mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-01 13:43:32 +08:00
eedc19af03
* objfiles.h (struct entry_info): Delete entry_func_lowpc and entry_func_highpc fields. * objfiles.c (init_entry_point_info): Do not clear entry_func_lowpc and entry_func_highpc. (objfile_relocate): Do not relocate entry_func_lowpc and entry_func_highpc. * dwarfread.c (read_func_scope): Do not set entry_func_lowpc and entry_func_highpc. * dwarf2read.c (read_func_scope): Do not set entry_func_lowpc and entry_func_highpc. * blockframe.c (legacy_frame_chain_valid): Replace tests against entry_func_lowpc and entry_func_highpc with call to inside_entry_func.
532 lines
16 KiB
C
532 lines
16 KiB
C
/* Get info from stack frames; convert between frames, blocks,
|
||
functions and pc values.
|
||
|
||
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
|
||
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "bfd.h"
|
||
#include "objfiles.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "value.h" /* for read_register */
|
||
#include "target.h" /* for target_has_stack */
|
||
#include "inferior.h" /* for read_pc */
|
||
#include "annotate.h"
|
||
#include "regcache.h"
|
||
#include "gdb_assert.h"
|
||
#include "dummy-frame.h"
|
||
#include "command.h"
|
||
#include "gdbcmd.h"
|
||
#include "block.h"
|
||
|
||
/* Prototypes for exported functions. */
|
||
|
||
void _initialize_blockframe (void);
|
||
|
||
/* Test whether PC is in the range of addresses that corresponds to
|
||
the "main" function. */
|
||
|
||
int
|
||
inside_main_func (CORE_ADDR pc)
|
||
{
|
||
struct minimal_symbol *msymbol;
|
||
|
||
if (symfile_objfile == 0)
|
||
return 0;
|
||
|
||
msymbol = lookup_minimal_symbol (main_name (), NULL, symfile_objfile);
|
||
|
||
/* If the address range hasn't been set up at symbol reading time,
|
||
set it up now. */
|
||
|
||
if (msymbol != NULL
|
||
&& symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC
|
||
&& symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
|
||
{
|
||
/* brobecker/2003-10-10: We used to rely on lookup_symbol() to
|
||
search the symbol associated to the "main" function.
|
||
Unfortunately, lookup_symbol() uses the current-language
|
||
la_lookup_symbol_nonlocal function to do the global symbol
|
||
search. Depending on the language, this can introduce
|
||
certain side-effects, because certain languages, for instance
|
||
Ada, may find more than one match. Therefore we prefer to
|
||
search the "main" function symbol using its address rather
|
||
than its name. */
|
||
struct symbol *mainsym =
|
||
find_pc_function (SYMBOL_VALUE_ADDRESS (msymbol));
|
||
|
||
if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
|
||
{
|
||
symfile_objfile->ei.main_func_lowpc =
|
||
BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
|
||
symfile_objfile->ei.main_func_highpc =
|
||
BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
|
||
}
|
||
}
|
||
|
||
/* Not in the normal symbol tables, see if "main" is in the partial
|
||
symbol table. If it's not, then give up. */
|
||
if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_text)
|
||
{
|
||
CORE_ADDR maddr = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
asection *msect = SYMBOL_BFD_SECTION (msymbol);
|
||
struct obj_section *osect = find_pc_sect_section (maddr, msect);
|
||
|
||
if (osect != NULL)
|
||
{
|
||
int i;
|
||
|
||
/* Step over other symbols at this same address, and symbols
|
||
in other sections, to find the next symbol in this
|
||
section with a different address. */
|
||
for (i = 1; SYMBOL_LINKAGE_NAME (msymbol + i) != NULL; i++)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != maddr
|
||
&& SYMBOL_BFD_SECTION (msymbol + i) == msect)
|
||
break;
|
||
}
|
||
|
||
symfile_objfile->ei.main_func_lowpc = maddr;
|
||
|
||
/* Use the lesser of the next minimal symbol in the same
|
||
section, or the end of the section, as the end of the
|
||
function. */
|
||
if (SYMBOL_LINKAGE_NAME (msymbol + i) != NULL
|
||
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
||
symfile_objfile->ei.main_func_highpc =
|
||
SYMBOL_VALUE_ADDRESS (msymbol + i);
|
||
else
|
||
/* We got the start address from the last msymbol in the
|
||
objfile. So the end address is the end of the
|
||
section. */
|
||
symfile_objfile->ei.main_func_highpc = osect->endaddr;
|
||
}
|
||
}
|
||
|
||
return (symfile_objfile->ei.main_func_lowpc <= pc
|
||
&& symfile_objfile->ei.main_func_highpc > pc);
|
||
}
|
||
|
||
/* Test whether THIS_FRAME is inside the process entry point function. */
|
||
|
||
int
|
||
inside_entry_func (struct frame_info *this_frame)
|
||
{
|
||
return (get_frame_func (this_frame) == entry_point_address ());
|
||
}
|
||
|
||
/* Return nonzero if the function for this frame lacks a prologue.
|
||
Many machines can define DEPRECATED_FRAMELESS_FUNCTION_INVOCATION
|
||
to just call this function. */
|
||
|
||
int
|
||
legacy_frameless_look_for_prologue (struct frame_info *frame)
|
||
{
|
||
CORE_ADDR func_start;
|
||
|
||
func_start = get_frame_func (frame);
|
||
if (func_start)
|
||
{
|
||
func_start += DEPRECATED_FUNCTION_START_OFFSET;
|
||
/* NOTE: cagney/2004-02-09: Eliminated per-architecture
|
||
PROLOGUE_FRAMELESS_P call as architectures with custom
|
||
implementations had all been deleted. Eventually even this
|
||
function can go - GDB no longer tries to differentiate
|
||
between framed, frameless and stackless functions. They are
|
||
all now considered equally evil :-^. */
|
||
/* If skipping the prologue ends up skips nothing, there must be
|
||
no prologue and hence no code creating a frame. There for
|
||
the function is "frameless" :-/. */
|
||
return func_start == SKIP_PROLOGUE (func_start);
|
||
}
|
||
else if (get_frame_pc (frame) == 0)
|
||
/* A frame with a zero PC is usually created by dereferencing a
|
||
NULL function pointer, normally causing an immediate core dump
|
||
of the inferior. Mark function as frameless, as the inferior
|
||
has no chance of setting up a stack frame. */
|
||
return 1;
|
||
else
|
||
/* If we can't find the start of the function, we don't really
|
||
know whether the function is frameless, but we should be able
|
||
to get a reasonable (i.e. best we can do under the
|
||
circumstances) backtrace by saying that it isn't. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the innermost lexical block in execution
|
||
in a specified stack frame. The frame address is assumed valid.
|
||
|
||
If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
|
||
address we used to choose the block. We use this to find a source
|
||
line, to decide which macro definitions are in scope.
|
||
|
||
The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
|
||
PC, and may not really be a valid PC at all. For example, in the
|
||
caller of a function declared to never return, the code at the
|
||
return address will never be reached, so the call instruction may
|
||
be the very last instruction in the block. So the address we use
|
||
to choose the block is actually one byte before the return address
|
||
--- hopefully pointing us at the call instruction, or its delay
|
||
slot instruction. */
|
||
|
||
struct block *
|
||
get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
|
||
{
|
||
const CORE_ADDR pc = get_frame_address_in_block (frame);
|
||
|
||
if (addr_in_block)
|
||
*addr_in_block = pc;
|
||
|
||
return block_for_pc (pc);
|
||
}
|
||
|
||
CORE_ADDR
|
||
get_pc_function_start (CORE_ADDR pc)
|
||
{
|
||
struct block *bl;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
bl = block_for_pc (pc);
|
||
if (bl)
|
||
{
|
||
struct symbol *symbol = block_function (bl);
|
||
|
||
if (symbol)
|
||
{
|
||
bl = SYMBOL_BLOCK_VALUE (symbol);
|
||
return BLOCK_START (bl);
|
||
}
|
||
}
|
||
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
if (msymbol)
|
||
{
|
||
CORE_ADDR fstart = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
|
||
if (find_pc_section (fstart))
|
||
return fstart;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the symbol for the function executing in frame FRAME. */
|
||
|
||
struct symbol *
|
||
get_frame_function (struct frame_info *frame)
|
||
{
|
||
struct block *bl = get_frame_block (frame, 0);
|
||
if (bl == 0)
|
||
return 0;
|
||
return block_function (bl);
|
||
}
|
||
|
||
|
||
/* Return the function containing pc value PC in section SECTION.
|
||
Returns 0 if function is not known. */
|
||
|
||
struct symbol *
|
||
find_pc_sect_function (CORE_ADDR pc, struct bfd_section *section)
|
||
{
|
||
struct block *b = block_for_pc_sect (pc, section);
|
||
if (b == 0)
|
||
return 0;
|
||
return block_function (b);
|
||
}
|
||
|
||
/* Return the function containing pc value PC.
|
||
Returns 0 if function is not known. Backward compatibility, no section */
|
||
|
||
struct symbol *
|
||
find_pc_function (CORE_ADDR pc)
|
||
{
|
||
return find_pc_sect_function (pc, find_pc_mapped_section (pc));
|
||
}
|
||
|
||
/* These variables are used to cache the most recent result
|
||
* of find_pc_partial_function. */
|
||
|
||
static CORE_ADDR cache_pc_function_low = 0;
|
||
static CORE_ADDR cache_pc_function_high = 0;
|
||
static char *cache_pc_function_name = 0;
|
||
static struct bfd_section *cache_pc_function_section = NULL;
|
||
|
||
/* Clear cache, e.g. when symbol table is discarded. */
|
||
|
||
void
|
||
clear_pc_function_cache (void)
|
||
{
|
||
cache_pc_function_low = 0;
|
||
cache_pc_function_high = 0;
|
||
cache_pc_function_name = (char *) 0;
|
||
cache_pc_function_section = NULL;
|
||
}
|
||
|
||
/* Finds the "function" (text symbol) that is smaller than PC but
|
||
greatest of all of the potential text symbols in SECTION. Sets
|
||
*NAME and/or *ADDRESS conditionally if that pointer is non-null.
|
||
If ENDADDR is non-null, then set *ENDADDR to be the end of the
|
||
function (exclusive), but passing ENDADDR as non-null means that
|
||
the function might cause symbols to be read. This function either
|
||
succeeds or fails (not halfway succeeds). If it succeeds, it sets
|
||
*NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
|
||
If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
|
||
returns 0. */
|
||
|
||
/* Backward compatibility, no section argument. */
|
||
|
||
int
|
||
find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
|
||
CORE_ADDR *endaddr)
|
||
{
|
||
struct bfd_section *section;
|
||
struct partial_symtab *pst;
|
||
struct symbol *f;
|
||
struct minimal_symbol *msymbol;
|
||
struct partial_symbol *psb;
|
||
struct obj_section *osect;
|
||
int i;
|
||
CORE_ADDR mapped_pc;
|
||
|
||
/* To ensure that the symbol returned belongs to the correct setion
|
||
(and that the last [random] symbol from the previous section
|
||
isn't returned) try to find the section containing PC. First try
|
||
the overlay code (which by default returns NULL); and second try
|
||
the normal section code (which almost always succeeds). */
|
||
section = find_pc_overlay (pc);
|
||
if (section == NULL)
|
||
{
|
||
struct obj_section *obj_section = find_pc_section (pc);
|
||
if (obj_section == NULL)
|
||
section = NULL;
|
||
else
|
||
section = obj_section->the_bfd_section;
|
||
}
|
||
|
||
mapped_pc = overlay_mapped_address (pc, section);
|
||
|
||
if (mapped_pc >= cache_pc_function_low
|
||
&& mapped_pc < cache_pc_function_high
|
||
&& section == cache_pc_function_section)
|
||
goto return_cached_value;
|
||
|
||
msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
|
||
pst = find_pc_sect_psymtab (mapped_pc, section);
|
||
if (pst)
|
||
{
|
||
/* Need to read the symbols to get a good value for the end address. */
|
||
if (endaddr != NULL && !pst->readin)
|
||
{
|
||
/* Need to get the terminal in case symbol-reading produces
|
||
output. */
|
||
target_terminal_ours_for_output ();
|
||
PSYMTAB_TO_SYMTAB (pst);
|
||
}
|
||
|
||
if (pst->readin)
|
||
{
|
||
/* Checking whether the msymbol has a larger value is for the
|
||
"pathological" case mentioned in print_frame_info. */
|
||
f = find_pc_sect_function (mapped_pc, section);
|
||
if (f != NULL
|
||
&& (msymbol == NULL
|
||
|| (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
|
||
cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
|
||
cache_pc_function_section = section;
|
||
goto return_cached_value;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Now that static symbols go in the minimal symbol table, perhaps
|
||
we could just ignore the partial symbols. But at least for now
|
||
we use the partial or minimal symbol, whichever is larger. */
|
||
psb = find_pc_sect_psymbol (pst, mapped_pc, section);
|
||
|
||
if (psb
|
||
&& (msymbol == NULL ||
|
||
(SYMBOL_VALUE_ADDRESS (psb)
|
||
>= SYMBOL_VALUE_ADDRESS (msymbol))))
|
||
{
|
||
/* This case isn't being cached currently. */
|
||
if (address)
|
||
*address = SYMBOL_VALUE_ADDRESS (psb);
|
||
if (name)
|
||
*name = DEPRECATED_SYMBOL_NAME (psb);
|
||
/* endaddr non-NULL can't happen here. */
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Not in the normal symbol tables, see if the pc is in a known section.
|
||
If it's not, then give up. This ensures that anything beyond the end
|
||
of the text seg doesn't appear to be part of the last function in the
|
||
text segment. */
|
||
|
||
osect = find_pc_sect_section (mapped_pc, section);
|
||
|
||
if (!osect)
|
||
msymbol = NULL;
|
||
|
||
/* Must be in the minimal symbol table. */
|
||
if (msymbol == NULL)
|
||
{
|
||
/* No available symbol. */
|
||
if (name != NULL)
|
||
*name = 0;
|
||
if (address != NULL)
|
||
*address = 0;
|
||
if (endaddr != NULL)
|
||
*endaddr = 0;
|
||
return 0;
|
||
}
|
||
|
||
cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
|
||
cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
|
||
cache_pc_function_section = section;
|
||
|
||
/* Use the lesser of the next minimal symbol in the same section, or
|
||
the end of the section, as the end of the function. */
|
||
|
||
/* Step over other symbols at this same address, and symbols in
|
||
other sections, to find the next symbol in this section with
|
||
a different address. */
|
||
|
||
for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
|
||
{
|
||
if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
|
||
&& SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
|
||
break;
|
||
}
|
||
|
||
if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
|
||
&& SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
|
||
cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
|
||
else
|
||
/* We got the start address from the last msymbol in the objfile.
|
||
So the end address is the end of the section. */
|
||
cache_pc_function_high = osect->endaddr;
|
||
|
||
return_cached_value:
|
||
|
||
if (address)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
*address = overlay_unmapped_address (cache_pc_function_low, section);
|
||
else
|
||
*address = cache_pc_function_low;
|
||
}
|
||
|
||
if (name)
|
||
*name = cache_pc_function_name;
|
||
|
||
if (endaddr)
|
||
{
|
||
if (pc_in_unmapped_range (pc, section))
|
||
{
|
||
/* Because the high address is actually beyond the end of
|
||
the function (and therefore possibly beyond the end of
|
||
the overlay), we must actually convert (high - 1) and
|
||
then add one to that. */
|
||
|
||
*endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
|
||
section);
|
||
}
|
||
else
|
||
*endaddr = cache_pc_function_high;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return the innermost stack frame executing inside of BLOCK,
|
||
or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
|
||
|
||
struct frame_info *
|
||
block_innermost_frame (struct block *block)
|
||
{
|
||
struct frame_info *frame;
|
||
CORE_ADDR start;
|
||
CORE_ADDR end;
|
||
CORE_ADDR calling_pc;
|
||
|
||
if (block == NULL)
|
||
return NULL;
|
||
|
||
start = BLOCK_START (block);
|
||
end = BLOCK_END (block);
|
||
|
||
frame = NULL;
|
||
while (1)
|
||
{
|
||
frame = get_prev_frame (frame);
|
||
if (frame == NULL)
|
||
return NULL;
|
||
calling_pc = get_frame_address_in_block (frame);
|
||
if (calling_pc >= start && calling_pc < end)
|
||
return frame;
|
||
}
|
||
}
|
||
|
||
/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
|
||
below is for infrun.c, which may give the macro a pc without that
|
||
subtracted out. */
|
||
|
||
/* Returns true for a user frame or a call_function_by_hand dummy
|
||
frame, and false for the CRT0 start-up frame. Purpose is to
|
||
terminate backtrace. */
|
||
|
||
int
|
||
legacy_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
|
||
{
|
||
/* Don't prune CALL_DUMMY frames. */
|
||
if (deprecated_pc_in_call_dummy (get_frame_pc (fi)))
|
||
return 1;
|
||
|
||
/* If the new frame pointer is zero, then it isn't valid. */
|
||
if (fp == 0)
|
||
return 0;
|
||
|
||
/* If the new frame would be inside (younger than) the previous frame,
|
||
then it isn't valid. */
|
||
if (INNER_THAN (fp, get_frame_base (fi)))
|
||
return 0;
|
||
|
||
/* If the architecture has a custom DEPRECATED_FRAME_CHAIN_VALID,
|
||
call it now. */
|
||
if (DEPRECATED_FRAME_CHAIN_VALID_P ())
|
||
return DEPRECATED_FRAME_CHAIN_VALID (fp, fi);
|
||
|
||
/* If we're already inside the entry function for the main objfile,
|
||
then it isn't valid. */
|
||
if (inside_entry_func (fi))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|