binutils-gdb/gdb/common/default-init-alloc.h
Pedro Alves d5722aa2fe Introduce gdb::byte_vector, add allocator that default-initializes
In some cases we've been replacing heap-allocated gdb_byte buffers
managed with xmalloc/make_cleanup(xfree) with gdb::vector<gdb_byte>.
That usually pessimizes the code a little bit because std::vector
value-initializes elements (which for gdb_byte means
zero-initialization), while if you're creating a temporary buffer,
you're most certaintly going to fill it in with some data.  An
alternative is to use

  unique_ptr<gdb_byte[]> buf (new gdb_byte[size]);

but it looks like that's not very popular.

Recently, a use of obstacks in dwarf2read.c was replaced with
std::vector<gdb_byte> and that as well introduced a pessimization for
always memsetting the buffer when it's garanteed that the zeros will
be overwritten immediately.  (see dwarf2read.c change in this patch to
find it.)

So here's a different take at addressing this issue "by design":

#1 - Introduce default_init_allocator<T>

I.e., a custom allocator that does default construction using default
initialization, meaning, no more zero initialization.  That's the
default_init_allocation<T> class added in this patch.

See "Notes" at
<http://en.cppreference.com/w/cpp/container/vector/resize>.

#2 - Introduce def_vector<T>

I.e., a convenience typedef, because typing the allocator is annoying:

  using def_vector<T> = std::vector<T, gdb::default_init_allocator<T>>;

#3 - Introduce byte_vector

Because gdb_byte vectors will be the common thing, add a convenience
"byte_vector" typedef:

  using byte_vector = def_vector<gdb_byte>;

which is really the same as:

  std::vector<gdb_byte, gdb::default_init_allocator<gdb_byte>>;

The intent then is to make "gdb::byte_vector" be the go-to for dynamic
byte buffers.  So the less friction, the better.

#4 - Adjust current code to use it.

To set the example going forward.  Replace std::vector uses and also
unique_ptr<byte[]> uses.

One nice thing is that with this allocator, for changes like these:

  -std::unique_ptr<byte[]> buf (new gdb_byte[some_size]);
  +gdb::byte_vector buf (some_size);
   fill_with_data (buf.data (), buf.size ());

the generated code is the same as before.  I.e., the compiler
de-structures the vector and gets rid of the unused "reserved vs size"
related fields.

The other nice thing is that it's easier to write
  gdb::byte_vector buf (size);
than
  std::unique_ptr<gdb_byte[]> buf (new gdb_byte[size]);
or even (C++14):
  auto buf = std::make_unique<gdb_byte[]> (size); // zero-initializes...

#5 - Suggest s/std::vector<gdb_byte>/gdb::byte_vector/ going forward.

Note that this commit actually fixes a couple of bugs where the current
code is incorrectly using "std::vector::reserve(new_size)" and then
accessing the vector's internal buffer beyond the vector's size: see
dwarf2loc.c and charset.c.  That's undefined behavior and may trigger
debug mode assertion failures.  With default_init_allocator,
"resize()" behaves like "reserve()" performance wise, in that it
leaves new elements with unspecified values, but, it does that safely
without triggering undefined behavior when you access those values.

gdb/ChangeLog:
2017-06-14  Pedro Alves  <palves@redhat.com>

	* ada-lang.c: Include "common/byte-vector.h".
	(ada_value_primitive_packed_val): Use gdb::byte_vector.
	* charset.c (wchar_iterator::iterate): Resize the vector instead
	of reserving it.
	* common/byte-vector.h: Include "common/def-vector.h".
	(wchar_iterator::m_out): Now a gdb::def_vector<gdb_wchar_t>.
	* cli/cli-dump.c: Include "common/byte-vector.h".
	(dump_memory_to_file, restore_binary_file): Use gdb::byte_vector.
	* common/byte-vector.h: New file.
	* common/def-vector.h: New file.
	* common/default-init-alloc.h: New file.
	* dwarf2loc.c: Include "common/byte-vector.h".
	(rw_pieced_value): Use gdb::byte_vector, and resize the vector
	instead of reserving it.
	* dwarf2read.c: Include "common/byte-vector.h".
	(data_buf::m_vec): Now a gdb::byte_vector.
	* gdb_regex.c: Include "common/def-vector.h".
	(compiled_regex::compiled_regex): Use gdb::def_vector<char>.
	* mi/mi-main.c: Include "common/byte-vector.h".
	(mi_cmd_data_read_memory): Use gdb::byte_vector.
	* printcmd.c: Include "common/byte-vector.h".
	(print_scalar_formatted): Use gdb::byte_vector.
	* valprint.c: Include "common/byte-vector.h".
	(maybe_negate_by_bytes, print_decimal_chars): Use
	gdb::byte_vector.
2017-06-14 11:08:52 +01:00

68 lines
2.2 KiB
C++

/* Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef COMMON_DEFAULT_INIT_ALLOC_H
#define COMMON_DEFAULT_INIT_ALLOC_H
namespace gdb {
/* An allocator that default constructs using default-initialization
rather than value-initialization. The idea is to use this when you
don't want to default construct elements of containers of trivial
types using zero-initialization. */
/* Mostly as implementation convenience, this is implemented as an
adapter that given an allocator A, overrides 'A::construct()'. 'A'
defaults to std::allocator<T>. */
template<typename T, typename A = std::allocator<T>>
class default_init_allocator : public A
{
public:
/* Pull in A's ctors. */
using A::A;
/* Override rebind. */
template<typename U>
struct rebind
{
/* A couple helpers just to make it a bit more readable. */
typedef std::allocator_traits<A> traits_;
typedef typename traits_::template rebind_alloc<U> alloc_;
/* This is what we're after. */
typedef default_init_allocator<U, alloc_> other;
};
/* Make the base allocator's construct method(s) visible. */
using A::construct;
/* .. and provide an override/overload for the case of default
construction (i.e., no arguments). This is where we construct
with default-init. */
template <typename U>
void construct (U *ptr)
noexcept (std::is_nothrow_default_constructible<U>::value)
{
::new ((void *) ptr) U; /* default-init */
}
};
} /* namespace gdb */
#endif /* COMMON_DEFAULT_INIT_ALLOC_H */