only called if we decided not to discard the stub.
void
add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
{
gold_assert(stub->is_for_local_function());
unsigned int r_sym = stub->r_sym();
this->local_mips16_fn_stubs_.insert(
std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
r_sym, stub));
}
// Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
// object doesn't have call stub for R_SYM.
Mips16_stub_section<size, big_endian>*
get_local_mips16_call_stub(unsigned int r_sym) const
{
typename Mips16_stubs_int_map::const_iterator it =
this->local_mips16_call_stubs_.find(r_sym);
if (it != this->local_mips16_call_stubs_.end())
return (*it).second;
return NULL;
}
// Record that this object has MIPS16 call stub for local symbol. This method
// is only called if we decided not to discard the stub.
void
add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
{
gold_assert(stub->is_for_local_function());
unsigned int r_sym = stub->r_sym();
this->local_mips16_call_stubs_.insert(
std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
r_sym, stub));
}
// Record that we found "non 16-bit" call relocation against local symbol
// SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
// is one.
void
add_local_non_16bit_call(unsigned int symndx)
{ this->local_non_16bit_calls_.insert(symndx); }
// Return true if there is any "non 16-bit" call relocation against local
// symbol SYMNDX in this object.
bool
has_local_non_16bit_call_relocs(unsigned int symndx)
{
return (this->local_non_16bit_calls_.find(symndx)
!= this->local_non_16bit_calls_.end());
}
// Record that we found 16-bit call relocation R_MIPS16_26 against local
// symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
// if there is some R_MIPS16_26 relocation that refers to the stub symbol.
void
add_local_16bit_call(unsigned int symndx)
{ this->local_16bit_calls_.insert(symndx); }
// Return true if there is any 16-bit call relocation R_MIPS16_26 against local
// symbol SYMNDX in this object.
bool
has_local_16bit_call_relocs(unsigned int symndx)
{
return (this->local_16bit_calls_.find(symndx)
!= this->local_16bit_calls_.end());
}
// Get gp value that was used to create this object.
Mips_address
gp_value() const
{ return this->gp_; }
// Return whether the object is a PIC object.
bool
is_pic() const
{ return this->is_pic_; }
// Return whether the object uses N32 ABI.
bool
is_n32() const
{ return this->is_n32_; }
// Return whether the object uses N64 ABI.
bool
is_n64() const
{ return size == 64; }
// Return whether the object uses NewABI conventions.
bool
is_newabi() const
{ return this->is_n32() || this->is_n64(); }
// Return Mips_got_info for this object.
Mips_got_info<size, big_endian>*
get_got_info() const
{ return this->got_info_; }
// Return Mips_got_info for this object. Create new info if it doesn't exist.
Mips_got_info<size, big_endian>*
get_or_create_got_info()
{
if (!this->got_info_)
this->got_info_ = new Mips_got_info<size, big_endian>();
return this->got_info_;
}
// Set Mips_got_info for this object.
void
set_got_info(Mips_got_info<size, big_endian>* got_info)
{ this->got_info_ = got_info; }
// Whether a section SHDNX is a MIPS16 stub section. This is only valid
// after do_read_symbols is called.
bool
is_mips16_stub_section(unsigned int shndx)
{
return (is_mips16_fn_stub_section(shndx)
|| is_mips16_call_stub_section(shndx)
|| is_mips16_call_fp_stub_section(shndx));
}
// Return TRUE if relocations in section SHNDX can refer directly to a
// MIPS16 function rather than to a hard-float stub. This is only valid
// after do_read_symbols is called.
bool
section_allows_mips16_refs(unsigned int shndx)
{
return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
}
// Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
// after do_read_symbols is called.
bool
is_mips16_fn_stub_section(unsigned int shndx)
{
gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
return this->section_is_mips16_fn_stub_[shndx];
}
// Whether a section SHDNX is a MIPS16 call stub section. This is only valid
// after do_read_symbols is called.
bool
is_mips16_call_stub_section(unsigned int shndx)
{
gold_assert(shndx < this->section_is_mips16_call_stub_.size());
return this->section_is_mips16_call_stub_[shndx];
}
// Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
// valid after do_read_symbols is called.
bool
is_mips16_call_fp_stub_section(unsigned int shndx)
{
gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
return this->section_is_mips16_call_fp_stub_[shndx];
}
// Discard MIPS16 stub secions that are not needed.
void
discard_mips16_stub_sections(Symbol_table* symtab);
// Return whether there is a .reginfo section.
bool
has_reginfo_section() const
{ return this->has_reginfo_section_; }
// Return whether we want to merge processor-specific data.
bool
merge_processor_specific_data() const
{ return this->merge_processor_specific_data_; }
// Return gprmask from the .reginfo section of this object.
Valtype
gprmask() const
{ return this->gprmask_; }
// Return cprmask1 from the .reginfo section of this object.
Valtype
cprmask1() const
{ return this->cprmask1_; }
// Return cprmask2 from the .reginfo section of this object.
Valtype
cprmask2() const
{ return this->cprmask2_; }
// Return cprmask3 from the .reginfo section of this object.
Valtype
cprmask3() const
{ return this->cprmask3_; }
// Return cprmask4 from the .reginfo section of this object.
Valtype
cprmask4() const
{ return this->cprmask4_; }
// This is the contents of the .MIPS.abiflags section if there is one.
Mips_abiflags<big_endian>*
abiflags()
{ return this->abiflags_; }
// This is the contents of the .gnu.attribute section if there is one.
const Attributes_section_data*
attributes_section_data() const
{ return this->attributes_section_data_; }
protected:
// Count the local symbols.
void
do_count_local_symbols(Stringpool_template<char>*,
Stringpool_template<char>*);
// Read the symbol information.
void
do_read_symbols(Read_symbols_data* sd);
private:
// The name of the options section.
const char* mips_elf_options_section_name()
{ return this->is_newabi() ? ".MIPS.options" : ".options"; }
// processor-specific flags in ELF file header.
elfcpp::Elf_Word processor_specific_flags_;
// Bit vector to tell if a local symbol is a MIPS16 symbol or not.
// This is only valid after do_count_local_symbol is called.
std::vector<bool> local_symbol_is_mips16_;
// Bit vector to tell if a local symbol is a microMIPS symbol or not.
// This is only valid after do_count_local_symbol is called.
std::vector<bool> local_symbol_is_micromips_;
// Map from section index to the MIPS16 stub for that section. This contains
// all stubs found in this object.
Mips16_stubs_int_map mips16_stub_sections_;
// Local symbols that have "non 16-bit" call relocation. This relocation
// would need to refer to a MIPS16 fn stub, if there is one.
std::set<unsigned int> local_non_16bit_calls_;
// Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
// call or call_fp stubs will only be needed if there is some R_MIPS16_26
// relocation that refers to the stub symbol.
std::set<unsigned int> local_16bit_calls_;
// Map from local symbol index to the MIPS16 fn stub for that symbol.
// This contains only the stubs that we decided not to discard.
Mips16_stubs_int_map local_mips16_fn_stubs_;
// Map from local symbol index to the MIPS16 call stub for that symbol.
// This contains only the stubs that we decided not to discard.
Mips16_stubs_int_map local_mips16_call_stubs_;
// gp value that was used to create this object.
Mips_address gp_;
// Whether the object is a PIC object.
bool is_pic_ : 1;
// Whether the object uses N32 ABI.
bool is_n32_ : 1;
// Whether the object contains a .reginfo section.
bool has_reginfo_section_ : 1;
// Whether we merge processor-specific data of this object to output.
bool merge_processor_specific_data_ : 1;
// The Mips_got_info for this object.
Mips_got_info<size, big_endian>* got_info_;
// Bit vector to tell if a section is a MIPS16 fn stub section or not.
// This is only valid after do_read_symbols is called.
std::vector<bool> section_is_mips16_fn_stub_;
// Bit vector to tell if a section is a MIPS16 call stub section or not.
// This is only valid after do_read_symbols is called.
std::vector<bool> section_is_mips16_call_stub_;
// Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
// This is only valid after do_read_symbols is called.
std::vector<bool> section_is_mips16_call_fp_stub_;
// .pdr section index.
unsigned int pdr_shndx_;
// Object attributes if there is a .gnu.attributes section or NULL.
Attributes_section_data* attributes_section_data_;
// Object abiflags if there is a .MIPS.abiflags section or NULL.
Mips_abiflags<big_endian>* abiflags_;
// gprmask from the .reginfo section of this object.
Valtype gprmask_;
// cprmask1 from the .reginfo section of this object.
Valtype cprmask1_;
// cprmask2 from the .reginfo section of this object.
Valtype cprmask2_;
// cprmask3 from the .reginfo section of this object.
Valtype cprmask3_;
// cprmask4 from the .reginfo section of this object.
Valtype cprmask4_;
};
// Mips_output_data_got class.
template<int size, bool big_endian>
class Mips_output_data_got : public Output_data_got<size, big_endian>
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
Reloc_section;
typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
public:
Mips_output_data_got(Target_mips<size, big_endian>* target,
Symbol_table* symtab, Layout* layout)
: Output_data_got<size, big_endian>(), target_(target),
symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
first_global_got_dynsym_index_(-1U), primary_got_(NULL),
secondary_got_relocs_()
{
this->master_got_info_ = new Mips_got_info<size, big_endian>();
this->set_addralign(16);
}
// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
void
record_local_got_symbol(Mips_relobj<size, big_endian>* object,
unsigned int symndx, Mips_address addend,
unsigned int r_type, unsigned int shndx,
bool is_section_symbol)
{
this->master_got_info_->record_local_got_symbol(object, symndx, addend,
r_type, shndx,
is_section_symbol);
}
// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
// in OBJECT. FOR_CALL is true if the caller is only interested in
// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
// relocation.
void
record_global_got_symbol(Mips_symbol<size>* mips_sym,
Mips_relobj<size, big_endian>* object,
unsigned int r_type, bool dyn_reloc, bool for_call)
{
this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
dyn_reloc, for_call);
}
// Record that OBJECT has a page relocation against symbol SYMNDX and
// that ADDEND is the addend for that relocation.
void
record_got_page_entry(Mips_relobj<size, big_endian>* object,
unsigned int symndx, int addend)
{ this->master_got_info_->record_got_page_entry(object, symndx, addend); }
// Add a static entry for the GOT entry at OFFSET. GSYM is a global
// symbol and R_TYPE is the code of a dynamic relocation that needs to be
// applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type,
Mips_symbol<size>* gsym)
{ this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
// Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
// defining a local symbol with INDEX. R_TYPE is the code of a dynamic
// relocation that needs to be applied in a static link.
void
add_static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<size, big_endian>* relobj,
unsigned int index)
{
this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
index));
}
// Record that global symbol GSYM has R_TYPE dynamic relocation in the
// secondary GOT at OFFSET.
void
add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
Mips_symbol<size>* gsym)
{
this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
r_type, gsym));
}
// Update GOT entry at OFFSET with VALUE.
void
update_got_entry(unsigned int offset, Mips_address value)
{
elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
}
// Return the number of entries in local part of the GOT. This includes
// local entries, page entries and 2 reserved entries.
unsigned int
get_local_gotno() const
{
if (!this->multi_got())
{
return (2 + this->master_got_info_->local_gotno()
+ this->master_got_info_->page_gotno());
}
else
return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
}
// Return dynamic symbol table index of the first symbol with global GOT
// entry.
unsigned int
first_global_got_dynsym_index() const
{ return this->first_global_got_dynsym_index_; }
// Set dynamic symbol table index of the first symbol with global GOT entry.
void
set_first_global_got_dynsym_index(unsigned int index)
{ this->first_global_got_dynsym_index_ = index; }
// Lay out the GOT. Add local, global and TLS entries. If GOT is
// larger than 64K, create multi-GOT.
void
lay_out_got(Layout* layout, Symbol_table* symtab,
const Input_objects* input_objects);
// Create multi-GOT. For every GOT, add local, global and TLS entries.
void
lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
// Attempt to merge GOTs of different input objects.
void
merge_gots(const Input_objects* input_objects);
// Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
// this would lead to overflow, true if they were merged successfully.
bool
merge_got_with(Mips_got_info<size, big_endian>* from,
Mips_relobj<size, big_endian>* object,
Mips_got_info<size, big_endian>* to);
// Return the offset of GOT page entry for VALUE. For multi-GOT links,
// use OBJECT's GOT.
unsigned int
get_got_page_offset(Mips_address value,
const Mips_relobj<size, big_endian>* object)
{
Mips_got_info<size, big_endian>* g = (!this->multi_got()
? this->master_got_info_
: object->get_got_info());
gold_assert(g != NULL);
return g->get_got_page_offset(value, this);
}
// Return the GOT offset of type GOT_TYPE of the global symbol
// GSYM. For multi-GOT links, use OBJECT's GOT.
unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
Mips_relobj<size, big_endian>* object) const
{
if (!this->multi_got())
return gsym->got_offset(got_type);
else
{
Mips_got_info<size, big_endian>* g = object->get_got_info();
gold_assert(g != NULL);
return gsym->got_offset(g->multigot_got_type(got_type));
}
}
// Return the GOT offset of type GOT_TYPE of the local symbol
// SYMNDX.
unsigned int
got_offset(unsigned int symndx, unsigned int got_type,
Sized_relobj_file<size, big_endian>* object,
uint64_t addend) const
{ return object->local_got_offset(symndx, got_type, addend); }
// Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
unsigned int
tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
{
Mips_got_info<size, big_endian>* g = (!this->multi_got()
? this->master_got_info_
: object->get_got_info());
gold_assert(g != NULL);
return g->tls_ldm_offset();
}
// Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
void
set_tls_ldm_offset(unsigned int tls_ldm_offset,
Mips_relobj<size, big_endian>* object)
{
Mips_got_info<size, big_endian>* g = (!this->multi_got()
? this->master_got_info_
: object->get_got_info());
gold_assert(g != NULL);
g->set_tls_ldm_offset(tls_ldm_offset);
}
// Return true for multi-GOT links.
bool
multi_got() const
{ return this->primary_got_ != NULL; }
// Return the offset of OBJECT's GOT from the start of .got section.
unsigned int
get_got_offset(const Mips_relobj<size, big_endian>* object)
{
if (!this->multi_got())
return 0;
else
{
Mips_got_info<size, big_endian>* g = object->get_got_info();
return g != NULL ? g->offset() : 0;
}
}
// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
void
add_reloc_only_entries()
{ this->master_got_info_->add_reloc_only_entries(this); }
// Return offset of the primary GOT's entry for global symbol.
unsigned int
get_primary_got_offset(const Mips_symbol<size>* sym) const
{
gold_assert(sym->global_got_area() != GGA_NONE);
return (this->get_local_gotno() + sym->dynsym_index()
- this->first_global_got_dynsym_index()) * size/8;
}
// For the entry at offset GOT_OFFSET, return its offset from the gp.
// Input argument GOT_OFFSET is always global offset from the start of
// .got section, for both single and multi-GOT links.
// For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
// links, the return value is object_got_offset - 0x7FF0, where
// object_got_offset is offset in the OBJECT's GOT.
int
gp_offset(unsigned int got_offset,
const Mips_relobj<size, big_endian>* object) const
{
return (this->address() + got_offset
- this->target_->adjusted_gp_value(object));
}
protected:
// Write out the GOT table.
void
do_write(Output_file*);
private:
// This class represent dynamic relocations that need to be applied by
// gold because we are using TLS relocations in a static link.
class Static_reloc
{
public:
Static_reloc(unsigned int got_offset, unsigned int r_type,
Mips_symbol<size>* gsym)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
{ this->u_.global.symbol = gsym; }
Static_reloc(unsigned int got_offset, unsigned int r_type,
Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
: got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
{
this->u_.local.relobj = relobj;
this->u_.local.index = index;
}
// Return the GOT offset.
unsigned int
got_offset() const
{ return this->got_offset_; }
// Relocation type.
unsigned int
r_type() const
{ return this->r_type_; }
// Whether the symbol is global or not.
bool
symbol_is_global() const
{ return this->symbol_is_global_; }
// For a relocation against a global symbol, the global symbol.
Mips_symbol<size>*
symbol() const
{
gold_assert(this->symbol_is_global_);
return this->u_.global.symbol;
}
// For a relocation against a local symbol, the defining object.
Sized_relobj_file<size, big_endian>*
relobj() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.relobj;
}
// For a relocation against a local symbol, the local symbol index.
unsigned int
index() const
{
gold_assert(!this->symbol_is_global_);
return this->u_.local.index;
}
private:
// GOT offset of the entry to which this relocation is applied.
unsigned int got_offset_;
// Type of relocation.
unsigned int r_type_;
// Whether this relocation is against a global symbol.
bool symbol_is_global_;
// A global or local symbol.
union
{
struct
{
// For a global symbol, the symbol itself.
Mips_symbol<size>* symbol;
} global;
struct
{
// For a local symbol, the object defining object.
Sized_relobj_file<size, big_endian>* relobj;
// For a local symbol, the symbol index.
unsigned int index;
} local;
} u_;
};
// The target.
Target_mips<size, big_endian>* target_;
// The symbol table.
Symbol_table* symbol_table_;
// The layout.
Layout* layout_;
// Static relocs to be applied to the GOT.
std::vector<Static_reloc> static_relocs_;
// .got section view.
unsigned char* got_view_;
// The dynamic symbol table index of the first symbol with global GOT entry.
unsigned int first_global_got_dynsym_index_;
// The master GOT information.
Mips_got_info<size, big_endian>* master_got_info_;
// The primary GOT information.
Mips_got_info<size, big_endian>* primary_got_;
// Secondary GOT fixups.
std::vector<Static_reloc> secondary_got_relocs_;
};
// A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
// two ways of creating these interfaces. The first is to add:
//
// lui $25,%hi(func)
// j func
// addiu $25,$25,%lo(func)
//
// to a separate trampoline section. The second is to add:
//
// lui $25,%hi(func)
// addiu $25,$25,%lo(func)
//
// immediately before a PIC function "func", but only if a function is at the
// beginning of the section, and the section is not too heavily aligned (i.e we
// would need to add no more than 2 nops before the stub.)
//
// We only create stubs of the first type.
template<int size, bool big_endian>
class Mips_output_data_la25_stub : public Output_section_data
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
public:
Mips_output_data_la25_stub()
: Output_section_data(size == 32 ? 4 : 8), symbols_()
{ }
// Create LA25 stub for a symbol.
void
create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
Mips_symbol<size>* gsym);
// Return output address of a stub.
Mips_address
stub_address(const Mips_symbol<size>* sym) const
{
gold_assert(sym->has_la25_stub());
return this->address() + sym->la25_stub_offset();
}
protected:
void
do_adjust_output_section(Output_section* os)
{ os->set_entsize(0); }
private:
// Template for standard LA25 stub.
static const uint32_t la25_stub_entry[];
// Template for microMIPS LA25 stub.
static const uint32_t la25_stub_micromips_entry[];
// Set the final size.
void
set_final_data_size()
{ this->set_data_size(this->symbols_.size() * 16); }
// Create a symbol for SYM stub's value and size, to help make the
// disassembly easier to read.
void
create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
Target_mips<size, big_endian>* target, uint64_t symsize);
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(".LA25.stubs")); }
// Write out the LA25 stub section.
void
do_write(Output_file*);
// Symbols that have LA25 stubs.
std::vector<Mips_symbol<size>*> symbols_;
};
// MIPS-specific relocation writer.
template<int sh_type, bool dynamic, int size, bool big_endian>
struct Mips_output_reloc_writer;
template<int sh_type, bool dynamic, bool big_endian>
struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
{
typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
typedef std::vector<Output_reloc_type> Relocs;
static void
write(typename Relocs::const_iterator p, unsigned char* pov)
{ p->write(pov); }
};
template<int sh_type, bool dynamic, bool big_endian>
struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
{
typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
typedef std::vector<Output_reloc_type> Relocs;
static void
write(typename Relocs::const_iterator p, unsigned char* pov)
{
elfcpp::Mips64_rel_write<big_endian> orel(pov);
orel.put_r_offset(p->get_address());
orel.put_r_sym(p->get_symbol_index());
orel.put_r_ssym(RSS_UNDEF);
orel.put_r_type(p->type());
if (p->type() == elfcpp::R_MIPS_REL32)
orel.put_r_type2(elfcpp::R_MIPS_64);
else
orel.put_r_type2(elfcpp::R_MIPS_NONE);
orel.put_r_type3(elfcpp::R_MIPS_NONE);
}
};
template<int sh_type, bool dynamic, int size, bool big_endian>
class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
size, big_endian>
{
public:
Mips_output_data_reloc(bool sort_relocs)
: Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
{ }
protected:
// Write out the data.
void
do_write(Output_file* of)
{
typedef Mips_output_reloc_writer<sh_type, dynamic, size,
big_endian> Writer;
this->template do_write_generic<Writer>(of);
}
};
// A class to handle the PLT data.
template<int size, bool big_endian>
class Mips_output_data_plt : public Output_section_data
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
size, big_endian> Reloc_section;
public:
// Create the PLT section. The ordinary .got section is an argument,
// since we need to refer to the start.
Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
Target_mips<size, big_endian>* target)
: Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
target_(target)
{
this->rel_ = new Reloc_section(false);
layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_,
ORDER_DYNAMIC_PLT_RELOCS, false);
}
// Add an entry to the PLT for a symbol referenced by r_type relocation.
void
add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
// Return the .rel.plt section data.
Reloc_section*
rel_plt() const
{ return this->rel_; }
// Return the number of PLT entries.
unsigned int
entry_count() const
{ return this->symbols_.size(); }
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const
{ return sizeof(plt0_entry_o32); }
// Return the size of a PLT entry.
unsigned int
plt_entry_size() const
{ return sizeof(plt_entry); }
// Set final PLT offsets. For each symbol, determine whether standard or
// compressed (MIPS16 or microMIPS) PLT entry is used.
void
set_plt_offsets();
// Return the offset of the first standard PLT entry.
unsigned int
first_mips_plt_offset() const
{ return this->plt_header_size_; }
// Return the offset of the first compressed PLT entry.
unsigned int
first_comp_plt_offset() const
{ return this->plt_header_size_ + this->plt_mips_offset_; }
// Return whether there are any standard PLT entries.
bool
has_standard_entries() const
{ return this->plt_mips_offset_ > 0; }
// Return the output address of standard PLT entry.
Mips_address
mips_entry_address(const Mips_symbol<size>* sym) const
{
gold_assert (sym->has_mips_plt_offset());
return (this->address() + this->first_mips_plt_offset()
+ sym->mips_plt_offset());
}
// Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
Mips_address
comp_entry_address(const Mips_symbol<size>* sym) const
{
gold_assert (sym->has_comp_plt_offset());
return (this->address() + this->first_comp_plt_offset()
+ sym->comp_plt_offset());
}
protected:
void
do_adjust_output_section(Output_section* os)
{ os->set_entsize(0); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(".plt")); }
private:
// Template for the first PLT entry.
static const uint32_t plt0_entry_o32[];
static const uint32_t plt0_entry_n32[];
static const uint32_t plt0_entry_n64[];
static const uint32_t plt0_entry_micromips_o32[];
static const uint32_t plt0_entry_micromips32_o32[];
// Template for subsequent PLT entries.
static const uint32_t plt_entry[];
static const uint32_t plt_entry_r6[];
static const uint32_t plt_entry_mips16_o32[];
static const uint32_t plt_entry_micromips_o32[];
static const uint32_t plt_entry_micromips32_o32[];
// Set the final size.
void
set_final_data_size()
{
this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
+ this->plt_comp_offset_);
}
// Write out the PLT data.
void
do_write(Output_file*);
// Return whether the plt header contains microMIPS code. For the sake of
// cache alignment always use a standard header whenever any standard entries
// are present even if microMIPS entries are present as well. This also lets
// the microMIPS header rely on the value of $v0 only set by microMIPS
// entries, for a small size reduction.
bool
is_plt_header_compressed() const
{
gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
}
// Return the size of the PLT header.
unsigned int
get_plt_header_size() const
{
if (this->target_->is_output_n64())
return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
else if (this->target_->is_output_n32())
return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
else if (!this->is_plt_header_compressed())
return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
else if (this->target_->use_32bit_micromips_instructions())
return (2 * sizeof(plt0_entry_micromips32_o32)
/ sizeof(plt0_entry_micromips32_o32[0]));
else
return (2 * sizeof(plt0_entry_micromips_o32)
/ sizeof(plt0_entry_micromips_o32[0]));
}
// Return the PLT header entry.
const uint32_t*
get_plt_header_entry() const
{
if (this->target_->is_output_n64())
return plt0_entry_n64;
else if (this->target_->is_output_n32())
return plt0_entry_n32;
else if (!this->is_plt_header_compressed())
return plt0_entry_o32;
else if (this->target_->use_32bit_micromips_instructions())
return plt0_entry_micromips32_o32;
else
return plt0_entry_micromips_o32;
}
// Return the size of the standard PLT entry.
unsigned int
standard_plt_entry_size() const
{ return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
// Return the size of the compressed PLT entry.
unsigned int
compressed_plt_entry_size() const
{
gold_assert(!this->target_->is_output_newabi());
if (!this->target_->is_output_micromips())
return (2 * sizeof(plt_entry_mips16_o32)
/ sizeof(plt_entry_mips16_o32[0]));
else if (this->target_->use_32bit_micromips_instructions())
return (2 * sizeof(plt_entry_micromips32_o32)
/ sizeof(plt_entry_micromips32_o32[0]));
else
return (2 * sizeof(plt_entry_micromips_o32)
/ sizeof(plt_entry_micromips_o32[0]));
}
// The reloc section.
Reloc_section* rel_;
// The .got.plt section.
Output_data_space* got_plt_;
// Symbols that have PLT entry.
std::vector<Mips_symbol<size>*> symbols_;
// The offset of the next standard PLT entry to create.
unsigned int plt_mips_offset_;
// The offset of the next compressed PLT entry to create.
unsigned int plt_comp_offset_;
// The size of the PLT header in bytes.
unsigned int plt_header_size_;
// The target.
Target_mips<size, big_endian>* target_;
};
// A class to handle the .MIPS.stubs data.
template<int size, bool big_endian>
class Mips_output_data_mips_stubs : public Output_section_data
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
// Unordered set of .MIPS.stubs entries.
typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
Mips_stubs_entry_set;
public:
Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
: Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
stub_offsets_are_set_(false), target_(target)
{ }
// Create entry for a symbol.
void
make_entry(Mips_symbol<size>*);
// Remove entry for a symbol.
void
remove_entry(Mips_symbol<size>* gsym);
// Set stub offsets for symbols. This method expects that the number of
// entries in dynamic symbol table is set.
void
set_lazy_stub_offsets();
void
set_needs_dynsym_value();
// Set the number of entries in dynamic symbol table.
void
set_dynsym_count(unsigned int dynsym_count)
{ this->dynsym_count_ = dynsym_count; }
// Return maximum size of the stub, ie. the stub size if the dynamic symbol
// count is greater than 0x10000. If the dynamic symbol count is less than
// 0x10000, the stub will be 4 bytes smaller.
// There's no disadvantage from using microMIPS code here, so for the sake of
// pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
// output produced at all. This has a benefit of stubs being shorter by
// 4 bytes each too, unless in the insn32 mode.
unsigned int
stub_max_size() const
{
if (!this->target_->is_output_micromips()
|| this->target_->use_32bit_micromips_instructions())
return 20;
else
return 16;
}
// Return the size of the stub. This method expects that the final dynsym
// count is set.
unsigned int
stub_size() const
{
gold_assert(this->dynsym_count_ != -1U);
if (this->dynsym_count_ > 0x10000)
return this->stub_max_size();
else
return this->stub_max_size() - 4;
}
// Return output address of a stub.
Mips_address
stub_address(const Mips_symbol<size>* sym) const
{
gold_assert(sym->has_lazy_stub());
return this->address() + sym->lazy_stub_offset();
}
protected:
void
do_adjust_output_section(Output_section* os)
{ os->set_entsize(0); }
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(".MIPS.stubs")); }
private:
static const uint32_t lazy_stub_normal_1[];
static const uint32_t lazy_stub_normal_1_n64[];
static const uint32_t lazy_stub_normal_2[];
static const uint32_t lazy_stub_normal_2_n64[];
static const uint32_t lazy_stub_big[];
static const uint32_t lazy_stub_big_n64[];
static const uint32_t lazy_stub_micromips_normal_1[];
static const uint32_t lazy_stub_micromips_normal_1_n64[];
static const uint32_t lazy_stub_micromips_normal_2[];
static const uint32_t lazy_stub_micromips_normal_2_n64[];
static const uint32_t lazy_stub_micromips_big[];
static const uint32_t lazy_stub_micromips_big_n64[];
static const uint32_t lazy_stub_micromips32_normal_1[];
static const uint32_t lazy_stub_micromips32_normal_1_n64[];
static const uint32_t lazy_stub_micromips32_normal_2[];
static const uint32_t lazy_stub_micromips32_normal_2_n64[];
static const uint32_t lazy_stub_micromips32_big[];
static const uint32_t lazy_stub_micromips32_big_n64[];
// Set the final size.
void
set_final_data_size()
{ this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
// Write out the .MIPS.stubs data.
void
do_write(Output_file*);
// .MIPS.stubs symbols
Mips_stubs_entry_set symbols_;
// Number of entries in dynamic symbol table.
unsigned int dynsym_count_;
// Whether the stub offsets are set.
bool stub_offsets_are_set_;
// The target.
Target_mips<size, big_endian>* target_;
};
// This class handles Mips .reginfo output section.
template<int size, bool big_endian>
class Mips_output_section_reginfo : public Output_section_data
{
typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
public:
Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
Valtype gprmask, Valtype cprmask1,
Valtype cprmask2, Valtype cprmask3,
Valtype cprmask4)
: Output_section_data(24, 4, true), target_(target),
gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
cprmask3_(cprmask3), cprmask4_(cprmask4)
{ }
protected:
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(".reginfo")); }
// Write out reginfo section.
void
do_write(Output_file* of);
private:
Target_mips<size, big_endian>* target_;
// gprmask of the output .reginfo section.
Valtype gprmask_;
// cprmask1 of the output .reginfo section.
Valtype cprmask1_;
// cprmask2 of the output .reginfo section.
Valtype cprmask2_;
// cprmask3 of the output .reginfo section.
Valtype cprmask3_;
// cprmask4 of the output .reginfo section.
Valtype cprmask4_;
};
// This class handles .MIPS.options output section.
template<int size, bool big_endian>
class Mips_output_section_options : public Output_section
{
public:
Mips_output_section_options(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags,
Target_mips<size, big_endian>* target)
: Output_section(name, type, flags), target_(target)
{
// After the input sections are written, we only need to update
// ri_gp_value field of ODK_REGINFO entries.
this->set_after_input_sections();
}
protected:
// Write out option section.
void
do_write(Output_file* of);
private:
Target_mips<size, big_endian>* target_;
};
// This class handles .MIPS.abiflags output section.
template<int size, bool big_endian>
class Mips_output_section_abiflags : public Output_section_data
{
public:
Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
: Output_section_data(24, 8, true), abiflags_(abiflags)
{ }
protected:
// Write to a map file.
void
do_print_to_mapfile(Mapfile* mapfile) const
{ mapfile->print_output_data(this, _(".MIPS.abiflags")); }
void
do_write(Output_file* of);
private:
const Mips_abiflags<big_endian>& abiflags_;
};
// The MIPS target has relocation types which default handling of relocatable
// relocation cannot process. So we have to extend the default code.
template<bool big_endian, typename Classify_reloc>
class Mips_scan_relocatable_relocs :
public Default_scan_relocatable_relocs<Classify_reloc>
{
public:
// Return the strategy to use for a local symbol which is a section
// symbol, given the relocation type.
inline Relocatable_relocs::Reloc_strategy
local_section_strategy(unsigned int r_type, Relobj* object)
{
if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
else
{
switch (r_type)
{
case elfcpp::R_MIPS_26:
return Relocatable_relocs::RELOC_SPECIAL;
default:
return Default_scan_relocatable_relocs<Classify_reloc>::
local_section_strategy(r_type, object);
}
}
}
};
// Mips_copy_relocs class. The only difference from the base class is the
// method emit_mips, which should be called instead of Copy_reloc_entry::emit.
// Mips cannot convert all relocation types to dynamic relocs. If a reloc
// cannot be made dynamic, a COPY reloc is emitted.
template<int sh_type, int size, bool big_endian>
class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
{
public:
Mips_copy_relocs()
: Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
{ }
// Emit any saved relocations which turn out to be needed. This is
// called after all the relocs have been scanned.
void
emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
Symbol_table*, Layout*, Target_mips<size, big_endian>*);
private:
typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
Copy_reloc_entry;
// Emit this reloc if appropriate. This is called after we have
// scanned all the relocations, so we know whether we emitted a
// COPY relocation for SYM_.
void
emit_entry(Copy_reloc_entry& entry,
Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
Symbol_table* symtab, Layout* layout,
Target_mips<size, big_endian>* target);
};
// Return true if the symbol SYM should be considered to resolve local
// to the current module, and false otherwise. The logic is taken from
// GNU ld's method _bfd_elf_symbol_refs_local_p.
static bool
symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
bool local_protected)
{
// If it's a local sym, of course we resolve locally.
if (sym == NULL)
return true;
// STV_HIDDEN or STV_INTERNAL ones must be local.
if (sym->visibility() == elfcpp::STV_HIDDEN
|| sym->visibility() == elfcpp::STV_INTERNAL)
return true;
// If we don't have a definition in a regular file, then we can't
// resolve locally. The sym is either undefined or dynamic.
if (sym->is_from_dynobj() || sym->is_undefined())
return false;
// Forced local symbols resolve locally.
if (sym->is_forced_local())
return true;
// As do non-dynamic symbols.
if (!has_dynsym_entry)
return true;
// At this point, we know the symbol is defined and dynamic. In an
// executable it must resolve locally, likewise when building symbolic
// shared libraries.
if (parameters->options().output_is_executable()
|| parameters->options().Bsymbolic())
return true;
// Now deal with defined dynamic symbols in shared libraries. Ones
// with default visibility might not resolve locally.
if (sym->visibility() == elfcpp::STV_DEFAULT)
return false;
// STV_PROTECTED non-function symbols are local.
if (sym->type() != elfcpp::STT_FUNC)
return true;
// Function pointer equality tests may require that STV_PROTECTED
// symbols be treated as dynamic symbols. If the address of a
// function not defined in an executable is set to that function's
// plt entry in the executable, then the address of the function in
// a shared library must also be the plt entry in the executable.
return local_protected;
}
// Return TRUE if references to this symbol always reference the symbol in this
// object.
static bool
symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
{
return symbol_refs_local(sym, has_dynsym_entry, false);
}
// Return TRUE if calls to this symbol always call the version in this object.
static bool
symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
{
return symbol_refs_local(sym, has_dynsym_entry, true);
}
// Compare GOT offsets of two symbols.
template<int size, bool big_endian>
static bool
got_offset_compare(Symbol* sym1, Symbol* sym2)
{
Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
unsigned int area1 = mips_sym1->global_got_area();
unsigned int area2 = mips_sym2->global_got_area();
gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
// GGA_NORMAL entries always come before GGA_RELOC_ONLY.
if (area1 != area2)
return area1 < area2;
return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
}
// This method divides dynamic symbols into symbols that have GOT entry, and
// symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
// Mips ABI requires that symbols with the GOT entry must be at the end of
// dynamic symbol table, and the order in dynamic symbol table must match the
// order in GOT.
template<int size, bool big_endian>
static void
reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
std::vector<Symbol*>* non_got_symbols,
std::vector<Symbol*>* got_symbols)
{
for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
p != dyn_symbols->end();
++p)
{
Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
if (mips_sym->global_got_area() == GGA_NORMAL
|| mips_sym->global_got_area() == GGA_RELOC_ONLY)
got_symbols->push_back(mips_sym);
else
non_got_symbols->push_back(mips_sym);
}
std::sort(got_symbols->begin(), got_symbols->end(),
got_offset_compare<size, big_endian>);
}
// Functor class for processing the global symbol table.
template<int size, bool big_endian>
class Symbol_visitor_check_symbols
{
public:
Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
Layout* layout, Symbol_table* symtab)
: target_(target), layout_(layout), symtab_(symtab)
{ }
void
operator()(Sized_symbol<size>* sym)
{
Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
if (local_pic_function<size, big_endian>(mips_sym))
{
// SYM is a function that might need $25 to be valid on entry.
// If we're creating a non-PIC relocatable object, mark SYM as
// being PIC. If we're creating a non-relocatable object with
// non-PIC branches and jumps to SYM, make sure that SYM has an la25
// stub.
if (parameters->options().relocatable())
{
if (!parameters->options().output_is_position_independent())
mips_sym->set_pic();
}
else if (mips_sym->has_nonpic_branches())
{
this->target_->la25_stub_section(layout_)
->create_la25_stub(this->symtab_, this->target_, mips_sym);
}
}
}
private:
Target_mips<size, big_endian>* target_;
Layout* layout_;
Symbol_table* symtab_;
};
// Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
// and endianness. The relocation format for MIPS-64 is non-standard.
template<int sh_type, int size, bool big_endian>
struct Mips_reloc_types;
template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
{
typedef typename elfcpp::Rel<32, big_endian> Reloc;
typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
static typename elfcpp::Elf_types<32>::Elf_Swxword
get_r_addend(const Reloc*)
{ return 0; }
static inline void
set_reloc_addend(Reloc_write*,
typename elfcpp::Elf_types<32>::Elf_Swxword)
{ gold_unreachable(); }
};
template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
{
typedef typename elfcpp::Rela<32, big_endian> Reloc;
typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
static typename elfcpp::Elf_types<32>::Elf_Swxword
get_r_addend(const Reloc* reloc)
{ return reloc->get_r_addend(); }
static inline void
set_reloc_addend(Reloc_write* p,
typename elfcpp::Elf_types<32>::Elf_Swxword val)
{ p->put_r_addend(val); }
};
template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
{
typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
static typename elfcpp::Elf_types<64>::Elf_Swxword
get_r_addend(const Reloc*)
{ return 0; }
static inline void
set_reloc_addend(Reloc_write*,
typename elfcpp::Elf_types<64>::Elf_Swxword)
{ gold_unreachable(); }
};
template<bool big_endian>
struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
{
typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
static typename elfcpp::Elf_types<64>::Elf_Swxword
get_r_addend(const Reloc* reloc)
{ return reloc->get_r_addend(); }
static inline void
set_reloc_addend(Reloc_write* p,
typename elfcpp::Elf_types<64>::Elf_Swxword val)
{ p->put_r_addend(val); }
};
// Forward declaration.
static unsigned int
mips_get_size_for_reloc(unsigned int, Relobj*);
// A class for inquiring about properties of a relocation,
// used while scanning relocs during a relocatable link and
// garbage collection.
template<int sh_type_, int size, bool big_endian>
class Mips_classify_reloc;
template<int sh_type_, bool big_endian>
class Mips_classify_reloc<sh_type_, 32, big_endian> :
public gold::Default_classify_reloc<sh_type_, 32, big_endian>
{
public:
typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
Reltype;
typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
Reltype_write;
// Return the symbol referred to by the relocation.
static inline unsigned int
get_r_sym(const Reltype* reloc)
{ return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
// Return the type of the relocation.
static inline unsigned int
get_r_type(const Reltype* reloc)
{ return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
static inline unsigned int
get_r_type2(const Reltype*)
{ return 0; }
static inline unsigned int
get_r_type3(const Reltype*)
{ return 0; }
static inline unsigned int
get_r_ssym(const Reltype*)
{ return 0; }
// Return the explicit addend of the relocation (return 0 for SHT_REL).
static inline unsigned int
get_r_addend(const Reltype* reloc)
{
if (sh_type_ == elfcpp::SHT_REL)
return 0;
return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
}
// Write the r_info field to a new reloc, using the r_info field from
// the original reloc, replacing the r_sym field with R_SYM.
static inline void
put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
{
unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
}
// Write the r_addend field to a new reloc.
static inline void
put_r_addend(Reltype_write* to,
typename elfcpp::Elf_types<32>::Elf_Swxword addend)
{ Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
// Return the size of the addend of the relocation (only used for SHT_REL).
static unsigned int
get_size_for_reloc(unsigned int r_type, Relobj* obj)
{ return mips_get_size_for_reloc(r_type, obj); }
};
template<int sh_type_, bool big_endian>
class Mips_classify_reloc<sh_type_, 64, big_endian> :
public gold::Default_classify_reloc<sh_type_, 64, big_endian>
{
public:
typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
Reltype;
typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
Reltype_write;
// Return the symbol referred to by the relocation.
static inline unsigned int
get_r_sym(const Reltype* reloc)
{ return reloc->get_r_sym(); }
// Return the r_type of the relocation.
static inline unsigned int
get_r_type(const Reltype* reloc)
{ return reloc->get_r_type(); }
// Return the r_type2 of the relocation.
static inline unsigned int
get_r_type2(const Reltype* reloc)
{ return reloc->get_r_type2(); }
// Return the r_type3 of the relocation.
static inline unsigned int
get_r_type3(const Reltype* reloc)
{ return reloc->get_r_type3(); }
// Return the special symbol of the relocation.
static inline unsigned int
get_r_ssym(const Reltype* reloc)
{ return reloc->get_r_ssym(); }
// Return the explicit addend of the relocation (return 0 for SHT_REL).
static inline typename elfcpp::Elf_types<64>::Elf_Swxword
get_r_addend(const Reltype* reloc)
{
if (sh_type_ == elfcpp::SHT_REL)
return 0;
return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
}
// Write the r_info field to a new reloc, using the r_info field from
// the original reloc, replacing the r_sym field with R_SYM.
static inline void
put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
{
new_reloc->put_r_sym(r_sym);
new_reloc->put_r_ssym(reloc->get_r_ssym());
new_reloc->put_r_type3(reloc->get_r_type3());
new_reloc->put_r_type2(reloc->get_r_type2());
new_reloc->put_r_type(reloc->get_r_type());
}
// Write the r_addend field to a new reloc.
static inline void
put_r_addend(Reltype_write* to,
typename elfcpp::Elf_types<64>::Elf_Swxword addend)
{ Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
// Return the size of the addend of the relocation (only used for SHT_REL).
static unsigned int
get_size_for_reloc(unsigned int r_type, Relobj* obj)
{ return mips_get_size_for_reloc(r_type, obj); }
};
template<int size, bool big_endian>
class Target_mips : public Sized_target<size, big_endian>
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
Reloc_section;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
Reltype;
typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
Relatype;
public:
Target_mips(const Target::Target_info* info = &mips_info)
: Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
entry_symbol_is_compressed_(false), insn32_(false)
{
this->add_machine_extensions();
}
// The offset of $gp from the beginning of the .got section.
static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
// The maximum size of the GOT for it to be addressable using 16-bit
// offsets from $gp.
static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
// Make a new symbol table entry for the Mips target.
Sized_symbol<size>*
make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
{ return new Mips_symbol<size>(); }
// Process the relocations to determine unreferenced sections for
// garbage collection.
void
gc_process_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Scan the relocations to look for symbol adjustments.
void
scan_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols);
// Finalize the sections.
void
do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
// Relocate a section.
void
relocate_section(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Mips_address view_address,
section_size_type view_size,
const Reloc_symbol_changes*);
// Scan the relocs during a relocatable link.
void
scan_relocatable_relocs(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs*);
// Scan the relocs for --emit-relocs.
void
emit_relocs_scan(Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr);
// Emit relocations for a section.
void
relocate_relocs(const Relocate_info<size, big_endian>*,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off
offset_in_output_section,
unsigned char* view,
Mips_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size);
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
void
relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off
offset_in_output_section,
unsigned char* view,
Mips_address view_address,
section_size_type view_size,
unsigned char* preloc_out);
// Return whether SYM is defined by the ABI.
bool
do_is_defined_by_abi(const Symbol* sym) const
{
return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
|| (strcmp(sym->name(), "_gp_disp") == 0)
|| (strcmp(sym->name(), "___tls_get_addr") == 0));
}
// Return the number of entries in the GOT.
unsigned int
got_entry_count() const
{
if (!this->has_got_section())
return 0;
return this->got_size() / (size/8);
}
// Return the number of entries in the PLT.
unsigned int
plt_entry_count() const
{
if (this->plt_ == NULL)
return 0;
return this->plt_->entry_count();
}
// Return the offset of the first non-reserved PLT entry.
unsigned int
first_plt_entry_offset() const
{ return this->plt_->first_plt_entry_offset(); }
// Return the size of each PLT entry.
unsigned int
plt_entry_size() const
{ return this->plt_->plt_entry_size(); }
// Get the GOT section, creating it if necessary.
Mips_output_data_got<size, big_endian>*
got_section(Symbol_table*, Layout*);
// Get the GOT section.
Mips_output_data_got<size, big_endian>*
got_section() const
{
gold_assert(this->got_ != NULL);
return this->got_;
}
// Get the .MIPS.stubs section, creating it if necessary.
Mips_output_data_mips_stubs<size, big_endian>*
mips_stubs_section(Layout* layout);
// Get the .MIPS.stubs section.
Mips_output_data_mips_stubs<size, big_endian>*
mips_stubs_section() const
{
gold_assert(this->mips_stubs_ != NULL);
return this->mips_stubs_;
}
// Get the LA25 stub section, creating it if necessary.
Mips_output_data_la25_stub<size, big_endian>*
la25_stub_section(Layout*);
// Get the LA25 stub section.
Mips_output_data_la25_stub<size, big_endian>*
la25_stub_section()
{
gold_assert(this->la25_stub_ != NULL);
return this->la25_stub_;
}
// Get gp value. It has the value of .got + 0x7FF0.
Mips_address
gp_value() const
{
if (this->gp_ != NULL)
return this->gp_->value();
return 0;
}
// Get gp value. It has the value of .got + 0x7FF0. Adjust it for
// multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
Mips_address
adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
{
if (this->gp_ == NULL)
return 0;
bool multi_got = false;
if (this->has_got_section())
multi_got = this->got_section()->multi_got();
if (!multi_got)
return this->gp_->value();
else
return this->gp_->value() + this->got_section()->get_got_offset(object);
}
// Get the dynamic reloc section, creating it if necessary.
Reloc_section*
rel_dyn_section(Layout*);
bool
do_has_custom_set_dynsym_indexes() const
{ return true; }
// Don't emit input .reginfo/.MIPS.abiflags sections to
// output .reginfo/.MIPS.abiflags.
bool
do_should_include_section(elfcpp::Elf_Word sh_type) const
{
return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
&& (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
}
// Set the dynamic symbol indexes. INDEX is the index of the first
// global dynamic symbol. Pointers to the symbols are stored into the
// vector SYMS. The names are added to DYNPOOL. This returns an
// updated dynamic symbol index.
unsigned int
do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
std::vector<Symbol*>* syms, Stringpool* dynpool,
Versions* versions, Symbol_table* symtab) const;
// Remove .MIPS.stubs entry for a symbol.
void
remove_lazy_stub_entry(Mips_symbol<size>* sym)
{
if (this->mips_stubs_ != NULL)
this->mips_stubs_->remove_entry(sym);
}
// The value to write into got[1] for SVR4 targets, to identify it is
// a GNU object. The dynamic linker can then use got[1] to store the
// module pointer.
uint64_t
mips_elf_gnu_got1_mask()
{
if (this->is_output_n64())
return (uint64_t)1 << 63;
else
return 1 << 31;
}
// Whether the output has microMIPS code. This is valid only after
// merge_obj_e_flags() is called.
bool
is_output_micromips() const
{
gold_assert(this->are_processor_specific_flags_set());
return elfcpp::is_micromips(this->processor_specific_flags());
}
// Whether the output uses N32 ABI. This is valid only after
// merge_obj_e_flags() is called.
bool
is_output_n32() const
{
gold_assert(this->are_processor_specific_flags_set());
return elfcpp::abi_n32(this->processor_specific_flags());
}
// Whether the output uses R6 ISA. This is valid only after
// merge_obj_e_flags() is called.
bool
is_output_r6() const
{
gold_assert(this->are_processor_specific_flags_set());
return elfcpp::r6_isa(this->processor_specific_flags());
}
// Whether the output uses N64 ABI.
bool
is_output_n64() const
{ return size == 64; }
// Whether the output uses NEWABI. This is valid only after
// merge_obj_e_flags() is called.
bool
is_output_newabi() const
{ return this->is_output_n32() || this->is_output_n64(); }
// Whether we can only use 32-bit microMIPS instructions.
bool
use_32bit_micromips_instructions() const
{ return this->insn32_; }
// Return the r_sym field from a relocation.
unsigned int
get_r_sym(const unsigned char* preloc) const
{
// Since REL and RELA relocs share the same structure through
// the r_info field, we can just use REL here.
Reltype rel(preloc);
return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_sym(&rel);
}
protected:
// Return the value to use for a dynamic symbol which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
uint64_t
do_dynsym_value(const Symbol* gsym) const;
// Make an ELF object.
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<size, big_endian>& ehdr);
Object*
do_make_elf_object(const std::string&, Input_file*, off_t,
const elfcpp::Ehdr<size, !big_endian>&)
{ gold_unreachable(); }
// Make an output section.
Output_section*
do_make_output_section(const char* name, elfcpp::Elf_Word type,
elfcpp::Elf_Xword flags)
{
if (type == elfcpp::SHT_MIPS_OPTIONS)
return new Mips_output_section_options<size, big_endian>(name, type,
flags, this);
else
return new Output_section(name, type, flags);
}
// Adjust ELF file header.
void
do_adjust_elf_header(unsigned char* view, int len);
// Get the custom dynamic tag value.
unsigned int
do_dynamic_tag_custom_value(elfcpp::DT) const;
// Adjust the value written to the dynamic symbol table.
virtual void
do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
{
elfcpp::Sym<size, big_endian> isym(view);
elfcpp::Sym_write<size, big_endian> osym(view);
const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
// Keep dynamic compressed symbols odd. This allows the dynamic linker
// to treat compressed symbols like any other.
Mips_address value = isym.get_st_value();
if (mips_sym->is_mips16() && value != 0)
{
if (!mips_sym->has_mips16_fn_stub())
value |= 1;
else
{
// If we have a MIPS16 function with a stub, the dynamic symbol
// must refer to the stub, since only the stub uses the standard
// calling conventions. Stub contains MIPS32 code, so don't add +1
// in this case.
// There is a code which does this in the method
// Target_mips::do_dynsym_value, but that code will only be
// executed if the symbol is from dynobj.
// TODO(sasa): GNU ld also changes the value in non-dynamic symbol
// table.
Mips16_stub_section<size, big_endian>* fn_stub =
mips_sym->template get_mips16_fn_stub<big_endian>();
value = fn_stub->output_address();
osym.put_st_size(fn_stub->section_size());
}
osym.put_st_value(value);
osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
}
else if ((mips_sym->is_micromips()
// Stubs are always microMIPS if there is any microMIPS code in
// the output.
|| (this->is_output_micromips() && mips_sym->has_lazy_stub()))
&& value != 0)
{
osym.put_st_value(value | 1);
osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
}
}
private:
// The class which scans relocations.
class Scan
{
public:
Scan()
{ }
static inline int
get_reference_flags(unsigned int r_type);
inline void
local(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Reltype& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
local(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype& reloc, unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
local(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype* rela,
const Reltype* rel,
unsigned int rel_type,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded);
inline void
global(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Reltype& reloc, unsigned int r_type,
Symbol* gsym);
inline void
global(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype& reloc, unsigned int r_type,
Symbol* gsym);
inline void
global(Symbol_table* symtab, Layout* layout, Target_mips* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype* rela,
const Reltype* rel,
unsigned int rel_type,
unsigned int r_type,
Symbol* gsym);
inline bool
local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
Target_mips*,
Sized_relobj_file<size, big_endian>*,
unsigned int,
Output_section*,
const Reltype&,
unsigned int,
const elfcpp::Sym<size, big_endian>&)
{ return false; }
inline bool
global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
Target_mips*,
Sized_relobj_file<size, big_endian>*,
unsigned int,
Output_section*,
const Reltype&,
unsigned int, Symbol*)
{ return false; }
inline bool
local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
Target_mips*,
Sized_relobj_file<size, big_endian>*,
unsigned int,
Output_section*,
const Relatype&,
unsigned int,
const elfcpp::Sym<size, big_endian>&)
{ return false; }
inline bool
global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
Target_mips*,
Sized_relobj_file<size, big_endian>*,
unsigned int,
Output_section*,
const Relatype&,
unsigned int, Symbol*)
{ return false; }
private:
static void
unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
unsigned int r_type);
static void
unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
unsigned int r_type, Symbol*);
};
// The class which implements relocation.
class Relocate
{
public:
Relocate()
: calculated_value_(0), calculate_only_(false)
{ }
~Relocate()
{ }
// Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
inline bool
should_apply_static_reloc(const Mips_symbol<size>* gsym,
unsigned int r_type,
Output_section* output_section,
Target_mips* target);
// Do a relocation. Return false if the caller should not issue
// any warnings about this relocation.
inline bool
relocate(const Relocate_info<size, big_endian>*, unsigned int,
Target_mips*, Output_section*, size_t, const unsigned char*,
const Sized_symbol<size>*, const Symbol_value<size>*,
unsigned char*, Mips_address, section_size_type);
private:
// Result of the relocation.
Valtype calculated_value_;
// Whether we have to calculate relocation instead of applying it.
bool calculate_only_;
};
// This POD class holds the dynamic relocations that should be emitted instead
// of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
// relocations if it turns out that the symbol does not have static
// relocations.
class Dyn_reloc
{
public:
Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
Output_section* output_section, Mips_address r_offset)
: sym_(sym), r_type_(r_type), relobj_(relobj),
shndx_(shndx), output_section_(output_section),
r_offset_(r_offset)
{ }
// Emit this reloc if appropriate. This is called after we have
// scanned all the relocations, so we know whether the symbol has
// static relocations.
void
emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
Symbol_table* symtab)
{
if (!this->sym_->has_static_relocs())
{
got->record_global_got_symbol(this->sym_, this->relobj_,
this->r_type_, true, false);
if (!symbol_references_local(this->sym_,
this->sym_->should_add_dynsym_entry(symtab)))
rel_dyn->add_global(this->sym_, this->r_type_,
this->output_section_, this->relobj_,
this->shndx_, this->r_offset_);
else
rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
this->output_section_, this->relobj_,
this->shndx_, this->r_offset_);
}
}
private:
Mips_symbol<size>* sym_;
unsigned int r_type_;
Mips_relobj<size, big_endian>* relobj_;
unsigned int shndx_;
Output_section* output_section_;
Mips_address r_offset_;
};
// Adjust TLS relocation type based on the options and whether this
// is a local symbol.
static tls::Tls_optimization
optimize_tls_reloc(bool is_final, int r_type);
// Return whether there is a GOT section.
bool
has_got_section() const
{ return this->got_ != NULL; }
// Check whether the given ELF header flags describe a 32-bit binary.
bool
mips_32bit_flags(elfcpp::Elf_Word);
enum Mips_mach {
mach_mips3000 = 3000,
mach_mips3900 = 3900,
mach_mips4000 = 4000,
mach_mips4010 = 4010,
mach_mips4100 = 4100,
mach_mips4111 = 4111,
mach_mips4120 = 4120,
mach_mips4300 = 4300,
mach_mips4400 = 4400,
mach_mips4600 = 4600,
mach_mips4650 = 4650,
mach_mips5000 = 5000,
mach_mips5400 = 5400,
mach_mips5500 = 5500,
mach_mips5900 = 5900,
mach_mips6000 = 6000,
mach_mips7000 = 7000,
mach_mips8000 = 8000,
mach_mips9000 = 9000,
mach_mips10000 = 10000,
mach_mips12000 = 12000,
mach_mips14000 = 14000,
mach_mips16000 = 16000,
mach_mips16 = 16,
mach_mips5 = 5,
mach_mips_loongson_2e = 3001,
mach_mips_loongson_2f = 3002,
mach_mips_gs464 = 3003,
mach_mips_gs464e = 3004,
mach_mips_gs264e = 3005,
mach_mips_sb1 = 12310201, // octal 'SB', 01
mach_mips_octeon = 6501,
mach_mips_octeonp = 6601,
mach_mips_octeon2 = 6502,
mach_mips_octeon3 = 6503,
mach_mips_xlr = 887682, // decimal 'XLR'
mach_mipsisa32 = 32,
mach_mipsisa32r2 = 33,
mach_mipsisa32r3 = 34,
mach_mipsisa32r5 = 36,
mach_mipsisa32r6 = 37,
mach_mipsisa64 = 64,
mach_mipsisa64r2 = 65,
mach_mipsisa64r3 = 66,
mach_mipsisa64r5 = 68,
mach_mipsisa64r6 = 69,
mach_mips_micromips = 96
};
// Return the MACH for a MIPS e_flags value.
unsigned int
elf_mips_mach(elfcpp::Elf_Word);
// Return the MACH for each .MIPS.abiflags ISA Extension.
unsigned int
mips_isa_ext_mach(unsigned int);
// Return the .MIPS.abiflags value representing each ISA Extension.
unsigned int
mips_isa_ext(unsigned int);
// Update the isa_level, isa_rev, isa_ext fields of abiflags.
void
update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
Mips_abiflags<big_endian>*);
// Infer the content of the ABI flags based on the elf header.
void
infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
// Create abiflags from elf header or from .MIPS.abiflags section.
void
create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
// Return the meaning of fp_abi, or "unknown" if not known.
const char*
fp_abi_string(int);
// Select fp_abi.
int
select_fp_abi(const std::string&, int, int);
// Merge attributes from input object.
void
merge_obj_attributes(const std::string&, const Attributes_section_data*);
// Merge abiflags from input object.
void
merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
// Check whether machine EXTENSION is an extension of machine BASE.
bool
mips_mach_extends(unsigned int, unsigned int);
// Merge file header flags from input object.
void
merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
// Encode ISA level and revision as a single value.
int
level_rev(unsigned char isa_level, unsigned char isa_rev) const
{ return (isa_level << 3) | isa_rev; }
// True if we are linking for CPUs that are faster if JAL is converted to BAL.
static inline bool
jal_to_bal()
{ return false; }
// True if we are linking for CPUs that are faster if JALR is converted to
// BAL. This should be safe for all architectures. We enable this predicate
// for all CPUs.
static inline bool
jalr_to_bal()
{ return true; }
// True if we are linking for CPUs that are faster if JR is converted to B.
// This should be safe for all architectures. We enable this predicate for
// all CPUs.
static inline bool
jr_to_b()
{ return true; }
// Return the size of the GOT section.
section_size_type
got_size() const
{
gold_assert(this->got_ != NULL);
return this->got_->data_size();
}
// Create a PLT entry for a global symbol referenced by r_type relocation.
void
make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
unsigned int r_type);
// Get the PLT section.
Mips_output_data_plt<size, big_endian>*
plt_section() const
{
gold_assert(this->plt_ != NULL);
return this->plt_;
}
// Get the GOT PLT section.
const Mips_output_data_plt<size, big_endian>*
got_plt_section() const
{
gold_assert(this->got_plt_ != NULL);
return this->got_plt_;
}
// Copy a relocation against a global symbol.
void
copy_reloc(Symbol_table* symtab, Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int shndx, Output_section* output_section,
Symbol* sym, unsigned int r_type, Mips_address r_offset)
{
this->copy_relocs_.copy_reloc(symtab, layout,
symtab->get_sized_symbol<size>(sym),
object, shndx, output_section,
r_type, r_offset, 0,
this->rel_dyn_section(layout));
}
void
dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
Mips_relobj<size, big_endian>* relobj,
unsigned int shndx, Output_section* output_section,
Mips_address r_offset)
{
this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
output_section, r_offset));
}
// Calculate value of _gp symbol.
void
set_gp(Layout*, Symbol_table*);
const char*
elf_mips_abi_name(elfcpp::Elf_Word e_flags);
const char*
elf_mips_mach_name(elfcpp::Elf_Word e_flags);
// Adds entries that describe how machines relate to one another. The entries
// are ordered topologically with MIPS I extensions listed last. First
// element is extension, second element is base.
void
add_machine_extensions()
{
// MIPS64r2 extensions.
this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
this->add_extension(mach_mips_octeonp, mach_mips_octeon);
this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
this->add_extension(mach_mips_gs264e, mach_mips_gs464e);
this->add_extension(mach_mips_gs464e, mach_mips_gs464);
this->add_extension(mach_mips_gs464, mach_mipsisa64r2);
// MIPS64 extensions.
this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
this->add_extension(mach_mips_sb1, mach_mipsisa64);
this->add_extension(mach_mips_xlr, mach_mipsisa64);
// MIPS V extensions.
this->add_extension(mach_mipsisa64, mach_mips5);
// R10000 extensions.
this->add_extension(mach_mips12000, mach_mips10000);
this->add_extension(mach_mips14000, mach_mips10000);
this->add_extension(mach_mips16000, mach_mips10000);
// R5000 extensions. Note: the vr5500 ISA is an extension of the core
// vr5400 ISA, but doesn't include the multimedia stuff. It seems
// better to allow vr5400 and vr5500 code to be merged anyway, since
// many libraries will just use the core ISA. Perhaps we could add
// some sort of ASE flag if this ever proves a problem.
this->add_extension(mach_mips5500, mach_mips5400);
this->add_extension(mach_mips5400, mach_mips5000);
// MIPS IV extensions.
this->add_extension(mach_mips5, mach_mips8000);
this->add_extension(mach_mips10000, mach_mips8000);
this->add_extension(mach_mips5000, mach_mips8000);
this->add_extension(mach_mips7000, mach_mips8000);
this->add_extension(mach_mips9000, mach_mips8000);
// VR4100 extensions.
this->add_extension(mach_mips4120, mach_mips4100);
this->add_extension(mach_mips4111, mach_mips4100);
// MIPS III extensions.
this->add_extension(mach_mips_loongson_2e, mach_mips4000);
this->add_extension(mach_mips_loongson_2f, mach_mips4000);
this->add_extension(mach_mips8000, mach_mips4000);
this->add_extension(mach_mips4650, mach_mips4000);
this->add_extension(mach_mips4600, mach_mips4000);
this->add_extension(mach_mips4400, mach_mips4000);
this->add_extension(mach_mips4300, mach_mips4000);
this->add_extension(mach_mips4100, mach_mips4000);
this->add_extension(mach_mips4010, mach_mips4000);
this->add_extension(mach_mips5900, mach_mips4000);
// MIPS32 extensions.
this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
// MIPS II extensions.
this->add_extension(mach_mips4000, mach_mips6000);
this->add_extension(mach_mipsisa32, mach_mips6000);
// MIPS I extensions.
this->add_extension(mach_mips6000, mach_mips3000);
this->add_extension(mach_mips3900, mach_mips3000);
}
// Add value to MIPS extenstions.
void
add_extension(unsigned int base, unsigned int extension)
{
std::pair<unsigned int, unsigned int> ext(base, extension);
this->mips_mach_extensions_.push_back(ext);
}
// Return the number of entries in the .dynsym section.
unsigned int get_dt_mips_symtabno() const
{
return ((unsigned int)(this->layout_->dynsym_section()->data_size()
/ elfcpp::Elf_sizes<size>::sym_size));
// TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
}
// Information about this specific target which we pass to the
// general Target structure.
static const Target::Target_info mips_info;
// The GOT section.
Mips_output_data_got<size, big_endian>* got_;
// gp symbol. It has the value of .got + 0x7FF0.
Sized_symbol<size>* gp_;
// The PLT section.
Mips_output_data_plt<size, big_endian>* plt_;
// The GOT PLT section.
Output_data_space* got_plt_;
// The dynamic reloc section.
Reloc_section* rel_dyn_;
// The .rld_map section.
Output_data_zero_fill* rld_map_;
// Relocs saved to avoid a COPY reloc.
Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
// A list of dyn relocs to be saved.
std::vector<Dyn_reloc> dyn_relocs_;
// The LA25 stub section.
Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
// Architecture extensions.
std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
// .MIPS.stubs
Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
// Attributes section data in output.
Attributes_section_data* attributes_section_data_;
// .MIPS.abiflags section data in output.
Mips_abiflags<big_endian>* abiflags_;
unsigned int mach_;
Layout* layout_;
typename std::list<got16_addend<size, big_endian> > got16_addends_;
// Whether there is an input .MIPS.abiflags section.
bool has_abiflags_section_;
// Whether the entry symbol is mips16 or micromips.
bool entry_symbol_is_compressed_;
// Whether we can use only 32-bit microMIPS instructions.
// TODO(sasa): This should be a linker option.
bool insn32_;
};
// Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
// It records high part of the relocation pair.
template<int size, bool big_endian>
struct reloc_high
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
const Symbol_value<size>* _psymval, Mips_address _addend,
unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
Mips_address _address = 0, bool _gp_disp = false)
: view(_view), object(_object), psymval(_psymval), addend(_addend),
r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
address(_address), gp_disp(_gp_disp)
{ }
unsigned char* view;
const Mips_relobj<size, big_endian>* object;
const Symbol_value<size>* psymval;
Mips_address addend;
unsigned int r_type;
unsigned int r_sym;
bool extract_addend;
Mips_address address;
bool gp_disp;
};
template<int size, bool big_endian>
class Mips_relocate_functions : public Relocate_functions<size, big_endian>
{
typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
public:
typedef enum
{
STATUS_OKAY, // No error during relocation.
STATUS_OVERFLOW, // Relocation overflow.
STATUS_BAD_RELOC, // Relocation cannot be applied.
STATUS_PCREL_UNALIGNED // Unaligned PC-relative relocation.
} Status;
private:
typedef Relocate_functions<size, big_endian> Base;
typedef Mips_relocate_functions<size, big_endian> This;
static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
static typename std::list<reloc_high<size, big_endian> > got16_relocs;
static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
template<int valsize>
static inline typename This::Status
check_overflow(Valtype value)
{
if (size == 32)
return (Bits<valsize>::has_overflow32(value)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
return (Bits<valsize>::has_overflow(value)
? This::STATUS_OVERFLOW
: This::STATUS_OKAY);
}
static inline bool
should_shuffle_micromips_reloc(unsigned int r_type)
{
return (micromips_reloc(r_type)
&& r_type != elfcpp::R_MICROMIPS_PC7_S1
&& r_type != elfcpp::R_MICROMIPS_PC10_S1
&& r_type != elfcpp::R_MICROMIPS_GPREL7_S2);
}
public:
// R_MIPS16_26 is used for the mips16 jal and jalx instructions.
// Most mips16 instructions are 16 bits, but these instructions
// are 32 bits.
//
// The format of these instructions is:
//
// +--------------+--------------------------------+
// | JALX | X| Imm 20:16 | Imm 25:21 |
// +--------------+--------------------------------+
// | Immediate 15:0 |
// +-----------------------------------------------+
//
// JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
// Note that the immediate value in the first word is swapped.
//
// When producing a relocatable object file, R_MIPS16_26 is
// handled mostly like R_MIPS_26. In particular, the addend is
// stored as a straight 26-bit value in a 32-bit instruction.
// (gas makes life simpler for itself by never adjusting a
// R_MIPS16_26 reloc to be against a section, so the addend is
// always zero). However, the 32 bit instruction is stored as 2
// 16-bit values, rather than a single 32-bit value. In a
// big-endian file, the result is the same; in a little-endian
// file, the two 16-bit halves of the 32 bit value are swapped.
// This is so that a disassembler can recognize the jal
// instruction.
//
// When doing a final link, R_MIPS16_26 is treated as a 32 bit
// instruction stored as two 16-bit values. The addend A is the
// contents of the targ26 field. The calculation is the same as
// R_MIPS_26. When storing the calculated value, reorder the
// immediate value as shown above, and don't forget to store the
// value as two 16-bit values.
//
// To put it in MIPS ABI terms, the relocation field is T-targ26-16,
// defined as
//
// big-endian:
// +--------+----------------------+
// | | |
// | | targ26-16 |
// |31 26|25 0|
// +--------+----------------------+
//
// little-endian:
// +----------+------+-------------+
// | | | |
// | sub1 | | sub2 |
// |0 9|10 15|16 31|
// +----------+--------------------+
// where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
// ((sub1 << 16) | sub2)).
//
// When producing a relocatable object file, the calculation is
// (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
// When producing a fully linked file, the calculation is
// let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
// ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
//
// The table below lists the other MIPS16 instruction relocations.
// Each one is calculated in the same way as the non-MIPS16 relocation
// given on the right, but using the extended MIPS16 layout of 16-bit
// immediate fields:
//
// R_MIPS16_GPREL R_MIPS_GPREL16
// R_MIPS16_GOT16 R_MIPS_GOT16
// R_MIPS16_CALL16 R_MIPS_CALL16
// R_MIPS16_HI16 R_MIPS_HI16
// R_MIPS16_LO16 R_MIPS_LO16
//
// A typical instruction will have a format like this:
//
// +--------------+--------------------------------+
// | EXTEND | Imm 10:5 | Imm 15:11 |
// +--------------+--------------------------------+
// | Major | rx | ry | Imm 4:0 |
// +--------------+--------------------------------+
//
// EXTEND is the five bit value 11110. Major is the instruction
// opcode.
//
// All we need to do here is shuffle the bits appropriately.
// As above, the two 16-bit halves must be swapped on a
// little-endian system.
// Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
// on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1,
// R_MICROMIPS_PC10_S1 and R_MICROMIPS_GPREL7_S2 relocs that apply
// to 16-bit instructions.
static void
mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
bool jal_shuffle)
{
if (!mips16_reloc(r_type)
&& !should_shuffle_micromips_reloc(r_type))
return;
// Pick up the first and second halfwords of the instruction.
Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
Valtype32 val;
if (micromips_reloc(r_type)
|| (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
val = first << 16 | second;
else if (r_type != elfcpp::R_MIPS16_26)
val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
| ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
else
val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
| ((first & 0x1f) << 21) | second);
elfcpp::Swap<32, big_endian>::writeval(view, val);
}
static void
mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
{
if (!mips16_reloc(r_type)
&& !should_shuffle_micromips_reloc(r_type))
return;
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
Valtype16 first, second;
if (micromips_reloc(r_type)
|| (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
{
second = val & 0xffff;
first = val >> 16;
}
else if (r_type != elfcpp::R_MIPS16_26)
{
second = ((val >> 11) & 0xffe0) | (val & 0x1f);
first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
}
else
{
second = val & 0xffff;
first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
| ((val >> 21) & 0x1f);
}
elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
elfcpp::Swap<16, big_endian>::writeval(view, first);
}
// R_MIPS_16: S + sign-extend(A)
static inline typename This::Status
rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only, Valtype* calculated_value)
{
Valtype16* wv = reinterpret_cast<Valtype16*>(view);
Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
: addend_a);
Valtype x = psymval->value(object, addend);
val = Bits<16>::bit_select32(val, x, 0xffffU);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<16, big_endian>::writeval(wv, val);
return check_overflow<16>(x);
}
// R_MIPS_32: S + A
static inline typename This::Status
rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype addend = (extract_addend
? elfcpp::Swap<32, big_endian>::readval(wv)
: addend_a);
Valtype x = psymval->value(object, addend);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, x);
return This::STATUS_OKAY;
}
// R_MIPS_JALR, R_MICROMIPS_JALR
static inline typename This::Status
reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype addend = extract_addend ? 0 : addend_a;
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
// Try converting J(AL)R to B(AL), if the target is in range.
if (r_type == elfcpp::R_MIPS_JALR
&& !cross_mode_jump
&& ((jalr_to_bal && val == 0x0320f809) // jalr t9
|| (jr_to_b && val == 0x03200008))) // jr t9
{
int offset = psymval->value(object, addend) - (address + 4);
if (!Bits<18>::has_overflow32(offset))
{
if (val == 0x03200008) // jr t9
val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
else
val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
}
}
if (calculate_only)
*calculated_value = val;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_PC32: S + A - P
static inline typename This::Status
relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype addend = (extract_addend
? elfcpp::Swap<32, big_endian>::readval(wv)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, x);
return This::STATUS_OKAY;
}
// R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
static inline typename This::Status
rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
bool local, Mips_address addend_a, bool extract_addend,
const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend;
if (extract_addend)
{
if (r_type == elfcpp::R_MICROMIPS_26_S1)
addend = (val & 0x03ffffff) << 1;
else
addend = (val & 0x03ffffff) << 2;
}
else
addend = addend_a;
// Make sure the target of JALX is word-aligned. Bit 0 must be
// the correct ISA mode selector and bit 1 must be 0.
if (!calculate_only && cross_mode_jump
&& (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
{
gold_warning(_("JALX to a non-word-aligned address"));
return This::STATUS_BAD_RELOC;
}
// Shift is 2, unusually, for microMIPS JALX.
unsigned int shift =
(!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
Valtype x;
if (local)
x = addend | ((address + 4) & (0xfc000000 << shift));
else
{
if (shift == 1)
x = Bits<27>::sign_extend32(addend);
else
x = Bits<28>::sign_extend32(addend);
}
x = psymval->value(object, x) >> shift;
if (!calculate_only && !local && !gsym->is_weak_undefined()
&& ((x >> 26) != ((address + 4) >> (26 + shift))))
return This::STATUS_OVERFLOW;
val = Bits<32>::bit_select32(val, x, 0x03ffffff);
// If required, turn JAL into JALX.
if (cross_mode_jump)
{
bool ok;
Valtype32 opcode = val >> 26;
Valtype32 jalx_opcode;
// Check to see if the opcode is already JAL or JALX.
if (r_type == elfcpp::R_MIPS16_26)
{
ok = (opcode == 0x6) || (opcode == 0x7);
jalx_opcode = 0x7;
}
else if (r_type == elfcpp::R_MICROMIPS_26_S1)
{
ok = (opcode == 0x3d) || (opcode == 0x3c);
jalx_opcode = 0x3c;
}
else
{
ok = (opcode == 0x3) || (opcode == 0x1d);
jalx_opcode = 0x1d;
}
// If the opcode is not JAL or JALX, there's a problem. We cannot
// convert J or JALS to JALX.
if (!calculate_only && !ok)
{
gold_error(_("Unsupported jump between ISA modes; consider "
"recompiling with interlinking enabled."));
return This::STATUS_BAD_RELOC;
}
// Make this the JALX opcode.
val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
}
// Try converting JAL to BAL, if the target is in range.
if (!parameters->options().relocatable()
&& !cross_mode_jump
&& ((jal_to_bal
&& r_type == elfcpp::R_MIPS_26
&& (val >> 26) == 0x3))) // jal addr
{
Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
int offset = dest - (address + 4);
if (!Bits<18>::has_overflow32(offset))
{
if (val == 0x03200008) // jr t9
val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
else
val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
}
}
if (calculate_only)
*calculated_value = val;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_PC16
static inline typename This::Status
relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<18>::sign_extend32((val & 0xffff) << 2)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
if (calculate_only)
{
*calculated_value = x >> 2;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (psymval->value(object, addend) & 3)
return This::STATUS_PCREL_UNALIGNED;
return check_overflow<18>(x);
}
// R_MIPS_PC21_S2
static inline typename This::Status
relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
if (calculate_only)
{
*calculated_value = x >> 2;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (psymval->value(object, addend) & 3)
return This::STATUS_PCREL_UNALIGNED;
return check_overflow<23>(x);
}
// R_MIPS_PC26_S2
static inline typename This::Status
relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
if (calculate_only)
{
*calculated_value = x >> 2;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (psymval->value(object, addend) & 3)
return This::STATUS_PCREL_UNALIGNED;
return check_overflow<28>(x);
}
// R_MIPS_PC18_S3
static inline typename This::Status
relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
: addend_a);
Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
if (calculate_only)
{
*calculated_value = x >> 3;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (psymval->value(object, addend) & 7)
return This::STATUS_PCREL_UNALIGNED;
return check_overflow<21>(x);
}
// R_MIPS_PC19_S2
static inline typename This::Status
relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
if (calculate_only)
{
*calculated_value = x >> 2;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (psymval->value(object, addend) & 3)
return This::STATUS_PCREL_UNALIGNED;
return check_overflow<21>(x);
}
// R_MIPS_PCHI16
static inline typename This::Status
relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend,
Mips_address address, unsigned int r_sym, bool extract_addend)
{
// Record the relocation. It will be resolved when we find pclo16 part.
pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
addend, 0, r_sym, extract_addend, address));
return This::STATUS_OKAY;
}
// R_MIPS_PCHI16
static inline typename This::Status
do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_hi,
Mips_address address, bool extract_addend, Valtype32 addend_lo,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
: addend_hi);
Valtype value = psymval->value(object, addend) - address;
Valtype x = ((value + 0x8000) >> 16) & 0xffff;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_PCLO16
static inline typename This::Status
relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, Mips_address address, unsigned int r_sym,
unsigned int rel_type, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
: addend_a);
if (rel_type == elfcpp::SHT_REL)
{
// Resolve pending R_MIPS_PCHI16 relocations.
typename std::list<reloc_high<size, big_endian> >::iterator it =
pchi16_relocs.begin();
while (it != pchi16_relocs.end())
{
reloc_high<size, big_endian> pchi16 = *it;
if (pchi16.r_sym == r_sym)
{
do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
pchi16.addend, pchi16.address,
pchi16.extract_addend, addend, calculate_only,
calculated_value);
it = pchi16_relocs.erase(it);
}
else
++it;
}
}
// Resolve R_MIPS_PCLO16 relocation.
Valtype x = psymval->value(object, addend) - address;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MICROMIPS_PC7_S1
static inline typename This::Status
relmicromips_pc7_s1(unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
: addend_a;
Valtype x = psymval->value(object, addend) - address;
val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
if (calculate_only)
{
*calculated_value = x >> 1;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<8>(x);
}
// R_MICROMIPS_PC10_S1
static inline typename This::Status
relmicromips_pc10_s1(unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<11>::sign_extend32((val & 0x3ff) << 1)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
if (calculate_only)
{
*calculated_value = x >> 1;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<11>(x);
}
// R_MICROMIPS_PC16_S1
static inline typename This::Status
relmicromips_pc16_s1(unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address address,
Mips_address addend_a, bool extract_addend,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend
? Bits<17>::sign_extend32((val & 0xffff) << 1)
: addend_a);
Valtype x = psymval->value(object, addend) - address;
val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
if (calculate_only)
{
*calculated_value = x >> 1;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<17>(x);
}
// R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
static inline typename This::Status
relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend,
Mips_address address, bool gp_disp, unsigned int r_type,
unsigned int r_sym, bool extract_addend)
{
// Record the relocation. It will be resolved when we find lo16 part.
hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
addend, r_type, r_sym, extract_addend, address,
gp_disp));
return This::STATUS_OKAY;
}
// R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
static inline typename This::Status
do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_hi,
Mips_address address, bool is_gp_disp, unsigned int r_type,
bool extract_addend, Valtype32 addend_lo,
Target_mips<size, big_endian>* target, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
: addend_hi);
Valtype32 value;
if (!is_gp_disp)
value = psymval->value(object, addend);
else
{
// For MIPS16 ABI code we generate this sequence
// 0: li $v0,%hi(_gp_disp)
// 4: addiupc $v1,%lo(_gp_disp)
// 8: sll $v0,16
// 12: addu $v0,$v1
// 14: move $gp,$v0
// So the offsets of hi and lo relocs are the same, but the
// base $pc is that used by the ADDIUPC instruction at $t9 + 4.
// ADDIUPC clears the low two bits of the instruction address,
// so the base is ($t9 + 4) & ~3.
Valtype32 gp_disp;
if (r_type == elfcpp::R_MIPS16_HI16)
gp_disp = (target->adjusted_gp_value(object)
- ((address + 4) & ~0x3));
// The microMIPS .cpload sequence uses the same assembly
// instructions as the traditional psABI version, but the
// incoming $t9 has the low bit set.
else if (r_type == elfcpp::R_MICROMIPS_HI16)
gp_disp = target->adjusted_gp_value(object) - address - 1;
else
gp_disp = target->adjusted_gp_value(object) - address;
value = gp_disp + addend;
}
Valtype x = ((value + 0x8000) >> 16) & 0xffff;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return (is_gp_disp ? check_overflow<16>(x)
: This::STATUS_OKAY);
}
// R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
static inline typename This::Status
relgot16_local(unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, unsigned int r_type, unsigned int r_sym)
{
// Record the relocation. It will be resolved when we find lo16 part.
got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
addend_a, r_type, r_sym, extract_addend));
return This::STATUS_OKAY;
}
// R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
static inline typename This::Status
do_relgot16_local(unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_hi,
bool extract_addend, Valtype32 addend_lo,
Target_mips<size, big_endian>* target, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
: addend_hi);
// Find GOT page entry.
Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
& 0xffff;
value <<= 16;
unsigned int got_offset =
target->got_section()->get_got_page_offset(value, object);
// Resolve the relocation.
Valtype x = target->got_section()->gp_offset(got_offset, object);
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<16>(x);
}
// R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
static inline typename This::Status
rello16(Target_mips<size, big_endian>* target, unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, Mips_address address, bool is_gp_disp,
unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
: addend_a);
if (rel_type == elfcpp::SHT_REL)
{
typename This::Status reloc_status = This::STATUS_OKAY;
// Resolve pending R_MIPS_HI16 relocations.
typename std::list<reloc_high<size, big_endian> >::iterator it =
hi16_relocs.begin();
while (it != hi16_relocs.end())
{
reloc_high<size, big_endian> hi16 = *it;
if (hi16.r_sym == r_sym
&& is_matching_lo16_reloc(hi16.r_type, r_type))
{
mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
hi16.addend, hi16.address, hi16.gp_disp,
hi16.r_type, hi16.extract_addend, addend,
target, calculate_only, calculated_value);
mips_reloc_shuffle(hi16.view, hi16.r_type, false);
if (reloc_status == This::STATUS_OVERFLOW)
return This::STATUS_OVERFLOW;
it = hi16_relocs.erase(it);
}
else
++it;
}
// Resolve pending local R_MIPS_GOT16 relocations.
typename std::list<reloc_high<size, big_endian> >::iterator it2 =
got16_relocs.begin();
while (it2 != got16_relocs.end())
{
reloc_high<size, big_endian> got16 = *it2;
if (got16.r_sym == r_sym
&& is_matching_lo16_reloc(got16.r_type, r_type))
{
mips_reloc_unshuffle(got16.view, got16.r_type, false);
reloc_status = do_relgot16_local(got16.view, got16.object,
got16.psymval, got16.addend,
got16.extract_addend, addend, target,
calculate_only, calculated_value);
mips_reloc_shuffle(got16.view, got16.r_type, false);
if (reloc_status == This::STATUS_OVERFLOW)
return This::STATUS_OVERFLOW;
it2 = got16_relocs.erase(it2);
}
else
++it2;
}
}
// Resolve R_MIPS_LO16 relocation.
Valtype x;
if (!is_gp_disp)
x = psymval->value(object, addend);
else
{
// See the comment for R_MIPS16_HI16 above for the reason
// for this conditional.
Valtype32 gp_disp;
if (r_type == elfcpp::R_MIPS16_LO16)
gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
else if (r_type == elfcpp::R_MICROMIPS_LO16
|| r_type == elfcpp::R_MICROMIPS_HI0_LO16)
gp_disp = target->adjusted_gp_value(object) - address + 3;
else
gp_disp = target->adjusted_gp_value(object) - address + 4;
// The MIPS ABI requires checking the R_MIPS_LO16 relocation
// for overflow. Relocations against _gp_disp are normally
// generated from the .cpload pseudo-op. It generates code
// that normally looks like this:
// lui $gp,%hi(_gp_disp)
// addiu $gp,$gp,%lo(_gp_disp)
// addu $gp,$gp,$t9
// Here $t9 holds the address of the function being called,
// as required by the MIPS ELF ABI. The R_MIPS_LO16
// relocation can easily overflow in this situation, but the
// R_MIPS_HI16 relocation will handle the overflow.
// Therefore, we consider this a bug in the MIPS ABI, and do
// not check for overflow here.
x = gp_disp + addend;
}
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
// R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
// R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
// R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
// R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
// R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
static inline typename This::Status
relgot(unsigned char* view, int gp_offset, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype x = gp_offset;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<16>(x);
}
// R_MIPS_EH
static inline typename This::Status
releh(unsigned char* view, int gp_offset, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype x = gp_offset;
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, x);
return check_overflow<32>(x);
}
// R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
static inline typename This::Status
relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
Valtype addend = extract_addend ? val & 0xffff : addend_a;
// Find a GOT page entry that points to within 32KB of symbol + addend.
Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
unsigned int got_offset =
target->got_section()->get_got_page_offset(value, object);
Valtype x = target->got_section()->gp_offset(got_offset, object);
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<16>(x);
}
// R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
static inline typename This::Status
relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool local, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
Valtype addend = extract_addend ? val & 0xffff : addend_a;
// For a local symbol, find a GOT page entry that points to within 32KB of
// symbol + addend. Relocation value is the offset of the GOT page entry's
// value from symbol + addend.
// For a global symbol, relocation value is addend.
Valtype x;
if (local)
{
// Find GOT page entry.
Mips_address value = ((psymval->value(object, addend) + 0x8000)
& ~0xffff);
target->got_section()->get_got_page_offset(value, object);
x = psymval->value(object, addend) - value;
}
else
x = addend;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return check_overflow<16>(x);
}
// R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
// R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
static inline typename This::Status
relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype x = gp_offset;
x = ((x + 0x8000) >> 16) & 0xffff;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
// R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
static inline typename This::Status
relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype x = gp_offset;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
// R_MICROMIPS_GPREL16
static inline typename This::Status
relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address gp,
Mips_address addend_a, bool extract_addend, bool local,
bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend;
if (extract_addend)
{
addend = val & 0xffff;
// Only sign-extend the addend if it was extracted from the
// instruction. If the addend was separate, leave it alone,
// otherwise we may lose significant bits.
addend = Bits<16>::sign_extend32(addend);
}
else
addend = addend_a;
Valtype x = psymval->value(object, addend) - gp;
// If the symbol was local, any earlier relocatable links will
// have adjusted its addend with the gp offset, so compensate
// for that now. Don't do it for symbols forced local in this
// link, though, since they won't have had the gp offset applied
// to them before.
if (local)
x += object->gp_value();
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
{
gold_error(_("small-data section too large;"
" lower small-data size limit (see option -G)"));
return This::STATUS_OVERFLOW;
}
return This::STATUS_OKAY;
}
// R_MICROMIPS_GPREL7_S2
static inline typename This::Status
relgprel7(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address gp,
Mips_address addend_a, bool extract_addend, bool local,
bool calculate_only, Valtype* calculated_value)
{
Valtype16* wv = reinterpret_cast<Valtype16*>(view);
Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
Valtype addend;
if (extract_addend)
{
addend = (val & 0x7f) << 2;
addend = Bits<9>::sign_extend32(addend);
}
else
addend = addend_a;
Valtype x = psymval->value(object, addend) - gp;
if (local)
x += object->gp_value();
val = Bits<16>::bit_select32(val, x >> 2, 0x7f);
if (calculate_only)
{
*calculated_value = x;
return This::STATUS_OKAY;
}
else
elfcpp::Swap<16, big_endian>::writeval(wv, val);
if (check_overflow<9>(x) == This::STATUS_OVERFLOW)
{
gold_error(_("small-data section too large;"
" lower small-data size limit (see option -G)"));
return This::STATUS_OVERFLOW;
}
return This::STATUS_OKAY;
}
// R_MIPS_GPREL32
static inline typename This::Status
relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address gp,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = extract_addend ? val : addend_a;
// R_MIPS_GPREL32 relocations are defined for local symbols only.
Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, x);
return This::STATUS_OKAY;
}
// R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
// R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
// R_MICROMIPS_TLS_DTPREL_HI16
static inline typename This::Status
tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Valtype32 tp_offset,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = extract_addend ? val & 0xffff : addend_a;
// tls symbol values are relative to tls_segment()->vaddr()
Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
// R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
// R_MICROMIPS_TLS_DTPREL_LO16,
static inline typename This::Status
tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Valtype32 tp_offset,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = extract_addend ? val & 0xffff : addend_a;
// tls symbol values are relative to tls_segment()->vaddr()
Valtype x = psymval->value(object, addend) - tp_offset;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
// R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
static inline typename This::Status
tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Valtype32 tp_offset,
Mips_address addend_a, bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = extract_addend ? val : addend_a;
// tls symbol values are relative to tls_segment()->vaddr()
Valtype x = psymval->value(object, addend) - tp_offset;
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, x);
return This::STATUS_OKAY;
}
// R_MIPS_SUB, R_MICROMIPS_SUB
static inline typename This::Status
relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only, Valtype* calculated_value)
{
Valtype64* wv = reinterpret_cast<Valtype64*>(view);
Valtype64 addend = (extract_addend
? elfcpp::Swap<64, big_endian>::readval(wv)
: addend_a);
Valtype64 x = psymval->value(object, -addend);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<64, big_endian>::writeval(wv, x);
return This::STATUS_OKAY;
}
// R_MIPS_64: S + A
static inline typename This::Status
rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only, Valtype* calculated_value,
bool apply_addend_only)
{
Valtype64* wv = reinterpret_cast<Valtype64*>(view);
Valtype64 addend = (extract_addend
? elfcpp::Swap<64, big_endian>::readval(wv)
: addend_a);
Valtype64 x = psymval->value(object, addend);
if (calculate_only)
*calculated_value = x;
else
{
if (apply_addend_only)
x = addend;
elfcpp::Swap<64, big_endian>::writeval(wv, x);
}
return This::STATUS_OKAY;
}
// R_MIPS_HIGHER, R_MICROMIPS_HIGHER
static inline typename This::Status
relhigher(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only, Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
: addend_a);
Valtype x = psymval->value(object, addend);
x = ((x + (uint64_t) 0x80008000) >> 32) & 0xffff;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
// R_MIPS_HIGHEST, R_MICROMIPS_HIGHEST
static inline typename This::Status
relhighest(unsigned char* view, const Mips_relobj<size, big_endian>* object,
const Symbol_value<size>* psymval, Mips_address addend_a,
bool extract_addend, bool calculate_only,
Valtype* calculated_value)
{
Valtype32* wv = reinterpret_cast<Valtype32*>(view);
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
: addend_a);
Valtype x = psymval->value(object, addend);
x = ((x + (uint64_t) 0x800080008000llu) >> 48) & 0xffff;
val = Bits<32>::bit_select32(val, x, 0xffff);
if (calculate_only)
*calculated_value = x;
else
elfcpp::Swap<32, big_endian>::writeval(wv, val);
return This::STATUS_OKAY;
}
};
template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
Mips_relocate_functions<size, big_endian>::hi16_relocs;
template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
Mips_relocate_functions<size, big_endian>::got16_relocs;
template<int size, bool big_endian>
typename std::list<reloc_high<size, big_endian> >
Mips_relocate_functions<size, big_endian>::pchi16_relocs;
// Mips_got_info methods.
// Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
// SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_local_got_symbol(
Mips_relobj<size, big_endian>* object, unsigned int symndx,
Mips_address addend, unsigned int r_type, unsigned int shndx,
bool is_section_symbol)
{
Mips_got_entry<size, big_endian>* entry =
new Mips_got_entry<size, big_endian>(object, symndx, addend,
mips_elf_reloc_tls_type(r_type),
shndx, is_section_symbol);
this->record_got_entry(entry, object);
}
// Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
// in OBJECT. FOR_CALL is true if the caller is only interested in
// using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
// relocation.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_global_got_symbol(
Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
unsigned int r_type, bool dyn_reloc, bool for_call)
{
if (!for_call)
mips_sym->set_got_not_only_for_calls();
// A global symbol in the GOT must also be in the dynamic symbol table.
if (!mips_sym->needs_dynsym_entry() && !mips_sym->is_forced_local())
{
switch (mips_sym->visibility())
{
case elfcpp::STV_INTERNAL:
case elfcpp::STV_HIDDEN:
mips_sym->set_is_forced_local();
break;
default:
mips_sym->set_needs_dynsym_entry();
break;
}
}
unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
if (tls_type == GOT_TLS_NONE)
this->global_got_symbols_.insert(mips_sym);
if (dyn_reloc)
{
if (mips_sym->global_got_area() == GGA_NONE)
mips_sym->set_global_got_area(GGA_RELOC_ONLY);
return;
}
Mips_got_entry<size, big_endian>* entry =
new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
this->record_got_entry(entry, object);
}
// Add ENTRY to master GOT and to OBJECT's GOT.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_got_entry(
Mips_got_entry<size, big_endian>* entry,
Mips_relobj<size, big_endian>* object)
{
this->got_entries_.insert(entry);
// Create the GOT entry for the OBJECT's GOT.
Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
Mips_got_entry<size, big_endian>* entry2 =
new Mips_got_entry<size, big_endian>(*entry);
g->got_entries_.insert(entry2);
}
// Record that OBJECT has a page relocation against symbol SYMNDX and
// that ADDEND is the addend for that relocation.
// This function creates an upper bound on the number of GOT slots
// required; no attempt is made to combine references to non-overridable
// global symbols across multiple input files.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::record_got_page_entry(
Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
{
struct Got_page_range **range_ptr, *range;
int old_pages, new_pages;
// Find the Got_page_entry for this symbol.
Got_page_entry* entry = new Got_page_entry(object, symndx);
typename Got_page_entry_set::iterator it =
this->got_page_entries_.find(entry);
if (it != this->got_page_entries_.end())
entry = *it;
else
this->got_page_entries_.insert(entry);
// Get the object's GOT, but we don't need to insert an entry here.
Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
// Skip over ranges whose maximum extent cannot share a page entry
// with ADDEND.
range_ptr = &entry->ranges;
while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
range_ptr = &(*range_ptr)->next;
// If we scanned to the end of the list, or found a range whose
// minimum extent cannot share a page entry with ADDEND, create
// a new singleton range.
range = *range_ptr;
if (!range || addend < range->min_addend - 0xffff)
{
range = new Got_page_range();
range->next = *range_ptr;
range->min_addend = addend;
range->max_addend = addend;
*range_ptr = range;
++this->page_gotno_;
++g2->page_gotno_;
return;
}
// Remember how many pages the old range contributed.
old_pages = range->get_max_pages();
// Update the ranges.
if (addend < range->min_addend)
range->min_addend = addend;
else if (addend > range->max_addend)
{
if (range->next && addend >= range->next->min_addend - 0xffff)
{
old_pages += range->next->get_max_pages();
range->max_addend = range->next->max_addend;
range->next = range->next->next;
}
else
range->max_addend = addend;
}
// Record any change in the total estimate.
new_pages = range->get_max_pages();
if (old_pages != new_pages)
{
this->page_gotno_ += new_pages - old_pages;
g2->page_gotno_ += new_pages - old_pages;
}
}
// Create all entries that should be in the local part of the GOT.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_local_entries(
Target_mips<size, big_endian>* target, Layout* layout)
{
Mips_output_data_got<size, big_endian>* got = target->got_section();
// First two GOT entries are reserved. The first entry will be filled at
// runtime. The second entry will be used by some runtime loaders.
got->add_constant(0);
got->add_constant(target->mips_elf_gnu_got1_mask());
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (entry->is_for_local_symbol() && !entry->is_tls_entry())
{
got->add_local(entry->object(), entry->symndx(),
GOT_TYPE_STANDARD, entry->addend());
unsigned int got_offset = entry->object()->local_got_offset(
entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
if (got->multi_got() && this->index_ > 0
&& parameters->options().output_is_position_independent())
{
if (!entry->is_section_symbol())
target->rel_dyn_section(layout)->add_local(entry->object(),
entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
else
target->rel_dyn_section(layout)->add_symbolless_local_addend(
entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
got, got_offset);
}
}
}
this->add_page_entries(target, layout);
// Add global entries that should be in the local area.
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (!entry->is_for_global_symbol())
continue;
Mips_symbol<size>* mips_sym = entry->sym();
if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
{
unsigned int got_type;
if (!got->multi_got())
got_type = GOT_TYPE_STANDARD;
else
got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
if (got->add_global(mips_sym, got_type))
{
mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
if (got->multi_got() && this->index_ > 0
&& parameters->options().output_is_position_independent())
target->rel_dyn_section(layout)->add_symbolless_global_addend(
mips_sym, elfcpp::R_MIPS_REL32, got,
mips_sym->got_offset(got_type));
}
}
}
}
// Create GOT page entries.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_page_entries(
Target_mips<size, big_endian>* target, Layout* layout)
{
if (this->page_gotno_ == 0)
return;
Mips_output_data_got<size, big_endian>* got = target->got_section();
this->got_page_offset_start_ = got->add_constant(0);
if (got->multi_got() && this->index_ > 0
&& parameters->options().output_is_position_independent())
target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
this->got_page_offset_start_);
int num_entries = this->page_gotno_;
unsigned int prev_offset = this->got_page_offset_start_;
while (--num_entries > 0)
{
unsigned int next_offset = got->add_constant(0);
if (got->multi_got() && this->index_ > 0
&& parameters->options().output_is_position_independent())
target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
next_offset);
gold_assert(next_offset == prev_offset + size/8);
prev_offset = next_offset;
}
this->got_page_offset_next_ = this->got_page_offset_start_;
}
// Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_global_entries(
Target_mips<size, big_endian>* target, Layout* layout,
unsigned int non_reloc_only_global_gotno)
{
Mips_output_data_got<size, big_endian>* got = target->got_section();
// Add GGA_NORMAL entries.
unsigned int count = 0;
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (!entry->is_for_global_symbol())
continue;
Mips_symbol<size>* mips_sym = entry->sym();
if (mips_sym->global_got_area() != GGA_NORMAL)
continue;
unsigned int got_type;
if (!got->multi_got())
got_type = GOT_TYPE_STANDARD;
else
// In multi-GOT links, global symbol can be in both primary and
// secondary GOT(s). By creating custom GOT type
// (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
// is added to secondary GOT(s).
got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
if (!got->add_global(mips_sym, got_type))
continue;
mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
if (got->multi_got() && this->index_ == 0)
count++;
if (got->multi_got() && this->index_ > 0)
{
if (parameters->options().output_is_position_independent()
|| (!parameters->doing_static_link()
&& mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
{
target->rel_dyn_section(layout)->add_global(
mips_sym, elfcpp::R_MIPS_REL32, got,
mips_sym->got_offset(got_type));
got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
elfcpp::R_MIPS_REL32, mips_sym);
}
}
}
if (!got->multi_got() || this->index_ == 0)
{
if (got->multi_got())
{
// We need to allocate space in the primary GOT for GGA_NORMAL entries
// of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
// entries correspond to dynamic symbol indexes.
while (count < non_reloc_only_global_gotno)
{
got->add_constant(0);
++count;
}
}
// Add GGA_RELOC_ONLY entries.
got->add_reloc_only_entries();
}
}
// Create global GOT entries that should be in the GGA_RELOC_ONLY area.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_reloc_only_entries(
Mips_output_data_got<size, big_endian>* got)
{
for (typename Global_got_entry_set::iterator
p = this->global_got_symbols_.begin();
p != this->global_got_symbols_.end();
++p)
{
Mips_symbol<size>* mips_sym = *p;
if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
{
unsigned int got_type;
if (!got->multi_got())
got_type = GOT_TYPE_STANDARD;
else
got_type = GOT_TYPE_STANDARD_MULTIGOT;
if (got->add_global(mips_sym, got_type))
mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
}
}
}
// Create TLS GOT entries.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_tls_entries(
Target_mips<size, big_endian>* target, Layout* layout)
{
Mips_output_data_got<size, big_endian>* got = target->got_section();
// Add local tls entries.
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
continue;
if (entry->tls_type() == GOT_TLS_GD)
{
unsigned int got_type = GOT_TYPE_TLS_PAIR;
unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
: elfcpp::R_MIPS_TLS_DTPMOD64);
unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
: elfcpp::R_MIPS_TLS_DTPREL64);
if (!parameters->doing_static_link())
{
got->add_local_pair_with_rel(entry->object(), entry->symndx(),
entry->shndx(), got_type,
target->rel_dyn_section(layout),
r_type1, entry->addend());
unsigned int got_offset =
entry->object()->local_got_offset(entry->symndx(), got_type,
entry->addend());
got->add_static_reloc(got_offset + size/8, r_type2,
entry->object(), entry->symndx());
}
else
{
// We are doing a static link. Mark it as belong to module 1,
// the executable.
unsigned int got_offset = got->add_constant(1);
entry->object()->set_local_got_offset(entry->symndx(), got_type,
got_offset,
entry->addend());
got->add_constant(0);
got->add_static_reloc(got_offset + size/8, r_type2,
entry->object(), entry->symndx());
}
}
else if (entry->tls_type() == GOT_TLS_IE)
{
unsigned int got_type = GOT_TYPE_TLS_OFFSET;
unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
: elfcpp::R_MIPS_TLS_TPREL64);
if (!parameters->doing_static_link())
got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
target->rel_dyn_section(layout), r_type,
entry->addend());
else
{
got->add_local(entry->object(), entry->symndx(), got_type,
entry->addend());
unsigned int got_offset =
entry->object()->local_got_offset(entry->symndx(), got_type,
entry->addend());
got->add_static_reloc(got_offset, r_type, entry->object(),
entry->symndx());
}
}
else if (entry->tls_type() == GOT_TLS_LDM)
{
unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
: elfcpp::R_MIPS_TLS_DTPMOD64);
unsigned int got_offset;
if (!parameters->doing_static_link())
{
got_offset = got->add_constant(0);
target->rel_dyn_section(layout)->add_local(
entry->object(), 0, r_type, got, got_offset);
}
else
// We are doing a static link. Just mark it as belong to module 1,
// the executable.
got_offset = got->add_constant(1);
got->add_constant(0);
got->set_tls_ldm_offset(got_offset, entry->object());
}
else
gold_unreachable();
}
// Add global tls entries.
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
continue;
Mips_symbol<size>* mips_sym = entry->sym();
if (entry->tls_type() == GOT_TLS_GD)
{
unsigned int got_type;
if (!got->multi_got())
got_type = GOT_TYPE_TLS_PAIR;
else
got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
: elfcpp::R_MIPS_TLS_DTPMOD64);
unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
: elfcpp::R_MIPS_TLS_DTPREL64);
if (!parameters->doing_static_link())
got->add_global_pair_with_rel(mips_sym, got_type,
target->rel_dyn_section(layout), r_type1, r_type2);
else
{
// Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
// GOT entries. The first one is initialized to be 1, which is the
// module index for the main executable and the second one 0. A
// reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
// the second GOT entry and will be applied by gold.
unsigned int got_offset = got->add_constant(1);
mips_sym->set_got_offset(got_type, got_offset);
got->add_constant(0);
got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
}
}
else if (entry->tls_type() == GOT_TLS_IE)
{
unsigned int got_type;
if (!got->multi_got())
got_type = GOT_TYPE_TLS_OFFSET;
else
got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
: elfcpp::R_MIPS_TLS_TPREL64);
if (!parameters->doing_static_link())
got->add_global_with_rel(mips_sym, got_type,
target->rel_dyn_section(layout), r_type);
else
{
got->add_global(mips_sym, got_type);
unsigned int got_offset = mips_sym->got_offset(got_type);
got->add_static_reloc(got_offset, r_type, mips_sym);
}
}
else
gold_unreachable();
}
}
// Decide whether the symbol needs an entry in the global part of the primary
// GOT, setting global_got_area accordingly. Count the number of global
// symbols that are in the primary GOT only because they have dynamic
// relocations R_MIPS_REL32 against them (reloc_only_gotno).
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
{
for (typename Global_got_entry_set::iterator
p = this->global_got_symbols_.begin();
p != this->global_got_symbols_.end();
++p)
{
Mips_symbol<size>* sym = *p;
// Make a final decision about whether the symbol belongs in the
// local or global GOT. Symbols that bind locally can (and in the
// case of forced-local symbols, must) live in the local GOT.
// Those that are aren't in the dynamic symbol table must also
// live in the local GOT.
if (!sym->should_add_dynsym_entry(symtab)
|| (sym->got_only_for_calls()
? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
: symbol_references_local(sym,
sym->should_add_dynsym_entry(symtab))))
// The symbol belongs in the local GOT. We no longer need this
// entry if it was only used for relocations; those relocations
// will be against the null or section symbol instead.
sym->set_global_got_area(GGA_NONE);
else if (sym->global_got_area() == GGA_RELOC_ONLY)
{
++this->reloc_only_gotno_;
++this->global_gotno_ ;
}
}
}
// Return the offset of GOT page entry for VALUE. Initialize the entry with
// VALUE if it is not initialized.
template<int size, bool big_endian>
unsigned int
Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
Mips_output_data_got<size, big_endian>* got)
{
typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
if (it != this->got_page_offsets_.end())
return it->second;
gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
+ (size/8) * this->page_gotno_);
unsigned int got_offset = this->got_page_offset_next_;
this->got_page_offsets_[value] = got_offset;
this->got_page_offset_next_ += size/8;
got->update_got_entry(got_offset, value);
return got_offset;
}
// Remove lazy-binding stubs for global symbols in this GOT.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::remove_lazy_stubs(
Target_mips<size, big_endian>* target)
{
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (entry->is_for_global_symbol())
target->remove_lazy_stub_entry(entry->sym());
}
}
// Count the number of GOT entries required.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_entries()
{
for (typename Got_entry_set::iterator
p = this->got_entries_.begin();
p != this->got_entries_.end();
++p)
{
this->count_got_entry(*p);
}
}
// Count the number of GOT entries required by ENTRY. Accumulate the result.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::count_got_entry(
Mips_got_entry<size, big_endian>* entry)
{
if (entry->is_tls_entry())
this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
else if (entry->is_for_local_symbol()
|| entry->sym()->global_got_area() == GGA_NONE)
++this->local_gotno_;
else
++this->global_gotno_;
}
// Add FROM's GOT entries.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_got_entries(
Mips_got_info<size, big_endian>* from)
{
for (typename Got_entry_set::iterator
p = from->got_entries_.begin();
p != from->got_entries_.end();
++p)
{
Mips_got_entry<size, big_endian>* entry = *p;
if (this->got_entries_.find(entry) == this->got_entries_.end())
{
Mips_got_entry<size, big_endian>* entry2 =
new Mips_got_entry<size, big_endian>(*entry);
this->got_entries_.insert(entry2);
this->count_got_entry(entry);
}
}
}
// Add FROM's GOT page entries.
template<int size, bool big_endian>
void
Mips_got_info<size, big_endian>::add_got_page_count(
Mips_got_info<size, big_endian>* from)
{
this->page_gotno_ += from->page_gotno_;
}
// Mips_output_data_got methods.
// Lay out the GOT. Add local, global and TLS entries. If GOT is
// larger than 64K, create multi-GOT.
template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
Symbol_table* symtab, const Input_objects* input_objects)
{
// Decide which symbols need to go in the global part of the GOT and
// count the number of reloc-only GOT symbols.
this->master_got_info_->count_got_symbols(symtab);
// Count the number of GOT entries.
this->master_got_info_->count_got_entries();
unsigned int got_size = this->master_got_info_->got_size();
if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
this->lay_out_multi_got(layout, input_objects);
else
{
// Record that all objects use single GOT.
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Mips_relobj<size, big_endian>* object =
Mips_relobj<size, big_endian>::as_mips_relobj(*p);
if (object->get_got_info() != NULL)
object->set_got_info(this->master_got_info_);
}
this->master_got_info_->add_local_entries(this->target_, layout);
this->master_got_info_->add_global_entries(this->target_, layout,
/*not used*/-1U);
this->master_got_info_->add_tls_entries(this->target_, layout);
}
}
// Create multi-GOT. For every GOT, add local, global and TLS entries.
template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
const Input_objects* input_objects)
{
// Try to merge the GOTs of input objects together, as long as they
// don't seem to exceed the maximum GOT size, choosing one of them
// to be the primary GOT.
this->merge_gots(input_objects);
// Every symbol that is referenced in a dynamic relocation must be
// present in the primary GOT.
this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
// Add GOT entries.
unsigned int i = 0;
unsigned int offset = 0;
Mips_got_info<size, big_endian>* g = this->primary_got_;
do
{
g->set_index(i);
g->set_offset(offset);
g->add_local_entries(this->target_, layout);
if (i == 0)
g->add_global_entries(this->target_, layout,
(this->master_got_info_->global_gotno()
- this->master_got_info_->reloc_only_gotno()));
else
g->add_global_entries(this->target_, layout, /*not used*/-1U);
g->add_tls_entries(this->target_, layout);
// Forbid global symbols in every non-primary GOT from having
// lazy-binding stubs.
if (i > 0)
g->remove_lazy_stubs(this->target_);
++i;
offset += g->got_size();
g = g->next();
}
while (g);
}
// Attempt to merge GOTs of different input objects. Try to use as much as
// possible of the primary GOT, since it doesn't require explicit dynamic
// relocations, but don't use objects that would reference global symbols
// out of the addressable range. Failing the primary GOT, attempt to merge
// with the current GOT, or finish the current GOT and then make make the new
// GOT current.
template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::merge_gots(
const Input_objects* input_objects)
{
gold_assert(this->primary_got_ == NULL);
Mips_got_info<size, big_endian>* current = NULL;
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Mips_relobj<size, big_endian>* object =
Mips_relobj<size, big_endian>::as_mips_relobj(*p);
Mips_got_info<size, big_endian>* g = object->get_got_info();
if (g == NULL)
continue;
g->count_got_entries();
// Work out the number of page, local and TLS entries.
unsigned int estimate = this->master_got_info_->page_gotno();
if (estimate > g->page_gotno())
estimate = g->page_gotno();
estimate += g->local_gotno() + g->tls_gotno();
// We place TLS GOT entries after both locals and globals. The globals
// for the primary GOT may overflow the normal GOT size limit, so be
// sure not to merge a GOT which requires TLS with the primary GOT in that
// case. This doesn't affect non-primary GOTs.
estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
: g->global_gotno());
unsigned int max_count =
Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
if (estimate <= max_count)
{
// If we don't have a primary GOT, use it as
// a starting point for the primary GOT.
if (!this->primary_got_)
{
this->primary_got_ = g;
continue;
}
// Try merging with the primary GOT.
if (this->merge_got_with(g, object, this->primary_got_))
continue;
}
// If we can merge with the last-created GOT, do it.
if (current && this->merge_got_with(g, object, current))
continue;
// Well, we couldn't merge, so create a new GOT. Don't check if it
// fits; if it turns out that it doesn't, we'll get relocation
// overflows anyway.
g->set_next(current);
current = g;
}
// If we do not find any suitable primary GOT, create an empty one.
if (this->primary_got_ == NULL)
this->primary_got_ = new Mips_got_info<size, big_endian>();
// Link primary GOT with secondary GOTs.
this->primary_got_->set_next(current);
}
// Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
// this would lead to overflow, true if they were merged successfully.
template<int size, bool big_endian>
bool
Mips_output_data_got<size, big_endian>::merge_got_with(
Mips_got_info<size, big_endian>* from,
Mips_relobj<size, big_endian>* object,
Mips_got_info<size, big_endian>* to)
{
// Work out how many page entries we would need for the combined GOT.
unsigned int estimate = this->master_got_info_->page_gotno();
if (estimate >= from->page_gotno() + to->page_gotno())
estimate = from->page_gotno() + to->page_gotno();
// Conservatively estimate how many local and TLS entries would be needed.
estimate += from->local_gotno() + to->local_gotno();
estimate += from->tls_gotno() + to->tls_gotno();
// If we're merging with the primary got, any TLS relocations will
// come after the full set of global entries. Otherwise estimate those
// conservatively as well.
if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
estimate += this->master_got_info_->global_gotno();
else
estimate += from->global_gotno() + to->global_gotno();
// Bail out if the combined GOT might be too big.
unsigned int max_count =
Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
if (estimate > max_count)
return false;
// Transfer the object's GOT information from FROM to TO.
to->add_got_entries(from);
to->add_got_page_count(from);
// Record that OBJECT should use output GOT TO.
object->set_got_info(to);
return true;
}
// Write out the GOT.
template<int size, bool big_endian>
void
Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
{
typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
Mips_stubs_entry_set;
// Call parent to write out GOT.
Output_data_got<size, big_endian>::do_write(of);
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
// Needed for fixing values of .got section.
this->got_view_ = oview;
// Write lazy stub addresses.
for (typename Mips_stubs_entry_set::iterator
p = this->master_got_info_->global_got_symbols().begin();
p != this->master_got_info_->global_got_symbols().end();
++p)
{
Mips_symbol<size>* mips_sym = *p;
if (mips_sym->has_lazy_stub())
{
Valtype* wv = reinterpret_cast<Valtype*>(
oview + this->get_primary_got_offset(mips_sym));
Valtype value =
this->target_->mips_stubs_section()->stub_address(mips_sym);
elfcpp::Swap<size, big_endian>::writeval(wv, value);
}
}
// Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
for (typename Mips_stubs_entry_set::iterator
p = this->master_got_info_->global_got_symbols().begin();
p != this->master_got_info_->global_got_symbols().end();
++p)
{
Mips_symbol<size>* mips_sym = *p;
if (!this->multi_got()
&& (mips_sym->is_mips16() || mips_sym->is_micromips())
&& mips_sym->global_got_area() == GGA_NONE
&& mips_sym->has_got_offset(GOT_TYPE_STANDARD))
{
Valtype* wv = reinterpret_cast<Valtype*>(
oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
if (value != 0)
{
value |= 1;
elfcpp::Swap<size, big_endian>::writeval(wv, value);
}
}
}
if (!this->secondary_got_relocs_.empty())
{
// Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
// secondary GOT entries with non-zero initial value copy the value
// to the corresponding primary GOT entry, and set the secondary GOT
// entry to zero.
// TODO(sasa): This is workaround. It needs to be investigated further.
for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
{
Static_reloc& reloc(this->secondary_got_relocs_[i]);
if (reloc.symbol_is_global())
{
Mips_symbol<size>* gsym = reloc.symbol();
gold_assert(gsym != NULL);
unsigned got_offset = reloc.got_offset();
gold_assert(got_offset < oview_size);
// Find primary GOT entry.
Valtype* wv_prim = reinterpret_cast<Valtype*>(
oview + this->get_primary_got_offset(gsym));
// Find secondary GOT entry.
Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
if (value != 0)
{
elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
gsym->set_applied_secondary_got_fixup();
}
}
}
of->write_output_view(offset, oview_size, oview);
}
// We are done if there is no fix up.
if (this->static_relocs_.empty())
return;
Output_segment* tls_segment = this->layout_->tls_segment();
gold_assert(tls_segment != NULL);
for (size_t i = 0; i < this->static_relocs_.size(); ++i)
{
Static_reloc& reloc(this->static_relocs_[i]);
Mips_address value;
if (!reloc.symbol_is_global())
{
Sized_relobj_file<size, big_endian>* object = reloc.relobj();
const Symbol_value<size>* psymval =
object->local_symbol(reloc.index());
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section.
bool is_ordinary;
unsigned int shndx = psymval->input_shndx(&is_ordinary);
if ((shndx == elfcpp::SHN_UNDEF)
|| (is_ordinary
&& shndx != elfcpp::SHN_UNDEF
&& !object->is_section_included(shndx)
&& !this->symbol_table_->is_section_folded(object, shndx)))
{
gold_error(_("undefined or discarded local symbol %u from "
" object %s in GOT"),
reloc.index(), reloc.relobj()->name().c_str());
continue;
}
value = psymval->value(object, 0);
}
else
{
const Mips_symbol<size>* gsym = reloc.symbol();
gold_assert(gsym != NULL);
// We are doing static linking. Issue an error and skip this
// relocation if the symbol is undefined or in a discarded_section
// unless it is a weakly_undefined symbol.
if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
&& !gsym->is_weak_undefined())
{
gold_error(_("undefined or discarded symbol %s in GOT"),
gsym->name());
continue;
}
if (!gsym->is_weak_undefined())
value = gsym->value();
else
value = 0;
}
unsigned got_offset = reloc.got_offset();
gold_assert(got_offset < oview_size);
Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
Valtype x;
switch (reloc.r_type())
{
case elfcpp::R_MIPS_TLS_DTPMOD32:
case elfcpp::R_MIPS_TLS_DTPMOD64:
x = value;
break;
case elfcpp::R_MIPS_TLS_DTPREL32:
case elfcpp::R_MIPS_TLS_DTPREL64:
x = value - elfcpp::DTP_OFFSET;
break;
case elfcpp::R_MIPS_TLS_TPREL32:
case elfcpp::R_MIPS_TLS_TPREL64:
x = value - elfcpp::TP_OFFSET;
break;
default:
gold_unreachable();
break;
}
elfcpp::Swap<size, big_endian>::writeval(wv, x);
}
of->write_output_view(offset, oview_size, oview);
}
// Mips_relobj methods.
// Count the local symbols. The Mips backend needs to know if a symbol
// is a MIPS16 or microMIPS function or not. For global symbols, it is easy
// because the Symbol object keeps the ELF symbol type and st_other field.
// For local symbol it is harder because we cannot access this information.
// So we override the do_count_local_symbol in parent and scan local symbols to
// mark MIPS16 and microMIPS functions. This is not the most efficient way but
// I do not want to slow down other ports by calling a per symbol target hook
// inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::do_count_local_symbols(
Stringpool_template<char>* pool,
Stringpool_template<char>* dynpool)
{
// Ask parent to count the local symbols.
Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
const unsigned int loccount = this->local_symbol_count();
if (loccount == 0)
return;
// Initialize the mips16 and micromips function bit-vector.
this->local_symbol_is_mips16_.resize(loccount, false);
this->local_symbol_is_micromips_.resize(loccount, false);
// Read the symbol table section header.
const unsigned int symtab_shndx = this->symtab_shndx();
elfcpp::Shdr<size, big_endian>
symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
// Read the local symbols.
const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
gold_assert(loccount == symtabshdr.get_sh_info());
off_t locsize = loccount * sym_size;
const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
locsize, true, true);
// Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
// Skip the first dummy symbol.
psyms += sym_size;
for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
{
elfcpp::Sym<size, big_endian> sym(psyms);
unsigned char st_other = sym.get_st_other();
this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
this->local_symbol_is_micromips_[i] =
elfcpp::elf_st_is_micromips(st_other);
}
}
// Read the symbol information.
template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
// Call parent class to read symbol information.
this->base_read_symbols(sd);
// If this input file is a binary file, it has no processor
// specific data.
Input_file::Format format = this->input_file()->format();
if (format != Input_file::FORMAT_ELF)
{
gold_assert(format == Input_file::FORMAT_BINARY);
this->merge_processor_specific_data_ = false;
return;
}
// Read processor-specific flags in ELF file header.
const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
elfcpp::Elf_sizes<size>::ehdr_size,
true, false);
elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
this->processor_specific_flags_ = ehdr.get_e_flags();
// Get the section names.
const unsigned char* pnamesu = sd->section_names->data();
const char* pnames = reinterpret_cast<const char*>(pnamesu);
// Initialize the mips16 stub section bit-vectors.
this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
this->section_is_mips16_call_stub_.resize(this->shnum(), false);
this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
const unsigned char* pshdrs = sd->section_headers->data();
const unsigned char* ps = pshdrs + shdr_size;
bool must_merge_processor_specific_data = false;
for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
{
elfcpp::Shdr<size, big_endian> shdr(ps);
// Sometimes an object has no contents except the section name string
// table and an empty symbol table with the undefined symbol. We
// don't want to merge processor-specific data from such an object.
if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
{
// Symbol table is not empty.
const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
elfcpp::Elf_sizes<size>::sym_size;
if (shdr.get_sh_size() > sym_size)
must_merge_processor_specific_data = true;
}
else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
// If this is neither an empty symbol table nor a string table,
// be conservative.
must_merge_processor_specific_data = true;
if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
{
this->has_reginfo_section_ = true;
// Read the gp value that was used to create this object. We need the
// gp value while processing relocs. The .reginfo section is not used
// in the 64-bit MIPS ELF ABI.
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
// Read the rest of .reginfo.
this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
}
if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
{
gold_assert(this->attributes_section_data_ == NULL);
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->attributes_section_data_ =
new Attributes_section_data(view, section_size);
}
if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
{
gold_assert(this->abiflags_ == NULL);
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
this->abiflags_ = new Mips_abiflags<big_endian>();
this->abiflags_->version =
elfcpp::Swap<16, big_endian>::readval(view);
if (this->abiflags_->version != 0)
{
gold_error(_("%s: .MIPS.abiflags section has "
"unsupported version %u"),
this->name().c_str(),
this->abiflags_->version);
break;
}
this->abiflags_->isa_level =
elfcpp::Swap<8, big_endian>::readval(view + 2);
this->abiflags_->isa_rev =
elfcpp::Swap<8, big_endian>::readval(view + 3);
this->abiflags_->gpr_size =
elfcpp::Swap<8, big_endian>::readval(view + 4);
this->abiflags_->cpr1_size =
elfcpp::Swap<8, big_endian>::readval(view + 5);
this->abiflags_->cpr2_size =
elfcpp::Swap<8, big_endian>::readval(view + 6);
this->abiflags_->fp_abi =
elfcpp::Swap<8, big_endian>::readval(view + 7);
this->abiflags_->isa_ext =
elfcpp::Swap<32, big_endian>::readval(view + 8);
this->abiflags_->ases =
elfcpp::Swap<32, big_endian>::readval(view + 12);
this->abiflags_->flags1 =
elfcpp::Swap<32, big_endian>::readval(view + 16);
this->abiflags_->flags2 =
elfcpp::Swap<32, big_endian>::readval(view + 20);
}
// In the 64-bit ABI, .MIPS.options section holds register information.
// A SHT_MIPS_OPTIONS section contains a series of options, each of which
// starts with this header:
//
// typedef struct
// {
// // Type of option.
// unsigned char kind[1];
// // Size of option descriptor, including header.
// unsigned char size[1];
// // Section index of affected section, or 0 for global option.
// unsigned char section[2];
// // Information specific to this kind of option.
// unsigned char info[4];
// };
//
// For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
// the gp value based on what we find. We may see both SHT_MIPS_REGINFO
// and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
{
section_offset_type section_offset = shdr.get_sh_offset();
section_size_type section_size =
convert_to_section_size_type(shdr.get_sh_size());
const unsigned char* view =
this->get_view(section_offset, section_size, true, false);
const unsigned char* end = view + section_size;
while (view + 8 <= end)
{
unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
if (sz < 8)
{
gold_error(_("%s: Warning: bad `%s' option size %u smaller "
"than its header"),
this->name().c_str(),
this->mips_elf_options_section_name(), sz);
break;
}
if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
{
// In the 64 bit ABI, an ODK_REGINFO option is the following
// structure. The info field of the options header is not
// used.
//
// typedef struct
// {
// // Mask of general purpose registers used.
// unsigned char ri_gprmask[4];
// // Padding.
// unsigned char ri_pad[4];
// // Mask of co-processor registers used.
// unsigned char ri_cprmask[4][4];
// // GP register value for this object file.
// unsigned char ri_gp_value[8];
// };
this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
+ 32);
}
else if (kind == elfcpp::ODK_REGINFO)
{
// In the 32 bit ABI, an ODK_REGINFO option is the following
// structure. The info field of the options header is not
// used. The same structure is used in .reginfo section.
//
// typedef struct
// {
// unsigned char ri_gprmask[4];
// unsigned char ri_cprmask[4][4];
// unsigned char ri_gp_value[4];
// };
this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
+ 28);
}
view += sz;
}
}
const char* name = pnames + shdr.get_sh_name();
this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
this->section_is_mips16_call_stub_[i] =
is_prefix_of(".mips16.call.", name);
this->section_is_mips16_call_fp_stub_[i] =
is_prefix_of(".mips16.call.fp.", name);
if (strcmp(name, ".pdr") == 0)
{
gold_assert(this->pdr_shndx_ == -1U);
this->pdr_shndx_ = i;
}
}
// This is rare.
if (!must_merge_processor_specific_data)
this->merge_processor_specific_data_ = false;
}
// Discard MIPS16 stub secions that are not needed.
template<int size, bool big_endian>
void
Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
{
for (typename Mips16_stubs_int_map::const_iterator
it = this->mips16_stub_sections_.begin();
it != this->mips16_stub_sections_.end(); ++it)
{
Mips16_stub_section<size, big_endian>* stub_section = it->second;
if (!stub_section->is_target_found())
{
gold_error(_("no relocation found in mips16 stub section '%s'"),
stub_section->object()
->section_name(stub_section->shndx()).c_str());
}
bool discard = false;
if (stub_section->is_for_local_function())
{
if (stub_section->is_fn_stub())
{
// This stub is for a local symbol. This stub will only
// be needed if there is some relocation in this object,
// other than a 16 bit function call, which refers to this
// symbol.
if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
discard = true;
else
this->add_local_mips16_fn_stub(stub_section);
}
else
{
// This stub is for a local symbol. This stub will only
// be needed if there is some relocation (R_MIPS16_26) in
// this object that refers to this symbol.
gold_assert(stub_section->is_call_stub()
|| stub_section->is_call_fp_stub());
if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
discard = true;
else
this->add_local_mips16_call_stub(stub_section);
}
}
else
{
Mips_symbol<size>* gsym = stub_section->gsym();
if (stub_section->is_fn_stub())
{
if (gsym->has_mips16_fn_stub())
// We already have a stub for this function.
discard = true;
else
{
gsym->set_mips16_fn_stub(stub_section);
if (gsym->should_add_dynsym_entry(symtab))
{
// If we have a MIPS16 function with a stub, the
// dynamic symbol must refer to the stub, since only
// the stub uses the standard calling conventions.
gsym->set_need_fn_stub();
if (gsym->is_from_dynobj())
gsym->set_needs_dynsym_value();
}
}
if (!gsym->need_fn_stub())
discard = true;
}
else if (stub_section->is_call_stub())
{
if (gsym->is_mips16())
// We don't need the call_stub; this is a 16 bit
// function, so calls from other 16 bit functions are
// OK.
discard = true;
else if (gsym->has_mips16_call_stub())
// We already have a stub for this function.
discard = true;
else
gsym->set_mips16_call_stub(stub_section);
}
else
{
gold_assert(stub_section->is_call_fp_stub());
if (gsym->is_mips16())
// We don't need the call_stub; this is a 16 bit
// function, so calls from other 16 bit functions are
// OK.
discard = true;
else if (gsym->has_mips16_call_fp_stub())
// We already have a stub for this function.
discard = true;
else
gsym->set_mips16_call_fp_stub(stub_section);
}
}
if (discard)
this->set_output_section(stub_section->shndx(), NULL);
}
}
// Mips_output_data_la25_stub methods.
// Template for standard LA25 stub.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
{
0x3c190000, // lui $25,%hi(func)
0x08000000, // j func
0x27390000, // add $25,$25,%lo(func)
0x00000000 // nop
};
// Template for microMIPS LA25 stub.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
{
0x41b9, 0x0000, // lui t9,%hi(func)
0xd400, 0x0000, // j func
0x3339, 0x0000, // addiu t9,t9,%lo(func)
0x0000, 0x0000 // nop
};
// Create la25 stub for a symbol.
template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
Symbol_table* symtab, Target_mips<size, big_endian>* target,
Mips_symbol<size>* gsym)
{
if (!gsym->has_la25_stub())
{
gsym->set_la25_stub_offset(this->symbols_.size() * 16);
this->symbols_.push_back(gsym);
this->create_stub_symbol(gsym, symtab, target, 16);
}
}
// Create a symbol for SYM stub's value and size, to help make the disassembly
// easier to read.
template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
Mips_symbol<size>* sym, Symbol_table* symtab,
Target_mips<size, big_endian>* target, uint64_t symsize)
{
std::string name(".pic.");
name += sym->name();
unsigned int offset = sym->la25_stub_offset();
if (sym->is_micromips())
offset |= 1;
// Make it a local function.
Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
Symbol_table::PREDEFINED,
target->la25_stub_section(),
offset, symsize, elfcpp::STT_FUNC,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT, 0,
false, false);
new_sym->set_is_forced_local();
}
// Write out la25 stubs. This uses the hand-coded instructions above,
// and adjusts them as needed.
template<int size, bool big_endian>
void
Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
for (typename std::vector<Mips_symbol<size>*>::iterator
p = this->symbols_.begin();
p != this->symbols_.end();
++p)
{
Mips_symbol<size>* sym = *p;
unsigned char* pov = oview + sym->la25_stub_offset();
Mips_address target = sym->value();
if (!sym->is_micromips())
{
elfcpp::Swap<32, big_endian>::writeval(pov,
la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
elfcpp::Swap<32, big_endian>::writeval(pov + 4,
la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
elfcpp::Swap<32, big_endian>::writeval(pov + 8,
la25_stub_entry[2] | (target & 0xffff));
elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
}
else
{
target |= 1;
// First stub instruction. Paste high 16-bits of the target.
elfcpp::Swap<16, big_endian>::writeval(pov,
la25_stub_micromips_entry[0]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2,
((target + 0x8000) >> 16) & 0xffff);
// Second stub instruction. Paste low 26-bits of the target, shifted
// right by 1.
elfcpp::Swap<16, big_endian>::writeval(pov + 4,
la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
elfcpp::Swap<16, big_endian>::writeval(pov + 6,
la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
// Third stub instruction. Paste low 16-bits of the target.
elfcpp::Swap<16, big_endian>::writeval(pov + 8,
la25_stub_micromips_entry[4]);
elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
// Fourth stub instruction.
elfcpp::Swap<16, big_endian>::writeval(pov + 12,
la25_stub_micromips_entry[6]);
elfcpp::Swap<16, big_endian>::writeval(pov + 14,
la25_stub_micromips_entry[7]);
}
}
of->write_output_view(offset, oview_size, oview);
}
// Mips_output_data_plt methods.
// The format of the first PLT entry in an O32 executable.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
{
0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
0x031cc023, // subu $24, $24, $28
0x03e07825, // or $15, $31, zero
0x0018c082, // srl $24, $24, 2
0x0320f809, // jalr $25
0x2718fffe // subu $24, $24, 2
};
// The format of the first PLT entry in an N32 executable. Different
// because gp ($28) is not available; we use t2 ($14) instead.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
{
0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
0x030ec023, // subu $24, $24, $14
0x03e07825, // or $15, $31, zero
0x0018c082, // srl $24, $24, 2
0x0320f809, // jalr $25
0x2718fffe // subu $24, $24, 2
};
// The format of the first PLT entry in an N64 executable. Different
// from N32 because of the increased size of GOT entries.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
{
0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
0x030ec023, // subu $24, $24, $14
0x03e07825, // or $15, $31, zero
0x0018c0c2, // srl $24, $24, 3
0x0320f809, // jalr $25
0x2718fffe // subu $24, $24, 2
};
// The format of the microMIPS first PLT entry in an O32 executable.
// We rely on v0 ($2) rather than t8 ($24) to contain the address
// of the GOTPLT entry handled, so this stub may only be used when
// all the subsequent PLT entries are microMIPS code too.
//
// The trailing NOP is for alignment and correct disassembly only.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt0_entry_micromips_o32[] =
{
0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
0xff23, 0x0000, // lw $25, 0($3)
0x0535, // subu $2, $2, $3
0x2525, // srl $2, $2, 2
0x3302, 0xfffe, // subu $24, $2, 2
0x0dff, // move $15, $31
0x45f9, // jalrs $25
0x0f83, // move $28, $3
0x0c00 // nop
};
// The format of the microMIPS first PLT entry in an O32 executable
// in the insn32 mode.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt0_entry_micromips32_o32[] =
{
0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
0x0398, 0xc1d0, // subu $24, $24, $28
0x001f, 0x7a90, // or $15, $31, zero
0x0318, 0x1040, // srl $24, $24, 2
0x03f9, 0x0f3c, // jalr $25
0x3318, 0xfffe // subu $24, $24, 2
};
// The format of subsequent standard entries in the PLT.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
{
0x3c0f0000, // lui $15, %hi(.got.plt entry)
0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
0x03200008, // jr $25
0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
};
// The format of subsequent R6 PLT entries.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
{
0x3c0f0000, // lui $15, %hi(.got.plt entry)
0x01f90000, // l[wd] $25, %lo(.got.plt entry)($15)
0x03200009, // jr $25
0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
};
// The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
// temporary because t8 ($24) and t9 ($25) are not directly addressable.
// Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
// We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
// target function address in register v0.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
{
0xb303, // lw $3, 12($pc)
0x651b, // move $24, $3
0x9b60, // lw $3, 0($3)
0xeb00, // jr $3
0x653b, // move $25, $3
0x6500, // nop
0x0000, 0x0000 // .word (.got.plt entry)
};
// The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
// as a temporary because t8 ($24) is not addressable with ADDIUPC.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt_entry_micromips_o32[] =
{
0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
0xff22, 0x0000, // lw $25, 0($2)
0x4599, // jr $25
0x0f02 // move $24, $2
};
// The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
template<int size, bool big_endian>
const uint32_t Mips_output_data_plt<size, big_endian>::
plt_entry_micromips32_o32[] =
{
0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
0x0019, 0x0f3c, // jr $25
0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
};
// Add an entry to the PLT for a symbol referenced by r_type relocation.
template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
unsigned int r_type)
{
gold_assert(!gsym->has_plt_offset());
// Final PLT offset for a symbol will be set in method set_plt_offsets().
gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
+ sizeof(plt0_entry_o32));
this->symbols_.push_back(gsym);
// Record whether the relocation requires a standard MIPS
// or a compressed code entry.
if (jal_reloc(r_type))
{
if (r_type == elfcpp::R_MIPS_26)
gsym->set_needs_mips_plt(true);
else
gsym->set_needs_comp_plt(true);
}
section_offset_type got_offset = this->got_plt_->current_data_size();
// Every PLT entry needs a GOT entry which points back to the PLT
// entry (this will be changed by the dynamic linker, normally
// lazily when the function is called).
this->got_plt_->set_current_data_size(got_offset + size/8);
gsym->set_needs_dynsym_entry();
this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
got_offset);
}
// Set final PLT offsets. For each symbol, determine whether standard or
// compressed (MIPS16 or microMIPS) PLT entry is used.
template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::set_plt_offsets()
{
// The sizes of individual PLT entries.
unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
? this->compressed_plt_entry_size() : 0);
for (typename std::vector<Mips_symbol<size>*>::const_iterator
p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
{
Mips_symbol<size>* mips_sym = *p;
// There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
// so always use a standard entry there.
//
// If the symbol has a MIPS16 call stub and gets a PLT entry, then
// all MIPS16 calls will go via that stub, and there is no benefit
// to having a MIPS16 entry. And in the case of call_stub a
// standard entry actually has to be used as the stub ends with a J
// instruction.
if (this->target_->is_output_newabi()
|| mips_sym->has_mips16_call_stub()
|| mips_sym->has_mips16_call_fp_stub())
{
mips_sym->set_needs_mips_plt(true);
mips_sym->set_needs_comp_plt(false);
}
// Otherwise, if there are no direct calls to the function, we
// have a free choice of whether to use standard or compressed
// entries. Prefer microMIPS entries if the object is known to
// contain microMIPS code, so that it becomes possible to create
// pure microMIPS binaries. Prefer standard entries otherwise,
// because MIPS16 ones are no smaller and are usually slower.
if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
{
if (this->target_->is_output_micromips())
mips_sym->set_needs_comp_plt(true);
else
mips_sym->set_needs_mips_plt(true);
}
if (mips_sym->needs_mips_plt())
{
mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
this->plt_mips_offset_ += plt_mips_entry_size;
}
if (mips_sym->needs_comp_plt())
{
mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
this->plt_comp_offset_ += plt_comp_entry_size;
}
}
// Figure out the size of the PLT header if we know that we are using it.
if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
this->plt_header_size_ = this->get_plt_header_size();
}
// Write out the PLT. This uses the hand-coded instructions above,
// and adjusts them as needed.
template<int size, bool big_endian>
void
Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
const off_t gotplt_file_offset = this->got_plt_->offset();
const section_size_type gotplt_size =
convert_to_section_size_type(this->got_plt_->data_size());
unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
gotplt_size);
unsigned char* pov = oview;
Mips_address plt_address = this->address();
// Calculate the address of .got.plt.
Mips_address gotplt_addr = this->got_plt_->address();
Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
// The PLT sequence is not safe for N64 if .got.plt's address can
// not be loaded in two instructions.
gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
|| ~(gotplt_addr | 0x7fffffff) == 0);
// Write the PLT header.
const uint32_t* plt0_entry = this->get_plt_header_entry();
if (plt0_entry == plt0_entry_micromips_o32)
{
// Write microMIPS PLT header.
gold_assert(gotplt_addr % 4 == 0);
Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
// ADDIUPC has a span of +/-16MB, check we're in range.
if (gotpc_offset + 0x1000000 >= 0x2000000)
{
gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
"ADDIUPC"), (long)gotpc_offset);
return;
}
elfcpp::Swap<16, big_endian>::writeval(pov,
plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
elfcpp::Swap<16, big_endian>::writeval(pov + 2,
(gotpc_offset >> 2) & 0xffff);
pov += 4;
for (unsigned int i = 2;
i < (sizeof(plt0_entry_micromips_o32)
/ sizeof(plt0_entry_micromips_o32[0]));
i++)
{
elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
pov += 2;
}
}
else if (plt0_entry == plt0_entry_micromips32_o32)
{
// Write microMIPS PLT header in insn32 mode.
elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
pov += 12;
for (unsigned int i = 6;
i < (sizeof(plt0_entry_micromips32_o32)
/ sizeof(plt0_entry_micromips32_o32[0]));
i++)
{
elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
pov += 2;
}
}
else
{
// Write standard PLT header.
elfcpp::Swap<32, big_endian>::writeval(pov,
plt0_entry[0] | gotplt_addr_high);
elfcpp::Swap<32, big_endian>::writeval(pov + 4,
plt0_entry[1] | gotplt_addr_low);
elfcpp::Swap<32, big_endian>::writeval(pov + 8,
plt0_entry[2] | gotplt_addr_low);
pov += 12;
for (int i = 3; i < 8; i++)
{
elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
pov += 4;
}
}
unsigned char* gotplt_pov = gotplt_view;
unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
// The first two entries in .got.plt are reserved.
elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
unsigned int gotplt_offset = 2 * got_entry_size;
gotplt_pov += 2 * got_entry_size;
// Calculate the address of the PLT header.
Mips_address header_address = (plt_address
+ (this->is_plt_header_compressed() ? 1 : 0));
// Initialize compressed PLT area view.
unsigned char* pov2 = pov + this->plt_mips_offset_;
// Write the PLT entries.
for (typename std::vector<Mips_symbol<size>*>::const_iterator
p = this->symbols_.begin();
p != this->symbols_.end();
++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
{
Mips_symbol<size>* mips_sym = *p;
// Calculate the address of the .got.plt entry.
uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
& 0xffff);
uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
// Initially point the .got.plt entry at the PLT header.
if (this->target_->is_output_n64())
elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
else
elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
// Now handle the PLT itself. First the standard entry.
if (mips_sym->has_mips_plt_offset())
{
// Pick the load opcode (LW or LD).
uint64_t load = this->target_->is_output_n64() ? 0xdc000000
: 0x8c000000;
const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
: plt_entry;
// Fill in the PLT entry itself.
elfcpp::Swap<32, big_endian>::writeval(pov,
entry[0] | gotplt_entry_addr_hi);
elfcpp::Swap<32, big_endian>::writeval(pov + 4,
entry[1] | gotplt_entry_addr_lo | load);
elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
elfcpp::Swap<32, big_endian>::writeval(pov + 12,
entry[3] | gotplt_entry_addr_lo);
pov += 16;
}
// Now the compressed entry. They come after any standard ones.
if (mips_sym->has_comp_plt_offset())
{
if (!this->target_->is_output_micromips())
{
// Write MIPS16 PLT entry.
const uint32_t* plt_entry = plt_entry_mips16_o32;
elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
gotplt_entry_addr);
pov2 += 16;
}
else if (this->target_->use_32bit_micromips_instructions())
{
// Write microMIPS PLT entry in insn32 mode.
const uint32_t* plt_entry = plt_entry_micromips32_o32;
elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
gotplt_entry_addr_hi);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
gotplt_entry_addr_lo);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
gotplt_entry_addr_lo);
pov2 += 16;
}
else
{
// Write microMIPS PLT entry.
const uint32_t* plt_entry = plt_entry_micromips_o32;
gold_assert(gotplt_entry_addr % 4 == 0);
Mips_address loc_address = plt_address + pov2 - oview;
int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
// ADDIUPC has a span of +/-16MB, check we're in range.
if (gotpc_offset + 0x1000000 >= 0x2000000)
{
gold_error(_(".got.plt offset of %ld from .plt beyond the "
"range of ADDIUPC"), (long)gotpc_offset);
return;
}
elfcpp::Swap<16, big_endian>::writeval(pov2,
plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
elfcpp::Swap<16, big_endian>::writeval(
pov2 + 2, (gotpc_offset >> 2) & 0xffff);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
pov2 += 12;
}
}
}
// Check the number of bytes written for standard entries.
gold_assert(static_cast<section_size_type>(
pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
// Check the number of bytes written for compressed entries.
gold_assert((static_cast<section_size_type>(pov2 - pov)
== this->plt_comp_offset_));
// Check the total number of bytes written.
gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
== gotplt_size);
of->write_output_view(offset, oview_size, oview);
of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
}
// Mips_output_data_mips_stubs methods.
// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is less than 32K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
{
0x8f998010, // lw t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x0320f809, // jalr t9,ra
0x24180000 // addiu t8,zero,DYN_INDEX sign extended
};
// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is less than 32K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
{
0xdf998010, // ld t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x0320f809, // jalr t9,ra
0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
};
// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
{
0x8f998010, // lw t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x0320f809, // jalr t9,ra
0x34180000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the lazy binding stub when dynamic symbol count is less than
// 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
{
0xdf998010, // ld t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x0320f809, // jalr t9,ra
0x34180000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the lazy binding stub when dynamic symbol count is greater than
// 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
{
0x8f998010, // lw t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x3c180000, // lui t8,DYN_INDEX
0x0320f809, // jalr t9,ra
0x37180000 // ori t8,t8,DYN_INDEX
};
// The format of the lazy binding stub when dynamic symbol count is greater than
// 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
{
0xdf998010, // ld t9,0x8010(gp)
0x03e07825, // or t7,ra,zero
0x3c180000, // lui t8,DYN_INDEX
0x0320f809, // jalr t9,ra
0x37180000 // ori t8,t8,DYN_INDEX
};
// microMIPS stubs.
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x0dff, // move t7,ra
0x45d9, // jalr t9
0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips_normal_1_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x0dff, // move t7,ra
0x45d9, // jalr t9
0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
};
// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x0dff, // move t7,ra
0x45d9, // jalr t9
0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips_normal_2_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x0dff, // move t7,ra
0x45d9, // jalr t9
0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, and ABI is not N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x0dff, // move t7,ra
0x41b8, 0x0000, // lui t8,DYN_INDEX
0x45d9, // jalr t9
0x5318, 0x0000 // ori t8,t8,DYN_INDEX
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, and ABI is N64.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x0dff, // move t7,ra
0x41b8, 0x0000, // lui t8,DYN_INDEX
0x45d9, // jalr t9
0x5318, 0x0000 // ori t8,t8,DYN_INDEX
};
// 32-bit microMIPS stubs.
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
// can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_1[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x03f9, 0x0f3c, // jalr ra,t9
0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
// use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_1_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x03f9, 0x0f3c, // jalr ra,t9
0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
};
// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// ABI is not N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_2[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x03f9, 0x0f3c, // jalr ra,t9
0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the microMIPS lazy binding stub when dynamic symbol
// count is less than 64K, dynamic symbol index is between 32K and 64K,
// ABI is N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::
lazy_stub_micromips32_normal_2_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x03f9, 0x0f3c, // jalr ra,t9
0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
{
0xff3c, 0x8010, // lw t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x41b8, 0x0000, // lui t8,DYN_INDEX
0x03f9, 0x0f3c, // jalr ra,t9
0x5318, 0x0000 // ori t8,t8,DYN_INDEX
};
// The format of the microMIPS lazy binding stub when dynamic symbol count is
// greater than 64K, ABI is N64, and we can use only 32-bit instructions.
template<int size, bool big_endian>
const uint32_t
Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
{
0xdf3c, 0x8010, // ld t9,0x8010(gp)
0x001f, 0x7a90, // or t7,ra,zero
0x41b8, 0x0000, // lui t8,DYN_INDEX
0x03f9, 0x0f3c, // jalr ra,t9
0x5318, 0x0000 // ori t8,t8,DYN_INDEX
};
// Create entry for a symbol.
template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::make_entry(
Mips_symbol<size>* gsym)
{
if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
{
this->symbols_.insert(gsym);
gsym->set_has_lazy_stub(true);
}
}
// Remove entry for a symbol.
template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
Mips_symbol<size>* gsym)
{
if (gsym->has_lazy_stub())
{
this->symbols_.erase(gsym);
gsym->set_has_lazy_stub(false);
}
}
// Set stub offsets for symbols. This method expects that the number of
// entries in dynamic symbol table is set.
template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
{
gold_assert(this->dynsym_count_ != -1U);
if (this->stub_offsets_are_set_)
return;
unsigned int stub_size = this->stub_size();
unsigned int offset = 0;
for (typename Mips_stubs_entry_set::const_iterator
p = this->symbols_.begin();
p != this->symbols_.end();
++p, offset += stub_size)
{
Mips_symbol<size>* mips_sym = *p;
mips_sym->set_lazy_stub_offset(offset);
}
this->stub_offsets_are_set_ = true;
}
template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
{
for (typename Mips_stubs_entry_set::const_iterator
p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
{
Mips_symbol<size>* sym = *p;
if (sym->is_from_dynobj())
sym->set_needs_dynsym_value();
}
}
// Write out the .MIPS.stubs. This uses the hand-coded instructions and
// adjusts them as needed.
template<int size, bool big_endian>
void
Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
{
const off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* const oview = of->get_output_view(offset, oview_size);
bool big_stub = this->dynsym_count_ > 0x10000;
unsigned char* pov = oview;
for (typename Mips_stubs_entry_set::const_iterator
p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
{
Mips_symbol<size>* sym = *p;
const uint32_t* lazy_stub;
bool n64 = this->target_->is_output_n64();
if (!this->target_->is_output_micromips())
{
// Write standard (non-microMIPS) stub.
if (!big_stub)
{
if (sym->dynsym_index() & ~0x7fff)
// Dynsym index is between 32K and 64K.
lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
else
// Dynsym index is less than 32K.
lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
}
else
lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
unsigned int i = 0;
elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
pov += 8;
i += 2;
if (big_stub)
{
// LUI instruction of the big stub. Paste high 16 bits of the
// dynsym index.
elfcpp::Swap<32, big_endian>::writeval(pov,
lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
pov += 4;
i += 1;
}
elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
// Last stub instruction. Paste low 16 bits of the dynsym index.
elfcpp::Swap<32, big_endian>::writeval(pov + 4,
lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
pov += 8;
}
else if (this->target_->use_32bit_micromips_instructions())
{
// Write microMIPS stub in insn32 mode.
if (!big_stub)
{
if (sym->dynsym_index() & ~0x7fff)
// Dynsym index is between 32K and 64K.
lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
: lazy_stub_micromips32_normal_2;
else
// Dynsym index is less than 32K.
lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
: lazy_stub_micromips32_normal_1;
}
else
lazy_stub = n64 ? lazy_stub_micromips32_big_n64
: lazy_stub_micromips32_big;
unsigned int i = 0;
// First stub instruction. We emit 32-bit microMIPS instructions by
// emitting two 16-bit parts because on microMIPS the 16-bit part of
// the instruction where the opcode is must always come first, for
// both little and big endian.
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
// Second stub instruction.
elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
pov += 8;
i += 4;
if (big_stub)
{
// LUI instruction of the big stub. Paste high 16 bits of the
// dynsym index.
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2,
(sym->dynsym_index() >> 16) & 0x7fff);
pov += 4;
i += 2;
}
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
// Last stub instruction. Paste low 16 bits of the dynsym index.
elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
elfcpp::Swap<16, big_endian>::writeval(pov + 6,
sym->dynsym_index() & 0xffff);
pov += 8;
}
else
{
// Write microMIPS stub.
if (!big_stub)
{
if (sym->dynsym_index() & ~0x7fff)
// Dynsym index is between 32K and 64K.
lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
: lazy_stub_micromips_normal_2;
else
// Dynsym index is less than 32K.
lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
: lazy_stub_micromips_normal_1;
}
else
lazy_stub = n64 ? lazy_stub_micromips_big_n64
: lazy_stub_micromips_big;
unsigned int i = 0;
// First stub instruction. We emit 32-bit microMIPS instructions by
// emitting two 16-bit parts because on microMIPS the 16-bit part of
// the instruction where the opcode is must always come first, for
// both little and big endian.
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
// Second stub instruction.
elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
pov += 6;
i += 3;
if (big_stub)
{
// LUI instruction of the big stub. Paste high 16 bits of the
// dynsym index.
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
elfcpp::Swap<16, big_endian>::writeval(pov + 2,
(sym->dynsym_index() >> 16) & 0x7fff);
pov += 4;
i += 2;
}
elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
// Last stub instruction. Paste low 16 bits of the dynsym index.
elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
elfcpp::Swap<16, big_endian>::writeval(pov + 4,
sym->dynsym_index() & 0xffff);
pov += 6;
}
}
// We always allocate 20 bytes for every stub, because final dynsym count is
// not known in method do_finalize_sections. There are 4 unused bytes per
// stub if final dynsym count is less than 0x10000.
unsigned int used = pov - oview;
unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
// Fill the unused space with zeroes.
// TODO(sasa): Can we strip unused bytes during the relaxation?
if (unused > 0)
memset(pov, 0, unused);
of->write_output_view(offset, oview_size, oview);
}
// Mips_output_section_reginfo methods.
template<int size, bool big_endian>
void
Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
{
off_t offset = this->offset();
off_t data_size = this->data_size();
unsigned char* view = of->get_output_view(offset, data_size);
elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
// Write the gp value.
elfcpp::Swap<size, big_endian>::writeval(view + 20,
this->target_->gp_value());
of->write_output_view(offset, data_size, view);
}
// Mips_output_section_options methods.
template<int size, bool big_endian>
void
Mips_output_section_options<size, big_endian>::do_write(Output_file* of)
{
off_t offset = this->offset();
const section_size_type oview_size =
convert_to_section_size_type(this->data_size());
unsigned char* view = of->get_output_view(offset, oview_size);
const unsigned char* end = view + oview_size;
while (view + 8 <= end)
{
unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
if (sz < 8)
{
gold_error(_("Warning: bad `%s' option size %u smaller "
"than its header in output section"),
this->name(), sz);
break;
}
// Only update ri_gp_value (GP register value) field of ODK_REGINFO entry.
if (this->target_->is_output_n64() && kind == elfcpp::ODK_REGINFO)
elfcpp::Swap<size, big_endian>::writeval(view + 32,
this->target_->gp_value());
else if (kind == elfcpp::ODK_REGINFO)
elfcpp::Swap<size, big_endian>::writeval(view + 28,
this->target_->gp_value());
view += sz;
}
of->write_output_view(offset, oview_size, view);
}
// Mips_output_section_abiflags methods.
template<int size, bool big_endian>
void
Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
{
off_t offset = this->offset();
off_t data_size = this->data_size();
unsigned char* view = of->get_output_view(offset, data_size);
elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
of->write_output_view(offset, data_size, view);
}
// Mips_copy_relocs methods.
// Emit any saved relocs.
template<int sh_type, int size, bool big_endian>
void
Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
{
for (typename Copy_relocs<sh_type, size, big_endian>::
Copy_reloc_entries::iterator p = this->entries_.begin();
p != this->entries_.end();
++p)
emit_entry(*p, reloc_section, symtab, layout, target);
// We no longer need the saved information.
this->entries_.clear();
}
// Emit the reloc if appropriate.
template<int sh_type, int size, bool big_endian>
void
Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
Copy_reloc_entry& entry,
Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
{
// If the symbol is no longer defined in a dynamic object, then we
// emitted a COPY relocation, and we do not want to emit this
// dynamic relocation.
if (!entry.sym_->is_from_dynobj())
return;
bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
|| entry.reloc_type_ == elfcpp::R_MIPS_REL32
|| entry.reloc_type_ == elfcpp::R_MIPS_64);
Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
if (can_make_dynamic && !sym->has_static_relocs())
{
Mips_relobj<size, big_endian>* object =
Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
target->got_section(symtab, layout)->record_global_got_symbol(
sym, object, entry.reloc_type_, true, false);
if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
else
target->rel_dyn_section(layout)->add_symbolless_global_addend(
sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
entry.shndx_, entry.address_);
}
else
this->make_copy_reloc(symtab, layout,
static_cast<Sized_symbol<size>*>(entry.sym_),
entry.relobj_,
reloc_section);
}
// Target_mips methods.
// Return the value to use for a dynamic symbol which requires special
// treatment. This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
template<int size, bool big_endian>
uint64_t
Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
uint64_t value = 0;
const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
if (!mips_sym->has_lazy_stub())
{
if (mips_sym->has_plt_offset())
{
// We distinguish between PLT entries and lazy-binding stubs by
// giving the former an st_other value of STO_MIPS_PLT. Set the
// value to the stub address if there are any relocations in the
// binary where pointer equality matters.
if (mips_sym->pointer_equality_needed())
{
// Prefer a standard MIPS PLT entry.
if (mips_sym->has_mips_plt_offset())
value = this->plt_section()->mips_entry_address(mips_sym);
else
value = this->plt_section()->comp_entry_address(mips_sym) + 1;
}
else
value = 0;
}
}
else
{
// First, set stub offsets for symbols. This method expects that the
// number of entries in dynamic symbol table is set.
this->mips_stubs_section()->set_lazy_stub_offsets();
// The run-time linker uses the st_value field of the symbol
// to reset the global offset table entry for this external
// to its stub address when unlinking a shared object.
value = this->mips_stubs_section()->stub_address(mips_sym);
}
if (mips_sym->has_mips16_fn_stub())
{
// If we have a MIPS16 function with a stub, the dynamic symbol must
// refer to the stub, since only the stub uses the standard calling
// conventions.
value = mips_sym->template
get_mips16_fn_stub<big_endian>()->output_address();
}
return value;
}
// Get the dynamic reloc section, creating it if necessary. It's always
// .rel.dyn, even for MIPS64.
template<int size, bool big_endian>
typename Target_mips<size, big_endian>::Reloc_section*
Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
{
if (this->rel_dyn_ == NULL)
{
gold_assert(layout != NULL);
this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
elfcpp::SHF_ALLOC, this->rel_dyn_,
ORDER_DYNAMIC_RELOCS, false);
// First entry in .rel.dyn has to be null.
// This is hack - we define dummy output data and set its address to 0,
// and define absolute R_MIPS_NONE relocation with offset 0 against it.
// This ensures that the entry is null.
Output_data* od = new Output_data_zero_fill(0, 0);
od->set_address(0);
this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
}
return this->rel_dyn_;
}
// Get the GOT section, creating it if necessary.
template<int size, bool big_endian>
Mips_output_data_got<size, big_endian>*
Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
Layout* layout)
{
if (this->got_ == NULL)
{
gold_assert(symtab != NULL && layout != NULL);
this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
layout);
layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
elfcpp::SHF_MIPS_GPREL),
this->got_, ORDER_DATA, false);
// Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->got_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL,
elfcpp::STV_HIDDEN, 0,
false, false);
}
return this->got_;
}
// Calculate value of _gp symbol.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
{
gold_assert(this->gp_ == NULL);
Sized_symbol<size>* gp =
static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
// Set _gp symbol if the linker script hasn't created it.
if (gp == NULL || gp->source() != Symbol::IS_CONSTANT)
{
// If there is no .got section, gp should be based on .sdata.
Output_data* gp_section = (this->got_ != NULL
? this->got_->output_section()
: layout->find_output_section(".sdata"));
if (gp_section != NULL)
gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
"_gp", NULL, Symbol_table::PREDEFINED,
gp_section, MIPS_GP_OFFSET, 0,
elfcpp::STT_NOTYPE,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT,
0, false, false));
}
this->gp_ = gp;
}
// Set the dynamic symbol indexes. INDEX is the index of the first
// global dynamic symbol. Pointers to the symbols are stored into the
// vector SYMS. The names are added to DYNPOOL. This returns an
// updated dynamic symbol index.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::do_set_dynsym_indexes(
std::vector<Symbol*>* dyn_symbols, unsigned int index,
std::vector<Symbol*>* syms, Stringpool* dynpool,
Versions* versions, Symbol_table* symtab) const
{
std::vector<Symbol*> non_got_symbols;
std::vector<Symbol*> got_symbols;
reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
&got_symbols);
for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
p != non_got_symbols.end();
++p)
{
Symbol* sym = *p;
// Note that SYM may already have a dynamic symbol index, since
// some symbols appear more than once in the symbol table, with
// and without a version.
if (!sym->has_dynsym_index())
{
sym->set_dynsym_index(index);
++index;
syms->push_back(sym);
dynpool->add(sym->name(), false, NULL);
// Record any version information.
if (sym->version() != NULL)
versions->record_version(symtab, dynpool, sym);
// If the symbol is defined in a dynamic object and is
// referenced in a regular object, then mark the dynamic
// object as needed. This is used to implement --as-needed.
if (sym->is_from_dynobj() && sym->in_reg())
sym->object()->set_is_needed();
}
}
for (std::vector<Symbol*>::iterator p = got_symbols.begin();
p != got_symbols.end();
++p)
{
Symbol* sym = *p;
if (!sym->has_dynsym_index())
{
// Record any version information.
if (sym->version() != NULL)
versions->record_version(symtab, dynpool, sym);
}
}
index = versions->finalize(symtab, index, syms);
int got_sym_count = 0;
for (std::vector<Symbol*>::iterator p = got_symbols.begin();
p != got_symbols.end();
++p)
{
Symbol* sym = *p;
if (!sym->has_dynsym_index())
{
++got_sym_count;
sym->set_dynsym_index(index);
++index;
syms->push_back(sym);
dynpool->add(sym->name(), false, NULL);
// If the symbol is defined in a dynamic object and is
// referenced in a regular object, then mark the dynamic
// object as needed. This is used to implement --as-needed.
if (sym->is_from_dynobj() && sym->in_reg())
sym->object()->set_is_needed();
}
}
// Set index of the first symbol that has .got entry.
this->got_->set_first_global_got_dynsym_index(
got_sym_count > 0 ? index - got_sym_count : -1U);
if (this->mips_stubs_ != NULL)
this->mips_stubs_->set_dynsym_count(index);
return index;
}
// Create a PLT entry for a global symbol referenced by r_type relocation.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
Layout* layout,
Mips_symbol<size>* gsym,
unsigned int r_type)
{
if (gsym->has_lazy_stub() || gsym->has_plt_offset())
return;
if (this->plt_ == NULL)
{
// Create the GOT section first.
this->got_section(symtab, layout);
this->got_plt_ = new Output_data_space(4, "** GOT PLT");
layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->got_plt_, ORDER_DATA, false);
// The first two entries are reserved.
this->got_plt_->set_current_data_size(2 * size/8);
this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
this->got_plt_,
this);
layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->plt_, ORDER_PLT, false);
// Make the sh_info field of .rel.plt point to .plt.
Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
rel_plt_os->set_info_section(this->plt_->output_section());
}
this->plt_->add_entry(gsym, r_type);
}
// Get the .MIPS.stubs section, creating it if necessary.
template<int size, bool big_endian>
Mips_output_data_mips_stubs<size, big_endian>*
Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
{
if (this->mips_stubs_ == NULL)
{
this->mips_stubs_ =
new Mips_output_data_mips_stubs<size, big_endian>(this);
layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->mips_stubs_, ORDER_PLT, false);
}
return this->mips_stubs_;
}
// Get the LA25 stub section, creating it if necessary.
template<int size, bool big_endian>
Mips_output_data_la25_stub<size, big_endian>*
Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
{
if (this->la25_stub_ == NULL)
{
this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC
| elfcpp::SHF_EXECINSTR),
this->la25_stub_, ORDER_TEXT, false);
}
return this->la25_stub_;
}
// Process the relocations to determine unreferenced sections for
// garbage collection.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::gc_process_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_mips<size, big_endian> Mips;
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
else
gold_unreachable();
}
// Scan relocations for a section.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::scan_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols)
{
typedef Target_mips<size, big_endian> Mips;
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
symtab,
layout,
this,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols);
}
}
template<int size, bool big_endian>
bool
Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
{
return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
|| (flags & elfcpp::EF_MIPS_ABI) == elfcpp::EF_MIPS_ABI_O32
|| (flags & elfcpp::EF_MIPS_ABI) == elfcpp::EF_MIPS_ABI_EABI32
|| (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_1
|| (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_2
|| (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32
|| (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32R2
|| (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::EF_MIPS_ARCH_32R6);
}
// Return the MACH for a MIPS e_flags value.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
{
switch (flags & elfcpp::EF_MIPS_MACH)
{
case elfcpp::EF_MIPS_MACH_3900:
return mach_mips3900;
case elfcpp::EF_MIPS_MACH_4010:
return mach_mips4010;
case elfcpp::EF_MIPS_MACH_4100:
return mach_mips4100;
case elfcpp::EF_MIPS_MACH_4111:
return mach_mips4111;
case elfcpp::EF_MIPS_MACH_4120:
return mach_mips4120;
case elfcpp::EF_MIPS_MACH_4650:
return mach_mips4650;
case elfcpp::EF_MIPS_MACH_5400:
return mach_mips5400;
case elfcpp::EF_MIPS_MACH_5500:
return mach_mips5500;
case elfcpp::EF_MIPS_MACH_5900:
return mach_mips5900;
case elfcpp::EF_MIPS_MACH_9000:
return mach_mips9000;
case elfcpp::EF_MIPS_MACH_SB1:
return mach_mips_sb1;
case elfcpp::EF_MIPS_MACH_LS2E:
return mach_mips_loongson_2e;
case elfcpp::EF_MIPS_MACH_LS2F:
return mach_mips_loongson_2f;
case elfcpp::EF_MIPS_MACH_GS464:
return mach_mips_gs464;
case elfcpp::EF_MIPS_MACH_GS464E:
return mach_mips_gs464e;
case elfcpp::EF_MIPS_MACH_GS264E:
return mach_mips_gs264e;
case elfcpp::EF_MIPS_MACH_OCTEON3:
return mach_mips_octeon3;
case elfcpp::EF_MIPS_MACH_OCTEON2:
return mach_mips_octeon2;
case elfcpp::EF_MIPS_MACH_OCTEON:
return mach_mips_octeon;
case elfcpp::EF_MIPS_MACH_XLR:
return mach_mips_xlr;
default:
switch (flags & elfcpp::EF_MIPS_ARCH)
{
default:
case elfcpp::EF_MIPS_ARCH_1:
return mach_mips3000;
case elfcpp::EF_MIPS_ARCH_2:
return mach_mips6000;
case elfcpp::EF_MIPS_ARCH_3:
return mach_mips4000;
case elfcpp::EF_MIPS_ARCH_4:
return mach_mips8000;
case elfcpp::EF_MIPS_ARCH_5:
return mach_mips5;
case elfcpp::EF_MIPS_ARCH_32:
return mach_mipsisa32;
case elfcpp::EF_MIPS_ARCH_64:
return mach_mipsisa64;
case elfcpp::EF_MIPS_ARCH_32R2:
return mach_mipsisa32r2;
case elfcpp::EF_MIPS_ARCH_32R6:
return mach_mipsisa32r6;
case elfcpp::EF_MIPS_ARCH_64R2:
return mach_mipsisa64r2;
case elfcpp::EF_MIPS_ARCH_64R6:
return mach_mipsisa64r6;
}
}
return 0;
}
// Return the MACH for each .MIPS.abiflags ISA Extension.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
{
switch (isa_ext)
{
case elfcpp::AFL_EXT_3900:
return mach_mips3900;
case elfcpp::AFL_EXT_4010:
return mach_mips4010;
case elfcpp::AFL_EXT_4100:
return mach_mips4100;
case elfcpp::AFL_EXT_4111:
return mach_mips4111;
case elfcpp::AFL_EXT_4120:
return mach_mips4120;
case elfcpp::AFL_EXT_4650:
return mach_mips4650;
case elfcpp::AFL_EXT_5400:
return mach_mips5400;
case elfcpp::AFL_EXT_5500:
return mach_mips5500;
case elfcpp::AFL_EXT_5900:
return mach_mips5900;
case elfcpp::AFL_EXT_10000:
return mach_mips10000;
case elfcpp::AFL_EXT_LOONGSON_2E:
return mach_mips_loongson_2e;
case elfcpp::AFL_EXT_LOONGSON_2F:
return mach_mips_loongson_2f;
case elfcpp::AFL_EXT_SB1:
return mach_mips_sb1;
case elfcpp::AFL_EXT_OCTEON:
return mach_mips_octeon;
case elfcpp::AFL_EXT_OCTEONP:
return mach_mips_octeonp;
case elfcpp::AFL_EXT_OCTEON2:
return mach_mips_octeon2;
case elfcpp::AFL_EXT_XLR:
return mach_mips_xlr;
default:
return mach_mips3000;
}
}
// Return the .MIPS.abiflags value representing each ISA Extension.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
{
switch (mips_mach)
{
case mach_mips3900:
return elfcpp::AFL_EXT_3900;
case mach_mips4010:
return elfcpp::AFL_EXT_4010;
case mach_mips4100:
return elfcpp::AFL_EXT_4100;
case mach_mips4111:
return elfcpp::AFL_EXT_4111;
case mach_mips4120:
return elfcpp::AFL_EXT_4120;
case mach_mips4650:
return elfcpp::AFL_EXT_4650;
case mach_mips5400:
return elfcpp::AFL_EXT_5400;
case mach_mips5500:
return elfcpp::AFL_EXT_5500;
case mach_mips5900:
return elfcpp::AFL_EXT_5900;
case mach_mips10000:
return elfcpp::AFL_EXT_10000;
case mach_mips_loongson_2e:
return elfcpp::AFL_EXT_LOONGSON_2E;
case mach_mips_loongson_2f:
return elfcpp::AFL_EXT_LOONGSON_2F;
case mach_mips_sb1:
return elfcpp::AFL_EXT_SB1;
case mach_mips_octeon:
return elfcpp::AFL_EXT_OCTEON;
case mach_mips_octeonp:
return elfcpp::AFL_EXT_OCTEONP;
case mach_mips_octeon3:
return elfcpp::AFL_EXT_OCTEON3;
case mach_mips_octeon2:
return elfcpp::AFL_EXT_OCTEON2;
case mach_mips_xlr:
return elfcpp::AFL_EXT_XLR;
default:
return 0;
}
}
// Update the isa_level, isa_rev, isa_ext fields of abiflags.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
{
int new_isa = 0;
switch (e_flags & elfcpp::EF_MIPS_ARCH)
{
case elfcpp::EF_MIPS_ARCH_1:
new_isa = this->level_rev(1, 0);
break;
case elfcpp::EF_MIPS_ARCH_2:
new_isa = this->level_rev(2, 0);
break;
case elfcpp::EF_MIPS_ARCH_3:
new_isa = this->level_rev(3, 0);
break;
case elfcpp::EF_MIPS_ARCH_4:
new_isa = this->level_rev(4, 0);
break;
case elfcpp::EF_MIPS_ARCH_5:
new_isa = this->level_rev(5, 0);
break;
case elfcpp::EF_MIPS_ARCH_32:
new_isa = this->level_rev(32, 1);
break;
case elfcpp::EF_MIPS_ARCH_32R2:
new_isa = this->level_rev(32, 2);
break;
case elfcpp::EF_MIPS_ARCH_32R6:
new_isa = this->level_rev(32, 6);
break;
case elfcpp::EF_MIPS_ARCH_64:
new_isa = this->level_rev(64, 1);
break;
case elfcpp::EF_MIPS_ARCH_64R2:
new_isa = this->level_rev(64, 2);
break;
case elfcpp::EF_MIPS_ARCH_64R6:
new_isa = this->level_rev(64, 6);
break;
default:
gold_error(_("%s: Unknown architecture %s"), name.c_str(),
this->elf_mips_mach_name(e_flags));
}
if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
{
// Decode a single value into level and revision.
abiflags->isa_level = new_isa >> 3;
abiflags->isa_rev = new_isa & 0x7;
}
// Update the isa_ext if needed.
if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
this->elf_mips_mach(e_flags)))
abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
}
// Infer the content of the ABI flags based on the elf header.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::infer_abiflags(
Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
{
const Attributes_section_data* pasd = relobj->attributes_section_data();
int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
if (pasd != NULL)
{
// Read fp_abi from the .gnu.attribute section.
const Object_attribute* attr =
pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
}
abiflags->fp_abi = attr_fp_abi;
abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
: elfcpp::AFL_REG_64;
if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
|| abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
|| (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
&& abiflags->gpr_size == elfcpp::AFL_REG_32))
abiflags->cpr1_size = elfcpp::AFL_REG_32;
else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
|| abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
|| abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
abiflags->cpr1_size = elfcpp::AFL_REG_64;
if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
abiflags->ases |= elfcpp::AFL_ASE_MDMX;
if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
&& abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
&& abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
&& abiflags->isa_level >= 32
&& abiflags->ases != elfcpp::AFL_ASE_LOONGSON_EXT)
abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
}
// Create abiflags from elf header or from .MIPS.abiflags section.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::create_abiflags(
Mips_relobj<size, big_endian>* relobj,
Mips_abiflags<big_endian>* abiflags)
{
Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
Mips_abiflags<big_endian> header_abiflags;
this->infer_abiflags(relobj, &header_abiflags);
if (sec_abiflags == NULL)
{
// If there is no input .MIPS.abiflags section, use abiflags created
// from elf header.
*abiflags = header_abiflags;
return;
}
this->has_abiflags_section_ = true;
// It is not possible to infer the correct ISA revision for R3 or R5
// so drop down to R2 for the checks.
unsigned char isa_rev = sec_abiflags->isa_rev;
if (isa_rev == 3 || isa_rev == 5)
isa_rev = 2;
// Check compatibility between abiflags created from elf header
// and abiflags from .MIPS.abiflags section in this object file.
if (this->level_rev(sec_abiflags->isa_level, isa_rev)
< this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
relobj->name().c_str());
if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
&& sec_abiflags->fp_abi != header_abiflags.fp_abi)
gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
".MIPS.abiflags"), relobj->name().c_str());
if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
relobj->name().c_str());
// The isa_ext is allowed to be an extension of what can be inferred
// from e_flags.
if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
".MIPS.abiflags"), relobj->name().c_str());
if (sec_abiflags->flags2 != 0)
gold_warning(_("%s: Unexpected flag in the flags2 field of "
".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
sec_abiflags->flags2);
// Use abiflags from .MIPS.abiflags section.
*abiflags = *sec_abiflags;
}
// Return the meaning of fp_abi, or "unknown" if not known.
template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::fp_abi_string(int fp)
{
switch (fp)
{
case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
return "-mdouble-float";
case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
return "-msingle-float";
case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
return "-msoft-float";
case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
return _("-mips32r2 -mfp64 (12 callee-saved)");
case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
return "-mfpxx";
case elfcpp::Val_GNU_MIPS_ABI_FP_64:
return "-mgp32 -mfp64";
case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
return "-mgp32 -mfp64 -mno-odd-spreg";
default:
return "unknown";
}
}
// Select fp_abi.
template<int size, bool big_endian>
int
Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
int out_fp)
{
if (in_fp == out_fp)
return out_fp;
if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
return in_fp;
else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
&& (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
|| in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
|| in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
return in_fp;
else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
&& (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
|| out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
|| out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
return out_fp; // Keep the current setting.
else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
&& in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
return in_fp;
else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
&& out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
return out_fp; // Keep the current setting.
else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
fp_abi_string(in_fp), fp_abi_string(out_fp));
return out_fp;
}
// Merge attributes from input object.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
const Attributes_section_data* pasd)
{
// Return if there is no attributes section data.
if (pasd == NULL)
return;
// If output has no object attributes, just copy.
if (this->attributes_section_data_ == NULL)
{
this->attributes_section_data_ = new Attributes_section_data(*pasd);
return;
}
Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
Object_attribute::OBJ_ATTR_GNU);
out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
// Merge Tag_compatibility attributes and any common GNU ones.
this->attributes_section_data_->merge(name.c_str(), pasd);
}
// Merge abiflags from input object.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
Mips_abiflags<big_endian>* in_abiflags)
{
// If output has no abiflags, just copy.
if (this->abiflags_ == NULL)
{
this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
return;
}
this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
this->abiflags_->fp_abi);
// Merge abiflags.
this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
in_abiflags->isa_level);
this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
in_abiflags->isa_rev);
this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
in_abiflags->gpr_size);
this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
in_abiflags->cpr1_size);
this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
in_abiflags->cpr2_size);
this->abiflags_->ases |= in_abiflags->ases;
this->abiflags_->flags1 |= in_abiflags->flags1;
}
// Check whether machine EXTENSION is an extension of machine BASE.
template<int size, bool big_endian>
bool
Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
unsigned int extension)
{
if (extension == base)
return true;
if ((base == mach_mipsisa32)
&& this->mips_mach_extends(mach_mipsisa64, extension))
return true;
if ((base == mach_mipsisa32r2)
&& this->mips_mach_extends(mach_mipsisa64r2, extension))
return true;
for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
if (extension == this->mips_mach_extensions_[i].first)
{
extension = this->mips_mach_extensions_[i].second;
if (extension == base)
return true;
}
return false;
}
// Merge file header flags from input object.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
elfcpp::Elf_Word in_flags)
{
// If flags are not set yet, just copy them.
if (!this->are_processor_specific_flags_set())
{
this->set_processor_specific_flags(in_flags);
this->mach_ = this->elf_mips_mach(in_flags);
return;
}
elfcpp::Elf_Word new_flags = in_flags;
elfcpp::Elf_Word old_flags = this->processor_specific_flags();
elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
// Check flag compatibility.
new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
// Some IRIX 6 BSD-compatibility objects have this bit set. It
// doesn't seem to matter.
new_flags &= ~elfcpp::EF_MIPS_XGOT;
old_flags &= ~elfcpp::EF_MIPS_XGOT;
// MIPSpro generates ucode info in n64 objects. Again, we should
// just be able to ignore this.
new_flags &= ~elfcpp::EF_MIPS_UCODE;
old_flags &= ~elfcpp::EF_MIPS_UCODE;
if (new_flags == old_flags)
{
this->set_processor_specific_flags(merged_flags);
return;
}
if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
!= ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
gold_warning(_("%s: linking abicalls files with non-abicalls files"),
name.c_str());
if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
merged_flags |= elfcpp::EF_MIPS_CPIC;
if (!(new_flags & elfcpp::EF_MIPS_PIC))
merged_flags &= ~elfcpp::EF_MIPS_PIC;
new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
// Compare the ISAs.
if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
{
// Output ISA isn't the same as, or an extension of, input ISA.
if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
{
// Copy the architecture info from input object to output. Also copy
// the 32-bit flag (if set) so that we continue to recognise
// output as a 32-bit binary.
this->mach_ = this->elf_mips_mach(in_flags);
merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
| elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
// Update the ABI flags isa_level, isa_rev, isa_ext fields.
this->update_abiflags_isa(name, merged_flags, this->abiflags_);
// Copy across the ABI flags if output doesn't use them
// and if that was what caused us to treat input object as 32-bit.
if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
&& this->mips_32bit_flags(new_flags)
&& !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
}
else
// The ISAs aren't compatible.
gold_error(_("%s: linking %s module with previous %s modules"),
name.c_str(), this->elf_mips_mach_name(in_flags),
this->elf_mips_mach_name(merged_flags));
}
new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
| elfcpp::EF_MIPS_32BITMODE));
old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
| elfcpp::EF_MIPS_32BITMODE));
// Compare ABIs.
if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
{
// Only error if both are set (to different values).
if ((new_flags & elfcpp::EF_MIPS_ABI)
&& (old_flags & elfcpp::EF_MIPS_ABI))
gold_error(_("%s: ABI mismatch: linking %s module with "
"previous %s modules"), name.c_str(),
this->elf_mips_abi_name(in_flags),
this->elf_mips_abi_name(merged_flags));
new_flags &= ~elfcpp::EF_MIPS_ABI;
old_flags &= ~elfcpp::EF_MIPS_ABI;
}
// Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
// and allow arbitrary mixing of the remaining ASEs (retain the union).
if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
!= (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
{
int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
int micro_mis = old_m16 && new_micro;
int m16_mis = old_micro && new_m16;
if (m16_mis || micro_mis)
gold_error(_("%s: ASE mismatch: linking %s module with "
"previous %s modules"), name.c_str(),
m16_mis ? "MIPS16" : "microMIPS",
m16_mis ? "microMIPS" : "MIPS16");
merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
}
// Compare NaN encodings.
if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
{
gold_error(_("%s: linking %s module with previous %s modules"),
name.c_str(),
(new_flags & elfcpp::EF_MIPS_NAN2008
? "-mnan=2008" : "-mnan=legacy"),
(old_flags & elfcpp::EF_MIPS_NAN2008
? "-mnan=2008" : "-mnan=legacy"));
new_flags &= ~elfcpp::EF_MIPS_NAN2008;
old_flags &= ~elfcpp::EF_MIPS_NAN2008;
}
// Compare FP64 state.
if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
{
gold_error(_("%s: linking %s module with previous %s modules"),
name.c_str(),
(new_flags & elfcpp::EF_MIPS_FP64
? "-mfp64" : "-mfp32"),
(old_flags & elfcpp::EF_MIPS_FP64
? "-mfp64" : "-mfp32"));
new_flags &= ~elfcpp::EF_MIPS_FP64;
old_flags &= ~elfcpp::EF_MIPS_FP64;
}
// Warn about any other mismatches.
if (new_flags != old_flags)
gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
"modules (0x%x)"), name.c_str(), new_flags, old_flags);
this->set_processor_specific_flags(merged_flags);
}
// Adjust ELF file header.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::do_adjust_elf_header(
unsigned char* view,
int len)
{
gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
elfcpp::Ehdr<size, big_endian> ehdr(view);
unsigned char e_ident[elfcpp::EI_NIDENT];
elfcpp::Elf_Word flags = this->processor_specific_flags();
memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
unsigned char ei_abiversion = 0;
elfcpp::Elf_Half type = ehdr.get_e_type();
if (type == elfcpp::ET_EXEC
&& parameters->options().copyreloc()
&& (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
== elfcpp::EF_MIPS_CPIC)
ei_abiversion = 1;
if (this->abiflags_ != NULL
&& (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
|| this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
ei_abiversion = 3;
e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
elfcpp::Ehdr_write<size, big_endian> oehdr(view);
oehdr.put_e_ident(e_ident);
if (this->entry_symbol_is_compressed_)
oehdr.put_e_entry(ehdr.get_e_entry() + 1);
}
// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<size, big_endian> to store Mips specific information.
// Hence we need to have our own ELF object creation.
template<int size, bool big_endian>
Object*
Target_mips<size, big_endian>::do_make_elf_object(
const std::string& name,
Input_file* input_file,
off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
int et = ehdr.get_e_type();
// ET_EXEC files are valid input for --just-symbols/-R,
// and we treat them as relocatable objects.
if (et == elfcpp::ET_REL
|| (et == elfcpp::ET_EXEC && input_file->just_symbols()))
{
Mips_relobj<size, big_endian>* obj =
new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
obj->setup();
return obj;
}
else if (et == elfcpp::ET_DYN)
{
// TODO(sasa): Should we create Mips_dynobj?
return Target::do_make_elf_object(name, input_file, offset, ehdr);
}
else
{
gold_error(_("%s: unsupported ELF file type %d"),
name.c_str(), et);
return NULL;
}
}
// Finalize the sections.
template <int size, bool big_endian>
void
Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
const Input_objects* input_objects,
Symbol_table* symtab)
{
const bool relocatable = parameters->options().relocatable();
// Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
// DT_FINI have correct values.
Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
symtab->lookup(parameters->options().init()));
if (init != NULL && (init->is_mips16() || init->is_micromips()))
init->set_value(init->value() | 1);
Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
symtab->lookup(parameters->options().fini()));
if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
fini->set_value(fini->value() | 1);
// Check whether the entry symbol is mips16 or micromips. This is needed to
// adjust entry address in ELF header.
Mips_symbol<size>* entry =
static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
|| entry->is_micromips()));
if (!parameters->doing_static_link()
&& (strcmp(parameters->options().hash_style(), "gnu") == 0
|| strcmp(parameters->options().hash_style(), "both") == 0))
{
// .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
// ways. .gnu.hash needs symbols to be grouped by hash code whereas the
// MIPS ABI requires a mapping between the GOT and the symbol table.
gold_error(".gnu.hash is incompatible with the MIPS ABI");
}
// Check whether the final section that was scanned has HI16 or GOT16
// relocations without the corresponding LO16 part.
if (this->got16_addends_.size() > 0)
gold_error("Can't find matching LO16 reloc");
Valtype gprmask = 0;
Valtype cprmask1 = 0;
Valtype cprmask2 = 0;
Valtype cprmask3 = 0;
Valtype cprmask4 = 0;
bool has_reginfo_section = false;
for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
p != input_objects->relobj_end();
++p)
{
Mips_relobj<size, big_endian>* relobj =
Mips_relobj<size, big_endian>::as_mips_relobj(*p);
// Check for any mips16 stub sections that we can discard.
if (!relocatable)
relobj->discard_mips16_stub_sections(symtab);
if (!relobj->merge_processor_specific_data())
continue;
// Merge .reginfo contents of input objects.
if (relobj->has_reginfo_section())
{
has_reginfo_section = true;
gprmask |= relobj->gprmask();
cprmask1 |= relobj->cprmask1();
cprmask2 |= relobj->cprmask2();
cprmask3 |= relobj->cprmask3();
cprmask4 |= relobj->cprmask4();
}
// Merge processor specific flags.
Mips_abiflags<big_endian> in_abiflags;
this->create_abiflags(relobj, &in_abiflags);
this->merge_obj_e_flags(relobj->name(),
relobj->processor_specific_flags());
this->merge_obj_abiflags(relobj->name(), &in_abiflags);
this->merge_obj_attributes(relobj->name(),
relobj->attributes_section_data());
}
// Create a .gnu.attributes section if we have merged any attributes
// from inputs.
if (this->attributes_section_data_ != NULL)
{
Output_attributes_section_data* attributes_section =
new Output_attributes_section_data(*this->attributes_section_data_);
layout->add_output_section_data(".gnu.attributes",
elfcpp::SHT_GNU_ATTRIBUTES, 0,
attributes_section, ORDER_INVALID, false);
}
// Create .MIPS.abiflags output section if there is an input section.
if (this->has_abiflags_section_)
{
Mips_output_section_abiflags<size, big_endian>* abiflags_section =
new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
Output_section* os =
layout->add_output_section_data(".MIPS.abiflags",
elfcpp::SHT_MIPS_ABIFLAGS,
elfcpp::SHF_ALLOC,
abiflags_section, ORDER_INVALID, false);
if (!relocatable && os != NULL)
{
Output_segment* abiflags_segment =
layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
}
}
if (has_reginfo_section && !parameters->options().gc_sections())
{
// Create .reginfo output section.
Mips_output_section_reginfo<size, big_endian>* reginfo_section =
new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
cprmask1, cprmask2,
cprmask3, cprmask4);
Output_section* os =
layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
elfcpp::SHF_ALLOC, reginfo_section,
ORDER_INVALID, false);
if (!relocatable && os != NULL)
{
Output_segment* reginfo_segment =
layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
elfcpp::PF_R);
reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
}
}
if (this->plt_ != NULL)
{
// Set final PLT offsets for symbols.
this->plt_section()->set_plt_offsets();
// Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
// Set STO_MICROMIPS flag if the output has microMIPS code, but only if
// there are no standard PLT entries present.
unsigned char nonvis = 0;
if (this->is_output_micromips()
&& !this->plt_section()->has_standard_entries())
nonvis = elfcpp::STO_MICROMIPS >> 2;
symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
Symbol_table::PREDEFINED,
this->plt_,
0, 0, elfcpp::STT_FUNC,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT, nonvis,
false, false);
}
if (this->mips_stubs_ != NULL)
{
// Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
unsigned char nonvis = 0;
if (this->is_output_micromips())
nonvis = elfcpp::STO_MICROMIPS >> 2;
symtab->define_in_output_data("_MIPS_STUBS_", NULL,
Symbol_table::PREDEFINED,
this->mips_stubs_,
0, 0, elfcpp::STT_FUNC,
elfcpp::STB_LOCAL,
elfcpp::STV_DEFAULT, nonvis,
false, false);
}
if (!relocatable && !parameters->doing_static_link())
// In case there is no .got section, create one.
this->got_section(symtab, layout);
// Emit any relocs we saved in an attempt to avoid generating COPY
// relocs.
if (this->copy_relocs_.any_saved_relocs())
this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
this);
// Set _gp value.
this->set_gp(layout, symtab);
// Emit dynamic relocs.
for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
p != this->dyn_relocs_.end();
++p)
p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
if (this->has_got_section())
this->got_section()->lay_out_got(layout, symtab, input_objects);
if (this->mips_stubs_ != NULL)
this->mips_stubs_->set_needs_dynsym_value();
// Check for functions that might need $25 to be valid on entry.
// TODO(sasa): Can we do this without iterating over all symbols?
typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
symtab));
// Add NULL segment.
if (!relocatable)
layout->make_output_segment(elfcpp::PT_NULL, 0);
// Fill in some more dynamic tags.
// TODO(sasa): Add more dynamic tags.
const Reloc_section* rel_plt = (this->plt_ == NULL
? NULL : this->plt_->rel_plt());
layout->add_target_dynamic_tags(true, this->got_, rel_plt,
this->rel_dyn_, true, false, false);
Output_data_dynamic* const odyn = layout->dynamic_data();
if (odyn != NULL
&& !relocatable
&& !parameters->doing_static_link())
{
unsigned int d_val;
// This element holds a 32-bit version id for the Runtime
// Linker Interface. This will start at integer value 1.
d_val = 0x01;
odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
// Dynamic flags
d_val = elfcpp::RHF_NOTPOT;
odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
// Save layout for using when emitting custom dynamic tags.
this->layout_ = layout;
// This member holds the base address of the segment.
odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
// This member holds the number of entries in the .dynsym section.
odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
// This member holds the index of the first dynamic symbol
// table entry that corresponds to an entry in the global offset table.
odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
// This member holds the number of local GOT entries.
odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
this->got_->get_local_gotno());
if (this->plt_ != NULL)
// DT_MIPS_PLTGOT dynamic tag
odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
if (!parameters->options().shared())
{
this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
(elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
this->rld_map_, ORDER_INVALID, false);
// __RLD_MAP will be filled in by the runtime loader to contain
// a pointer to the _r_debug structure.
Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
Symbol_table::PREDEFINED,
this->rld_map_,
0, 0, elfcpp::STT_OBJECT,
elfcpp::STB_GLOBAL,
elfcpp::STV_DEFAULT, 0,
false, false);
if (!rld_map->is_forced_local())
rld_map->set_needs_dynsym_entry();
if (!parameters->options().pie())
// This member holds the absolute address of the debug pointer.
odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
else
// This member holds the offset to the debug pointer,
// relative to the address of the tag.
odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
}
}
}
// Get the custom dynamic tag value.
template<int size, bool big_endian>
unsigned int
Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
{
switch (tag)
{
case elfcpp::DT_MIPS_BASE_ADDRESS:
{
// The base address of the segment.
// At this point, the segment list has been sorted into final order,
// so just return vaddr of the first readable PT_LOAD segment.
Output_segment* seg =
this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
gold_assert(seg != NULL);
return seg->vaddr();
}
case elfcpp::DT_MIPS_SYMTABNO:
// The number of entries in the .dynsym section.
return this->get_dt_mips_symtabno();
case elfcpp::DT_MIPS_GOTSYM:
{
// The index of the first dynamic symbol table entry that corresponds
// to an entry in the GOT.
if (this->got_->first_global_got_dynsym_index() != -1U)
return this->got_->first_global_got_dynsym_index();
else
// In case if we don't have global GOT symbols we default to setting
// DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
return this->get_dt_mips_symtabno();
}
case elfcpp::DT_MIPS_RLD_MAP_REL:
{
// The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
// relative to the address of the tag.
Output_data_dynamic* const odyn = this->layout_->dynamic_data();
unsigned int entry_offset =
odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
gold_assert(entry_offset != -1U);
return this->rld_map_->address() - (odyn->address() + entry_offset);
}
default:
gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
}
return (unsigned int)-1;
}
// Relocate section data.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_section(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
unsigned char* view,
Mips_address address,
section_size_type view_size,
const Reloc_symbol_changes* reloc_symbol_changes)
{
typedef Target_mips<size, big_endian> Mips;
typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
gold::relocate_section<size, big_endian, Mips, Mips_relocate,
gold::Default_comdat_behavior, Classify_reloc>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold::relocate_section<size, big_endian, Mips, Mips_relocate,
gold::Default_comdat_behavior, Classify_reloc>(
relinfo,
this,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
view,
address,
view_size,
reloc_symbol_changes);
}
}
// Return the size of a relocation while scanning during a relocatable
// link.
unsigned int
mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
{
switch (r_type)
{
case elfcpp::R_MIPS_NONE:
case elfcpp::R_MIPS_TLS_DTPMOD64:
case elfcpp::R_MIPS_TLS_DTPREL64:
case elfcpp::R_MIPS_TLS_TPREL64:
return 0;
case elfcpp::R_MIPS_32:
case elfcpp::R_MIPS_TLS_DTPMOD32:
case elfcpp::R_MIPS_TLS_DTPREL32:
case elfcpp::R_MIPS_TLS_TPREL32:
case elfcpp::R_MIPS_REL32:
case elfcpp::R_MIPS_PC32:
case elfcpp::R_MIPS_GPREL32:
case elfcpp::R_MIPS_JALR:
case elfcpp::R_MIPS_EH:
return 4;
case elfcpp::R_MIPS_16:
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_LO16:
case elfcpp::R_MIPS_HIGHER:
case elfcpp::R_MIPS_HIGHEST:
case elfcpp::R_MIPS_GPREL16:
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS16_LO16:
case elfcpp::R_MIPS_PC16:
case elfcpp::R_MIPS_PCHI16:
case elfcpp::R_MIPS_PCLO16:
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MIPS_TLS_DTPREL_HI16:
case elfcpp::R_MIPS_TLS_DTPREL_LO16:
case elfcpp::R_MIPS_TLS_TPREL_HI16:
case elfcpp::R_MIPS_TLS_TPREL_LO16:
case elfcpp::R_MIPS16_GPREL:
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MIPS_LITERAL:
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MIPS_GOT_OFST:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS_TLS_GOTTPREL:
return 2;
// These relocations are not byte sized
case elfcpp::R_MIPS_26:
case elfcpp::R_MIPS16_26:
case elfcpp::R_MIPS_PC21_S2:
case elfcpp::R_MIPS_PC26_S2:
case elfcpp::R_MIPS_PC18_S3:
case elfcpp::R_MIPS_PC19_S2:
return 4;
case elfcpp::R_MIPS_COPY:
case elfcpp::R_MIPS_JUMP_SLOT:
object->error(_("unexpected reloc %u in object file"), r_type);
return 0;
default:
object->error(_("unsupported reloc %u in object file"), r_type);
return 0;
}
}
// Scan the relocs during a relocatable link.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::scan_relocatable_relocs(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_symbols,
Relocatable_relocs* rr)
{
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
Scan_relocatable_relocs;
gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
Scan_relocatable_relocs;
gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_symbols,
rr);
}
else
gold_unreachable();
}
// Scan the relocs for --emit-relocs.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::emit_relocs_scan(
Symbol_table* symtab,
Layout* layout,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
bool needs_special_offset_handling,
size_t local_symbol_count,
const unsigned char* plocal_syms,
Relocatable_relocs* rr)
{
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
typedef gold::Default_emit_relocs_strategy<Classify_reloc>
Emit_relocs_strategy;
gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_syms,
rr);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
typedef gold::Default_emit_relocs_strategy<Classify_reloc>
Emit_relocs_strategy;
gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
symtab,
layout,
object,
data_shndx,
prelocs,
reloc_count,
output_section,
needs_special_offset_handling,
local_symbol_count,
plocal_syms,
rr);
}
else
gold_unreachable();
}
// Emit relocations for a section.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_relocs(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* prelocs,
size_t reloc_count,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off
offset_in_output_section,
unsigned char* view,
Mips_address view_address,
section_size_type view_size,
unsigned char* reloc_view,
section_size_type reloc_view_size)
{
if (sh_type == elfcpp::SHT_REL)
{
typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
Classify_reloc;
gold::relocate_relocs<size, big_endian, Classify_reloc>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
else if (sh_type == elfcpp::SHT_RELA)
{
typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
Classify_reloc;
gold::relocate_relocs<size, big_endian, Classify_reloc>(
relinfo,
prelocs,
reloc_count,
output_section,
offset_in_output_section,
view,
view_address,
view_size,
reloc_view,
reloc_view_size);
}
else
gold_unreachable();
}
// Perform target-specific processing in a relocatable link. This is
// only used if we use the relocation strategy RELOC_SPECIAL.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::relocate_special_relocatable(
const Relocate_info<size, big_endian>* relinfo,
unsigned int sh_type,
const unsigned char* preloc_in,
size_t relnum,
Output_section* output_section,
typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
unsigned char* view,
Mips_address view_address,
section_size_type,
unsigned char* preloc_out)
{
// We can only handle REL type relocation sections.
gold_assert(sh_type == elfcpp::SHT_REL);
typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
Reltype;
typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
Reltype_write;
typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
Mips_relobj<size, big_endian>* object =
Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
const unsigned int local_count = object->local_symbol_count();
Reltype reloc(preloc_in);
Reltype_write reloc_write(preloc_out);
elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
// Get the new symbol index.
// We only use RELOC_SPECIAL strategy in local relocations.
gold_assert(r_sym < local_count);
// We are adjusting a section symbol. We need to find
// the symbol table index of the section symbol for
// the output section corresponding to input section
// in which this symbol is defined.
bool is_ordinary;
unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
gold_assert(is_ordinary);
Output_section* os = object->output_section(shndx);
gold_assert(os != NULL);
gold_assert(os->needs_symtab_index());
unsigned int new_symndx = os->symtab_index();
// Get the new offset--the location in the output section where
// this relocation should be applied.
Mips_address offset = reloc.get_r_offset();
Mips_address new_offset;
if (offset_in_output_section != invalid_address)
new_offset = offset + offset_in_output_section;
else
{
section_offset_type sot_offset =
convert_types<section_offset_type, Mips_address>(offset);
section_offset_type new_sot_offset =
output_section->output_offset(object, relinfo->data_shndx,
sot_offset);
gold_assert(new_sot_offset != -1);
new_offset = new_sot_offset;
}
// In an object file, r_offset is an offset within the section.
// In an executable or dynamic object, generated by
// --emit-relocs, r_offset is an absolute address.
if (!parameters->options().relocatable())
{
new_offset += view_address;
if (offset_in_output_section != invalid_address)
new_offset -= offset_in_output_section;
}
reloc_write.put_r_offset(new_offset);
reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
// Handle the reloc addend.
// The relocation uses a section symbol in the input file.
// We are adjusting it to use a section symbol in the output
// file. The input section symbol refers to some address in
// the input section. We need the relocation in the output
// file to refer to that same address. This adjustment to
// the addend is the same calculation we use for a simple
// absolute relocation for the input section symbol.
Valtype calculated_value = 0;
const Symbol_value<size>* psymval = object->local_symbol(r_sym);
unsigned char* paddend = view + offset;
typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
switch (r_type)
{
case elfcpp::R_MIPS_26:
reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
false, &calculated_value);
break;
default:
gold_unreachable();
}
// Report any errors.
switch (reloc_status)
{
case Reloc_funcs::STATUS_OKAY:
break;
case Reloc_funcs::STATUS_OVERFLOW:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("relocation overflow: "
"%u against local symbol %u in %s"),
r_type, r_sym, object->name().c_str());
break;
case Reloc_funcs::STATUS_BAD_RELOC:
gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
_("unexpected opcode while processing relocation"));
break;
default:
gold_unreachable();
}
}
// Optimize the TLS relocation type based on what we know about the
// symbol. IS_FINAL is true if the final address of this symbol is
// known at link time.
template<int size, bool big_endian>
tls::Tls_optimization
Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
{
// FIXME: Currently we do not do any TLS optimization.
return tls::TLSOPT_NONE;
}
// Scan a relocation for a local symbol.
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype* rela,
const Reltype* rel,
unsigned int rel_type,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
Mips_address r_offset;
unsigned int r_sym;
typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
if (rel_type == elfcpp::SHT_RELA)
{
r_offset = rela->get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_sym(rela);
r_addend = rela->get_r_addend();
}
else
{
r_offset = rel->get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_sym(rel);
r_addend = 0;
}
Mips_relobj<size, big_endian>* mips_obj =
Mips_relobj<size, big_endian>::as_mips_relobj(object);
if (mips_obj->is_mips16_stub_section(data_shndx))
{
mips_obj->get_mips16_stub_section(data_shndx)
->new_local_reloc_found(r_type, r_sym);
}
if (r_type == elfcpp::R_MIPS_NONE)
// R_MIPS_NONE is used in mips16 stub sections, to define the target of the
// mips16 stub.
return;
if (!mips16_call_reloc(r_type)
&& !mips_obj->section_allows_mips16_refs(data_shndx))
// This reloc would need to refer to a MIPS16 hard-float stub, if
// there is one. We ignore MIPS16 stub sections and .pdr section when
// looking for relocs that would need to refer to MIPS16 stubs.
mips_obj->add_local_non_16bit_call(r_sym);
if (r_type == elfcpp::R_MIPS16_26
&& !mips_obj->section_allows_mips16_refs(data_shndx))
mips_obj->add_local_16bit_call(r_sym);
switch (r_type)
{
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MIPS_GOT_OFST:
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_OFST:
case elfcpp::R_MICROMIPS_GOT_DISP:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_LDM:
case elfcpp::R_MIPS_EH:
// We need a GOT section.
target->got_section(symtab, layout);
break;
default:
break;
}
if (call_lo16_reloc(r_type)
|| got_lo16_reloc(r_type)
|| got_disp_reloc(r_type)
|| eh_reloc(r_type))
{
// We may need a local GOT entry for this relocation. We
// don't count R_MIPS_GOT_PAGE because we can estimate the
// maximum number of pages needed by looking at the size of
// the segment. Similar comments apply to R_MIPS*_GOT16 and
// R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
// R_MIPS_CALL_HI16 because these are always followed by an
// R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
is_section_symbol);
}
switch (r_type)
{
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MICROMIPS_CALL16:
gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
(unsigned long)r_offset);
return;
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_PAGE:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
{
// This relocation needs a page entry in the GOT.
// Get the section contents.
section_size_type view_size = 0;
const unsigned char* view = object->section_contents(data_shndx,
&view_size, false);
view += r_offset;
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
: r_addend);
if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
target->got16_addends_.push_back(got16_addend<size, big_endian>(
object, data_shndx, r_type, r_sym, addend));
else
target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
break;
}
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_PCHI16:
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MICROMIPS_HI16:
// Record the reloc so that we can check whether the corresponding LO16
// part exists.
if (rel_type == elfcpp::SHT_REL)
target->got16_addends_.push_back(got16_addend<size, big_endian>(
object, data_shndx, r_type, r_sym, 0));
break;
case elfcpp::R_MIPS_LO16:
case elfcpp::R_MIPS_PCLO16:
case elfcpp::R_MIPS16_LO16:
case elfcpp::R_MICROMIPS_LO16:
{
if (rel_type != elfcpp::SHT_REL)
break;
// Find corresponding GOT16/HI16 relocation.
// According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
// be immediately following. However, for the IRIX6 ABI, the next
// relocation may be a composed relocation consisting of several
// relocations for the same address. In that case, the R_MIPS_LO16
// relocation may occur as one of these. We permit a similar
// extension in general, as that is useful for GCC.
// In some cases GCC dead code elimination removes the LO16 but
// keeps the corresponding HI16. This is strictly speaking a
// violation of the ABI but not immediately harmful.
typename std::list<got16_addend<size, big_endian> >::iterator it =
target->got16_addends_.begin();
while (it != target->got16_addends_.end())
{
got16_addend<size, big_endian> _got16_addend = *it;
// TODO(sasa): Split got16_addends_ list into two lists - one for
// GOT16 relocs and the other for HI16 relocs.
// Report an error if we find HI16 or GOT16 reloc from the
// previous section without the matching LO16 part.
if (_got16_addend.object != object
|| _got16_addend.shndx != data_shndx)
{
gold_error("Can't find matching LO16 reloc");
break;
}
if (_got16_addend.r_sym != r_sym
|| !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
{
++it;
continue;
}
// We found a matching HI16 or GOT16 reloc for this LO16 reloc.
// For GOT16, we need to calculate combined addend and record GOT page
// entry.
if (got16_reloc(_got16_addend.r_type))
{
section_size_type view_size = 0;
const unsigned char* view = object->section_contents(data_shndx,
&view_size,
false);
view += r_offset;
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
addend = (_got16_addend.addend << 16) + addend;
target->got_section()->record_got_page_entry(mips_obj, r_sym,
addend);
}
it = target->got16_addends_.erase(it);
}
break;
}
}
switch (r_type)
{
case elfcpp::R_MIPS_32:
case elfcpp::R_MIPS_REL32:
case elfcpp::R_MIPS_64:
{
if (parameters->options().output_is_position_independent())
{
// If building a shared library (or a position-independent
// executable), we need to create a dynamic relocation for
// this location.
if (is_readonly_section(output_section))
break;
Reloc_section* rel_dyn = target->rel_dyn_section(layout);
rel_dyn->add_symbolless_local_addend(object, r_sym,
elfcpp::R_MIPS_REL32,
output_section, data_shndx,
r_offset);
}
break;
}
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_LDM:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GD:
{
bool output_is_shared = parameters->options().shared();
const tls::Tls_optimization optimized_type
= Target_mips<size, big_endian>::optimize_tls_reloc(
!output_is_shared, r_type);
switch (r_type)
{
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GD:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
unsigned int shndx = lsym.get_st_shndx();
bool is_ordinary;
shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
if (!is_ordinary)
{
object->error(_("local symbol %u has bad shndx %u"),
r_sym, shndx);
break;
}
got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
shndx, false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_LDM:
if (optimized_type == tls::TLSOPT_NONE)
{
// We always record LDM symbols as local with index 0.
target->got_section()->record_local_got_symbol(mips_obj, 0,
r_addend, r_type,
-1U, false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
-1U, false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
default:
gold_unreachable();
}
}
break;
default:
break;
}
// Refuse some position-dependent relocations when creating a
// shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
// not PIC, but we can create dynamic relocations and the result
// will be fine. Also do not refuse R_MIPS_LO16, which can be
// combined with R_MIPS_GOT16.
if (parameters->options().shared())
{
switch (r_type)
{
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_HIGHER:
case elfcpp::R_MIPS_HIGHEST:
case elfcpp::R_MICROMIPS_HI16:
case elfcpp::R_MICROMIPS_HIGHER:
case elfcpp::R_MICROMIPS_HIGHEST:
// Don't refuse a high part relocation if it's against
// no symbol (e.g. part of a compound relocation).
if (r_sym == 0)
break;
// Fall through.
case elfcpp::R_MIPS16_26:
case elfcpp::R_MIPS_26:
case elfcpp::R_MICROMIPS_26_S1:
gold_error(_("%s: relocation %u against `%s' can not be used when "
"making a shared object; recompile with -fPIC"),
object->name().c_str(), r_type, "a local symbol");
default:
break;
}
}
}
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Reltype& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
local(
symtab,
layout,
target,
object,
data_shndx,
output_section,
(const Relatype*) NULL,
&reloc,
elfcpp::SHT_REL,
r_type,
lsym, is_discarded);
}
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::local(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype& reloc,
unsigned int r_type,
const elfcpp::Sym<size, big_endian>& lsym,
bool is_discarded)
{
if (is_discarded)
return;
local(
symtab,
layout,
target,
object,
data_shndx,
output_section,
&reloc,
(const Reltype*) NULL,
elfcpp::SHT_RELA,
r_type,
lsym, is_discarded);
}
// Scan a relocation for a global symbol.
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype* rela,
const Reltype* rel,
unsigned int rel_type,
unsigned int r_type,
Symbol* gsym)
{
Mips_address r_offset;
unsigned int r_sym;
typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
if (rel_type == elfcpp::SHT_RELA)
{
r_offset = rela->get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_sym(rela);
r_addend = rela->get_r_addend();
}
else
{
r_offset = rel->get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_sym(rel);
r_addend = 0;
}
Mips_relobj<size, big_endian>* mips_obj =
Mips_relobj<size, big_endian>::as_mips_relobj(object);
Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
if (mips_obj->is_mips16_stub_section(data_shndx))
{
mips_obj->get_mips16_stub_section(data_shndx)
->new_global_reloc_found(r_type, mips_sym);
}
if (r_type == elfcpp::R_MIPS_NONE)
// R_MIPS_NONE is used in mips16 stub sections, to define the target of the
// mips16 stub.
return;
if (!mips16_call_reloc(r_type)
&& !mips_obj->section_allows_mips16_refs(data_shndx))
// This reloc would need to refer to a MIPS16 hard-float stub, if
// there is one. We ignore MIPS16 stub sections and .pdr section when
// looking for relocs that would need to refer to MIPS16 stubs.
mips_sym->set_need_fn_stub();
// We need PLT entries if there are static-only relocations against
// an externally-defined function. This can technically occur for
// shared libraries if there are branches to the symbol, although it
// is unlikely that this will be used in practice due to the short
// ranges involved. It can occur for any relative or absolute relocation
// in executables; in that case, the PLT entry becomes the function's
// canonical address.
bool static_reloc = false;
// Set CAN_MAKE_DYNAMIC to true if we can convert this
// relocation into a dynamic one.
bool can_make_dynamic = false;
switch (r_type)
{
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MIPS_GOT_OFST:
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_OFST:
case elfcpp::R_MICROMIPS_GOT_DISP:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_LDM:
case elfcpp::R_MIPS_EH:
// We need a GOT section.
target->got_section(symtab, layout);
break;
// This is just a hint; it can safely be ignored. Don't set
// has_static_relocs for the corresponding symbol.
case elfcpp::R_MIPS_JALR:
case elfcpp::R_MICROMIPS_JALR:
break;
case elfcpp::R_MIPS_GPREL16:
case elfcpp::R_MIPS_GPREL32:
case elfcpp::R_MIPS16_GPREL:
case elfcpp::R_MICROMIPS_GPREL16:
// TODO(sasa)
// GP-relative relocations always resolve to a definition in a
// regular input file, ignoring the one-definition rule. This is
// important for the GP setup sequence in NewABI code, which
// always resolves to a local function even if other relocations
// against the symbol wouldn't.
//constrain_symbol_p = FALSE;
break;
case elfcpp::R_MIPS_32:
case elfcpp::R_MIPS_REL32:
case elfcpp::R_MIPS_64:
if ((parameters->options().shared()
|| (strcmp(gsym->name(), "__gnu_local_gp") != 0
&& (!is_readonly_section(output_section)
|| mips_obj->is_pic())))
&& (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
{
if (r_type != elfcpp::R_MIPS_REL32)
mips_sym->set_pointer_equality_needed();
can_make_dynamic = true;
break;
}
// Fall through.
default:
// Most static relocations require pointer equality, except
// for branches.
mips_sym->set_pointer_equality_needed();
// Fall through.
case elfcpp::R_MIPS_26:
case elfcpp::R_MIPS_PC16:
case elfcpp::R_MIPS_PC21_S2:
case elfcpp::R_MIPS_PC26_S2:
case elfcpp::R_MIPS16_26:
case elfcpp::R_MICROMIPS_26_S1:
case elfcpp::R_MICROMIPS_PC7_S1:
case elfcpp::R_MICROMIPS_PC10_S1:
case elfcpp::R_MICROMIPS_PC16_S1:
case elfcpp::R_MICROMIPS_PC23_S2:
static_reloc = true;
mips_sym->set_has_static_relocs();
break;
}
// If there are call relocations against an externally-defined symbol,
// see whether we can create a MIPS lazy-binding stub for it. We can
// only do this if all references to the function are through call
// relocations, and in that case, the traditional lazy-binding stubs
// are much more efficient than PLT entries.
switch (r_type)
{
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MIPS_JALR:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_JALR:
if (!mips_sym->no_lazy_stub())
{
if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
// Calls from shared objects to undefined symbols of type
// STT_NOTYPE need lazy-binding stub.
|| (mips_sym->is_undefined() && parameters->options().shared()))
target->mips_stubs_section(layout)->make_entry(mips_sym);
}
break;
default:
{
// We must not create a stub for a symbol that has relocations
// related to taking the function's address.
mips_sym->set_no_lazy_stub();
target->remove_lazy_stub_entry(mips_sym);
break;
}
}
if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
mips_sym->is_mips16()))
mips_sym->set_has_nonpic_branches();
// R_MIPS_HI16 against _gp_disp is used for $gp setup,
// and has a special meaning.
bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
&& strcmp(gsym->name(), "_gp_disp") == 0
&& (hi16_reloc(r_type) || lo16_reloc(r_type)));
if (static_reloc && gsym->needs_plt_entry())
{
target->make_plt_entry(symtab, layout, mips_sym, r_type);
// Since this is not a PC-relative relocation, we may be
// taking the address of a function. In that case we need to
// set the entry in the dynamic symbol table to the address of
// the PLT entry.
if (gsym->is_from_dynobj() && !parameters->options().shared())
{
gsym->set_needs_dynsym_value();
// We distinguish between PLT entries and lazy-binding stubs by
// giving the former an st_other value of STO_MIPS_PLT. Set the
// flag if there are any relocations in the binary where pointer
// equality matters.
if (mips_sym->pointer_equality_needed())
mips_sym->set_mips_plt();
}
}
if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
{
// Absolute addressing relocations.
// Make a dynamic relocation if necessary.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
{
if (gsym->may_need_copy_reloc())
{
target->copy_reloc(symtab, layout, object, data_shndx,
output_section, gsym, r_type, r_offset);
}
else if (can_make_dynamic)
{
// Create .rel.dyn section.
target->rel_dyn_section(layout);
target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
data_shndx, output_section, r_offset);
}
else
gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
gsym->name());
}
}
bool for_call = false;
switch (r_type)
{
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
for_call = true;
// Fall through.
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MICROMIPS_GOT_DISP:
case elfcpp::R_MIPS_EH:
{
// The symbol requires a GOT entry.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
for_call);
mips_sym->set_global_got_area(GGA_NORMAL);
}
break;
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_PAGE:
{
// This relocation needs a page entry in the GOT.
// Get the section contents.
section_size_type view_size = 0;
const unsigned char* view =
object->section_contents(data_shndx, &view_size, false);
view += r_offset;
Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
: r_addend);
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
got->record_got_page_entry(mips_obj, r_sym, addend);
// If this is a global, overridable symbol, GOT_PAGE will
// decay to GOT_DISP, so we'll need a GOT entry for it.
bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
&& !mips_sym->object()->is_dynamic()
&& !mips_sym->is_undefined());
if (!def_regular
|| (parameters->options().output_is_position_independent()
&& !parameters->options().Bsymbolic()
&& !mips_sym->is_forced_local()))
{
got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
for_call);
mips_sym->set_global_got_area(GGA_NORMAL);
}
}
break;
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_LDM:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GD:
{
const bool is_final = gsym->final_value_is_known();
const tls::Tls_optimization optimized_type =
Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
switch (r_type)
{
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GD:
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a pair of GOT entries for the module index and
// dtv-relative offset.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_LDM:
if (optimized_type == tls::TLSOPT_NONE)
{
// We always record LDM symbols as local with index 0.
target->got_section()->record_local_got_symbol(mips_obj, 0,
r_addend, r_type,
-1U, false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
layout->set_has_static_tls();
if (optimized_type == tls::TLSOPT_NONE)
{
// Create a GOT entry for the tp-relative offset.
Mips_output_data_got<size, big_endian>* got =
target->got_section(symtab, layout);
got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
false);
}
else
{
// FIXME: TLS optimization not supported yet.
gold_unreachable();
}
break;
default:
gold_unreachable();
}
}
break;
case elfcpp::R_MIPS_COPY:
case elfcpp::R_MIPS_JUMP_SLOT:
// These are relocations which should only be seen by the
// dynamic linker, and should never be seen here.
gold_error(_("%s: unexpected reloc %u in object file"),
object->name().c_str(), r_type);
break;
default:
break;
}
// Refuse some position-dependent relocations when creating a
// shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
// not PIC, but we can create dynamic relocations and the result
// will be fine. Also do not refuse R_MIPS_LO16, which can be
// combined with R_MIPS_GOT16.
if (parameters->options().shared())
{
switch (r_type)
{
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_HIGHER:
case elfcpp::R_MIPS_HIGHEST:
case elfcpp::R_MICROMIPS_HI16:
case elfcpp::R_MICROMIPS_HIGHER:
case elfcpp::R_MICROMIPS_HIGHEST:
// Don't refuse a high part relocation if it's against
// no symbol (e.g. part of a compound relocation).
if (r_sym == 0)
break;
// R_MIPS_HI16 against _gp_disp is used for $gp setup,
// and has a special meaning.
if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
break;
// Fall through.
case elfcpp::R_MIPS16_26:
case elfcpp::R_MIPS_26:
case elfcpp::R_MICROMIPS_26_S1:
gold_error(_("%s: relocation %u against `%s' can not be used when "
"making a shared object; recompile with -fPIC"),
object->name().c_str(), r_type, gsym->name());
default:
break;
}
}
}
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Relatype& reloc,
unsigned int r_type,
Symbol* gsym)
{
global(
symtab,
layout,
target,
object,
data_shndx,
output_section,
&reloc,
(const Reltype*) NULL,
elfcpp::SHT_RELA,
r_type,
gsym);
}
template<int size, bool big_endian>
inline void
Target_mips<size, big_endian>::Scan::global(
Symbol_table* symtab,
Layout* layout,
Target_mips<size, big_endian>* target,
Sized_relobj_file<size, big_endian>* object,
unsigned int data_shndx,
Output_section* output_section,
const Reltype& reloc,
unsigned int r_type,
Symbol* gsym)
{
global(
symtab,
layout,
target,
object,
data_shndx,
output_section,
(const Relatype*) NULL,
&reloc,
elfcpp::SHT_REL,
r_type,
gsym);
}
// Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation, the addend of the relocation is carried
// in the data, and we must not apply the static relocation.
template<int size, bool big_endian>
inline bool
Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
const Mips_symbol<size>* gsym,
unsigned int r_type,
Output_section* output_section,
Target_mips* target)
{
// If the output section is not allocated, then we didn't call
// scan_relocs, we didn't create a dynamic reloc, and we must apply
// the reloc here.
if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
return true;
if (gsym == NULL)
return true;
else
{
// For global symbols, we use the same helper routines used in the
// scan pass.
if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
&& !gsym->may_need_copy_reloc())
{
// We have generated dynamic reloc (R_MIPS_REL32).
bool multi_got = false;
if (target->has_got_section())
multi_got = target->got_section()->multi_got();
bool has_got_offset;
if (!multi_got)
has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
else
has_got_offset = gsym->global_gotoffset() != -1U;
if (!has_got_offset)
return true;
else
// Apply the relocation only if the symbol is in the local got.
// Do not apply the relocation if the symbol is in the global
// got.
return symbol_references_local(gsym, gsym->has_dynsym_index());
}
else
// We have not generated dynamic reloc.
return true;
}
}
// Perform a relocation.
template<int size, bool big_endian>
inline bool
Target_mips<size, big_endian>::Relocate::relocate(
const Relocate_info<size, big_endian>* relinfo,
unsigned int rel_type,
Target_mips* target,
Output_section* output_section,
size_t relnum,
const unsigned char* preloc,
const Sized_symbol<size>* gsym,
const Symbol_value<size>* psymval,
unsigned char* view,
Mips_address address,
section_size_type)
{
Mips_address r_offset;
unsigned int r_sym;
unsigned int r_type;
unsigned int r_type2;
unsigned int r_type3;
unsigned char r_ssym;
typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
// r_offset and r_type of the next relocation is needed for resolving multiple
// consecutive relocations with the same offset.
Mips_address next_r_offset = static_cast<Mips_address>(0) - 1;
unsigned int next_r_type = elfcpp::R_MIPS_NONE;
elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
size_t reloc_count = shdr.get_sh_size() / shdr.get_sh_entsize();
if (rel_type == elfcpp::SHT_RELA)
{
const Relatype rela(preloc);
r_offset = rela.get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_sym(&rela);
r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_type(&rela);
r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_type2(&rela);
r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_type3(&rela);
r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_ssym(&rela);
r_addend = rela.get_r_addend();
// If this is not last relocation, get r_offset and r_type of the next
// relocation.
if (relnum + 1 < reloc_count)
{
const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
const Relatype next_rela(preloc + reloc_size);
next_r_offset = next_rela.get_r_offset();
next_r_type =
Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
get_r_type(&next_rela);
}
}
else
{
const Reltype rel(preloc);
r_offset = rel.get_r_offset();
r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_sym(&rel);
r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_type(&rel);
r_ssym = 0;
r_type2 = elfcpp::R_MIPS_NONE;
r_type3 = elfcpp::R_MIPS_NONE;
r_addend = 0;
// If this is not last relocation, get r_offset and r_type of the next
// relocation.
if (relnum + 1 < reloc_count)
{
const int reloc_size = elfcpp::Elf_sizes<size>::rel_size;
const Reltype next_rel(preloc + reloc_size);
next_r_offset = next_rel.get_r_offset();
next_r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
get_r_type(&next_rel);
}
}
typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
Mips_relobj<size, big_endian>* object =
Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
bool target_is_16_bit_code = false;
bool target_is_micromips_code = false;
bool cross_mode_jump;
Symbol_value<size> symval;
const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
bool changed_symbol_value = false;
if (gsym == NULL)
{
target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
if (target_is_16_bit_code || target_is_micromips_code)
{
// MIPS16/microMIPS text labels should be treated as odd.
symval.set_output_value(psymval->value(object, 1));
psymval = &symval;
changed_symbol_value = true;
}
}
else
{
target_is_16_bit_code = mips_sym->is_mips16();
target_is_micromips_code = mips_sym->is_micromips();
// If this is a mips16/microMIPS text symbol, add 1 to the value to make
// it odd. This will cause something like .word SYM to come up with
// the right value when it is loaded into the PC.
if ((mips_sym->is_mips16() || mips_sym->is_micromips())
&& psymval->value(object, 0) != 0)
{
symval.set_output_value(psymval->value(object, 0) | 1);
psymval = &symval;
changed_symbol_value = true;
}
// Pick the value to use for symbols defined in shared objects.
if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
|| mips_sym->has_lazy_stub())
{
Mips_address value;
if (!mips_sym->has_lazy_stub())
{
// Prefer a standard MIPS PLT entry.
if (mips_sym->has_mips_plt_offset())
{
value = target->plt_section()->mips_entry_address(mips_sym);
target_is_micromips_code = false;
target_is_16_bit_code = false;
}
else
{
value = (target->plt_section()->comp_entry_address(mips_sym)
+ 1);
if (target->is_output_micromips())
target_is_micromips_code = true;
else
target_is_16_bit_code = true;
}
}
else
value = target->mips_stubs_section()->stub_address(mips_sym);
symval.set_output_value(value);
psymval = &symval;
}
}
// TRUE if the symbol referred to by this relocation is "_gp_disp".
// Note that such a symbol must always be a global symbol.
bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
&& !object->is_newabi());
// TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
// Note that such a symbol must always be a global symbol.
bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
if (gp_disp)
{
if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
gold_error_at_location(relinfo, relnum, r_offset,
_("relocations against _gp_disp are permitted only"
" with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
}
else if (gnu_local_gp)
{
// __gnu_local_gp is _gp symbol.
symval.set_output_value(target->adjusted_gp_value(object));
psymval = &symval;
}
// If this is a reference to a 16-bit function with a stub, we need
// to redirect the relocation to the stub unless:
//
// (a) the relocation is for a MIPS16 JAL;
//
// (b) the relocation is for a MIPS16 PIC call, and there are no
// non-MIPS16 uses of the GOT slot; or
//
// (c) the section allows direct references to MIPS16 functions.
if (r_type != elfcpp::R_MIPS16_26
&& ((mips_sym != NULL
&& mips_sym->has_mips16_fn_stub()
&& (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
|| (mips_sym == NULL
&& object->get_local_mips16_fn_stub(r_sym) != NULL))
&& !object->section_allows_mips16_refs(relinfo->data_shndx))
{
// This is a 32- or 64-bit call to a 16-bit function. We should
// have already noticed that we were going to need the
// stub.
Mips_address value;
if (mips_sym == NULL)
value = object->get_local_mips16_fn_stub(r_sym)->output_address();
else
{
gold_assert(mips_sym->need_fn_stub());
if (mips_sym->has_la25_stub())
value = target->la25_stub_section()->stub_address(mips_sym);
else
{
value = mips_sym->template
get_mips16_fn_stub<big_endian>()->output_address();
}
}
symval.set_output_value(value);
psymval = &symval;
changed_symbol_value = true;
// The target is 16-bit, but the stub isn't.
target_is_16_bit_code = false;
}
// If this is a MIPS16 call with a stub, that is made through the PLT or
// to a standard MIPS function, we need to redirect the call to the stub.
// Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
// indirect calls should use an indirect stub instead.
else if (r_type == elfcpp::R_MIPS16_26
&& ((mips_sym != NULL
&& (mips_sym->has_mips16_call_stub()
|| mips_sym->has_mips16_call_fp_stub()))
|| (mips_sym == NULL
&& object->get_local_mips16_call_stub(r_sym) != NULL))
&& ((mips_sym != NULL && mips_sym->has_plt_offset())
|| !target_is_16_bit_code))
{
Mips16_stub_section<size, big_endian>* call_stub;
if (mips_sym == NULL)
call_stub = object->get_local_mips16_call_stub(r_sym);
else
{
// If both call_stub and call_fp_stub are defined, we can figure
// out which one to use by checking which one appears in the input
// file.
if (mips_sym->has_mips16_call_stub()
&& mips_sym->has_mips16_call_fp_stub())
{
call_stub = NULL;
for (unsigned int i = 1; i < object->shnum(); ++i)
{
if (object->is_mips16_call_fp_stub_section(i))
{
call_stub = mips_sym->template
get_mips16_call_fp_stub<big_endian>();
break;
}
}
if (call_stub == NULL)
call_stub =
mips_sym->template get_mips16_call_stub<big_endian>();
}
else if (mips_sym->has_mips16_call_stub())
call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
else
call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
}
symval.set_output_value(call_stub->output_address());
psymval = &symval;
changed_symbol_value = true;
}
// If this is a direct call to a PIC function, redirect to the
// non-PIC stub.
else if (mips_sym != NULL
&& mips_sym->has_la25_stub()
&& relocation_needs_la25_stub<size, big_endian>(
object, r_type, target_is_16_bit_code))
{
Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
if (mips_sym->is_micromips())
value += 1;
symval.set_output_value(value);
psymval = &symval;
}
// For direct MIPS16 and microMIPS calls make sure the compressed PLT
// entry is used if a standard PLT entry has also been made.
else if ((r_type == elfcpp::R_MIPS16_26
|| r_type == elfcpp::R_MICROMIPS_26_S1)
&& mips_sym != NULL
&& mips_sym->has_plt_offset()
&& mips_sym->has_comp_plt_offset()
&& mips_sym->has_mips_plt_offset())
{
Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
+ 1);
symval.set_output_value(value);
psymval = &symval;
target_is_16_bit_code = !target->is_output_micromips();
target_is_micromips_code = target->is_output_micromips();
}
// Make sure MIPS16 and microMIPS are not used together.
if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
|| (micromips_branch_reloc(r_type) && target_is_16_bit_code))
{
gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
}
// Calls from 16-bit code to 32-bit code and vice versa require the
// mode change. However, we can ignore calls to undefined weak symbols,
// which should never be executed at runtime. This exception is important
// because the assembly writer may have "known" that any definition of the
// symbol would be 16-bit code, and that direct jumps were therefore
// acceptable.
cross_mode_jump =
(!(gsym != NULL && gsym->is_weak_undefined())
&& ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
|| (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
|| ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
&& (target_is_16_bit_code || target_is_micromips_code))));
bool local = (mips_sym == NULL
|| (mips_sym->got_only_for_calls()
? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
: symbol_references_local(mips_sym,
mips_sym->has_dynsym_index())));
// Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
// to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
// corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
if (got_page_reloc(r_type) && !local)
r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
: elfcpp::R_MIPS_GOT_DISP);
unsigned int got_offset = 0;
int gp_offset = 0;
// Whether we have to extract addend from instruction.
bool extract_addend = rel_type == elfcpp::SHT_REL;
unsigned int r_types[3] = { r_type, r_type2, r_type3 };
Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
// For Mips64 N64 ABI, there may be up to three operations specified per
// record, by the fields r_type, r_type2, and r_type3. The first operation
// takes its addend from the relocation record. Each subsequent operation
// takes as its addend the result of the previous operation.
// The first operation in a record which references a symbol uses the symbol
// implied by r_sym. The next operation in a record which references a symbol
// uses the special symbol value given by the r_ssym field. A third operation
// in a record which references a symbol will assume a NULL symbol,
// i.e. value zero.
// TODO(Vladimir)
// Check if a record references to a symbol.
for (unsigned int i = 0; i < 3; ++i)
{
if (r_types[i] == elfcpp::R_MIPS_NONE)
break;
// If we didn't apply previous relocation, use its result as addend
// for current.
if (this->calculate_only_)
{
r_addend = this->calculated_value_;
extract_addend = false;
}
// In the N32 and 64-bit ABIs there may be multiple consecutive
// relocations for the same offset. In that case we are
// supposed to treat the output of each relocation as the addend
// for the next. For N64 ABI, we are checking offsets only in a
// third operation in a record (r_type3).
this->calculate_only_ =
(object->is_n64() && i < 2
? r_types[i+1] != elfcpp::R_MIPS_NONE
: (r_offset == next_r_offset) && (next_r_type != elfcpp::R_MIPS_NONE));
if (object->is_n64())
{
if (i == 1)
{
// Handle special symbol for r_type2 relocation type.
switch (r_ssym)
{
case RSS_UNDEF:
symval.set_output_value(0);
break;
case RSS_GP:
symval.set_output_value(target->gp_value());
break;
case RSS_GP0:
symval.set_output_value(object->gp_value());
break;
case RSS_LOC:
symval.set_output_value(address);
break;
default:
gold_unreachable();
}
psymval = &symval;
}
else if (i == 2)
{
// For r_type3 symbol value is 0.
symval.set_output_value(0);
}
}
bool update_got_entry = false;
switch (r_types[i])
{
case elfcpp::R_MIPS_NONE:
break;
case elfcpp::R_MIPS_16:
reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_32:
if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
target))
reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
if (mips_sym != NULL
&& (mips_sym->is_mips16() || mips_sym->is_micromips())
&& mips_sym->global_got_area() == GGA_RELOC_ONLY)
{
// If mips_sym->has_mips16_fn_stub() is false, symbol value is
// already updated by adding +1.
if (mips_sym->has_mips16_fn_stub())
{
gold_assert(mips_sym->need_fn_stub());
Mips16_stub_section<size, big_endian>* fn_stub =
mips_sym->template get_mips16_fn_stub<big_endian>();
symval.set_output_value(fn_stub->output_address());
psymval = &symval;
}
got_offset = mips_sym->global_gotoffset();
update_got_entry = true;
}
break;
case elfcpp::R_MIPS_64:
if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
target))
reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_, false);
else if (target->is_output_n64() && r_addend != 0)
// Only apply the addend. The static relocation was RELA, but the
// dynamic relocation is REL, so we need to apply the addend.
reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_, true);
break;
case elfcpp::R_MIPS_REL32:
gold_unreachable();
case elfcpp::R_MIPS_PC32:
reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS16_26:
// The calculation for R_MIPS16_26 is just the same as for an
// R_MIPS_26. It's only the storage of the relocated field into
// the output file that's different. So, we just fall through to the
// R_MIPS_26 case here.
case elfcpp::R_MIPS_26:
case elfcpp::R_MICROMIPS_26_S1:
reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
r_types[i], target->jal_to_bal(), this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MICROMIPS_HI16:
if (rel_type == elfcpp::SHT_RELA)
reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
r_addend, address,
gp_disp, r_types[i],
extract_addend, 0,
target,
this->calculate_only_,
&this->calculated_value_);
else if (rel_type == elfcpp::SHT_REL)
reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
address, gp_disp, r_types[i],
r_sym, extract_addend);
else
gold_unreachable();
break;
case elfcpp::R_MIPS_LO16:
case elfcpp::R_MIPS16_LO16:
case elfcpp::R_MICROMIPS_LO16:
case elfcpp::R_MICROMIPS_HI0_LO16:
reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
r_addend, extract_addend, address,
gp_disp, r_types[i], r_sym,
rel_type, this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_LITERAL:
case elfcpp::R_MICROMIPS_LITERAL:
// Because we don't merge literal sections, we can handle this
// just like R_MIPS_GPREL16. In the long run, we should merge
// shared literals, and then we will need to additional work
// here.
// Fall through.
case elfcpp::R_MIPS_GPREL16:
case elfcpp::R_MIPS16_GPREL:
case elfcpp::R_MICROMIPS_GPREL16:
reloc_status = Reloc_funcs::relgprel(view, object, psymval,
target->adjusted_gp_value(object),
r_addend, extract_addend,
gsym == NULL,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MICROMIPS_GPREL7_S2:
reloc_status = Reloc_funcs::relgprel7(view, object, psymval,
target->adjusted_gp_value(object),
r_addend, extract_addend,
gsym == NULL,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PC16:
reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PC21_S2:
reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PC26_S2:
reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PC18_S3:
reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PC19_S2:
reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_PCHI16:
if (rel_type == elfcpp::SHT_RELA)
reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
r_addend, address,
extract_addend, 0,
this->calculate_only_,
&this->calculated_value_);
else if (rel_type == elfcpp::SHT_REL)
reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
r_addend, address, r_sym,
extract_addend);
else
gold_unreachable();
break;
case elfcpp::R_MIPS_PCLO16:
reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
extract_addend, address, r_sym,
rel_type, this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MICROMIPS_PC7_S1:
reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
address, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MICROMIPS_PC10_S1:
reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MICROMIPS_PC16_S1:
reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
psymval, address,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_GPREL32:
reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
target->adjusted_gp_value(object),
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_CALL_HI16:
if (gsym != NULL)
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_STANDARD,
object);
else
got_offset = target->got_section()->got_offset(r_sym,
GOT_TYPE_STANDARD,
object, r_addend);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
update_got_entry = changed_symbol_value;
break;
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_CALL_LO16:
if (gsym != NULL)
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_STANDARD,
object);
else
got_offset = target->got_section()->got_offset(r_sym,
GOT_TYPE_STANDARD,
object, r_addend);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
update_got_entry = changed_symbol_value;
break;
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MICROMIPS_GOT_DISP:
case elfcpp::R_MIPS_EH:
if (gsym != NULL)
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_STANDARD,
object);
else
got_offset = target->got_section()->got_offset(r_sym,
GOT_TYPE_STANDARD,
object, r_addend);
gp_offset = target->got_section()->gp_offset(got_offset, object);
if (eh_reloc(r_types[i]))
reloc_status = Reloc_funcs::releh(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
else
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MICROMIPS_CALL16:
gold_assert(gsym != NULL);
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_STANDARD,
object);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
// TODO(sasa): We should also initialize update_got_entry
// in other place swhere relgot is called.
update_got_entry = changed_symbol_value;
break;
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MICROMIPS_GOT16:
if (gsym != NULL)
{
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_STANDARD,
object);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
}
else
{
if (rel_type == elfcpp::SHT_RELA)
reloc_status = Reloc_funcs::do_relgot16_local(view, object,
psymval, r_addend,
extract_addend, 0,
target,
this->calculate_only_,
&this->calculated_value_);
else if (rel_type == elfcpp::SHT_REL)
reloc_status = Reloc_funcs::relgot16_local(view, object,
psymval, r_addend,
extract_addend,
r_types[i], r_sym);
else
gold_unreachable();
}
update_got_entry = changed_symbol_value;
break;
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GD:
if (gsym != NULL)
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_TLS_PAIR,
object);
else
got_offset = target->got_section()->got_offset(r_sym,
GOT_TYPE_TLS_PAIR,
object, r_addend);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
if (gsym != NULL)
got_offset = target->got_section()->got_offset(gsym,
GOT_TYPE_TLS_OFFSET,
object);
else
got_offset = target->got_section()->got_offset(r_sym,
GOT_TYPE_TLS_OFFSET,
object, r_addend);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS16_TLS_LDM:
case elfcpp::R_MICROMIPS_TLS_LDM:
// Relocate the field with the offset of the GOT entry for
// the module index.
got_offset = target->got_section()->tls_ldm_offset(object);
gp_offset = target->got_section()->gp_offset(got_offset, object);
reloc_status = Reloc_funcs::relgot(view, gp_offset,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MICROMIPS_GOT_PAGE:
reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_GOT_OFST:
case elfcpp::R_MICROMIPS_GOT_OFST:
reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
r_addend, extract_addend,
local, this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_JALR:
case elfcpp::R_MICROMIPS_JALR:
// This relocation is only a hint. In some cases, we optimize
// it into a bal instruction. But we don't try to optimize
// when the symbol does not resolve locally.
if (gsym == NULL
|| symbol_calls_local(gsym, gsym->has_dynsym_index()))
reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
r_addend, extract_addend,
cross_mode_jump, r_types[i],
target->jalr_to_bal(),
target->jr_to_b(),
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_DTPREL_HI16:
case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
elfcpp::DTP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_DTPREL_LO16:
case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
elfcpp::DTP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_DTPREL32:
case elfcpp::R_MIPS_TLS_DTPREL64:
reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
elfcpp::DTP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_TPREL_HI16:
case elfcpp::R_MIPS16_TLS_TPREL_HI16:
case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
elfcpp::TP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_TPREL_LO16:
case elfcpp::R_MIPS16_TLS_TPREL_LO16:
case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
elfcpp::TP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_TLS_TPREL32:
case elfcpp::R_MIPS_TLS_TPREL64:
reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
elfcpp::TP_OFFSET, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_SUB:
case elfcpp::R_MICROMIPS_SUB:
reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_HIGHER:
case elfcpp::R_MICROMIPS_HIGHER:
reloc_status = Reloc_funcs::relhigher(view, object, psymval, r_addend,
extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
case elfcpp::R_MIPS_HIGHEST:
case elfcpp::R_MICROMIPS_HIGHEST:
reloc_status = Reloc_funcs::relhighest(view, object, psymval,
r_addend, extract_addend,
this->calculate_only_,
&this->calculated_value_);
break;
default:
gold_error_at_location(relinfo, relnum, r_offset,
_("unsupported reloc %u"), r_types[i]);
break;
}
if (update_got_entry)
{
Mips_output_data_got<size, big_endian>* got = target->got_section();
if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
got->update_got_entry(got->get_primary_got_offset(mips_sym),
psymval->value(object, 0));
else
got->update_got_entry(got_offset, psymval->value(object, 0));
}
}
bool jal_shuffle = jal_reloc(r_type);
Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
// Report any errors.
switch (reloc_status)
{
case Reloc_funcs::STATUS_OKAY:
break;
case Reloc_funcs::STATUS_OVERFLOW:
if (gsym == NULL)
gold_error_at_location(relinfo, relnum, r_offset,
_("relocation overflow: "
"%u against local symbol %u in %s"),
r_type, r_sym, object->name().c_str());
else if (gsym->is_defined() && gsym->source() == Symbol::FROM_OBJECT)
gold_error_at_location(relinfo, relnum, r_offset,
_("relocation overflow: "
"%u against '%s' defined in %s"),
r_type, gsym->demangled_name().c_str(),
gsym->object()->name().c_str());
else
gold_error_at_location(relinfo, relnum, r_offset,
_("relocation overflow: %u against '%s'"),
r_type, gsym->demangled_name().c_str());
break;
case Reloc_funcs::STATUS_BAD_RELOC:
gold_error_at_location(relinfo, relnum, r_offset,
_("unexpected opcode while processing relocation"));
break;
case Reloc_funcs::STATUS_PCREL_UNALIGNED:
gold_error_at_location(relinfo, relnum, r_offset,
_("unaligned PC-relative relocation"));
break;
default:
gold_unreachable();
}
return true;
}
// Get the Reference_flags for a particular relocation.
template<int size, bool big_endian>
int
Target_mips<size, big_endian>::Scan::get_reference_flags(
unsigned int r_type)
{
switch (r_type)
{
case elfcpp::R_MIPS_NONE:
// No symbol reference.
return 0;
case elfcpp::R_MIPS_16:
case elfcpp::R_MIPS_32:
case elfcpp::R_MIPS_64:
case elfcpp::R_MIPS_HI16:
case elfcpp::R_MIPS_LO16:
case elfcpp::R_MIPS_HIGHER:
case elfcpp::R_MIPS_HIGHEST:
case elfcpp::R_MIPS16_HI16:
case elfcpp::R_MIPS16_LO16:
case elfcpp::R_MICROMIPS_HI16:
case elfcpp::R_MICROMIPS_LO16:
case elfcpp::R_MICROMIPS_HIGHER:
case elfcpp::R_MICROMIPS_HIGHEST:
return Symbol::ABSOLUTE_REF;
case elfcpp::R_MIPS_26:
case elfcpp::R_MIPS16_26:
case elfcpp::R_MICROMIPS_26_S1:
return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
case elfcpp::R_MIPS_PC18_S3:
case elfcpp::R_MIPS_PC19_S2:
case elfcpp::R_MIPS_PCHI16:
case elfcpp::R_MIPS_PCLO16:
case elfcpp::R_MIPS_GPREL32:
case elfcpp::R_MIPS_GPREL16:
case elfcpp::R_MIPS_REL32:
case elfcpp::R_MIPS16_GPREL:
return Symbol::RELATIVE_REF;
case elfcpp::R_MIPS_PC16:
case elfcpp::R_MIPS_PC32:
case elfcpp::R_MIPS_PC21_S2:
case elfcpp::R_MIPS_PC26_S2:
case elfcpp::R_MIPS_JALR:
case elfcpp::R_MICROMIPS_JALR:
return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
case elfcpp::R_MIPS_GOT16:
case elfcpp::R_MIPS_CALL16:
case elfcpp::R_MIPS_GOT_DISP:
case elfcpp::R_MIPS_GOT_HI16:
case elfcpp::R_MIPS_GOT_LO16:
case elfcpp::R_MIPS_CALL_HI16:
case elfcpp::R_MIPS_CALL_LO16:
case elfcpp::R_MIPS_LITERAL:
case elfcpp::R_MIPS_GOT_PAGE:
case elfcpp::R_MIPS_GOT_OFST:
case elfcpp::R_MIPS16_GOT16:
case elfcpp::R_MIPS16_CALL16:
case elfcpp::R_MICROMIPS_GOT16:
case elfcpp::R_MICROMIPS_CALL16:
case elfcpp::R_MICROMIPS_GOT_HI16:
case elfcpp::R_MICROMIPS_GOT_LO16:
case elfcpp::R_MICROMIPS_CALL_HI16:
case elfcpp::R_MICROMIPS_CALL_LO16:
case elfcpp::R_MIPS_EH:
// Absolute in GOT.
return Symbol::RELATIVE_REF;
case elfcpp::R_MIPS_TLS_DTPMOD32:
case elfcpp::R_MIPS_TLS_DTPREL32:
case elfcpp::R_MIPS_TLS_DTPMOD64:
case elfcpp::R_MIPS_TLS_DTPREL64:
case elfcpp::R_MIPS_TLS_GD:
case elfcpp::R_MIPS_TLS_LDM:
case elfcpp::R_MIPS_TLS_DTPREL_HI16:
case elfcpp::R_MIPS_TLS_DTPREL_LO16:
case elfcpp::R_MIPS_TLS_GOTTPREL:
case elfcpp::R_MIPS_TLS_TPREL32:
case elfcpp::R_MIPS_TLS_TPREL64:
case elfcpp::R_MIPS_TLS_TPREL_HI16:
case elfcpp::R_MIPS_TLS_TPREL_LO16:
case elfcpp::R_MIPS16_TLS_GD:
case elfcpp::R_MIPS16_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_GD:
case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
return Symbol::TLS_REF;
case elfcpp::R_MIPS_COPY:
case elfcpp::R_MIPS_JUMP_SLOT:
default:
// Not expected. We will give an error later.
return 0;
}
}
// Report an unsupported relocation against a local symbol.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type)
{
gold_error(_("%s: unsupported reloc %u against local symbol"),
object->name().c_str(), r_type);
}
// Report an unsupported relocation against a global symbol.
template<int size, bool big_endian>
void
Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
Sized_relobj_file<size, big_endian>* object,
unsigned int r_type,
Symbol* gsym)
{
gold_error(_("%s: unsupported reloc %u against global symbol %s"),
object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
// Return printable name for ABI.
template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
{
switch (e_flags & elfcpp::EF_MIPS_ABI)
{
case 0:
if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
return "N32";
else if (size == 64)
return "64";
else
return "none";
case elfcpp::EF_MIPS_ABI_O32:
return "O32";
case elfcpp::EF_MIPS_ABI_O64:
return "O64";
case elfcpp::EF_MIPS_ABI_EABI32:
return "EABI32";
case elfcpp::EF_MIPS_ABI_EABI64:
return "EABI64";
default:
return "unknown abi";
}
}
template<int size, bool big_endian>
const char*
Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
{
switch (e_flags & elfcpp::EF_MIPS_MACH)
{
case elfcpp::EF_MIPS_MACH_3900:
return "mips:3900";
case elfcpp::EF_MIPS_MACH_4010:
return "mips:4010";
case elfcpp::EF_MIPS_MACH_4100:
return "mips:4100";
case elfcpp::EF_MIPS_MACH_4111:
return "mips:4111";
case elfcpp::EF_MIPS_MACH_4120:
return "mips:4120";
case elfcpp::EF_MIPS_MACH_4650:
return "mips:4650";
case elfcpp::EF_MIPS_MACH_5400:
return "mips:5400";
case elfcpp::EF_MIPS_MACH_5500:
return "mips:5500";
case elfcpp::EF_MIPS_MACH_5900:
return "mips:5900";
case elfcpp::EF_MIPS_MACH_SB1:
return "mips:sb1";
case elfcpp::EF_MIPS_MACH_9000:
return "mips:9000";
case elfcpp::EF_MIPS_MACH_LS2E:
return "mips:loongson_2e";
case elfcpp::EF_MIPS_MACH_LS2F:
return "mips:loongson_2f";
case elfcpp::EF_MIPS_MACH_GS464:
return "mips:gs464";
case elfcpp::EF_MIPS_MACH_GS464E:
return "mips:gs464e";
case elfcpp::EF_MIPS_MACH_GS264E:
return "mips:gs264e";
case elfcpp::EF_MIPS_MACH_OCTEON:
return "mips:octeon";
case elfcpp::EF_MIPS_MACH_OCTEON2:
return "mips:octeon2";
case elfcpp::EF_MIPS_MACH_OCTEON3:
return "mips:octeon3";
case elfcpp::EF_MIPS_MACH_XLR:
return "mips:xlr";
default:
switch (e_flags & elfcpp::EF_MIPS_ARCH)
{
default:
case elfcpp::EF_MIPS_ARCH_1:
return "mips:3000";
case elfcpp::EF_MIPS_ARCH_2:
return "mips:6000";
case elfcpp::EF_MIPS_ARCH_3:
return "mips:4000";
case elfcpp::EF_MIPS_ARCH_4:
return "mips:8000";
case elfcpp::EF_MIPS_ARCH_5:
return "mips:mips5";
case elfcpp::EF_MIPS_ARCH_32:
return "mips:isa32";
case elfcpp::EF_MIPS_ARCH_64:
return "mips:isa64";
case elfcpp::EF_MIPS_ARCH_32R2:
return "mips:isa32r2";
case elfcpp::EF_MIPS_ARCH_32R6:
return "mips:isa32r6";
case elfcpp::EF_MIPS_ARCH_64R2:
return "mips:isa64r2";
case elfcpp::EF_MIPS_ARCH_64R6:
return "mips:isa64r6";
}
}
return "unknown CPU";
}
template<int size, bool big_endian>
const Target::Target_info Target_mips<size, big_endian>::mips_info =
{
size, // size
big_endian, // is_big_endian
elfcpp::EM_MIPS, // machine_code
true, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1", // dynamic_linker
0x400000, // default_text_segment_address
64 * 1024, // abi_pagesize (overridable by -z max-page-size)
4 * 1024, // common_pagesize (overridable by -z common-page-size)
false, // isolate_execinstr
0, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"__start", // entry_symbol_name
32, // hash_entry_size
elfcpp::SHT_PROGBITS, // unwind_section_type
};
template<int size, bool big_endian>
class Target_mips_nacl : public Target_mips<size, big_endian>
{
public:
Target_mips_nacl()
: Target_mips<size, big_endian>(&mips_nacl_info)
{ }
private:
static const Target::Target_info mips_nacl_info;
};
template<int size, bool big_endian>
const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
{
size, // size
big_endian, // is_big_endian
elfcpp::EM_MIPS, // machine_code
true, // has_make_symbol
false, // has_resolve
false, // has_code_fill
true, // is_default_stack_executable
false, // can_icf_inline_merge_sections
'\0', // wrap_char
"/lib/ld.so.1", // dynamic_linker
0x20000, // default_text_segment_address
0x10000, // abi_pagesize (overridable by -z max-page-size)
0x10000, // common_pagesize (overridable by -z common-page-size)
true, // isolate_execinstr
0x10000000, // rosegment_gap
elfcpp::SHN_UNDEF, // small_common_shndx
elfcpp::SHN_UNDEF, // large_common_shndx
0, // small_common_section_flags
0, // large_common_section_flags
NULL, // attributes_section
NULL, // attributes_vendor
"_start", // entry_symbol_name
32, // hash_entry_size
elfcpp::SHT_PROGBITS, // unwind_section_type
};
// Target selector for Mips. Note this is never instantiated directly.
// It's only used in Target_selector_mips_nacl, below.
template<int size, bool big_endian>
class Target_selector_mips : public Target_selector
{
public:
Target_selector_mips()
: Target_selector(elfcpp::EM_MIPS, size, big_endian,
(size == 64 ?
(big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
(big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
(size == 64 ?
(big_endian ? "elf64btsmip" : "elf64ltsmip") :
(big_endian ? "elf32btsmip" : "elf32ltsmip")))
{ }
Target* do_instantiate_target()
{ return new Target_mips<size, big_endian>(); }
};
template<int size, bool big_endian>
class Target_selector_mips_nacl
: public Target_selector_nacl<Target_selector_mips<size, big_endian>,
Target_mips_nacl<size, big_endian> >
{
public:
Target_selector_mips_nacl()
: Target_selector_nacl<Target_selector_mips<size, big_endian>,
Target_mips_nacl<size, big_endian> >(
// NaCl currently supports only MIPS32 little-endian.
"mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
{ }
};
Target_selector_mips_nacl<32, true> target_selector_mips32;
Target_selector_mips_nacl<32, false> target_selector_mips32el;
Target_selector_mips_nacl<64, true> target_selector_mips64;
Target_selector_mips_nacl<64, false> target_selector_mips64el;
} // End anonymous namespace.